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We currently lack good waveform models for many gravitational wave sources. Examples where
models are lacking include neutron star post merger signals, core collapse supernovae, and signals
of unknown origin. Wavelet based techniques have proven effective at detecting and characterizing
these signals. Here we introduce a new method that uses collections of evolving amplitude-frequency
tracks, or “voices”, to model generic gravitational wave signals. The analysis is implemented using
trans-dimensional Bayesian inference, building on the earlier wavelet-based BayesWave algorithm.
The new algorithm, BayesWaveVoices, outperforms the original for long duration signals.

I. INTRODUCTION

Black holes and neutron stars stand out as the two
most prominent sources of gravitational Waves (GW) ob-
served to date [1–3] using ground-based detectors such
as the Laser Interferometer Gravitational-Wave Observa-
tory (LIGO) in the USA, the Virgo detector in Italy [4–7]
and the Kagra detector in Japan [8]. With the increas-
ing number of detections and improved detector sensitiv-
ity, the observation of longer-duration signals has become
possible. This emphasizes the necessity for robust sig-
nal models capable of capturing signatures over extended
time spans. While models for compact binary mergers
have steadily improved in the last two decades, we cur-
rently lack reliable models for many interesting sources,
such as the post merger dynamics of binary neutron stars
and core collapse supernovae. Additionally, there may be
signals coming from unanticipated sources, for which no
models exist. And while general relativity has success-
fully passed all current tests, future observation of longer
duration signals, with high signal to noise, will allow for
more stringent tests of the theory. These considerations
motivate the development of techniques that can detect
and reconstruct arbitrary gravitational wave signals.

Ground-based detectors are most sensitive to tran-
sient signals from Compact Binary Coalescence (CBC)
systems, particularly those involving Neutron Stars and
Black Holes, with a total mass MT falling within the
stellar mass range (2M⊙ ≤ MT ≤ 200M⊙). The gravi-
tational wave emission from these systems become most
pronounced in the sensitive frequency band of the LIGO-
Virgo-Kagra detectors (20 - 1000 Hz) [9, 10], reaching
a peak amplitude milliseconds before the merger. The
these observations allows for the potential to uncover new
physical effects in the strong gravity regime.

Unlike traditional match-filtering techniques [11] that
rely on accurate template waveforms derived from theo-
retical models and numerical simulations [12–14], wavelet
based methods have been developed to detect and charac-
terize generic signals. Prominent examples include coher-
ent Wave Burst [15–17] and a Bayesian algorithm known
as BayesWave [18, 19]. These algorithms stand apart by

avoiding assumptions of a predefined template for signal
detection, instead utilizing a wavelet basis, or frame, that
allows the data to determine the possible morphology
of the signal. BayesWave employs the sum of continu-
ous Morlet-Gabor wavelets to reconstruct a signal, where
both the number of wavelets and the parameters of the
wavelets are explored by a trans-dimensional sampling
algorithm. BayesWave performs very well on short dura-
tion signals, but the performance drops for long duration
signals. Specialized search techniques have been devel-
oped for long duration burst signals, including seedless
clustering algorithms [20–23] and variants of the coher-
ent Wave Burst algorithm that are tuned to detect longer
duration signals [16]. However, there are currently no ef-
fective Bayesian inference algorithms for reconstructing
long duration burst signals.

To address these challenges, a new algorithm,
BayesWaveVoices, is introduced in this study. The name
is inspired by the literature on extreme mass ratio inspi-
rals, where the signal can be decomoposed as a collec-
tion of “voices”, each with a define amplitude and fre-
quency evolution [24]. These “voices” do not necessarily
have instantaneous frequencies that are related by in-
teger multiples, so the term “voices” is used instead of
“harmonics”. For un-expected or un-modeled sources,
we have reason to expect that the gravitational waves
they produce can be described by a collection of voices
with time evolving amplitudes and frequencies. Gravi-
tational waves are sourced by time varying stress-energy
and current multipole moments, with bulk, coherent mo-
tion likely to produce the strongest contribution [25, 26].
This is certainly true of known sources such as compact
binaries, including those beyond GR, but it will also be
true for any source where the emission is dominated by a
few multipoles [27, 28]. This reasoning extends to more
complicated examples such as the post-merger dynam-
ics of neutron star binaries [29]. Numerical simulations
of astrophysical sources such as core collapse supernovae
show evidence for a few dominant voices, in addition to a
broader spectrum of waves generated by turbulent fluid
motion [30].

The traditional BayesWave algorithm models signals
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and noise transients as sums of Morlet-Gabor wavelets.
There is currently no restriction on the overall ampli-
tude and phase of the resulting waveform. In particular,
neither are constrained to be smoothly varying. In con-
trast, BayesWaveVoices ensures continuity of both the
ampltide and phase by modeling the amplitude, A(t),
and instantaneous frequency, f(t), of each “voice” as
smooth functions such as splines or Legendre polynomi-
als. The idea of modeling generic waveforms using splines
to describe the amplitude and frequency evolution is not
new [31, 32], but our implementation of the model is very
different as it uses trans-dimensional Bayesian sampling.
Fixed dimension spline models have also been used to
model possible departures from the predictions of gen-
eral relativity [33].

We begin in Sec. II by motivating the new ap-
proach by comparing the waveform reconstructions
of the BayesWave and BayesWaveVoices models us-
ing binary black hole mergers as an example. The
BayesWaveVoices model, basis functions, methodology
and refinements to the model in the time domain, along
with corresponding priors and proposals, are described
in Sec. III. Sec. IV discusses the results and conclusions
drawn from the methodology presented in this paper and
also concludes with a discussion of potential avenues for
future development.

II. MOTIVATION

The BayesWave algorithm models burst-type signals
while accounting for any non-stationary and non-
Gaussian detector noise features. The wavelet based
BayesWave signal model works well for short duration
signals and short duration noise transients [18, 34]. The
new BayesWaveVoices model is designed to cover longer
duration signals.

Binary black hole mergers provide a good test bed for
comparing the wavelet and voices models as the time that
the signal spends in the sensitive band of the detectors
can be adjusted by changing the total mass of the system.

To illustrate the performance of the wavelet and voices
versions of BayesWave, we consider simulated signals em-
bedded in Gaussian noise with a spectrum that follows
the advanced LIGO design sensitivity curve [35]. In con-
trast to analyses that use theoretical waveform templates,
which allow for the model to be extrapolated beyond re-
gions with significant signal power, generic models are
only expected to recover the signal in the regions with
significant signal power.

To illustrate the performance of the two models, we
simulated 16 seconds of advanced LIGO data (for a single
detector). In one example we added the signal from a bi-
nary black hole system with total mass 20M⊙, and in the
other we added a signal with total mass 50M⊙. We used
the IMRPhenomD waveform model, which describes the
dominant harmonic for spin-aligned quasi-circular bina-
ries [36]. The mass ratio and spins were q = 1, χ1 = 0.2,

Figure 1. Change in accumulated SNR2 with time (upper)
and frequency (lower) for a binary black hole system with
total SNR = 20 and MT = 20M⊙ (red line) and MT = 50M⊙
(black line). The vertical lines bound the region that contains
90% SNR2. We don’t expect the signal reconstructions to
have support outside of these regions.

χ2 = 0.1, and the merger time was set at t = 14.73s.
Both signals were scaled to a total SNR of 20. Fig-
ure 1 illustrates the accumulation of SNR2 over time,
dSNR2/dt and frequency dSNR2/df for these examples.
The vertical lines bound the region that contains 90%
SNR2. For a 20M⊙ binary, these bounds, indicated by
the red dashed line, cover a time span 6.02 seconds be-
tween 8.69s and 14.72s in time (top panel), and frequency
bandwidth 293.3 Hertz between 22.8 Hz and 316.1 Hz in
frequency (bottom panel). Similarly, for a 50M⊙ binary
the black dashed-dotted line represent the boundary of
the sensitive region covers a time span of 1.57 seconds
between 13.15s and 14.72s and a frequency bandwidth of
253.3 Hertz between 18.4Hz and 271.7Hz. As expected,
high mass systems spend less time in band than low mass
systems.
Figure 2 shows a comparison between the BayesWave

(left panel) and BayesWaveVoices (right panel) analyses
for a simulated binary black hole signal of MT = 20M⊙
(top) and 50M⊙ (bottom) with an injected SNR = 20.
The simulated whitened data for a spin aligned black hole
binary with spins χ1 = 0.2 and χ2 = 0.1 is shown in light
grey. The time range shown in this Figure correspond to
the 90% SNR2 regions shown in Figure 1. We observe
that BayesWave encounters difficulties in capturing the
signal for low-mass binaries (MT = 20M⊙). In contrast,
BayesWaveVoices effectively captures the high SNR sig-
nal region, achieving a match of 0.92, as opposed to
BayesWave ’s match of 0.56. The improvement persists
for the MT = 50M⊙ binary, with the BayesWaveVoices
reconstruction achieving a match of 0.95 compared to
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Figure 2. BayesWave [18, 19] (left panel) and BayesWaveVoices (right panel) reconstruction for an injected signal of SNR =
20. The injected signal is shown in teal in the left panels and in red in the right panels. The BayesWave reconstructions are
shown in purple and the BayesWaveVoices reconstructions are shown in green. The BayesWaveVoices reconstructions use an
Akima spline model that incorporates all refinements detailed in the subsequent sections of this paper. These plots are shown
in the same 90% SNR2 region as indicated in Figure 1. The subplots show the zoomed in regions near merger. The top and
bottom panels represent an equal mass binary of total mass 20M⊙ and 50M⊙ respectively. Injected signal shown in teal and
red a has spin of χ1 = 0.2 and χ2 = 0.1. The recovered median BayesWave reconstructions have a match of 0.567 and 0.823 for
a 20M⊙ and 50M⊙ respectively. Importantly, BayesWaveVoices enhances the overall fit for the same binary system, achieving
match values of 0.92 (for 20M⊙) and 0.95 (for 50M⊙).

0.82 for BayesWave , with the BayesWaveVoices recon-
struction extending to earlier times. The subplots in each
panel highlight the high SNR region around merger.

The match is computed using a point estimate for the
waveform given by the median of the posterior samples of
the waveform model. Here the match between waveforms
h and h̄ is defined as

M =
(h|h̄)

(h̄|h̄)(h|h)
. (1)

where the inner product is defined such that (a|b) =
aiC−1

ij bj , where Cij is the noise covariance matrix.
The match as a function of SNR is shown in Fig-

ure 3 for binaries with total mass 20M⊙ and 50M⊙
for both BayesWave and BayesWaveVoices . The match
increases with increasing SNR and MT . The value ap-
proaches 1 for high mass and high SNR signals in either

model. We notice that the BayesWaveVoices model out-
performs the BayesWave model for the entire SNR-mass
parameter space. Note that the matches for BayesWave
found here are somewhat lower than those shown in
Ref. [37], the reason being that here we are using data at
advanced LIGO design sensitivity, which results in longer
time in band compared to the earlier work which used
the lower sensitivities corresponding to the first observ-
ing runs.

III. BAYESWAVEVOICES ALGORITHM

The BayesWaveVoices algorithm models signals as a
collection of “voices”, which are each described by a
smoothly changing amplitude and frequency. The cur-
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Figure 3. Matches between the simulated and recovered
waveforms using BayesWave and BayesWaveVoices as a func-
tion of signal-to-noise ratio for simulated black hole mergers.
The green and red line shows BayesWave match for 20M⊙
and 50M⊙ binary, while the blue and orange lines show the
corresponding matches found using BayesWaveVoices . The
voices model significantly outperforms the wavelet model in
all cases.

rent BayesWave algorithm computes the likelihood in the
frequency domain, since the noise correlation matrix is
diagonal in that representation, assuming that the de-
tector noise is stationary over the relatively short time
segments being analyzed. It might seem natural then to
model the waveforms directly in the frequency domain
such that for a single voice

h(f) = A(f)e−i2π(
∫ f t(f ′)df ′)+ϕ0 , (2)

One problem with this approach is that there is nothing
stopping time from becoming multi-valued. This pathol-
ogy is actually present in the frequency domain IMR-
PhenomD model [36], which models A(f) and the phase
Φ(f). Extracting t(f) via

t(f) =
1

2π

dΦ(f)

df
(3)

reveals that time becomes multi-valued near merger for
this model.

To avoid this pathology we instead model the signals
in the time domain:

h(t) = A(t)e−i2π(
∫ t f(t′)dt′)+ϕ0 . (4)

There are several advantages to this approach. Firstly,
time is single valued, and the model is able to accom-
modate signals that have instantaneous frequencies that
can increase or decrease in time. Secondly, spectrograms
of the data, such as the Q-scans used in BayesWave tfQ
proposal for placing wavelets, can be used to identify
tracks in the time-frequency plane that serve as pro-
posals for placing points along the frequency track f(t).

Thirdly, expressing the signal in terms of A(t) and f(t)
allows for very efficient, automatically heterodyned like-
lihood calculations in the discrete wavelet domain [38].
In the current implementation we chose to compute

the likelihoods in the time domain to avoid having to
Fourier transform the signals. The time domain anal-
ysis is performed using whitened data. The data can
be whiten either by transforming to the frequency do-
main, dividing the data by the amplitude spectral density√
S(f) then returning to the time domain, or by staying

in the time domain and transforming the data using a
Cholesky decomposition of the inverse of the noise cor-
relation matrix. The signals can be whiten by the re-
placement A(t) → A(t)/

√
S(f(t)). Alternatively, we can

model the whitened amplitude directly.

A. Basis Functions / Voices

Morlet-Gabor wavelets were originally chosen when
constructing the BayesWave algorithm since they are
maximally compact in time-frequency, and have simple
analytic forms in both the time and frequency domains.
But wavelets are not an essential part of the BayesWave
algorithm. Far more important is the trans-dimensional
modeling component, which can in principle build a sig-
nal out of any complete set of basis functions or over-
complete frame functions. The performance of the algo-
rithm can be improved if the chosen basis is able to cap-
ture signals using fewer parameters. For gravitational
wave signals originating from coherent flows of matter
and energy, we expect that the signal can be modelled
by a few modulated voices, with distinct instantaneous
frequencies. This is true for (low eccentricity) compact
binary mergers [39], and appears to be a decent approxi-
mation for some core-collapse supernovae models [30] and
for neutron star post-merger signals [29].
These considerations motivate a new signal model

based on the decomposition in time domain:

h(t) =

Nv∑
k=0

Ak(t) cos

(∫ t

2πfk(t
′, ϕ)dt′ + ϕk

)
, (5)

where k labels each of the Nv voices and ϕk is the overall
phase for kth voice.
There are many ways we can specify the functions de-

scribing the amplitude and frequency. For example, we
could use a polynomial expansion (similar to the ana-
lytic post-Newtonian waveforms), or a sum of orthogonal
basis functions (e.g. Chebyshev or Legendre polynomi-
als), or a spline (as is used in the BW spectral model
and for marginalizing over the LIGO calibration uncer-
tainties), or some non-parametric model such as a Gaus-
sian process. Regardless of the choice, the key idea is
that the complexity of the model (e.g. the number of
terms to keep in a polynomial expansion or the number
of spline control points or knots to retain) should be de-
termined from the data using trans-dimensional Bayesian
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inference. This allows the model to adapt and capture
the inherent complexity of the gravitational wave signals
present in the observed data.

We chose to use Akima splines [40] to model the
smoothly evolving amplitude and frequency functions in
time. Akima splines have compact support, and they
are much less prone to develop unphysical oscillations
than cubic splines. The location of the spline knots,
their amplitude and also the number of spline knots are
variable. These parameters are explored using a trans-
dimensional Reversible Jump Markov Chain Monte Carlo
(RJMCMC) algorithm.

B. Methodology

The BayesWaveVoices algorithm returns samples
from the posterior distribution of the waveform model.
The waveform model is described by a collection of pa-

rameters θ⃗ that specify the values and locations of the
spline knots for the amplitude and instantaneous fre-

quency of each voice. The dimension of θ⃗ is variable.
Bayes theorem states that for a given set of data d, the

probability of measuring parameters θ⃗ is expressed as

p(θ⃗|d) = p(d|θ⃗)p(θ⃗)
p(d)

, (6)

where the posterior distribution function, p(θ⃗|d), quan-
tifies the probability that the the model is described by

parameters θ⃗ given the observed data d. The likelihood

function, p(d|θ⃗) or L, evaluates the probability of ob-

serving data d given the parameter set θ⃗. Assuming the
noise is Gaussian distributed and the spectral model is
fixed, the log likelihood can be written as

logL = −1

2

∫ Tobs

0

(dw(t)− hw(t))
2dt+ const . (7)

where the subscript w indicates that the quantities are
whitened. The prior probability distribution function,

p(θ⃗), allows us modify the behavior of the spline model.
The simplest choice, which we refer to as the reference
model, assumes a uniform distribution for each parame-
ter over some specified range.

The transdimensional MCMC method uses the
Metropolis-Hastings algorithm [41] to sample the param-

eter space. We start from an initial guess for θ⃗ and then a
new value is proposed based on the proposal distribution.
The acceptance ratio, H,

H =
L(d|y)Q(x|y)P (x)

L(d|x)Q(y|x)P (x)
(8)

is determined as the product of the likelihood (L), the
proposal distribution (Q), and the prior distribution (P ).
Here, x represents to the current state and y denotes
the proposed state. The proposed jump is accepted if,

H > U(0, 1), where U(0, 1) is a random number between
0 and 1, and rejected otherwise. This entire process is
repeated until the model converges to a true posterior
distribution.
In our analysis, we utilize Akima splines as the basis

functions to model the time-varying amplitude Aw(t) and
frequency f(t). We also explored different models, in-
cluding splines [42], Steffen splines [43], Legendre polyno-
mials, and a smooth fitting function [44]. Cubic splines,
being global and C2 differentiable, offer continuity and
differentiability in the first and second derivatives. While
this allows for flexibility, it can lead to undesired wiggles
in the fitting functions. To address this, we introduce
a separate prior on the derivatives of the cubic spline
points to ensure their small values. However, this ap-
proach has the tendency to place control points too close
to each other, resulting in oscillations in the fit over time.
Steffen splines, on the other hand, exhibit high stiffness
and demand monotonicity, presenting challenges in cap-
turing complex features. Legendre polynomials, being a
global basis functions defined between the interval 1 and
-1, require additional scaling and expansion coefficients,
introducing extra parameters.
A common characteristic of the aforementioned basis

functions is their global nature, meaning that altering
one point affects the entire curve. In contrast, Akima
splines are more local in nature. They are evaluated
over a five-point stencil and are C1 differentiable, mak-
ing them well-suited for our analysis. Due to their local
nature and smoothness, Akima splines are more efficient
in capturing localized features and are therefore chosen
as the basis functions for modeling the waveform param-
eters throughout the rest of the paper.
In this model, the location of spline knots, their am-

plitudes, the coalescing phase ϕc and even the number of
spline knots are variable. The key idea of using Akima
splines voices with variable number of spline knots within
the framework of trans dimensional MCMC is to avoid
oscillations and facilitate a balance between model in-
tricacy and the fidelity of fit. This approach embraces
a natural parsimony, allowing the data to determine the
delicate balance between model complexity and goodness
of fit.
We inject simulated binary black hole signal generated

from the IMRPhenomD phenomenological model [36].
This model accurately describes the l = |m| = 2 har-
monic mode for a spin-aligned, non-precessing quasi-
circular binary, incorporating information from numer-
ical relativity. This waveform model provides amplitude
and phase information in the frequency domain. The
time domain amplitude A(t) and phase ϕ(t) are extracted
using the method described in section V.D of Ref. [38].

The instantaneous frequency is computed as f(t) = ϕ̇/2π

and the whitened amplitude as Aw(t) = A(t)/
√

S(f(t).
The trans dimensional Markov Chain Monte Carlo

(RJMCMC) algorithm [45, 46] is used to vary the num-
ber of spline knots in each model and to vary the values
and locations of the knots.
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In reality, we do not know in advance where to place
the boundaries of the model in time, so we have to make
the start and end times of the spline model variable (the
alternative is to fix the first and last knots at the the end
points of the time interval being analyzed, but this forces
the model to cover regions where there is no information
about the signal.)

In the current implementation we restrict the model to
use a single voice (Nv = 1). Going forward we plan to
allow Nv to vary as dictated by the data.

1. Priors and Proposals

Priors on the number and placement of spline knots
in the amplitude and frequency models can be used to
enhance the performance of the algorithm. In what we
refer to as the base model, the priors on all these quan-
tities are taken to be uniform in some range. The prior
on knot point locations follows a uniform distribution
U(0, Tobs), where Tobs represents the duration of the anal-
ysis segment, and we define t = 0 to be the start time
of the analysis segment. The magnitude of amplitude
and frequency priors are U(0, Amax) and U(fmin, fmax)
respectively. We set Amax at some multiple of the noise
variance σ2 = 1, with a typical choice being Amax = 6σ2.
In the current study with simulated data we set Amax to
twice the maximum amplitude of the injected signal. We
set fmax equal to the Nyquist frequency corresponding to
the given sample rate and fmin is set equal to 10Hz, re-
flecting the steep loss in sensitivity below this frequency.
The prior distribution for the overall phase parameter is
defined as a uniform distribution in the range U(0, 2π)
associated with amplitude and frequency is specified as
U(0, Nmax), where a typical choice of Nmax = 150 is an
effective choice.

A variety of proposals are used to update the ampli-
tude and frequency models. These include prior draws
on the location and values of the spline knots. In the
within-dimensional update, the amplitude is either pro-
posed from a uniform distribution or a Gaussian jump
centered around the current state. Lateral moves facil-
itate the movement of spline points in time, with the
randomly selected location proposed as a Gaussian jump
about its current position.

The location of the end knots is allowed to vary, so
that the model can expand or shrink in time to cover the
region where there is significant signal power. In the de-
fault model, the splines for the amplitude and frequency
share the same end knots. This adds some complications
to the sampling. It is possible to allow the models to have
different end knot locations, but then we either have to
have some prescription for how to extend the models to
cover the same total time interval, or we have to restrict
the time interval to the region where the two models both
have support.

Transdimensional moves involve adding a point any-
where between the current end-points. The knot loca-

tions are drawn uniformly between the boundaries, and
amplitudes are drawn from the prior distribution. The
end points are treated differently since they are shared
between the two models. Jumps in either endpoint lo-
cation are proposed from a Gaussian distribution cen-
tered on the current location. Jumps are rejected if the
proposed location is inside any of the other knot loca-
tions. Updates of the overall phase parameter ϕ0 are
drawn from a Gaussian distribution centered on the cur-
rent value.

Special jumps are permitted for amplitude and fre-
quency models. Proposals involve drawing from a den-
sity centered around the fit, with reverse moves drawing
a point near the current Akima fit and using the fit at x
(the previous state) as a reference. Alongside these spe-
cial proposals, we include symmetric proposals, such as
a uniform draw from the prior range or a Gaussian jump
from the current location with a selection of different
variances. We ensure detailed balance and verify prior
recovery for model reversibility. This comprehensive set
of proposals enhances the exploration of the parameter
space throughout the Bayesian inference process.

In principle, the model should be able to lock onto
a signal starting from a random draw from the prior.
However, Bayesian models, especially complex trans-
dimensional models can take a long time to converge from
a random starting point. A better approach is to start
the model off with a good guess. For example, a scalor-
gram of the whitened data you be used to identify the
region in time and frequency where a signal is present,
and could also be used to extract a guess for the the
amplitude and frequency tracks. In the current analysis
we have focused on the sampling after a signal has been
identified, and we have yet to develop a general purpose
initialization algorithm. In this study we are focusing on
simulated binary black hole mergers with known wave-
forms, so we are able to initialize the model using our
knowledge of the injected waveforms.

We initialize our model by judiciously placing spline
knots positioned in amplitude and frequency using the
linear least squares fitting methods. The procedure in-
volves calculating the chi-squared of the linear fit until it
surpasses a predefined tolerance, at which point a knot is
placed. This process is repeated, proceeding from the es-
tablished knot point to the subsequent one, until the chi-
squared value once again exceeds the specified tolerance.
This iterative placement of knots persists until all points
are positioned up to 0.01 seconds after the merger event.
Subsequently, the model places spline points at intervals
of 0.5 seconds until reaching the end of the injected sig-
nal. The selection of the tolerance value is aimed to strike
a balance. It is not set too high to prevent having too
few points initially, nor is it set too low to avoid an excess
of control points that may not be useful.

Consider two reference system with fixed masses m1 =
m2 = 10M⊙ and m1 = m2 = 25M⊙ with spins χ1 = 0.2
and χ2 = 0.1. We set the initial model with NA and NF
number of spline points, defining the time-varying Aw(t)
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and f(t) functions using the least square fitting method
discussed above. Our reference model uses uniform pri-
ors and proposals for location, amplitude and number
of spline knots for both amplitude and frequency model.
The boundaries are variable.

C. Testing the model
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Figure 4. The top panel shows the median waveform recon-
struction in green with the 90% credible interval using an
Akima spline model with variable boundaries starting with
the full time range of 16s. The injected (black line) signal is
same as the initial start signal(red line) over the full length
scale. The middle panel shows the injected amplitude in black
which again is same as the initial start amplitude. A note-
worthy observation is the abrupt decay in amplitude just after
the merger, leading to suboptimal performance of the model.
The lowest panel shows the reconstruction for frequency as
a function of time. The model encounters challenges in ac-
curately fitting the initial times due to a low signal-to-Noise
ratio during these early stages. This resulted in a match =
0.85 using median waveforms.

To test the BayesWaveVoices algorithm, we simulated
Gaussian noise with a spectrum that follows the advanced
LIGO design curve, and injected signal of MT = 20M⊙
and SNR = 15. For our initial test we start with our
model defined in the entire time range as our bound-
aries, the boundaries are allowed to move based on the
likelihood estimates as defined in the reference model.

Figure 4 shows the reconstructed waveform (top panel)
and its 90% confidence interval (CI), while the injected
and initial signals span the entire time range. These re-
sults are from our reference model defined in Sec. III B 1.

Inspecting the amplitude extracted from the simulated
signal, depicted in red in middle panel of Figure 4, reveals
a sharp feature at the merger. One of the key feature of
splines is to enforce smoothness, and the Akima splines
used in the analysis struggle to model sharp features in
the amplitude or frequency evolution.

The frequency model, shown in the lower panel of Fig-
ure 4, recovers the frequency track fairly well for roughly
two seconds before merger, which is in keeping with our
expectations that the model should recover the signal in
regions with significant contribution to the SNR2. How-
ever, contrary to expectations, the boundaries for the
amplitude and frequency models did not shrink down to
focus on the high SNR2. The locations for the end knots
did move around as the RJMCMC sampler explored the
model space, but the end knots typically covered a much
wider region than where the signal was concentrated. At
early times, where there is little signal power, the fre-
quency model covers most of its prior range, indicating
that it was not recovering the signal in this region. Ideally
the boundaries of the model would have shrunk to focus
on the region where the signal power is concentrated.

The inability of the amplitude model to capture sharp
features, and the fact that the boundaries did not shrink
to focus on the region of high SNR2 suggests that the
base model can be improved.

While the spline model may not readily capture sharp
features, given sufficient SNR, it demonstrates an abil-
ity to do so. Additionally, for lower masses, the SNR is
distributed, whereas for higher masses, a more concen-
trated SNR is observed. Figure 5 illustrates the behavior
of Akima splines for a system withMT = 20M⊙ and SNR
= 30 (top panel) and another system with MT = 50M⊙
and SNR = 15 (bottom panel). It is evident that increas-
ing either the SNR or the mass compels Akima splines
to adeptly handle sharp discontinuities. Therefore, it is
a combined effect of total mass and SNR; with sufficient
power, the model exhibits proficiency in fitting sharp fea-
tures, extending its capability even to SNR = 20.

To understand these issues better, we looked at what
happens when the boundaries of the spline models are
fixed to cover the time interval during which 95% of the
SNR2 is deposited. Crucially, in this example, the 95%
region does not include the ringdown portion of the wave-
form, which we saw poses challenges for the reference
BayesWaveVoices model. Figure 6 shows the injected
signal in black and the portion of the signal that accounts
for 95% of the SNR2 in red. The median of the signal
model posterior is shown in dark green, along with the
90% CI in lighter green. The match for the recovered
median waveform over the fixed region is 0.88, which im-
proves on the fit we found when the boundaries were free
to move. In this fixed boundary example where the sig-
nal is cut off at merger, the amplitude smoothly increases
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Figure 5. Amplitude reconstruction depicted in green using
the basic Akima spline model, with the initial signal shown in
red covering the entire range, alongside the injected signal in
black. The top panel displays the amplitude reconstruction
for a system with SNR = 30 and MT = 20M⊙, while the
bottom panel showcases SNR = 15 and MT = 50M⊙. No-
tably, the amplitude reconstruction effectively captures sharp
features in signals with high mass and high SNR.

with no sharp drop, and we see in the bottom panel that
the spline model is able to accurately recover the peak
amplitude of the signal, in contrast to the case where the
amplitude drops sharply through ringdown.

The match versus SNR curve for this case is depicted
in Figure 7 for a binary black hole signal with a total
mass of 20M⊙ and 50M⊙. The graph suggests that as the
SNR increases, the match proportionally rises, eventually
stabilizing at a near-constant value close to unity. Hence,
the model performs effectively for signals initiated with
fixed boundaries and no abrupt discontinuities.

However, it is essential to enable variable boundaries
in reality, as we lack information on where to place the
boundaries in time. Allowing the locations of the end
knots in the amplitude and frequency models to vary
adds some complications to the sampling, especially if
both models are required to share the same end points.
The advantage is that the BayesWaveVoices model in-
herits some of the advantages of the wavelet version since
the model is then compact in time and frequency.

To enhance the understanding of the variable bound-
ary, Figure 8 illustrates the fraction of time a specific re-
gion remains active. As the boundaries shift, the spline
is modeled within that particular temporal segment. It is
observed that the model exhibits reduced preference for
about initial 2 s region but becomes active thereafter, ex-
tending up to the merger. Essentially, the end boundary
retracts to exclude the post-merger region where SNR is
very low.
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Figure 6. Median reconstruction is shown in green for a sys-
tem with SNR = 15 and MT = 20M⊙. A basic Akima spline
model with fixed boundaries and an injected signal in black
while an initial start signal covering 95% SNR2 region shown
in red, which doesn’t include the sharp drop in amplitude
near merger as can be seen in the bottom panel. The model
captures the peak around merger and recovers the signal with
match = 0.88. The shaded region is the 90% credible interval
for the reconstruction.

The inclusion of additional information and complex-
ities necessitates an enhanced model focused on captur-
ing the most interesting and informative regions. If we
consider continuous Aw(t) and f(t) without any discon-
tinuity and allow the boundaries to move, the defined
model should extend to effectively capture the merger
region. Figure 9 illustrates how the recovered signal not
only captures the initial signal but also extends beyond to
capture the injected features for the same reference case
discussed above. This replicates the effects that an orig-
inal full-length signal would exhibit. The end boundary,
initially at t = 14.724s, moved to 14.728s while captur-
ing the high SNR region and extending to encompass the
merger region with an overall match of 0.88. This im-
provement in the model allows for a more accurate rep-
resentation of the gravitational wave signal, showcasing
its flexibility in adapting to diverse signal characteristics
and optimizing information retrieval.

The presence of sharp features in initial model signif-
icantly impacts the overal fit. In scenarios where am-
plitude is the sole parameter, decoupled from frequency,
Akima splines excel in capturing these sharp discontinu-
ities. Extensive testing has confirmed the effectiveness
of this approach. However, the challenge arises when
frequency and amplitude are coupled in likelihood esti-
mations, introducing added complexity to the modeling
process. The interdependence of these parameters neces-
sitates a more sophisticated approach, considering their
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Figure 7. Match as a function of signal-to-noise ratio using
basic Akima spline model and fixed boundaries covering 95%
SNR2 region for binary systems of 20M⊙ and 50M⊙, exclud-
ing the sharp drop around the merger. The match increases
with increase in SNR and mass and slowly asymptotes to
unity.
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Figure 8. Fraction of active time for a specific temporal re-
gion in the basic model using Akima splines with variable
boundaries, as generated through transdimensional MCMC
iterations.

joint influence on the likelihood calculations.

D. Further refinements

By their very nature, spline models have a tendency
to smooth over sharp features. To overcome this limita-
tion, the model can be extended to include sharp features
in addition to the smooth spline model. This is what is
done in the BayesLine Bayesian spectral estimation algo-
rithm [34, 47], where a combination of splines and sharp
line features, modeled as Lorentzians, are used to model
the LIGO/Virgo noise power spectra. An example of the
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Figure 9. The injected signal is shown in black while the signal
is initiated with the end boundary at 14.724s (red line), about
6ms before merger. The boundaries are allowed to move and
model extends its end boundary location to 14.728s extrap-
olating the information to about 2ms before merger. This
reconstruction recovers signal of SNR = 15 and MT = 20M⊙
with a match of 0.88.
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Figure 10. PSD estimation for a 4s Virgo data with a 2048Hz
sample rate is illustrated. In light gray, a periodogram
of the data is presented, while the spectral estimates us-
ing a BayesWave model are shown in red (utilizing only the
smooth component of the PSD model) and in black (includ-
ing the Lorentzian line feature modeling). The model with
the Lorentzian feature more accurately captures the sharp
features compared to the ones without.

BayesLine spectral modeling is shown in Figure 10, one
with just the spline model and the other with splines and
lines. The model without Lorentzian lines misses many
of the sharp, low-amplitude (low SNR) line features. The
spline model is able to pick up the high amplitude (high
SNR) lines, showing that with enough SNR the splines
can fit any shape, despite their preference to produce
smooth curves. The model that includes lines does a
much better job of fitting the power spectrum (as mea-
sured by the Anderson-Darling statistic computed for the
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whitened data [47].

The effectiveness of the multi-component BayesLine
model motivated us to introduce a similar strategy by
incorporating a variety of additional functions that are
better suited to modeling sharp features. We included
five distinct types of growing and decaying functions, all
appropriately scaled to yield similar curves for a compa-
rable rate parameter, to help ensure that proposals that
seek to to swap one function for another will get accepted.
These tapering functions can either be rising or falling,
and are scaled to go from 0 to 1. The complete model
for Aw(t) is given by the product of the spline model and
the tapers.

We extend this approach by incorporating a more re-
fined strategy, employing a combination of both growing
and decaying functions to construct a spike feature. Fig-
ure 11 illustrates five distinct functions utilized to create
this spike. This method goes beyond a simplistic swap
between functions, allowing for different components on
the left and right sides of the peak. For instance, the
spike could comprise a Gaussian fit on the left side and
a power law on the right side of the peak. This flexibil-
ity enables the model to adapt to various signal features,
capturing intricate details that a singular function might
overlook. Specifically, for a binary black hole merger, a
spike that rises gradually slowly and then decays rapidly
(exponentially) should fit the final part of the amplitude
fairly well. To enhance the fitting process, we started
by dividing the injected amplitude by this spike func-
tion. Subsequently, by fitting the initial spline model to
this modified amplitude, the product of the spline and
the spike is expected to yield a robust initial fit with
faster convergence. This approach not only allows for the
seamless transition between different functions but also
enables tailored adjustments on either side of the peak,
enhancing the model’s adaptability and performance. Al-
though this additional feature moderately improves the
overall fit, further refinements were required to enhance
signal reconstruction.

To ensure that splines exhibit a smooth fall-off and
avoid unexpected oscillations, we introduce a mechanism
involving predefined knots in a specific time region. Let
∆Ts and ∆Te represent the time region where this pre-
defined function S(t) is evaluated. The locations of the
fixed knots are positioned at some fraction of ∆Ts and
∆Te, with their amplitudes gradually approaching zero
on either ends. The spline function takes into account
these fixed knot data points during evaluation, ensuring
a smooth fall-off on both ends. Although the spline is
evaluated within the specified boundary (as discussed in
Sec. IV), the inclusion of these additional knots is incor-
porate to help mitigate oscillations, especially in regions
of low SNR, as observed in the initial times in the fre-
quency fit (see bottom panel Figure 4).

It is worth noting that splines are not inherently lo-
cal, meaning the positions of control points influence a
broader region. By guiding the amplitudes to gracefully
approach zero, we enhance the spline model’s behavior,
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Figure 11. Five distinct spike functions, all appropriately
scaled to yield similar curves are shown. The purple, green
and blue line represents a tan hyperbolic, exponential and
Gaussian function respectively. The orange and yellow curve
shows inverse power law function of 1 + x2 and 1 + x respec-
tively. Smooth Akima splines can be multiplied by (1 + spike)
to potentially incorporate the sharp changes in amplitude for
a given signal.

as abrupt endings are generally unfavorable for splines.
This approach prioritizes a smooth descent to zero, con-
tributing to the model’s stability and reliability in cap-
turing complex signal characteristics. Mathematically,
the predefined function for the two ends can be expressed
as follows:

Sstart(t) = Aw(t)
e−(t+∆Ts−Ts) − 1

e1 − 1
, (9)

Send(t) = Aw(t)
e−(t+∆Te−Te) − 1

e−1 − 1
, (10)

where Sstart(t) and Send(t) indicated the two predefined
functions before the start and after the end boundary
knots.
To prevent frequency from exhibiting unwanted oscil-

lations during the MCMC sampling process, a potential
solution is to initiate the frequency integration from the
peak of the maximum amplitude. Cumulative integra-
tion is specifically centered around the frequency point
at which the maximum amplitude occurs. This approach
aims to avoid the accumulation of unwanted area at low
SNR, particularly given the limited SNR in the initial
times.
As we allow the boundaries to move for capturing the

signal around the maximum power, we have the option to
either tie both the frequency and amplitude boundaries
to move together or allow them to move independently.
Untying these boundaries provides the model with flexi-
bility in defining frequency and amplitude where needed,
potentially reducing the total number of parameters to
work with. Although untied boundaries increase the
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complexity of the model, but they offer greater flexibil-
ity. We chose to have the model set the amplitude to zero
outside of the amplitude model end knots and to set the
frequency to a constant outside of the frequency model
end knots.

It’s important to note that the first and last points with
tied boundaries remain fixed, meaning there are no birth
or death moves; they only move when there is a bound-
ary update. Consequently, the endpoints do not have a
uniform prior. To address this, we initially run the model
with a constant likelihood, where the prior for the first
and last points is exponentially growing and decaying,
respectively. The prior is then fitted to a function, and
its inverse is used as a counter-prior. This counter-prior,
obtained from the inverse of the prior in the constant like-
lihood run on the first and last points with proper nor-
malization, mitigates the effect of the non-uniform prior
on the location of knot points.

In an ideal scenario, the amplitude would serve as a
guide for the model to allocate more points in regions
where the signal undergoes rapid evolution. If the ampli-
tude is properly normalized to the noise level, the prob-
ability of placing points is influenced by the amplitude
plus a random variable drawn from a uniform distribu-
tion U(0,1). Consequently, in regions with higher ampli-
tude, the prior probability of placing points is elevated.

Building on this concept, we introduced a prior based
on the second derivative of the amplitude given by(

dAw

dt

)2

+

∣∣∣∣Aw
d2Aw

dt2

∣∣∣∣ . (11)

This addition is motivated by the fact that this prior
scales with SNR2, representing the curvature of the
SNR2. While it might seem redundant given the inherent
influence of likelihood on knot placement, this prior be-
comes particularly valuable for low SNR signals. Physi-
cally, gravitational wave signals are not random segments
of power in time and frequency but rather exhibit cluster-
ing. Hence, we incorporate a model for the cluster prior,
which is particularly informative for low SNR signals.

Although the likelihood should guide the model to
place knots where sharp features are present, the physi-
cal model benefits from explicit guidance regarding re-
gions where the signal undergoes rapid variation. To
achieve this, we normalize d2|A2

w| to unity and create
a probability function. This function is then utilized as a
prior draw, with a 50% weightage to strike a balance and
avoid overly stringent priors that would only place knots
where derivatives are high. This nuanced approach aims
to enhance the adaptability of the model while respecting
physical constraints and data characteristics.

After exploring the introduced modifications, the sig-
nal reconstruction closely resembles the top right panel
of Figure 2. For a binary black hole signal with MT =
20M⊙ and SNR = 20, the match is 0.92. Furthermore,
for an even lower SNR = 15 injected signal with the same
remaining parameters, the match is 0.87.
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Figure 12. For a high mass binary of MT = 50M⊙ and SNR =
30, the recovered reconstruction (green) of the injected signal
(black) with sharp features yield a match of 0.97 using the
current BayesWaveVoices model. This model does not use
the derivative prior on amplitude showing a more realistic
case.

Considering a slightly more massive and higher SNR
signal, the BayesWaveVoices reconstruction is presented
in Figure 12, achieving a match of 0.97. Additionally,
Figure 3 illustrates a general trend where massive sys-
tems tend to exhibit higher matches than lower mass sys-
tems. This phenomenon arises from the relatively higher
signal amplitude compared to noise in the case of a mas-
sive binary. It can be asserted that BayesWaveVoices
consistently outperforms BayesWave for signals of vary-
ing masses, demonstrating effectiveness for both weak
and strong signals. Nonetheless, there remains untapped
potential for further enhancement. This potential could
be realized through the implementation of more focused
proposals or the incorporation of a well-defined spike
model. Such refinements hold promise for enabling the
model to effectively capture sharp features, especially in
scenarios characterized by low SNR.

IV. CONCLUSIONS AND FUTURE
DIRECTION

We conclude that a localized spline model like Akima
splines are suited to avoid oscillatory behaviors of cu-
bic and monotonicity of Steffan splines. Although with
the imposed priors and proposals, and added refinements
to the model, the current BayesWaveVoices model as it
stands now is not just an Akima fit but with multiple
layers of added constraints.
Our analysis sets the stage for further exploration by

incorporating multiple detectors and including informa-
tion about both cross and plus polarizations. Extending
the BayesWaveVoices model could provide invaluable
insights into the most intriguing potential signals from
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core collapse supernovae and conducting neutron star
post-merger studies. The associated gravitational radia-
tion is poised to provide abundant information about the
underlying dynamics and processes driving supernovae.
Representing any signal as a product of smoothly evolv-
ing amplitude and phase over time, BayesWaveVoices
offers a promising avenue for studying these signals all
the way up to the merger, particularly in neutron star
post-merger scenarios.

Furthermore, the algorithm we have created opens new
avenues for testing the general theory of relativity. By
introducing a correction ∆h(t) to the waveform model
and constraining the parameters of these perturbations
using gravitational wave and binary pulsar observations,

we can explore and validate the predictions of general rel-
ativity in the context of gravitational wave phenomena.
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