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Abstract

Although the two-layer quasi-geostrophic equations (2QGE) are a simplified model for the dynamics
of a stratified, wind-driven ocean, their numerical simulation is still plagued by the need for high
resolution to capture the full spectrum of turbulent scales. Since such high resolution would lead to
unreasonable computational times, it is typical to resort to coarse low-resolution meshes combined
with the so-called eddy viscosity parameterization to account for the diffusion mechanisms that
are not captured due to mesh under-resolution. We propose to enable the use of further coarsened
meshes by adding a (linear or nonlinear) differential low-pass to the 2QGE, without changing the
eddy viscosity coefficient. While the linear filter introduces constant (additional) artificial viscosity
everywhere in the domain, the nonlinear filter relies on an indicator function to determine where
and how much artificial viscosity is needed. Through several numerical results for a double-gyre
wind forcing benchmark, we show that with the nonlinear filter we obtain accurate results with
very coarse meshes, thereby drastically reducing the computational time (speed up ranging from
30 to 300).

Keywords: Finite Volume approximation, Large Eddy Simulation, Filter stabilization, Two-layer
quasigeostrophic equations, Large-scale ocean circulation.

1. Introduction

The simulation of ocean flows is extremely challenging for several reasons. The first is of course
the scale of the problem: the area of an ocean basin is of the order of millions of Km2. The second
reason is the nature of the flow itself, which is typically described in terms of two non-dimensional
numbers: the Reynolds number Re and the Rossby number Ro. The Reynolds number is the
ratio of inertial forces to viscous forces, while the Rossby number weighs the inertial forces over
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the Coriolis forces. Ocean flows characterized by large Re and small Ro are especially challenging
because they require very fine computational meshes to resolve all the eddy scales. The third reason
is connected to the first two: high resolution meshes over very large domains lead to a prohibitive
computational cost with nowadays computational resources.

In order to contain the computational cost of ocean flow simulations, two avenues are typically
followed: i) to introduce assumptions that reduce the complexity of the model, and ii) to adopt
coarse meshes for the simulations. The first important simplifying assumption comes from the
fact that in an ocean basin the vertical length scale is much smaller than horizontal length scales.
Thanks to this, one can average the 3D Navier–Stokes equations over the depth and get rid of the
vertical dimension, obtaining the shallow water equations (a 2D problem). If one further assumes
hydrostatic and geostrophic balance, and small Ro (i.e., flow strongly affected by Coriolis forces),
the shallow water equations can be simplified to obtain the quasi-geostrophic equations (QGE).
The QGE, whose name comes from the fact that for Ro = 0 one recovers geostrophic flow, are the
simplest model for wind-driven ocean dynamics.

Since almost all large-scale flows in the ocean (and atmosphere) are in geostrophic balance to
leading order, the QGE are one of the most commonly used mathematical models in this context
[1, 2], also thanks to their simplicity. However, the QGE represent the ocean as one layer with
uniform depth, density, and temperature, while in reality the ocean is a stratified fluid driven from
its upper layer by patterns of momentum and buoyancy fluxes [3]. The two-layer quasi-geostrophic
equations (2QGE) are an attempt to capture the complexity of stratification by adding a second
dynamically active layer to include the first baroclinic modes [3, 4, 5, 6, 7]. While the 2QGE
are a more realistic representation of ocean dynamics than the QGE, they are also more complex
from the mathematical and numerical point of view. In fact, the one layer QGE is a two-way
coupled system: the kinematic relationship couples the potential vorticity to the stream function
and the momentum balance equation has a convective term that involves the stream function. The
2QGE system features an additional level of complexity since the kinematic relationships couple the
potential vorticity in each layer to the stream functions of both layers, resulting in a tight coupling
between the two layers.

Even with a model obtained under simplifying assumptions, like the QGE or 2QGE, a simu-
lation would require an impractically fine mesh resolution to resolve the full spectra of turbulence
down to the Kolmogorov scale. To reduce the computational cost to the point that it is manage-
able, researchers typically resort to coarse low-resolution meshes and the use of the so-called eddy
viscosity parameterization. This simply means that, instead of using the actual value of the kinetic
viscosity of water (of the order of 10−6 m−2/s), the model employs an artificially large viscosity,
called eddy viscosity, to compensate for the diffusion mechanisms that are not captured due to mesh
under-resolution. The values of the eddy viscosity range from a few thousand (see, e.g., [8, 9]) to
a few hundred (see, e.g., [10, 5, 7, 11]), depending on the mesh resolution that one can afford with
the available computational resources. Of course, this is a rather crude Large Eddy Simulation
(LES) technique and already a couple of decades ago it was shown that different eddy viscosity
coefficients can result in different dynamics given by quasi-geostrophic models [5]. Understanding
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the relationship between eddy viscosity coefficients and mesh resolution has motivated much work
in recent years, with the ultimate goal of designing more effective LES methods. Let us focus on
the efforts that involve the 2QGE.

LES techniques directly resolve a portion of the flow scales and require a model to account for the
remaining (small) scales that are not directly captured due to mesh under-refinement. Since one of
the effects of the small (unresolved) scales is to dissipate the turbulent kinetic energy, traditionally,
these models introduce artificial viscosity that can be shown to result from an operation of spatial
filtering. In [12], the Helmholtz filter is applied to the stream function of both layers to obtain a
so-called alpha model (α being the filtering radius). Such alpha model is used to study the mean
effects of turbulence on baroclinic instability. In [13], a tridiagonal filter and a differential filter are
applied to potential vorticity and stream function in both layers, with a closure approach based
on the approximate deconvolution. The work in [13] can be seen as an extension to the 2QGE of
the LES methodology proposed in [14] for the QGE. In [15], a multi-scale coarse grid projection
method was introduced to smooth out numerical oscillations in the computed solution and increase
the solution accuracy with a given coarse mesh. In [16], an efficient trapezoidal filter is applied to
potential vorticity and stream function in both layers, with the Smagorinsky and Leith models for
closure. The difference is that the artificial viscosity is proportional to the local strain rate field in
the Smagorinsky model, while it is proportional to the gradient of the vorticity field in the Leith
model. It is found that the Smagorinsky model is robust with respect to changes in the grid size,
while the Leith model introduces lower amounts of eddy viscosity and is less robust to mesh size
variations. Finally, in [17] local filtering is used to translate the effect of the unresolved scales into
an error-correcting forcing.

In this paper, we propose to apply a linear and nonlinear Helmholtz filter (same filter as in [12]
in the linear case) to the potential vorticities (unlike [12] that applies it to the stream functions).
In the nonlinear case, our approach uses an indicator function to determine where and how much
artificial viscosity is needed. The indicator function that we choose makes the closure model similar
to the Leith model in [16]. Since we use a different filter than in [16], we find that the Leith model
is robust with respect to changes in the mesh size and more accurate than the method based on the
linear filter. Through several numerical results, we show that with the nonlinear filter, we obtain
accurate results with very coarse meshes, thereby drastically reducing the computational time. The
speed up ranges roughly from 30 to 300.

The rest of the paper is structured as follows. Sec. 2 presents the 2QGE model and the ap-
plication of the linear and nonlinear filter to it. Sec. 3 describes the methods for space and time
discretization. Sec. 4 reports and discusses the numerical results. Finally, conclusions are drawn in
Sec. 5.
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2. Problem definition

2.1. Two-layer Quasi-Geostrophic Equations

Isopycnals are layers within an ocean that are stratified based on their densities. We assume
that the part of the ocean under consideration is composed of two isopycnal layers with uniform
depth, density, and temperature. Let layer 1 be on on top of layer 2. We denote with H1 and H2

the depths of the layers, both assumed to be much smaller than the meridional length of the domain
L. The 2QGE describe the dynamics of these two layers, under some simplifying assumptions.

Two main assumptions for the model are hydrostatic and geostrophic balance. The second is the
so called β-plane approximation. This means that the Coriolis frequency f is linearized as follows:
f = f0 + βy, where f0 is the local rotation rate at y = 0, which is the center of the basin, and β is
the gradient of the Coriolis frequency. The value of f0 depends on the rotational speed of the earth
and the latitude at y = 0. The β-plane approximation is equivalent to approximating the Earth
(a sphere) with a tangent plane at y = 0. Let Ω = [x0, xf ] × [−L/2, L/2] be our computational
domain on this plane.

For simplicity, we will work with the 2QGE in non-dimensional form. The reader interested in
the derivation of these equations from the dimensional form is referred to, e.g., [13, 18, 19, 20, 21].
In the non-dimensionalization process, some well-known non-dimensional numbers appear. These
are the Rossby number Ro, the Reynolds number Re, and the Froude number Fr:

Ro =
U

βL2
, Re =

UL

ν
, Fr =

f20U

g′βH
, (1)

where U is a characteristic speed, ν is the eddy viscosity, and H = H1 + H2 is the total ocean
depth. Finally, in (1), g′ = g∆ρ/ρ1, where g is the gravitational constant, ∆ρ is the density jump
between the two layers, and ρ1 is the density of the upper layer. The third main assumption in
the derivation of the 2QGE is that inertial forces are negligible with respect to the Coriolis and
pressure forces, i.e., Ro is “small”.

Note that instead of using the actual kinetic viscosity of water (around 10−6 m−2/s), the
definition of Re in (1) uses the eddy viscosity coefficient, which can take values of the order of
100-1000 m−2/s. This choice is dictated by the fact that the scale of an ocean basin is much larger
than the effective scale for molecular diffusion and so a simulation with a mesh fine enough to
capture the full spectrum of turbulent scales would have a prohibitive cost. To reduce such cost,
one uses a coarser mesh and increases, by trial and error, the value of ν in order to obtain stable
and realistic results.

We need to introduce two, lesser known, non-dimensional parameters before stating the 2QGE.
These are the lateral eddy viscosity coefficient A and the Ekman bottom layer friction coefficient
σ:

A =
ν

βL3
, σ =

γ

βL
, (2)

where γ is a friction coefficient with the bottom of the ocean. Note that Re = Ro/A.
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Let qi be the non-dimensional potential vorticity and ψi the non-dimensional stream function
of layer i, i = 1, 2. We set Ψi = (0, 0, ψi). The non-dimensional 2QGE read: find qi and ψi, for
i = 1, 2, such that

∂q1
∂t

+∇ · ((∇×Ψ1) q1)−A∆2ψ1 = F1, (3)

∂q2
∂t

+∇ · ((∇×Ψ2) q2)−A∆2ψ2 + σ∆ψ2 = F2, (4)

q1 = Ro∆ψ1 + y +
Fr

δ
(ψ2 − ψ1) , (5)

q2 = Ro∆ψ2 + y +
Fr

1− δ
(ψ1 − ψ2) , (6)

in Ω × (0, T ), where Fi is the external forcing acting on layer i. Here, (0, T ) is a time interval of
interest. Eq. (5) and (6) state the kinematic relationships between the potential vorticites and the
stream functions, with δ = H1/(H1 +H2) representing the aspect ratio of the layer depths.

Problem (3)-(6) is rather complex: it is fourth-order in space, nonlinear, and two-way coupled.
The two layers are coupled through the last term at the right-hand-side in eq. (5)-(6). Notice that
the strength of the coupling is not symmetric, as Fr/δ weights how the dynamics in the bottom
layer affect the dynamics in the top layer, while Fr/(1− δ) weights the vice versa. So, for given Fr
and fixed total depth, the thinner the top layer (i.e., the smaller δ), the stronger the effect of the
bottom layer on the top layer and the weaker the effect of the top layer on the bottom layer. This
is intuitive. We also remark that the dissipative terms in (3)-(4) are multiplied by A = Ro/Re and
σ. Since the definition of Re uses the eddy viscosity, one controls the amount of dissipation in the
system by tuning the value of ν.

In order to avoid solving a fourth-order in space problem, we use eq. (5) and (6) to rewrite
eq. (3)-(4) as follows:

∂q1
∂t

+∇ · ((∇×Ψ1) q1) +
Fr

Re δ
∆(ψ2 − ψ1)−

1

Re
∆q1 = F1, (7)

∂q2
∂t

+∇ · ((∇×Ψ2) q2) +
Fr

Re (1− δ)
∆(ψ1 − ψ2)−

1

Re
∆q2 + σ∆ψ2 = F2, (8)

in Ω× (0, T ).
Obviously, we need to supplement the model with boundary and initial conditions. Following

[13], we prescribe free-slip and impermeability boundary conditions

ψi = 0 on ∂Ω× (t0, T ), (9)

qi = y on ∂Ω× (t0, T ), (10)

for i = 1, 2, and start the system from a rest state:

qi(x, y, t0) = y in Ω. (11)
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2.2. Low-pass differential spatial filter

Once the value of the eddy viscosity ν is set, a Direct Numerical Simulation (DNS) of the 2QGE
requires a mesh whose size h is smaller than the Munk scale:

δM = L
3

√
Ro

Re
, (12)

where L is a characteristic length. We are slightly abusing of terminology, since, strictly speaking,
DNS refers to a simulation that uses a mesh with size h < δM where δM is computed with Re based
on the value of molecular diffusivity. However, a real DNS of ocean dynamics is far beyond the
computing resources available today. We propose to couple the 2QGE with a differential filter to
enable the use of even coarser meshes than required by the Munk scale computed with Re based
on the eddy viscosity. The purpose of the differential filter is to model the effects of the scales that
are not resolved due to mesh under-refinement.

Let α be a filtering radius and a(·) a scalar function, called indicator function, with the following
properties:

0 < a(·) ≤ 1 for any (x, t) ∈ Ω× [t0, T ];

a(·) ≃ 0 in regions where the flow field needs no regularization;

a(·) ≃ 1 in regions where the flow field needs O(α) regularization.

The extension of the filtering strategy proposed in [22] for the single layer QGE to the 2QGE reads:

∂q1
∂t

+∇ · ((∇×Ψ1) q1) +
Fr

Re δ
∆(ψ2 − ψ1)−

1

Re
∆q1 = F1, (13)

− α2∇ · (a(q1)∇q̄1) + q̄1 = q1, (14)

Ro∆ψ1 + y +
Fr

δ
(ψ2 − ψ1) = q̄1, (15)

∂q2
∂t

+∇ · ((∇×Ψ2) q2) +
Fr

Re (1− δ)
∆(ψ1 − ψ2)−

1

Re
∆q2 + σ∆ψ2 = F2, (16)

− α2∇ · (a(q2)∇q̄2) + q̄2 = q2, (17)

Ro∆ψ2 + y +
Fr

1− δ
(ψ1 − ψ2) = q̄2, (18)

in Ω × (0, T ), where q̄1 and q̄2 are the filtered potential vorticities for layer 1 and 2, respectively.
Notice that, while (13) and (16) are the same as (7)-(8), eq. (15) replaces q1 in (5) with q̄1 and,
analogously, eq. (18) replaces q2 in (6) with q̄2. It is trivial to see that as α → 0, q̄1 → q1 and
q̄2 → q2 and system (13)-(18) tends to system (5)-(8). For α > 0, the differential filters (14) and (17)
leverage an elliptic operator that acts as a spatial filter by damping the spurious and nonphysical
oscillations exhibited by the numerical solution on coarse meshes. The price that we pay to have a
physical solution with a coarse grid is the addition of two equations, i.e., eq. (14) and (17). As we
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shall see in Sec. 4, this additional cost is marginal with respect to the gain in computational time
allowed by the use of a coarse grid.

Filter problems (14) and (17) are linear or nonlinear depending on the choice of the indicator
function. If a(·) = 1, eq. (14) and (17) are linear and one recovers an extension to the 2QGE
of the so-called BV-α model for the one-layer case [23, 24, 22, 25, 26]. We will call this 2QG-α
model. While a(·) = 1 is a convenient choice, it does not really act as an indicator function since
it introduces the same amount of regularization everywhere in the domain. If a(·) is actually a
function of its input, i.e., not a constant, then it can be selective in introducing regularization.
Following [22], we will consider

a(q) =
|∇q|

||∇q||∞
, (19)

which makes eq. (14) and (17) nonlinear. We will refer to the problem (13)-(18) with indicator
function (19) as the 2QG-NL-α model, which is an extension to the 2QGE of the BV-NL-α for the
single layer QGE [22].

We supplement problem (13)-(18) with initial data (11) and boundary conditions (9)-(10), plus
the following additional boundary conditions:

q̄i = y, on ∂Ω× (0, T ).

for i = 1, 2.

3. The discretized problem

We will start with the time discretization of problem (13)-(18) and then present the space
discretization of the time-discrete problem.

3.1. Time discretization

We divide the interval (0, T ) into NT subintervals of width ∆t = T
NT

and denote tn = n∆t, with
n = 0, 1, . . . , NT . For any given quantity f , its approximation at a specific time point tn is denoted
with fn.

Problem (13)-(18) discretized in time by a Backward Differentiation Formula of order 1 (BDF1)
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reads: for i = 1, 2, given
(
q0i , q̄

0
i , ψ

0
i

)
, find (qn+1

i , q̄n+1
i , ψn+1

i ), for n ≥ 0, such that

1

∆t
qn+1
1 +∇ ·

(
(∇×Ψn

1 ) q
n+1
1

)
+

Fr

Re δ
∆
(
ψn+1
2 − ψn+1

1

)
− 1

Re
∆qn+1

1 = bn+1
1 , (20)

− α2∇ ·
(
an+1
1 ∇q̄n+1

1

)
+ q̄n+1

1 = qn+1
1 (21)

Ro∆ψn+1
1 + y +

Fr

δ

(
ψn+1
2 − ψn+1

1

)
= q̄n+1

1 , (22)

1

∆t
qn+1
2 +∇ ·

(
(∇×Ψn

2 ) q
n+1
2

)
+

Fr

Re (1− δ)
∆
(
ψn+1
1 − ψn+1

2

)
− 1

Re
∆qn+1

2 + σ∆ψn+1
2 = bn+1

2 (23)

− α2∇ ·
(
an+1
2 ∇q̄n+1

2

)
+ q̄n+1

2 = qn+1
2 (24)

Ro∆ψn+1
2 + y +

Fr

1− δ

(
ψn+1
1 − ψn+1

2

)
= q̄n+1

2 (25)

where bn+1
i = Fi + qni /∆t and a

n+1
i = a(qn+1

i ). Note that we have linearized the convective terms
in (20) and (23) with a first-order extrapolation. However, if one uses a nonlinear filter, problem
(20)-(25) remains nonlinear. Additionally, it is coupled. Hence, one needs to be careful in devising a
solution algorithm that contains the computational cost while achieving a desired level of accuracy.

To maximize computational efficiency, we propose a segregated algorithm that at the same
time linearizes the problem when using a nonlinear filter. At time step tn+1, given (qni , q̄

n
i , ψ

n
i ), for

i = 1, 2, proceed with the following steps:

- Step 1: find the potential vorticity of the top layer qn+1
1 such that

1

∆t
qn+1
1 +∇ ·

(
(∇×Ψn

1 ) q
n+1
1

)
− 1

Re
∆qn+1

1 = bn+1
1 − Fr

Re δ
∆(ψn

2 − ψn
1 ) . (26)

- Step 2: find the filtered potential vorticity for the top layer q̄n+1
1 such that

−α2∇ ·
(
an+1
1 ∇q̄n+1

1

)
+ q̄n+1

1 = qn+1
1 . (27)

- Step 3: find the stream function of the top layer ψn+1
1 such that:

Ro∆ψn+1
1 + y − Fr

δ
ψn+1
1 = q̄n+1

1 − Fr

δ
ψn
2 . (28)

- Step 4: find the potential vorticity of the bottom layer qn+1
2 such that:

1

∆t
qn+1
2 +∇ ·

(
(∇×Ψn

2 ) q
n+1
2

)
− 1

Re
∆qn+1

2 = bn+1
2 − σ∆ψn

2

− Fr

Re (1− δ)
∆

(
ψn+1
1 − ψn

2

)
. (29)
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- Step 5: find the filtered potential vorticity for the bottom layer q̄n+1
2 such that:

−α2∇ ·
(
an+1
2 ∇q̄n+1

2

)
+ q̄n+1

2 = qn+1
2 . (30)

- Step 6: find the stream function of the bottom layer ψn+1
2 such that:

Ro∆ψn+1
2 + y − Fr

1− δ
ψn+1
2 = q̄n+1

2 − Fr

1− δ
ψn+1
1 . (31)

3.2. Space discretization

For the space discretization, we adopt a Finite Volume approximation that is derived directly
from the integral form of the governing equations. Computational domain Ω is divided into a total
number of NC control volumes Ωk, k = 1, . . . , NC . Let Aj be the surface vector of each face of the
control volume, with j = 1, . . . ,M .

The integral form of (26) in each control volume Ωk is:

1

∆t

∫
Ωk

qn+1
1 dΩ+

∫
Ωk

∇ ·
(
(∇×Ψn

1 ) q
n+1
1

)
dΩ− 1

Re

∫
Ωk

∆qn+1
1 dΩ

=

∫
Ωk

bn+1
1 dΩ− Fr

Re δ

∫
Ωk

∆(ψn
2 − ψn

1 ) dΩk. (32)

By applying the Gauss-divergence theorem to (32), we obtain

1

∆t

∫
Ωk

qn+1
1 dΩ+

∫
∂Ωk

(
(∇×Ψn

1 ) q
n+1
1

)
· dA− 1

Re

∫
Ωk

∇qn+1
1 · dA

=

∫
Ωk

bn+1
1 dΩ− Fr

Re δ

∫
∂Ωk

∇ (ψn
2 − ψn

1 ) · dA. (33)

The discretized form of eq. (33), divided by the control volume Ωk, can be written as:

1

∆t
qn+1
1,k +

∑
j

φn
1,jq

n+1,j
1,k − 1

Re

∑
j

(
∇qn+1

1,k

)
j
·Aj = bn+1

1,k − Fr

Re δ

∑
j

(
∇(ψn

2,k − ψn
1,k)

)
j
·Aj (34)

with
φn
1,j =

(
∇×Ψn

1,j

)
·Aj , (35)

where qn+1
1,k and ψn

1,k represent the average top layer potential vorticity and average stream function

in the control volume Ωk, q
n+1,j
1,k is the top layer potential vorticity associated to the centroid of the

j-th face and normalized by the control volume Ωk, and b
n+1
1,k denotes the average discrete forcing

on the top layer in Ωk. The convective term (35), as well as its counterpart for the bottom layer
(41), are computed by linear interpolation from neighboring cells using central difference, which is
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a second-order method. The Laplacian terms for both layers are approximated with a second order
central differencing scheme. More details on the treatment of the convective and diffusive terms
can be found in [27, 28].

By following the same procedure for eqs. (27)-(31) and using similat notation, we get:

− α2
∑
j

an+1
1,k

(
∇q̄n+1

1,k

)
j
·Aj + q̄n+1

1,k = qn+1
1,k , (36)

Ro
∑
j

(
∇ψn+1

1,k

)
j
·Aj + yk +

Fr

δ

(
ψn
2,k − ψn+1

1,k

)
= q̄n+1

1,k , (37)

1

∆t
qn+1
2,k +

∑
j

φn
2,jq

n+1,j
2,k − 1

Re

∑
j

(
∇qn+1

2,k

)
j
·Aj = bn+1

2,k

+

(
Fr

Re (1− δ)
− σ

)∑
j

(∇ψn
2,k)j ·Aj −

Fr

Re (1− δ)

∑
j

(
∇ψn+1

1,k

)
j
·Aj , (38)

− α2
∑
j

an+1
1,k

(
∇q̄n+1

1,k

)
j
·Aj + q̄n+1

1,k = qn+1
1,k , (39)

Ro
∑
j

(
∇ψn+1

2,k

)
j
·Aj + yk −

Fr

1− δ
ψn+1
2,k = q̄n+1

2,k − Fr

1− δ
ψn+1
1,k , (40)

where yk is the vertical coordinate of the centroid and

φn
2,j =

(
∇×Ψn

2,j

)
·Aj . (41)

We implement scheme (34)-(41) in the open-source software package Geophysical and Environ-
mental Applications (GEA) [29, 30], which builds upon C++ finite volume library OpenFOAM®

[31]. See [32, 33, 34] for more details on GEA.

4. Numerical results

This section presents several numerical experiments to validate our solver for the 2QGE and
show the improvements in terms of accuracy and computational efficiency made possible by the
filtering approach presented in Sec. 3. The validation of the 2QGE solver using a manufactured
solution is discussed in Sec. 4.1. Our investigation on the performance of the 2QG-α and 2QG-NL-α
models with a double-gyre wind forcing benchmark is presented in Sec. 4.2.

4.1. Validation of our solver for the 2QGE

To validate our segregated Finite Volume solver for the 2QGE, we consider a manufactured
steady-state solution solution with varying parameters in domain Ω = [−0.5, 0.5]2. Hence, the
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meridional length L is 1. We set the stream functions to:

ψ1 = A1(x
2 − 0.25)(y2 − 0.25), (42)

ψ1 = A2(x
2 − 0.25)(y2 − 0.25), (43)

where A1, A2 > 0. By plugging these into (5)-(6), we obtain the potential vorticities:

q1 = 2A1Ro(x
2 + y2 − 0.5) + y +

Fr

δ
(A2 −A1)(x

2 − 0.25)(y2 − 0.25), (44)

q2 = 2A2Ro(x
2 + y2 − 0.5) + y +

Fr

1− δ
(A1 −A2)(x

2 − 0.25)(y2 − 0.25), (45)

with which we can find the forcing terms F1 and F2 through (7)-(8):

F1 = 8RoA2
1xy(x

2 − 0.25)− (8RoA2
1xy + 2A1x)(y

2 − 0.25)− 8A1Ro

Re
, (46)

F2 = 8RoA2
2xy(x

2 − 0.25)− (8RoA2
2xy + 2A2x− 2A2σ)(y

2 − 0.25)− 8A2Ro

Re
. (47)

To obtain this manufactured solution, we impose the following boundary conditions

ψi = 0 on ∂Ω, (48)

qi = 2AiRo(x
2 − 0.25)− 0.5 on y = −0.5, (49)

qi = 2AiRo(x
2 − 0.25) + 0.5 on y = 0.5, (50)

qi = 2AiRo(y
2 − 0.25) + y on x = −0.5, 0.5, (51)

for i = 1, 2.
Despite the fact that we are using a steady-state solution for simplicity, we use a time-dependent

solver for the 2QGE, i.e., the solver described in Sec 3.2 in the limit of α = 0. As initial condition,
we take qi(0, x, y) given by (44) and (45), i.e., we give the solver the exact solution and checks that
it maintains it.

We set A1 = 1, A2 = 2, Fr = 0.1, δ = 0.2, σ = 0, and vary the remaining two critical
parameters: the Reynolds number and the Rossby number. We proceed as follows: first we set
Ro = 1 and consider Re = 10, 100, 1000, then we set Re = 1 and consider Ro = 0.1, 0.01, 0.001.
Note that the case Ro = 1-Re = 10 has the same Munk scale (12) as the Re = 1-Ro = 0.1, i.e.,
δM ≈ 0.46. Similarly, the cases Ro = 1-Re = 100 and Re = 1-Ro = 0.01 have the same Munk scale
δM ≈ 0.21, while the cases Ro = 1-Re = 1000 and Re = 1-Ro = 0.001 have Munk scale δM ≈ 0.1.
We consider a set of meshes that are all fine enough to resolve these Munk scales. Specifically, we
consider mesh sizes h = 1/32, 1/64, 1/128, 1/256. Hence, there is no need for the filter. We further
remark that, while the test cases from the first and second set are match by Munk scale, the first
set of tests have varying Kolmogorov scale, since Re varies. Defined as

η = Re−3/4L, (52)
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the Kolmogorov scale of the second set of tests is simply 1. For the first set of tests, it takes the
values of η = 0.178 for Re = 10, η = 0.032 for Re = 100, and η = 0.006 for Re = 1000. All the
meshes under consideration satisfy the requirement h < η for Re = 10, 100, while only the mesh
with h = 1/256 satisfies it for Re = 1000. Given that we are working with a manufactured solution,
not with a realistic application, we do not expect this to be a problem.

Tables 1-3 report the relative L2 errors for each variable for fixed Ro and varying Re and the
corresponding convergence rates. Note that the rate of convergence is either 2.00 or very close to
it for all the variables. Since we use second order approximations for the spatial derivatives, this is
the expected rate and we observe that it does not deteriorate even when the Reynolds number is
increased.

mesh ψ1 ψ2 q1 q2
size error rate error rate error rate error rate

1/32 1.99E-03 1.99E-03 6.17E-04 6.90E-04

1/64 4.97E-04 2.00 4.97E-04 2.00 1.54E-04 2.00 1.72E-04 2.00

1/128 1.24E-04 2.00 1.24E-04 2.00 3.86E-05 2.00 4.31E-05 2.00

1/256 3.12E-05 1.99 3.08E-05 2.01 9.74E-06 1.99 1.06E-05 2.03

Table 1: Validation: relative L2 error for each variable and corresponding rates of convergence for different mesh
resolutions for Ro = 1 and Re = 10.

mesh ψ1 ψ2 q1 q2
size error rate error rate error rate error rate

1/32 2.06E-03 2.03E-03 7.36E-04 7.56E-04

1/64 5.15E-04 2.00 5.07E-04 2.00 1.84E-04 2.00 1.89E-04 2.00

1/128 1.29E-04 2.00 1.27E-04 2.00 4.59E-05 2.00 4.72E-05 2.00

1/256 3.20E-05 2.01 3.14E-05 2.01 1.14E-05 2.01 1.16E-05 2.02

Table 2: Validation: relative L2 error for each variable and corresponding rates of convergence for different mesh
resolutions for Ro = 1 and Re = 100.

mesh ψ1 ψ2 q1 q2
size error rate error rate error rate error rate

1/32 2.28E-03 2.09E-03 1.02E-03 8.50E-04

1/64 5.70E-04 2.00 5.22E-04 2.00 2.55E-04 2.01 2.12E-04 2.00

1/128 1.42E-04 2.00 1.31E-04 2.00 6.35E-05 2.01 5.30E-05 2.00

1/256 3.51E-05 2.02 3.25E-05 2.01 1.57E-05 2.02 1.32E-05 2.01

Table 3: Validation: relative L2 error for each variable and corresponding rates of convergence for different mesh
resolutions for Ro = 1 and Re = 1000.
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Fig. 1 illustrates the difference in absolute value between exact and computed stream functions
for Ro = 1 and varying Re for mesh size h = 1/256. We observe that the maximum error is of
order 1E-06.

Re = 10 Re = 100 Re = 1000

ψ1

ψ2

Figure 1: Validation: absolute error of the stream functions ψ1 (top row) and ψ2 (bottom row) for Re = 10 (first
column), Re = 100 (second column), and Re = 1000 (third column). In each case, Ro = 1. The results were obtained
with mesh size 1/256.

Tables 4–6 report the relative L2 errors for each variable for fixed Re and varying Ro and the
corresponding convergence rates. We see that the rate of convergence is 2.00 or very close to it
for all the variables when Re = 1 and Ro = 0.1 and for most variables in the other two cases.
We observe a slight deterioration of the convergence rate for ψ1 when Ro = 0.01 and for q1 when
Ro = 0.001. Although this set of cases has matching Munk scales with the previous set, this is
somewhat expected. In fact, it is known that the lower Ro cases are more challenging than the
higher Re cases, the Munk scale being equal. The reason is the following: a relatively small Rossby
number yields a sharp Western boundary layer, i.e., a convection-dominated regime that makes the
problem more challenging. See, e.g., [35] and references therein. The effect of this sharp Western
boundary layer is evident in Fig. 2, which shows the absolute errors of the stream functions ψ1

and ψ2 obtained with mesh h = 1/256 for Re = 1 and varying Ro. We see that the red region,
corresponding to larger errors, moves towards West as Ro decreases. Additionally, we note that
the maximum absolute difference is slightly higher than in the first set of tests, indicating that
these cases are more challenging. Nonetheless, the errors in Fig. 1 and 2 have the same order of
magnitude, i.e., 1E-06.
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mesh ψ1 ψ2 q1 q2
size error rate error rate error rate error rate

1/32 1.99E-03 1.99E-03 6.39E-05 3.29E-04

1/64 4.97E-04 2.00 4.97E-04 2.00 1.60E-05 2.00 8.22E-04 2.00

1/128 1.24E-04 2.00 1.24E-04 2.00 3.86E-06 2.05 2.06E-05 2.00

1/256 3.06E-05 2.02 3.13E-05 1.99 9.09E-07 2.09 5.28E-06 1.97

Table 4: Validation: relative L2 error for each variable and corresponding rates of convergence for different mesh
resolutions for Re = 1 and Ro = 0.1.

mesh ψ1 ψ2 q1 q2
size error rate error rate error rate error rate

1/32 2.09E-03 2.10E-03 1.02E-04 7.09E-05

1/64 5.24E-04 2.00 5.22E-04 2.01 2.53E-05 2.02 1.75E-04 2.01

1/128 1.35E-04 1.95 1.29E-04 2.01 5.83E-06 2.12 4.26E-06 2.04

1/256 4.36E-05 1.63 2.79E-05 2.21 6.40E-07 3.19 7.42E-07 2.52

Table 5: Validation: relative L2 error for each variable and corresponding rates of convergence for different mesh
resolutions for Re = 1 and Ro = 0.01.

mesh ψ1 ψ2 q1 q2
size error rate error rate error rate error rate

1/32 3.28E-03 3.27E-03 1.83E-04 5.63E-05

1/64 8.12E-04 2.01 8.16E-04 2.00 4.62E-05 1.99 1.41E-04 1.99

1/128 2.20E-04 1.88 2.03E-04 2.01 1.05E-05 2.14 3.28E-06 2.11

1/256 4.30E-05 2.36 4.85E-05 2.07 3.11E-06 1.75 9.42E-07 1.80

Table 6: Validation: relative L2 error for each variable and corresponding rates of convergence for different mesh
resolutions for Re = 1 and Ro = 0.001.

4.2. Assessment of the linear and nonlinear filtering

We consider the extension of the so-called double-wind gyre forcing test, a classical benchmark
widely used to assess solvers for geophysical flow problems [24, 25, 36, 26, 23, 22, 35, 37, 38].

We take the computational domain Ω is [0, 1] × [−1, 1], thus L = 2, and set the forcing terms
F1 = sin(πy) and F2 = 0. Taking inspiration from [22, 13, 38], we consider two sets of parameters:

- Case 1: Ro = 0.001, Re = 450, Fr = 0.1, σ = 0.005, and δ = 0.5.

- Case 2: Ro = 0.001, Re = 450, Fr = 0.1, σ = 0.01, and δ = 0.1.

These two cases have the same A = Ro/Re = 0.22E-5 and hence the same amount of “physical”
diffusivity and same Munk scale δM = 0.026. The two cases differ in the friction with the bottom
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Ro = 0.1 Ro = 0.01 Ro = 0.001

ψ1

ψ2

Figure 2: Validation: absolute error of the stream functions ψ1 (top row) and ψ2 (bottom row) for Ro = 0.1 (first
column), Ro = 0.01 (second column), and Ro = 0.001 (third column). In each case, Re = 1. The results were
obtained with mesh size h = 1/256.

of the ocean (less friction in case 1) and the relative depths of the layers (thinner top layer in case
2).

For the DNS of the 2QGE, we use a mesh with size h = 1/256 (about 3 times smaller than the
Munk scale), denoted as 256 × 512. To test the effect of the filtering, we will use coarse meshes
64× 128, 32× 64, 16× 32 and 8× 16. The time interval of interest is [0, 100], with time step ∆t =
2.5E-05 [22]. When the filter is used, we set α = O(h) [25, 22, 38], where h is the mesh size, as
is typically done when filtering stabilization is used. See, e.g., [39] and reference therein for more
details on this.

The quantities of interest for this benchmark are the time-averaged stream functions ψ̃i and
potential vorticities q̃i, i = 1, 2, over the time period [20, 100]. The reason for this choice is that
these quantities reach statistically a steady state, while the instantaneous variables display a highly
convective behavior that makes the comparison between DNS solutions and LES solutions harder.
Fig. 3 illustrates this almost chaotic behavior with an example of q1 and q2 computed by the DNS
for case 1 at time t = 20, 21. Despite being only 1 time unit apart, the vorticity fields in both layers
show significant differences. Additionally, we will track the evolution of the enstrophy Ei of each
layer:

Ei(t) =
∫
Ω
q2i dΩ, i = 1, 2. (53)
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(a) q1 at t = 20 (b) q1 at t = 21 (c) q2 at t = 20 (d) q2 at t = 21

Figure 3: Case 1: potential vorticity of the top and bottom layers at time t = 20, 21 computed by the DNS.

4.2.1. Numerical results for case 1

The time-averaged variables obtained with DNS, i.e., the 2QGE model with mesh 256 × 512,
are shown on the first columns of Fig. 4-7. We report the DNS solution on every row to ease the
comparison with the solutions on coarser meshes. We see that while q̃1 and q̃2 (first column of
Fig. 6 and 7, respectively) present little interesting features, ψ̃1 (first column of Fig. 4) presents
two gyres with interesting shapes and ψ̃2 (first column of Fig. 5) shows two well-defined inner gyres
and two more faint outer gyres.

If one uses the 2QGE model with coarser meshes 32 × 64, 16 × 32, and 8 × 16 these large-
scale structures are reconstructed with the wrong shape, wrong magnitude or possibly disappear:
see the second columns in Fig. 4-5. With these coarse meshes, q̃1 and q̃2 are also not accurately
reconstructed, however the magnitude is correctly captured and the differences are less evident,
especially with mesh 32 × 64. See the second columns in Fig. 6-7. Note that these coarser mesh
all have a mesh size larger than δM , thus it is expected that the solver for the 2QGE (no filtering)
yields an inaccurate solution.

Next, we show that the time-averaged approximations obtained with the same coarse meshes
with the 2QG-α and 2QG-NL-α models (α =

√
2h) are an improvement over the solutions given

by the 2QGE model. Let us start from the stream functions. For both the top and bottom layers,
the 2QG-α produces a time-averaged stream function field with the correct number of gyres and
a range of values closer to that of the DNS. In particular, we note that the 2QG-α model with
mesh 32 × 64 provides rather accurate ψ̃1 and ψ̃2, especially towards the Eastern boundary. This
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DNS, 256× 512 2QGE, 32× 64 2QG-α, 32× 64 2QG-NL-α, 32× 64

DNS, 256× 512 2QGE, 16× 32 2QG-α, 16× 32 2QG-NL-α, 16× 32

DNS, 256× 512 2QGE, 8× 16 2QG-α, 8× 16 2QG-NL-α, 8× 16

Figure 4: Case 1: Time-averaged stream function of the top layer ψ̃1 computed by DNS (first column) and 2QGE with
no filtering (second column), 2QG-α (third column), and 2QG-NL-α (fourth column) with different coarse meshes.
Note that the color bar may differ from one panel to the other.
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DNS, 256× 512 2QGE, 32× 64 2QG-α, 32× 64 2QG-NL-α, 32× 64

DNS, 256× 512 2QGE, 16× 32 2QG-α, 16× 32 2QG-NL-α, 16× 32

DNS, 256× 512 2QGE, 8× 16 2QG-α, 8× 16 2QG-NL-α, 8× 16

Figure 5: Case 1: Time-averaged stream function of the bottom layer ψ̃2 computed by DNS (first column) and 2QGE
with no filtering (second column), 2QG-α (third column), and 2QG-NL-α (fourth column) with different coarse
meshes. Note that the color bar may differ from one panel to the other.
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DNS, 256× 512 2QGE, 32× 64 2QG-α, 32× 64 2QG-NL-α, 32× 64

DNS, 256× 512 2QGE, 16× 32 2QG-α, 16× 32 2QG-NL-α, 16× 32

DNS, 256× 512 2QGE, 8× 16 2QG-α, 8× 16 2QG-NL-α, 8× 16

Figure 6: Case 1: Time-averaged potential vorticity of the top layer q̃1 computed by DNS (first column) and 2QGE
with no filtering (second column), 2QG-α (third column), and 2QG-NL-α (fourth column) with different coarse
meshes. Note that the color bar may differ from one panel to the other.
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DNS, 256× 512 2QGE, 32× 64 2QG-α, 32× 64 2QG-NL-α, 32× 64

DNS, 256× 512 2QGE, 16× 32 2QG-α, 16× 32 2QG-NL-α, 16× 32

DNS, 256× 512 2QGE, 8× 16 2QG-α, 8× 16 2QG-NL-α, 8× 16

Figure 7: Case 1: Time-averaged potential vorticity of the bottom layer q̃2 computed by DNS (first column) and
2QGE with no filtering (second column), 2QG-α (third column), and 2QG-NL-α (fourth column) with different coarse
meshes. Note that the color bar may differ from one panel to the other.
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accuracy degenerates with the coarser meshes in terms of both gyre shape and value range. The
2QG-NL-α model produces time-averaged ψ̃1 fields that are a remarkable improvement over the ψ̃1

given by the 2QG-α model. For all the coarser meshes, the shape of the gyres gets closer to the
shape observed in the DNS and, with the exception of mesh 8× 16, the value ranges matches well
with the range in the DNS. Gyres shape and value range for ψ̃2 given by the 2QG-NL-α model
with meshes 32 × 64 and 16 × 32 are also an improvement over the results given by the 2QG-α
model. However, that is not the case for mesh 8× 16. We conclude that mesh 8× 16 is too coarse
to reconstruct the solutions features. Hence, we will disregard it for case 2. Now, let us look at
the vorticities in Fig. 6, 7, third and fourth columns. The 2QG-α and 2QG-NL-α models improve
the approximation of q̃1 near the Eastern boundary. There, in the top layer the flow coalesces,
generating a sharp transition layer between the red region (large positive values) and the blue
region (large negative values). We see that both the 2QG-α and 2QG-NL-α models improve the
reconstruction of this transition layer, which is hard to capture with coarse meshes. In particular,
with meshes 32× 64 and 16× 32 the 2QG-NL-α model gives a larger cyan (small negative values)
region in q̃1 than the 2QG-α model, which compares favorably with the DNS. In q̃2 (see Fig. 7),
there is a sharp boundary layer at the Easter boundary, where it has to satisfy the given boundary
condition. This boundary layer becomes hard to capture with coarse meshes. Nonetheless, the
approximations of q̃1 computed with the 2QG-NL-α model and meshes 32 × 64 and 16 × 32 are
pretty accurate.

Fig. 8 shows the computed enstrophy (53) of the two layers for the DNS, and the 2QGE, 2QG-
α, 2QG-NL-α models with a coarse mesh (32 × 64). Notice that that the enstrophy computed
with the 2QGE and mesh 32× 64 consistently underestimates (resp., overestimates) the enstrophy
computed with the DNS in the top (resp., bottom) layer. With the same coarse mesh, both the
2QG-α and the 2QG-NL-α model improve E1 with respect to the 2QGE model. See top panels
in Fig. 8. However, it is only with the 2QG-NL-α model that one can improve E2. In fact, E2
computed with the 2QG-α model tends to underestimate the enstrophy of the bottom layer. See
bottom panels in Fig. 8. A confirmation that the 2QG-NL-α model gives the best approximation
of the enstrophies computed by the DNS is given in Table 7, which reports the extrema of E1 and
E2 for all the simulations in Fig. 8, together with the L2 error.

We conclude this subsection with a comment on the computational cost of the simulations
presented in this section. All simulations were run on a computing server equipped with Intel®

Xeon® processor and 128GB of RAM, with a 64-bit version of Linux. Table 8 reports all the
computational costs and the speed up allowed by the use of filtering with coarser meshes. We do
not report the speed up for the 2QGE model with coarser meshes since we have seen in Fig. 4-7
that the corresponding solutions do not compare well with the DNS. The first thing to notice in
Table 8 is that the DNS takes more than 8 days to complete. When using the 2QG-α model, the
computational cost drops to about 1 hour and 40 minutes (118 times faster than the DNS) with
mesh 32 × 64 and about 39 minutes (299 times faster than the DNS) with mesh 16 × 32. We
recall that the 2QG-α model requires the solution of two additional linear filter problems. The
computational cost for those two additional problems adds up to only 20 minutes for mesh 32× 64
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Figure 8: Case 1: Time evolution of the enstrophy of the top layer E1 (top left) and the enstrophy of the bottom
layer E2 (bottom left) for the DNS (mesh 256 × 512), and 2QGE model, 2QG-α model and 2QG-NL-α model with
coarse mesh 32× 64. The panels on the right are zoomed-in views of the panels on the left.

DNS
32× 64

2QGE 2QG-α 2QG-NL-α

E1
average 5.094E-02 4.704E-02 5.011E-02 4.950E-02
max 5.732E-02 6.736E-02 6.544E-02 6.249E-02

L2 error - 9.616E-02 4.343E-02 4.930E-02

E2
average 2.640E-02 2.703E-02 2.526E-02 2.587E-02
min 2.432E-02 2.103E-02 1.917E-02 2.045E-02

L2 error - 1.950E-02 2.999E-02 1.831E-02

Table 7: Case 1: extrema of E1 and E2 for the DNS (mesh 256 × 512) and the 2QGE, 2QG-α, 2QG-NL-α models
with coarse mesh 32× 64. For the 2QGE, 2QG-α, 2QG-NL-α models, we also report the associated L2 errors.

and 8 minutes for mesh 16×32. Compare the times in Table 8 for the 2QGE model and the 2QG-α
model for a given mesh. Fig. 4-7 clearly indicated that the solutions given by the 2QG-NL-α model
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are more accurate than the solutions provided by the 2QG-α model, although one has to pay the
price of solving two nonlinear filter problems instead of two linear filter problems. Table 8 shows
that this price is just 13 minutes for mesh 32× 64 and 5 minutes for mesh 16× 32.

Model Mesh CPU Time Speed Up Factor

DNS 256× 512 8d 4h 41m -
2QGE 32× 64 1h 20m -
2QG-α 32× 64 1h 40m 118
2QG-NL-α 32× 64 1h 53m 104
2QGE 16× 32 31m 40s -
2QG-α 16× 32 39m 30s 299
2QG-NL-α 16× 32 44m 13s 268

Table 8: Case 1: computational time required by the DNS and the 2QGE, 2QG-α, and 2QG-NL-α models with
coarser meshes 32× 64 and 16× 32. For the algorithms with filtering, the speed up factor with respect to the DNS
is also reported.

4.2.2. Numerical results for case 2

Case 2 has the same set-up as case 1, and in particular same diffusivity, but larger σ (more
friction with the bottom of the ocean than in case 1) and smaller δ (thinner top layer than in case
1). Recall that smaller δ means that the dynamics in the bottom layer affects more strongly the
dynamics of the top layer, while the dynamics in the bottom layer is less affected by the top layer.
We will proceed in the same manner as for case 1, i.e., we take the DNS to be the true solution and
consider three coarse meshes to see if, through the use of filtering, we can obtain a solution close
to the true one.

The first columns of Fig. 9-12 display the time-averaged fields computed by the DNS, i.e., with
the 2QGE model and mesh 256× 512. We see that ψ̃1 shows two large gyres with a very different
shape with respect to case 1, while ψ̃2 exhibits two smaller elongated inner gyres and two larger
outer gyres with a less defined shape. Concerning the time-averaged potential vorticities, note that
the regions with large vorticity in absolute value (red and blue) have expanded with respect to case
1 in both the top and bottom layer, generating narrower transition regions (green) at the center
of the basin. Given that the flow patterns are more challening in this second case, we choose to
consider meshes 16 × 32 and 32 × 64, which were used also for case 1, and one finer meshes, i.e.,
64×128. While mesh 64×128 has a mesh size (=0.016) smaller than δM (=0.026), we will see that,
even with this mesh, the solution given by the 2QGE model is not accurate. The 2QGE model with
the three coarser meshes cannot correctly reconstruct the shape of the gyres in ψ̃1 and ψ̃2 (second
column in Fig. 9 and 10). Notice that also the magnitude of ψ̃1 and ψ̃2 progressively degenerates
are the mesh gets coarser. Like for case 1, the 2QGE model with coarser meshes does a better job
with q̃1 and q̃2. In fact, the second column in Fig. 12 shows that q̃2 is very well reconstructed with
all the three meshes. As for q̃1, we see that the green transition zone is rather well captured with
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all the three meshes, although with mesh 16 × 32 it gets straightened out. See second column in
Fig. 11.

Let us now have a look at the results given by the 2QG-α and 2QG-NL-α models (α = h) to
see if and how they improve the results given by the 2QGE model for a given mesh. The first
thing to notice is that the range of values of ψ̃1 and ψ̃2 gets closer to the true one when using
the 2QG-α model. However, the shape of the gyres is not well reconstructed, especially as the
mesh gets coarser. With the use of the nonlinear filter, i.e., the 2QG-NL-α model, these large scale
structures in ψ̃1 and ψ̃2 are more accurately reconstructed, while further improving the magnitude
in most cases, the main exception being mesh 16×32. In fact, just like for case 1 we concluded that
mesh 8× 16 was too coarse to capture the time-averaged fields, we can conclude that mesh 16× 32
is too coarse for case 2. In each case, there is a level of coarseness beyond which the 2QG-NL-α
cannot improve the results. From Fig. 11, we observe that the 2QG-NL-α model provides the most
accurate q̃1 for mesh 64 × 128 and 32 × 64. Since q̃2 is already well approximated by the 2QGE
model, the action of both linear and nonlinear filters is limited. Compare the last three columns in
Fig. 12.

Fig. 13 shows the computed enstrophy (53) of the two layers for the DNS, and the 2QGE, 2QG-
α, 2QG-NL-α models with a coarse mesh (64×128). Similarly to case 1, the 2QGE with the coarse
mesh underestimates the enstrophy of the top layer and overestimates the enstrophy of the bottom
layer. For the given mesh, both the 2QG-α and 2QG-NL-α models improve the reconstruction of
the time evolution of E1 and E2. However, it is hard to judge which does better. For this reason, we
report in Table 9 the extreme values and average values of the enstrophies of both layers, together
with the L2 errors with respect to the DNS for the simulations with mesh 64× 128. We note that
the 2QG-α and 2QG-NL-α models give comparable values, with the 2QG-α slightly more accurate.

DNS
64× 128

2QGE 2QG-α 2QG-NL-α

E1
average 1.732E-01 1.433E-01 1.718E-01 1.583E-01
max 2.087E-01 1.646E-01 2.016E-01 1.892E-01

L2 error - 7.275E-01 3.750E-01 4.610E-01

E2
average 2.826E-02 2.912E-02 2.816E-02 2.865E-02
min 2.728E-02 2.840E-02 2.713E-02 2.762E-02

L2 error - 2.130E-02 1.180E-02 1.280E-02

Table 9: Case 2: extrema of E1 and E2 for the DNS (mesh 256 × 512) and the 2QGE, 2QG-α, 2QG-NL-α models
with coarse mesh 64× 128. For the 2QGE, 2QG-α, 2QG-NL-α models, we also report the associated L2 errors.

We conclude with a comment on the computational time required by the filtering techniques.
Table 10 reports the CPU times for the DNS and the 2QGE, 2QG-α, and 2QG-NL-α with coarser
meshes 64 × 128 and 32 × 64, using the same machine as in case 1. As one would expect, the
computational times for the DNS and the simulations using mesh 32× 64 are comparable to those
of case 1, obtaining a speed-up of 100-120 over the DNS when using filtering with mesh 32 × 64.
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DNS, 256× 512 2QGE, 64× 128 2QG-α, 64× 128 2QG-NL-α, 64 × 128

DNS, 256× 512 2QGE, 32× 64 2QG-α, 32× 64 2QG-NL-α, 32× 64

DNS, 256× 512 2QGE, 16× 32 2QG-α, 16× 32 2QG-NL-α, 16× 32

Figure 9: Case 2: Time-averaged stream function of the top layer ψ̃1 computed by DNS (first column) and 2QGE with
no filtering (second column), 2QG-α (third column), and 2QG-NL-α (fourth column) with different coarse meshes.
Note that the color bar may differ from one panel to the other.
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DNS, 256× 512 2QGE, 64× 128 2QG-α, 64× 128 2QG-NL-α, 64 × 128

DNS, 256× 512 2QGE, 32× 64 2QG-α, 32× 64 2QG-NL-α, 32× 64

DNS, 256× 512 2QGE, 16× 32 2QG-α, 16× 32 2QG-NL-α, 16× 32

Figure 10: Case 2: Time-averaged stream function of the bottom layer ψ̃2 computed by DNS (first column) and
2QGE with no filtering (second column), 2QG-α (third column), and 2QG-NL-α (fourth column) with different
coarse meshes. Note that the color bar may differ from one panel to the other.
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DNS, 256× 512 2QGE, 64× 128 2QG-α, 64× 128 2QG-NL-α, 64 × 128

DNS, 256× 512 2QGE, 32× 64 2QG-α, 32× 64 2QG-NL-α, 32× 64

DNS, 256× 512 2QGE, 16× 32 2QG-α, 16× 32 2QG-NL-α, 16× 32

Figure 11: Case 2: Time-averaged potential vorticity of the top layer q̃1 computed by DNS (first column) and 2QGE
with no filtering (second column), 2QG-α (third column), and 2QG-NL-α (fourth column) with different coarse
meshes. Note that the color bar may differ from one panel to the other.
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DNS, 256× 512 2QGE, 64× 128 2QG-α, 64× 128 2QG-NL-α, 64 × 128

DNS, 256× 512 2QGE, 32× 64 2QG-α, 32× 64 2QG-NL-α, 32× 64

DNS, 256× 512 2QGE, 16× 32 2QG-α, 16× 32 2QG-NL-α, 16× 32

Figure 12: Case 2: Time-averaged potential vorticity of the bottom layer q̃2 computed by DNS (first column) and
2QGE with no filtering (second column), 2QG-α (third column), and 2QG-NL-α (fourth column) with different coarse
meshes. Note that the color bar may differ from one panel to the other.
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Figure 13: Case 2: Time evolution of the enstrophy of the top layer E1 (top left) and the enstrophy of the bottom
layer E2 (bottom left) for the DNS (mesh 256 × 512), and 2QGE model, 2QG-α model and 2QG-NL-α model with
mesh 64× 128. The panels on the right are zoomed-in views of the panels on the left.

When using mesh 64×128, the computational times is 6 hours and 59 minutes for the 2QG-α model
(30 times faster than the DNS) and 7 hours and 21 minutes for the 2QG-NL-α (28 times faster than
the DNS). Thus, even in the case of more complex flow patterns, the filtering techniques, which
allow to reconstruct the time-averaged flow in an accurate manner, are considerably cheaper than
the DNS. Again, we see that the price to pay for the additional accuracy of the nonlinear filter is
small when compared to the price of the linear filter.

5. Conclusions and future perspective

We applied linear and nonlinear filtering stabilization to the 2QGE with the goal of enabling sig-
nificant computational time savings, through the use of coarser meshes, without sacrificing accuracy.
The linear filtering technique, called 2QG-α, introduces the same amount of regularization every-
where in the domain. The nonlinear filtering method, called 2QG-NL-α, improves the methodology
with the introduction of an indicator function that identifies where and how much regularization
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Model Mesh CPU Time Speed Up Factor

DNS 256× 512 8d 16h 27m -
2QGE 64× 128 5h 52m -
2QG-α 64× 128 6h 59m 30
2QG-NL-α 64× 128 7h 21m 28
2QGE 32× 64 1h 20m -
2QG-α 32× 64 1h 39m 126
2QG-NL-α 32× 64 1h 54m 109

Table 10: Case 2: computational time required by the DNS and the 2QGE, 2QG-α, and 2QG-NL-α models with
coarser meshes 64× 128 and 32× 64. For the algorithms with filtering, the speed up factor with respect to the DNS
is also reported.

is needed. For the efficient implementation of the filtering techniques, we propose a segregated
algorithm and space discretization by a Finite Volume method.

After validating the 2QGE solver and testing its robustness, we performed a computational
study using a double-gyre wind forcing benchmark. The solutions given by the 2QG-α and 2QG-
NL-α models with coarse meshes are compared to the solution given by a DNS, i.e., a simulation
that resolves the Munk scale. Our study indicates that, for a given coarse mesh, the 2QG-NL-α
provides a more accurate reconstruction of large scale structures of the ocean dynamics compared
to 2QG-α. Both the 2QG-α and 2QG-NL-α models also outperform the 2QGE model in capturing
the evolution of enstrophy using coarse meshes.

The indicator function used in this paper identifies the regions of the domain with strong
gradients of the potential vorticities. This could be seen as a Leith-like method for the 2QGE. A
possible extension of the work presented in this paper is the identification of more sophisticated
indicator functions, for example by combining a filter with an approximate deconvolution operator
[39, 27]. Another possible extension is to filter the stream-functions like in [12], to see if that
outperforms our approach, which filters the potential vorticites.
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