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Abstract

This study introduces novel concepts in the analysis of limit order books (LOBs) with a focus on
unveiling strategic insights into spread prediction and understanding the global mid-price (GMP)
phenomenon. We define and analyze the total market order book bid—ask spread (TMOBBAS)
and GMP, showcasing their significance in providing a deeper understanding of market dynamics
beyond traditional LOB models. Employing high-frequency data, we comprehensively examine
these concepts through various methodological lenses, including tail behavior analysis, dynamics
of log-returns, and risk-return performance evaluation. Our findings reveal the intricate behavior
of TMOBBAS and GMP under different market conditions, offering new perspectives on the
liquidity, volatility, and efficiency of markets. This paper not only contributes to the academic
discourse on financial markets but also presents practical implications for traders, risk managers,
and policymakers seeking to navigate the complexities of modern financial systems.

Keywords: Limit order book; bid—ask spread; mid-price; option pricing; implied volatility; Rachev
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1 Introduction

The intricacies of financial markets, particularly the mechanisms underlying the formation of
prices and the dynamics of spreads, have long fascinated researchers and practitioners alike. At
the heart of these mechanisms lies the limit order book (LOB), a pivotal structure that records the
buy and sell orders for a specific asset at different price levels. Traditionally, studies of LOBs have
concentrated on understanding the bid—ask spread and mid-price dynamics, offering critical insights
into the liquidity and efficiency of the markets. However, with the advent of high-frequency trading
(HFT), along with the increasing complexity of financial markets, there is a need to take a closer
examination of these dynamics and identify the strategies that govern spread prediction and the
global mid-price (GMP) phenomenon.

Recent surveys, such as those compiled in (Gould et al., |2013), provide a comprehensive review
of the empirical and theoretical advancements in our understanding of LOBs. These reviews have
been instrumental in shaping current methodologies and highlighting areas where further inquiry is
required, particularly in the context of high-frequency data and modern trading algorithms.
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In this context, we introduce two novel concepts: the total market order book bid—ask spread
(TMOBBAS) and the GMP. These concepts extend beyond the traditional bid—ask spread and mid-
price measures by considering the entire depth of the LOB, thereby providing a more holistic view of
the market dynamics. Our study is grounded in the rich academic lineage of LOB research, drawing
upon foundational work such as (Abergel et al., 2016)) offering a comprehensive overview of LOB
structures and their implications for market analysis. Furthermore, our exploration of TMOBBAS
and GMP is informed by the theoretical underpinnings of market microstructure theory, as discussed
in (O’Haral, [1998), and the empirical findings on the impact of HFT on the liquidity and volatility
of a market, as in (Brogaard et al., 2014]).

The introduction of TMOBBAS and GMP allows us to explore new dimensions of market be-
havior, particularly in relation to liquidity and volatility. By employing high-frequency data from
prominent market instruments, we undertake a meticulous analysis of these concepts through various
lenses, including tail behavior analysis, dynamics of log-returns, and risk—return performance evalua-
tion. Our methodology is informed by a blend of theoretical insights and empirical analyses, ensuring
a robust examination of the phenomena under study. The work of (Cont, 2001) on the empirical
properties of asset returns and the stylized facts of financial markets provides a foundational basis for
our analysis, while the methodologies for the tail behavior analysis draw on the advanced statistical
techniques described by (McNeil et al., 2015]).

The rest of this paper is organized as follows, Section [2] lays the groundwork with a discussion
on LOBs and introduces the foundational concepts of TMOBBAS and GMP. Section [3] describes
in detail the high-frequency data used for the analysis. Then Section [4] examines the tail behavior
of the financial returns. The dynamics of log-returns are examined in Section [5| through advanced
statistical models. Option pricing and implied volatility analyses for TMOBBAS and GMP are
presented in Section [6] Section [7] evaluates the risk—return performance of these indices, employing
the Rachev ratio for the evaluation. Section [§| presents a summary of our findings, their implications,
and directions for future research.

2 Preliminaries

From (Abergel et al., |2016)), we know that a LOB is essentially a file in a computer that contains
all orders sent to the market, with their characteristics, such as the sign of the order, its price,
quantity, and a timestamp. In academia, the usual approach involves simplifying the structure of the
LOB to facilitate applying it more efficiently. Figure [I] is an example of an LOB with a simplified
structure.

In Figure [1} the blue side depicts the bid prices (5, 6 and 7), representing the prices of limit buy
orders, while the red side depicts the ask prices (10, 11 and 12), namely, the prices of the limit sell
orders. In the bid prices and ask prices, we also encounter the corresponding best bid price and best
ask price. The best bid price is the highest among the limit buy orders, while the best ask price is
the lowest among the limit sell orders. Hence, in this example, the best bid price is 7 and the best
ask price is 10.

When discussing the best bid price and best ask price, there are two concepts we cannot ignore.
One is the bid-ask spread (BAS), the other is the mid-price. The BAS is defined as the difference
between between the best ask price and the best bid price, while the mid-price is defined as the
average of the bid price and the ask price. In the example in Figure [I] the BAS is 10 — 7 = 3 and
the mid-price is (10 4+ 7)/2 = 8.5.

In this paper, we define two new concepts, which contain the BAS and mid-price as special cases.
Before delving into these new concepts, let us introduce a new definition:

Definition 1. (TMOBAP and TMOBBP). The total market order book ask price (TMOBAP) is the

quotient of the value of a market order that is sufficient to purchase the entire volume of shares in the
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Figure 1: Example of an LOB with a simplified structure

ask limit order book by the total number of shares available in the ask limit order book. Similarly,
the total market order book bid price (TMOBBP) is the quotient of the value of the market order
that is sufficient to purchase the entire volume of shares in the bid limit order book by the total
number of shares available in the bid limit order book.

Referring to Definition [I} the two new concepts we define are referred to as the total market order
book bid-ask spread (TMOBBAS) and the global mid-price (GMP), respectively. They are defined
as follows:

TMOBBAS := TMOBAP - TMOBBP, (1)
GMP := (TMOBAP + TMOBBP)/2. (2)

Let us continue to use Figure [I| to provide a clearer explanation of these new terms. Based on
Definition |1, Equations and , and referencing Figure |1, we can derive the following:

10 % 200 4+ 11 x 150 + 12 x 2
TMOBAP — 0 x 200+ 11 x 150 +12 X250 ) o
200 + 150 + 250

5 x 1004+ 6 x 150 4+ 7 x 200
TMOBBP = ~ 6.22
100 + 150 + 200 ' (3)

TMOBBAS := TMOBAP - TMOBBP = 4.86,
GMP := (TMOBAP + TMOBBP)/2 ~ 8.65.

As observed, it is evident that both TMOBBAS and GMP are functions of the LOB’s depth. The
results in Equations give TMOBBAS and GMP a depth of 3. The reason we say that BAS and

mid-price are a special case of TMOBBAS and GMP, respectively, is that BAS and mid-price are
actually the TMOBBAS and GMP with a depth of 1, which is easy to verify.

3 The Data

Obtaining the high-frequency LOB data with which to compute the TMOBBAS and GMP for

real-world analysis is a challenging endeavor due to the value and sensitivity of this information.



Fortunately, Limit Order Book System - The Efficient Reconstructor (LOBSTER)E] provided us with
free high-frequency data samples with which to do academic research.

In our analysis, we adhere to the guidelines outlined in (Huang and Polak, 2011) to select HFT
data samples for Amazon (AMZN), Apple (AAPL) and Google (GOOG) from 9:30:00 AM to 4:00:00
PM on June 21, 2012. In order to eliminate the impact of the previous trading day, we remove the
first 5% of the timestamps and the corresponding data in the original data set to obtain the new
dataset for us to analyze. Table |1 summarizes the dataset that we will use.

Ticker Number of Timestamps Maximum Value of Depth

AMZN 248,202 10
AAPL 365,113 10
GOOG 132,411 10

Table 1: Summary of our datasets

To analyze TMOBBAS or GMP at different depths, we must truncate our dataset to include a
specific number of ask prices, bid prices, ask volumes and bid volumes. For instance, if we intend to
examine TMOBBAS and GMP of AAPL at a depth of 2, we should truncate the dataset for AAPL
to include two ask prices, two bid prices, two ask volumes and two bid volumes. Table [2| is the part
of the dataset for AAPL. It is evident that to explore TMOBBAS and GMP at a depth of 2, we need
to truncate nine columns, including the timestamp, two ask prices, two ask volumes (sizes), two bid
prices, and two bid volumes.

Time Ask Ask Bid Bid Ask Ask Bid Bid
price 1 size 1 pricel sizel ©price2 size2 price 2 size 2

35159.318815640 5865700 100 5863100 100 5866100 1900 5862900 100
35159.428838154 5865700 100 5863100 100 5865900 200 5862900 100
35159.432266639 5865700 100 5863100 100 5865900 200 5862900 100
35159.439130585 5865700 100 5863200 100 5865900 200 5863100 100
35159.450166122 5865700 100 5863200 100 5865900 200 5863100 100

57599.913117637 5776700 300 5775400 410 5776800 200 5775300 1400

Table 2: Part of dataset for AAPL at depth 2

The values in the “Time” column are the time difference between the current time and midnight
in seconds. For example, “34200” means 34,200 seconds from midnight, which, when converted to
hours, is 9.5 hours, namely, 9:30:00 AM. Similarly, “57600” indicates 57,600 seconds from midnight,
corresponding to 16 hours or 4:00:00 PM.

Regarding the price columns, “Ask price 17 is the best ask price, i.e., the lowest ask price, while
“Ask price 2”7 is the second-best ask price. Similarly, “Bid price 1” is the best bid price, i.e., the
highest bid price, and “Bid price 2” is the second-best bid price. The values in the price columns are
in US dollars (USD) multiplied by 10,000. For example, “5865700” is 586.57 USD.

Lastly, the values in the size columns are the corresponding number of shares for the given ask
price or bid price.

!The official website of LOBSTER is https://lobsterdata.com/.
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4 Tail Behavior Analysis

4.1 Non-Gaussianity of Log-Return

Let S; q denote TMOBBAS or GMP at timestamp ¢ with a depth of d, where 34,200 s < t <
57,600 s and 1 < d < 10. If we regard S; 4 as the price of a specific “asset” and we are interested in
exploring the return of this asset, then we can define the log-return r; 4 as the following:

where t + At (At > 0) is the timestamp for the next time step after timestamp ¢. The rationale for
employing log-returns in this paper is grounded in the consideration that in HF'T, the At should be
very small, requiring our study to be based on a continuous-time framework. Furthermore, in a later
section, we will formulate a continuous-time option pricing model, and (Shreve, 2004)) emphasizes
that continuous-time option pricing typically employs log-returns.

Figure [2] displays the evolution of TMOBBAS, GMP and their log-returns over time at all ten
different depths for AAPIH To enhance our understanding of the log-returns at various depths, we
aim to examine their distributions. From Figure (3] we can directly observe that the distributions of
the log-returns of TMOBBAS and GMP are decidedly non-Gaussian.

Moreover, in order to quantitatively illustrate the non-Gaussianity of the log-returns, we can
compute the excess kurtosis of the log-returns. Suppose we have an independently and identically
distributed (i.i.d.) sample of X with a size of n, where E(X) = y and Var(X) = ¢2. Then the
formula to compute the excess kurtosis is

E[(X — M)4] _3. (4)

excess kurtosis := 1
o

The reason for subtracting 3 in Equation is to make sure the excess kurtosis of the Gaussian
distribution is zero. In addition to the traditional excess kurtosis, we also propose a robust measure
of excess kurtosis in detecting a distribution’s tails, as suggested by (Hogg, 1972, (1974)):
Uo.05 — Lo.os
(5)

robust excess kurtosis := ———— — 2.59,
Uos — Los

where U, = éfll_a FYy) dy, Lo =1 Jo' F~(y) dy and F~!(y) is the y-th quantile of the sample
distribution. Still, the reason for subtracting 2.59 in Equation is to ensure that the robust excess
kurtosis of the Gaussian distribution is zero.

Figure[4 displays the evolution of the log-returns of TMOBBAS and GMP over depths for AMZN,
AAPL, and GOOG. From Figure [l we can observe that both the excess kurtosis and the robust
excess kurtosis for each depth are significantly greater than zero, indicating that the distribution of
the log-returns of TMOBBAS and GMP for these three stocks is leptokurtic.

In summary, to capture the entire density of the log-returns for TMOBBAS and GMP, we need
to take into account a non-Gaussian distribution that has tails that asymptotically approach zero
more slowly than a Gaussian distribution. From previous work ((Rachev and Mittnik}, 2000), (Cont},
2001)), (Shimokawa et al., [2007), (Lux, 2009), (Rogers and Zhang), 2011)), etc. among others), we
know that when facing such a problem, we typically examine the tail behavior first to determine the
nature of the distribution’s tail. Moreover, tail estimation allows us to gain insights directly from

2To conserve space, our primary focus in the main text will be on AAPL from this section on, due to its having the
largest market capitalization up to 2024 among these three stocks. Comparable analyses for AMZN and GOOG can
be found in Appendix [A] and Appendix [B] respectively. Since the analyses for AMZN and GOOG are similar to that
for AAPL, we will only provide related graphs but ignore the explanatory text.
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Figure 2: The evolution of (a) TMOBBAS, (b) GMP and their log-return over time at all 10 different
depths for AAPL (Each graph contains two y-axes. The left y-axis indicates the size of TMOBBAS
or GMP, and the right y-axis indicates the size of log-return. The evolution of TMOBBAS or GMP
is represented by the blue line while the evolution of the log-return is denoted by the orange line.)
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Figure 3: Comparison between the kernel density (represented by black solid lines) of log-returns of
(a) TMOBBAS, (b) GMP and the corresponding Gaussian distribution with the same sample mean
and standard deviation (depicted by the red dashed lines) at all 10 depths for AAPL
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the tail statistics, embodying the principle of “letting the tail speak for itself” ((Embrechts et al.
1997) and (McNeil et al., 2015)).

In the subsequent subsections, we will utilize two methods to show that the distribution of log-
returns of TMOBBAS and GMP is heavy-tailed.

4.2 Generalized Pareto Distribution Fit

The initial method we propose involves utilizing the Generalized Pareto Distribution (GPD)
to model the tail data of the log-returns. As indicated by (Balkema and De Haan, 1974) and

(Pickands III, [1975)), a broad category of tail distribution functions can be well approximated by the
GPD.

Let Fgpp(z;0,§) represent the cumulative distribution function (CDF) of the GPD

L—@+§@;% ifE40

Fopp(z;0,8) =
1—e @/ if&€=0

for z € [0,00) if £ > 0 and x € [0,—0 /] if £ < 0. Here, o is the scale parameter and ¢ is the shape
parameter. To determine the nature of a distribution’s tail, the sign of £ is crucial. In particular, we
have

e If £ > 0, then the distribution has a power-law decay, i.e., heavy-tailed.
e If £ =0, then the distribution is exponentially decaying.

e If £ < 0, then the distribution has bounded support.



In this study, we consider the top 5% of log-returns data as the tail and employ the GPD to model
them. Figure [p| presents a comparison between the empirical CDF of the tail data and the corre-
sponding CDF of the GPD of the TMOBBAS and GMP at all ten depths for AAPL. From Figure
it is evident that the overall fit is excellent, allowing us to proceed with this method in our study.

To estimate &, a common approach is to utilize maximum likelihood estimation (MLE) ((Davison),
1984), (Smith) 1985)), (Smith, |1987), (Hosking and Wallis, |1987), (Grimshaw, 1993), etc. among
others). By employing the gpfit () function in MATLAB, we can calculate the estimated £ and its
95% confidence interval (CI) for each depth. Figure [6] presents the evolution of the estimated & and
its corresponding 95% CI across different depths. From Figure [6] we can observe that the estimated
¢ are significantly greater than zero, and their corresponding 95% CIs for each depth strictly extend
to the right of zero. Thus, we should employ a power-law decay (i.e., heavy-tailed) distribution to
fit the entire density of the log-returns of TMOBBAS and GMP.

4.3 The Hill Method

The alternative method we propose is the Hill method. The crucial component in the Hill method
is the Hill estimator, introduced by (Hill, [1975). In this method, we will focus on the tail index a,
the reciprocal of the shape parameter £ (i.e., a = 1/£).

Suppose we have an i.i.d. sample of X with a size of n, X1, X3, -+, X,,, in non-decreasing order,
Le., Xy > X > -+ > X(n). The k-th largest value, X(3), is called the k-th order statistic of the
sample. The standard form of the Hill estimator is

H 1< X B Ly
Gy = (k > log — ) = !k (Z 10<‘5X(i)> — log Xkt1)
i=1 =1

-1

6
X(k41) (6)

(H)

From Equation @, we can see that &, " uses only the order statistics up to k + 1 of the sample to
estimate a. Also, from (De Haan and Peng, [1998), we have

—r a, ifn— o0,k — 00,k/n— 0.

This means that the Hill estimator converges in probability to the real tail index when k is chosen
appropriately with growing n. From (McNeil et al., 2015)), we know that in empirical work, the best
choices of k are relatively small-say 10-50 order statistics in a sample of size 1000, i.e., k/n should
be about 0.01-0.05.

Besides the Hill estimator itself, we also compute the CI of d,(gl). The (1 — 6) x 100% Wald CI
(Haeusler and Segers|, 2007)) can be expressed as

1 22 - NN - ~ (H)
+ Vi) e\ p ) Cke
where z, means the p-th quantile of the standard Gaussian distribution.
In this study, we let k/n ~ 0.05 and # = 0.05. From Figure |7, we can see that the estimated

tail indices are significantly greater than zero and the 95% ClIs strictly extend to the right of zero,
indicating that the tails are heavy.

LY, k) =

5 Dynamics of Log-Returns

In the preceding section, we applied the GPD to characterize the right tails of the logarithmic
returns for both TMOBBAS and GMP. Specifically, we identified the top 5% of log-return data as the
tail and utilized the GPD to model it. Our analysis included estimating the parameters £ and the tail
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Figure 5: Comparison between empirical CDF (represented by black solid lines) of tail and its fitted
CDF of GPD of (a) TMOBBAS and (b) GMP at all 10 depths for AAPL
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index a along with their corresponding 95% confidence intervals for each depth. This revealed that
the distributions of the log-returns for both TMOBBAS and GMP exhibit heavy-tailed behavior,
indicative of significant deviations from normality.

The methodology employed in the previous sections relied on a historical or static approach,
which involved sequentially sampling the returns data from fixed historical periods. This provides
a snapshot of market activity and global events within a finite timeframe. Within this framework,
we treated the dataset as a series of historical log returns, assuming they were independently and
identically distributed. This simplification is widely adopted by practitioners, including traders and
portfolio managers, for its simplicity and accessibility. However, it is imperative to acknowledge the
common caveat found in fund prospectuses that past performance does not guarantee future returns.

In contrast to the historical approach, dynamic methods investigate more deeply the informational
content in the historical data. These methods operate under the assumption that historical returns
arise from a dynamic univariate distribution, where characteristics such as dependency may vary
over time. Seeking to uncover the nature of this distribution, dynamic methods generate extensive
predictive samples of asset returns, with a particular focus on extreme events or tail behavior. The
rationale behind using dynamic methods lies in their ability to adapt to changing market conditions
and account for evolving risk factors that may not be captured by static models. By continuously
updating the model parameters based on new information, dynamic methods offer improved accu-
racy in predicting future returns and mitigating potential risks. While historical methods remain
crucial, especially for modeling new high-frequency spread indices and providing insights into risk
management frameworks like Basel I and II, dynamic approaches offer heightened sensitivity to po-
tential significant shifts in market performance. By incorporating the time-varying nature of market
dynamics, dynamic methods provide more robust and reliable predictions, making them invaluable
tools for investors and risk managers alike.

In this section, we adopt a time-series approach designed to identify the best fitting models for
time series data, considering both in-sample and out-of-sample performance. By leveraging Monte
Carlo simulations, our goal is to generate a true sample of i.i.d. log-returns for subsequent periods.
This methodological shift distinguishes our approach from historical returns, which inherently lack
the i.i.d. property.

5.1 ARMA(1,1)-GARCH(1,1) with Normal Inverse Gaussian Distribution

Our dynamic framework incorporates several key components. We utilize a versatile ARMA(1,1)-
GARCH(1,1) model to fit the returns data, incorporating a Normal Inverse Gaussian (NIG) distribu-
tion to model the innovations within the ARMA-GARCH framework, accommodating heavier tails
than a normal distribution. Subsequently, we generate a large sample of asset innovation values
from the NIG distribution. By applying inverse ARMA-GARCH to this sample set, we derive a
comprehensive set of values of the returns. These values are then incorporated into our analysis to
model spread indices across various depths of the order book, providing deeper insights into market
dynamics and risk management strategies. Additionally, we aim to employ the same dynamic frame-
work for analyzing the GMP data alongside TMOBBAS to enhance the comprehensiveness of our
analysis.

If a time-series of returns, r¢, is stationary, a useful general model for describing it is the synthesis
of the autoregressive moving-average (ARMA) model and the generalized autoregressive conditional
heteroscedasticity (GARCH) model. The ARMA (Eaglel, 1982)) component explicitly models the
behavior of the returns, whereas the GARCH (Bollerslev, [1986)) component explicitly models its
variance. Both models contain theoretically infinite parameters; the variations in the models are
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denoted by the finite number of parameters employed. The ARMA((p, ¢) model (Tsay, [2005)) is

p q
Tt = ¢o + Z@'thi +at + Zejat—ja

i=1 j=1

where each shock, a;, is a zero-mean random variable. The first two terms in Equation describe
the autoregressive dependence of 7 on previous returns; the second two terms add the influence of
a weighted (moving) average of shocks, a;. The GARCH(m, s) model relates a; to, and provides a
model for, the variance o7 of the series:

m S
2 2 2
a; = oe, 0 =g+ E aa;_; + E Bijoi_;- (7)
i=1 j=1

Here, the so-called innovations, ¢;, are zero-mean, unit-variance, independent, identically distributed
random variables. The GARCH model is clearly autoregressive in both o7 and a?.

Identifying the daily variance as the volatility of the time series, Equation captures the
property of conditional heteroscedasticity, that is, the property that the volatility is not constant
relative to that of prior days. With six parameters, the ARMA(1,1)-GARCH(1,1) model

T = ¢o + P1714-1 + ay + a1,

ay = Ot€q,

of = ag+arai_y + o}y,

provides enough generality to model many time series of returns. However, providing a fit to a
particular time series requires the specification of the distribution governing the random variables
of the innovations. In the dynamic optimization method, we assume that the innovations, €, are
governed by the NIG distribution given by

f(zla, B, 1, 0) = 204[?1(5)6}@ (‘i (\/52+(55_M)2 - \/52+M2>> )

where Kj(-) is the modified Bessel function of the second kind, and «, §, u, and ¢ are shape and
scale parameters.

5.2 The TMOBBAS Hill Index Estimations

The dynamic module seeks to provide a statistically accurate larger sampling of returns for
computing the tail index. This is achieved by fitting an ARMA(1,1)-GARCH(1,1) with an NIG-
distribution model to the time series of the TMOBBAS index of depths s = 1,2,...,10, generating
the model parameters, computing the shock series a; and the variances o7 predicted from the fitted
GARCH(1,1) model, generating 10,000 of the innovation series €;, and performing the inverse trans-
formations ¢ in the ARMA(1,1)-GARCH(1,1) model to generate a dynamic ensemble of predicted

returns for the TMOBBAS index for each depth. The ensemble of returns {rgs) 10 represents the
output from the dynamic module, which is then incorporated into our analysis to model spread in-
dices across various depths of the order book, providing deeper insights into market dynamics and
risk management strategies.

Figure |8 illustrates the evolution of the estimated £ and its corresponding 95% CI across different
depths. From Figure [§] we observe that the estimated values of £ are significantly greater than zero,
and their corresponding 95% CIs for each depth strictly extend to the right of zero. Thus, we should
consider a power-law decay (i.e., heavy-tailed) distribution to fit the entire density of the log-returns
of the TMOBBAS and confirm our findings with the historical methodology.
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Figure 8: The evolution of estimated shape parameter ¢ (represented by blue solid line) and its
corresponding 95% CI (depicted by two red dashed lines) over depth for AAPL

For estimating the Hill index for each depth, consistent with our historical methodology, we
set k/n ~ 0.05 and § = 0.05. From Figure [9} it is evident that the estimated tail indices are
significantly greater than zero, with the 95% confidence intervals extending strictly to the right of
zero. This observation indicates that the tails of the distribution should be characterized as heavy-
tailed, corroborating our findings from the historical methodology.

Furthermore, in Figure [9] we observe a decreasing trend in the evolution of the estimated tail
index « and its associated confidence intervals as a function of the number of order statistics. As
we include more extreme values (higher order statistics), the variability in the estimates of the tail
index decreases, leading to a more conservative estimate. In other words, a larger number of order
statistics results in a more robust estimation, yielding a stable and lower estimate of the tail index.

Furthermore, we examined the tail behavior of an Equally Weighted Portfolio (EWP) comprising
returns from all ten depths. Adopting an EWP approach facilitated the aggregation of returns across
multiple depths, offering a holistic view of market behavior while minimizing the influence of individ-
ual depth-specific factors. As illustrated in Figure our analysis reaffirms the heavy-tailed nature
of the distribution, indicating significant deviations from normality. This observation underscores
the robustness of our methodology in capturing heavy-tailed behavior across the TMOBBAS index,
further enhancing our understanding of tail risk dynamics within the market.

These findings from our analysis provide valuable insights into the tail behavior of the log-returns
for the TMOBBAS index, particularly when comparing results obtained from historical methodologies
with dynamic approaches. Our examination of the Hill index for each depth, consistent with our
historical methodology, reaffirms the heavy-tailed nature of the distribution.

5.3 The GMP Hill Index Estimations

In this subsection, we extend our analysis to the GMP, applying the same methodology previously
employed for the analysis of the TMOBBAS. By leveraging the dynamic framework described earlier,
we aim to provide insights into the tail behavior and dynamics of GMP returns across various depths
of the order book.

The dynamic module utilized an ARMA(1,1)-GARCH(1,1) model a NIG distribution to fit the
time series of the GMP index for depths s = 1,2,...,10. This generated a statistically accurate
ensemble of predicted returns for GMP at each depth, facilitating the modeling of spread indices and
offering deeper insights into market dynamics and risk management strategies.
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Figure 9: The dependence of estimated tail index a (represented by black solid lines) and its corre-
sponding 95% CI (depicted by two red dashed lines) on the number of order statistics at depths 2,
3,--- 10 for AAPL

We estimated the Hill index for each depth of the GMP, consistent with our methodology ap-
plied to TMOBBAS. Figure [T1] demonstrates the evolution of the estimated tail index a and its
corresponding 95% confidence intervals on the number of order statistics at each depth for GMP.

Additionally, we examined the tail behavior of an EWP comprising returns from all ten depths
of the GMP. This approach allowed us to gain a comprehensive understanding of market behavior
while mitigating the influence of individual depth-specific factors. Figure [12] presents the evolution
of the estimated tail index « and its corresponding 95% confidence intervals on the number of order
statistics for the EWP of GMP.

By conducting a thorough analysis of the GMP using the established methodology, we aim to
enhance our understanding of market dynamics and tail risk within the context of the order book.
This analysis complements our investigation of TMOBBAS and GMP, providing valuable insights
into the behavior of both indices and informing effective risk management strategies in financial
markets.

Furthermore, by comparing the analyses of the tail behavior of GMP and TMOBBAS, we observe
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Figure 10: The dependence of estimated tail index « (represented by black solid line) and its corre-
sponding 95% CI (depicted by two red dashed lines) on the number of order statistics for EWP for
AAPL

that while there are similar trends in the shape of their tail indices, there are also notable differences,
suggesting distinct risk profiles for each index. It is worth noting that the Hill index estimated for
all depths of GMP shows very similar values, with minimal variation. This observation contrasts
with the behavior observed for TMOBBAS, where the Hill index varies significantly between depths,
ranging from 0 to 3. The consistent behavior of the Hill index as a function of depth for GMP
suggests a more stable tail behavior compared to TMOBBAS.

This phenomenon may be due to the nature of the market and the characteristics of the order
book. The GMP may exhibit a more uniform distribution of returns across depths, leading to
consistent tail behavior. On the other hand, the TMOBBAS may experience more variability in
trading activity and liquidity across depths, resulting in fluctuating tail behavior.

This analysis complements our investigation of TMOBBAS and GMP, providing valuable insights
into the behavior of both indices and informing effective risk management strategies in financial
markets.

6 Option Pricing and Implied Volatility

The primary objective of our paper is to introduce and analyze the new high-frequency spread
indices, TMOBBAS and GMP, which capture the dynamics of variations in the spread across different
depths of the order book. Our findings from previous sections show that the log-returns and spreads
at different depths exhibit heavy-tailed characteristics, highlighting the potential challenges faced by
market participants, particularly high-frequency traders, who are sensitive to fluctuations in liquidity.

As we investigated the analysis of both TMOBBAS and GMP, it became evident that global
spreads and mid-prices at various depths can significantly vary, thereby impacting liquidity. This
observation underscores the potential challenges faced by market participants, particularly high-
frequency traders, who are sensitive to fluctuations in liquidity. In response to this concern, there
arises an opportunity to explore innovative risk management strategies. One such approach involves
the adoption of insurance instruments akin to portfolio insurance, aimed at hedging against the risk
of low liquidity.

Thus, there is a compelling rationale for the development of an option pricing model tailored
specifically for spreads at different levels. By constructing an equally weighted index comprising
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Figure 11: The dependence of estimated tail index « (represented by black solid lines) for GMP and
its corresponding 95% CI (depicted by two red dashed lines) on the number of order statistics at
depth 2,3,--- 10 for AAPL

these spreads and offering derivative pricing on this index, we can furnish market participants with
a robust mechanism for hedging against the adverse effects of low liquidity. This initiative not
only addresses the practical needs of traders but also contributes to the ongoing discourse on risk
management in financial markets.

This section focuses on pricing options on both the TMOBBAS and GMP indices and deriv-
ing their implied volatilities. Measures of implied volatility play a crucial role in this context by
encapsulating the current perspective of the market on the future risk, as implied by the observed
transaction prices of option contracts. Given the dynamic nature of the high-frequency market and
the presence of temporal dependence, as manifested in volatility clustering, traditional measures
of historical volatility may be inadequate for capturing the prevailing risk environment. Implied
volatility offers a forward-looking outlook, integrating market expectations and sentiments, thereby
furnishing valuable insights for traders and investors.

Our approach involves employing a double-subordinated process to model both the TMOBBAS
and GMP indices. This method is chosen to enhance the accuracy and reliability of the pricing,
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Figure 12: The dependence of estimated tail index « (represented by black solid line) of GMP and
its corresponding 95% CI (depicted by two red dashed lines) on the number of order statistics for
EWP for AAPL

particularly in capturing the dynamic nature of the high-frequency market and addressing the chal-
lenges associated with the heavy-tailed distributions of asset returns. This choice is informed by
empirical evidence suggesting that the returns of speculative assets, such as the TMOBBAS and
GMP indices, are heavy-tailed distributions and asymmetric, challenging the assumption of normal-
ity underlying traditional option pricing models like the Black—Scholes—-Merton (BSM) formula. A
double-subordinated process enables the variance of the normal distribution to vary over time, thereby
effectively capturing heavy-tailed phenomena. Specifically, one of the subordinated processes models
intrinsic time, enhancing our ability to capture the intricate dynamics of both the TMOBBAS and
GMP indices and provide more accurate pricing for options based on themﬂ

6.1 Double Subordination Model for TMOBBAS and GMP

In this subsection, we define the double-subordinated process for modeling both the TMOBBAS
and GMP indices and pricing options based on their dynamics. By outlining the model parameters
and processes, we lay the groundwork for our analysis, aiming to capture the nuanced behavior
of these indices and provide accurate pricing for options, contributing to risk management and
investment strategies in the high-frequency trading domain. Through this exploration, we aim to
uncover valuable insights into the dynamics of both the TMOBBAS and GMP indices and their
implications for market participantsE]

The double-subordination framework involves a Lévy subordinator process, denoted by X =
(X(t),t > 0), defined on a stochastic basis (2, F,F,P). A process X is considered a Lévy process
if X(0) = 0 almost surely under P, it has independent increments, has stationary increments, and
is continuous in probability. E] A Lévy process T = (T'(t), t > 0, T(0) = 0) with non-decreasing
trajectories (i.e., non-decreasing sample paths) is called a Lévy subordinator. Since T (0) = 0, the
trajectories of T take only non-negative values. In the BSM option pricing model, the price dynamics

3For a further discussion of the use of subordinators in financial modeling, see (Sato, [1999), (Schoutens, [2003), and
(Shirvani et al., [2021al).

“For more details on Lévy subordinator processes, refer to (Duffie, [2010).

SFor more details on Lévy subordinator processes, refer to (Sato| [1999) and (Schoutens) 2003).
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of the underlying asset are given by

, tejo,r],

where the log-process is

Xt(BSM) =Xo+mt+o1B;, p €R, 01 >0, Xg=1In(S), So >0,
and B = (B, t > 0) is a standard Brownian motion. To accommodate the non-normality of

asset returns, (Mandelbrot and Taylor}, [1967)) and (Clark, [1973) proposed the use of a subordinated
)

Brownian motion, where the price process St(ss and the log-price process are defined by

(s9)
Sgss) =, telo,T]
Xt(ss) = Xo + pat +02Brw), p2 €R, 02 >0, (8)

where T = (T'(t), t > 0, T(0) = 0) is a Lévy subordinator.

Various studies have demonstrated that single-subordinated log-price models commonly fail to
capture the heavy-tailedness observed in financial returnsﬂ (Shirvani et al.l 2021a) defined and
investigated the properties of various multiple-subordinated log-return processes designed to model
leptokurtic asset returns. They showed that multiple-subordinated log-return processes can have
heavier tails than single-subordinated models and that they are capable of capturing skewness and
kurtosis. Therefore, a double subordination framework may be a more appropriate candidate for
modeling the rather extreme behavior of both the TMOBBAS and GMP indices.

To apply double subordination to modeling the TMOBBAS and GMP index price processes, let
S; denote the price process with the dynamics

S, =eXt, te [0, 7],
Xe = Xo+pst +U(t) +pT(U(1) + 03Brwy), t=0,
K13 € R, 03 >0, Xg= 111(50), So > 0. (9)

where the components of the triple Bs,T'(s),U(s),s > 0 are independent processes generating the
stochastic basis (2, F, F = (F;,t > 0),P), which represents the real world.

Consider the case where the subordinators T'(t) and U (t) are inverse Gaussian (IG) Lévy processes;
In this case, (Shirvani et al., 2021a) referred to T'(U(t)) as the double inverse Gaussian subordinator
and to X; as a normal double inverse Gaussian (NDIG) log-price process, with the characteristic
function (CF) of X given by

X1 (U) =

A 22 [ A 2
exp ivps + 22 |1 — [1- 2T [ 1 - BT 950p — 0202) | + ivn . (10)
Uu Au \ pr AT

with v € R.

To price European contingent claims of both TMOBBAS and GMP indices, we follow (Shirvani
et al., [2023)) and assume that the log-price process X; follows a NDIG model. An equivalent martin-
gale measure Q is derived from the risk-neutral measure P, ensuring that the discounted price process
e~ "S; is a martingale (Duffie, 2010, Chapter 6). Using the martingale-corrected moment matching

SFor example, see (Lundtofte and Wilhelmsson, [2013) and (Shirvani et al., [2021b]).
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(MCMM) approach, the parameters of the process are estimated, and an appropriate drift term is
added to ensure the martingale propertym
The price of a European call option C with an underlying asset S is given by

C(So,r, K,7) =¢""" Eq [max(SgQ) - K, 0)} ,

where 7 denotes the maturity, K is the strike price, and St(Q) is the price dynamics of S under Q.

(Shirvani et al., |2023)) dervied the price dynamics of S under Q and the CF of the log-price In St(Q),
respectively, given by

@ _ _biSt o (k)X
S = (D — Spel Xt e 0,7, (11)
o510 (v) = 5§ exp {[iv(r — Kx, (1) +ox, )]}, 1€ [0,7]. (12)

The efficient computation of option prices relies on (Carr and Madan, 1998)’s option pricing
formula, utilizing the fast Fourier transform (FFT) and necessitating access to the CF of the log-
price, represented by

0(507 T, ka T) =

—rr—ak o] ) ) (@ (’U — z(a + 1))
¢ / ek 5 In 57 dv (13)
0 a

7r +a—v2+i(2a+2)v

where a > 0 and E(St(Q))“ < 0.
For pricing options on both the TMOBBAS and GMP indices and deriving their implied volatility,
we employ a double-subordinated process to model these indices. The method of moments and the

empirical CF are utilized to estimate the parameters of the model, following (Paulson et al., 1975
and (Yu, 2003) [

6.2 Option Pricing and Implied Volatility of TMOBBAS

To explore the realm of option pricing and implied volatility for the TMOBBAS index, we employ
the NDIG Lévy model. This model facilitates the pricing of plain vanilla European options on the
TMOBBAS index, providing valuable insights into market dynamics and risk management strategies.
Let’s explore the details.

We apply the NDIG Lévy model to the pricing of plain vanilla European options on the TMOB-
BAS index. Let C be a European call option, where the underlying risky asset S follows the log-price
process given in Equation @D The dynamics of S on QQ are given by Equation , and the CF of
the log-price is given by Equation . We evaluate the integral Equation using the FFT for a
range of strike levels and maturity horizons.

Figure [I3| depicts the resulting prices for call and put options plotted against the time to maturity
7 and the strike price K for depths 5 and 10. Since the call and put surfaces for different depths
of the TMOBBAS index are similar, we only plot the TMOBBAS index with depths 5 and 10.

"(Yao et all 2011) constructed a martingale measure using the MCMM approach for the geometric Lévy process
model and showed that this measure is an equivalent martingale measure if there is a continuous Gaussian part in the
Lévy process. If X is a pure-jump Lévy process, they pointed out that this measure cannot be equivalent to a physical
probability. However, pricing European options under this measure is still arbitrage-free.

8Limits for a ensuring stable option prices are determined through numerical experiments, see (Shirvani et al.| [2023)).

9Exploiting the fact that the probability density function (PDF) is the Fourier transform of the CF, the objective
is to minimize the squared differences of the first four moments and the empirical and theoretical CFs. This involves
estimating model parameters through optimization subject to constraints based on the statistical properties of the data.
See (Shirvani et al.| [2023]).
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It’s worth noting that for close-to-the-money values (K = S), where the strike price is close to
the current asset price, the call and put option prices increase with 7, reflecting increased future
uncertainty. This behavior is consistent with market expectations, as higher uncertainty about the
future value of the underlying asset leads to higher option prices. This phenomenon is often observed
in financial markets, where options with longer maturities tend to command higher premiums due
to the additional time value and increased uncertainty associated with longer time horizons.

Figure 13: NDIG-based call price surfaces for TMOBBAS index of AAPL (a) for depth 5, (b) for
depth 5, (c¢) for depth 10, and (d) for depth 10 as functions of the time to maturity and strike price.

Figures and also plot the implied volatility surface computed from call price options for
the TMOBBAS index for depths 1 to 10 and EWP as a function of 7" and moneyness, K/Sy. As
is typically observed, at constant values of T' the implied volatility (future uncertainty) increases as
strike prices move away from the value K/Sy (the volatility “smile”). At constant values of K/Sy,
the implied volatility decreases as time to maturity increases.

We also observe a decrease in implied volatility as depth increases, as illustrated in Figure [14]
which presents an intriguing trend in the context of option pricing dynamics for the TMOBBAS
index. Market depth, representing the level of liquidity and trading activity, plays a crucial role in
determining option prices and their associated implied volatilities.

The decrease in implied volatility with increasing depth suggests a relationship between market
depth and option pricing stability. Deeper markets typically exhibit higher liquidity, characterized by
a larger volume of buy and sell orders across various price levels. This increased liquidity contributes
to a more stable and efficient pricing environment, reducing the uncertainty surrounding future price
movements. As a result, options priced in deeper markets tend to reflect lower implied volatility
levels, as market participants perceive less risk and uncertainty in price fluctuations.

Moreover, deeper markets often feature narrower bid—ask spreads, indicating tighter pricing and
improved market efficiency. The reduced spread suggests that buyers and sellers are more closely
aligned in their pricing expectations, further contributing to the lower implied volatility observed in
options priced based on the TMOBBAS index.

Additionally, our analysis reveals a striking similarity between the implied volatility surface of the
EWP encompassing all depths of the TMOBBAS index and the implied volatility of the TMOBBAS
index with depth 10. This observation suggests that the implied volatility of the EWP, which
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Figure 14: Implied volatility surface for depths 1,2, ...,10 for AAPL
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Figure 15: Implied volatility surface for EWP
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aggregates returns from all depths, closely mirrors the implied volatility behavior of the TMOBBAS
index with the greatest market depth. Essentially, the EWP serves as a holistic representation of
market sentiment and volatility by amalgamating information from diverse depths of the TMOBBAS
index. Consequently, the implied volatility surface of the EWP offers a comprehensive perspective
on market volatility, integrating insights from various depths.

Moreover, the notable resemblance between the implied volatility of the EWP and the TMOBBAS
index with depth 10 indicates the predominant influence of deeper market levels on overall market
volatility. This underscores the critical role of deep liquidity levels in shaping market sentiment and
option pricing dynamics. The convergence of implied volatility behavior between the EWP and the
TMOBBAS index with the greatest depth underscores the importance of considering depth-specific
factors in understanding and predicting market volatility.

To summarize, the inverse relationship between implied volatility and market depth underscores
the importance of liquidity and stability in option pricing. The decreasing trend in implied volatility
with increasing depth highlights the role of deeper markets in providing a more stable and pre-
dictable pricing environment for options, benefiting both investors and market participants alike.
Furthermore, the remarkable resemblance between the implied volatility of the EWP encompassing
all depths of the TMOBBAS index and the TMOBBAS index with depth 10 suggests that deeper
market levels have a dominant influence on overall market volatility, emphasizing the significance of
high levels of liquidity in shaping market sentiment and option pricing dynamics.

6.3 Option Pricing and Implied Volatility of GMP

In this subsection, we present the results of analyzing option pricing and implied volatility for
the GMP index, leveraging the NDIG Lévy model. Our objective is to gain insights into the pricing
dynamics of plain vanilla European options on the GMP index and assess implied volatility trends.

Figure 16: NDIG-based call price surfaces for TMOBBAS index of AAPL (a) for depth 5, (b) for
depth 5, (c¢) for depth 10, and (d) for depth 10 as functions of the time to maturity and strike price.

Figure showcases the pricing surfaces for call and put options plotted against the time to
maturity 7 and the strike price K, focusing on depths 5 and 10 of the GMP index. Notably, these
surfaces offer valuable insights into the option pricing behavior specific to the GMP index.

24



Observing the patterns in the pricing surfaces reveals intriguing dynamics. Particularly, for near-
the-money options (K ~ S), where the strike price closely aligns with the current asset price, both
call and put option prices demonstrate an increasing trend with 7. This trend reflects the market’s an-
ticipation of heightened future uncertainty, leading to elevated option premiums for longer-maturity
contracts. Such observations align with established market phenomena, where longer-maturity op-
tions command higher premiums due to increased time value and augmented uncertainty associated
with extended time horizons.

Figures and depict the implied volatility surface computed from call price options for the
GMP index across depths 1 to 10 and EWP as a function of 7" and moneyness, K/Sp. Notably, the
implied volatility exhibits a distinct “smile” pattern, characterized by a sharp increase in volatility
as the moneyness approaches zero.

Figure 17: GMP Implied volatility surfaces for depths 1,2, ..., 10 for AAPL

Moreover, there is a notable minimum volatility observed close to zero moneyness, particularly
evident as moneyness approaches 1 from both in-the-money and out-of-the-money options. This
phenomenon suggests that market participants perceive lower risk and uncertainty for options with
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moneyness near 1, reflecting a more stable pricing environment.

Interestingly, the implied volatility surface for GMP exhibits a consistent shape across different
depths, with minimal variation in implied volatility as depth increases. Unlike the TMOBBAS index,
where implied volatility decreases with increasing depth, the implied volatility of GMP remains
relatively stable across all depths. This uniformity in implied volatility suggests a robust and stable
pricing environment for options on the GMP index, regardless of the market depth.

Comparing the implied volatility of the GMP with that of the TMOBBAS across all depths reveals
that the implied volatility of the GMP is consistently lower. This disparity in implied volatility
underscores the differences in market dynamics and risk perceptions between the two indices, with
the GMP exhibiting lower perceived risk and volatility than the TMOBBAS.

Regarding the implied volatility surface of the EWP for the GMP, our analysis indicates that
it has a slightly higher volatility than the implied volatility of each depth of GMP. This suggests
that while the overall level of volatility may vary, the underlying volatility dynamics captured by the
implied volatility surface exhibits uniform characteristics across different depths of the GMP. Also,
despite this difference in overall volatility levels, we observe a remarkable similarity in the shapes of
the implied volatility surfaces.

Similar to the individual depths of GMP, the implied volatility surface of the EWP also displays
the characteristic volatility “smile,” with a sharp increase in volatility as the moneyness approaches
zero. Additionally, the minimum volatility is observed close to zero moneyness, as the options move
both in-the-money and out-of-the-money.

In conclusion, our analysis of the option pricing and implied volatility surfaces for both the
TMOBBAS and GMP indices reveals intriguing insights into the dynamics of the market and the
behavior of the volatility. While the TMOBBAS index exhibits distinct characteristics in implied
volatility across different depths, with a noticeable decrease in volatility as the depth increases, the
GMP index has a more uniform implied volatility across different depths. Despite differences in
the overall volatility levels, both indices display similar shapes in their implied volatility surfaces,
characterized by the volatility “smile.” Moreover, the EWP for both indices serves as a comprehen-
sive representation of market sentiment and volatility, aggregating information from diverse depths.
Overall, these findings underscore the importance of considering the market depth and composi-
tion of the index in understanding and predicting option pricing dynamics and implied volatility in
high-frequency trading environments.
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7 Evaluation of Risk—Return Performance

In this section, we will focus on measuring the risk—return performance for TMOBBAS and GMP.
To do this, we will employ the Rachev ratio (Biglova et al., 2004) as the metric. Unlike reward-to-
variability ratios such as the well-known Sharpe ratio (Sharpe, 1966|) and Sortino ratio (Sortino and
Price, |1994), the Rachev ratio is a reward-to-risk ratio designed to assess the potential for extreme
positive returns relative to the risk of extreme losses in a non-Gaussian setting. Intuitively, it reflects
the potential for significant gains compared to the risk of significant losses, at a rarity frequency ¢
(quantile level) defined by the researcher.

The formula to compute Rachev ratio for the TMOBBAS or GMP is

_ AVaRg(—X)

RR(s5.)(X) = Jvp 5 (14)

where
e X denotes the log-return of TMOBBAS or GMP at a given time interval.
e AVaR,(X) :=~"1 [ VaR,(X) du is the average Value-at-Risk (VaR) at the level v € (0,1].
e VaR,(X) :=inf {m € R: P[X +m < 0] < u} is the VaR at the level u.

The formula to compute AVaR,(X) may seem a bit challenging. However, according to (Follmer
and Schied| 2004), we know that

El(qg— X)*]

AVaRg(X) = 5

—q (15)

where
e ¢ is the S-quantile of X
e (¢— X)* :=max(q¢— X,0).

In this study, we set 8 = v = 0.05 to explore the relationship between excess profit and excess
loss when “investing” in the TMOBBAS. Next, we merge Equation and Equation , applying
them to our dataset for AMZN, AAPL, and GOOG. Figure [19|illustrates the evolution of the Rachev
ratio of TMOBBAS and GMP for AMZN, AAPL, and GOOG across different depths.

From Figure we can observe that

e The general trend shows that as the depth increases, the Rachev ratio initially rises and then
declines.

e For AAPL, the Rachev ratio remains consistently above 1 across different depths, suggesting
that excess losses can always be offset by excess profits when investing in TMOBBAS at varying
depths of AAPL. In particular, the highest Rachev ratio occurs at a depth of 2.

e In the case of AMZN, as the depth increases to 5 or beyond, the Rachev ratio drops below 1,
indicating that excess losses cannot be balanced by excess profits when investing in TMOBBAS
at such depths. Similarly to AAPL, the Rachev ratio for AMZN peaks at a depth of 2.

e For GOOG, as the depth increases to 6 or beyond, the Rachev ratio falls below 1, suggesting
that excess losses cannot be balanced by excess profits when investing in TMOBBAS at such
depths. Notably, the Rachev ratio for GOOG achieves relatively high values at depths 2 and 3.

From Figure we can observe that
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Figure 19: The evolution of Rachev ratio of (a) TMOBBAS and (b) GMP for AMZN, AAPL, and
GOOG over depth (AMZN, AAPL, and GOOG represented by red, green, and blue line, respectively)
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e The general trend shows that as the depth increases, the Rachev ratio initially rises and then
declines.

e For AAPL, the Rachev ratio increases first, reaching its peak at a depth of 2, approximately
1.001. Then, this value remains close to, but less than, 1 for the next eight depths. This
suggests that the excess loss can almost be balanced by the excess profit when investing in
GMP for AAPL at various depths.

e For AMZN, the Rachev ratio also increases initially, reaching its peak at a depth of 4, around
1. Afterward, the overall trend of the Rachev ratio is to decrease until it reaches a value of
approximately 0.993 at a depth of 10. This suggests that the excess loss cannot almost be
balanced by the excess profit when investing GMP for AMZN at various depths.

e For GOOG, the Rachev ratio initially increases, reaching its peak at a depth of 2, approximately
1.005. It then decreases to its lowest point at a depth of 8, around 0.981, before increasing
again to about 0.988 at a depth of 10. Overall, we can see that the excess loss can be balanced
by the excess profit when investing in GMP for GOOG at depths of 2, 3, and 4. However, for
other depths, the excess loss cannot be balanced by excess profit.

8 Summary

This paper has ventured beyond traditional analyses of limit order books (LOBs) to introduce
and scrutinize two pivotal concepts: the total market order book bid-ask spread (TMOBBAS) and
the global mid-price (GMP). Our exploration, grounded in high-frequency data, achieves nuanced
understandings of market liquidity, volatility, and efficiency through the lens of these novel metrics.
The study highlights the significance of considering the entire depth of the LOB in capturing the
complexity of market dynamics, a perspective that enriches our comprehension of financial markets
in the era of high-frequency trading.

Our findings underscore the multifaceted nature of the TMOBBAS and GMP, illustrating their
roles in offering strategic insights into the prediction of spreads and understanding the behavior of
the market. By examining the analysis of the tail behavior, the dynamics of the log-returns, and risk—
return performance, we have provided a comprehensive assessment of the risks and returns associated
with these measures under different market conditions.

The implications of our study are many, touching upon practical aspects for traders and risk
managers, as well as theoretical contributions to financial market research. Our analysis not only
advances the academic discourse by introducing innovative concepts in the study of LOBs but also
offers valuable insights for market participants navigating the complexities of modern financial sys-
tems. In doing so, this paper bridges the gap between theoretical models and practical realities,
paving the way for future research and strategic applications in financial market analysis.
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Figure 20: The evolution of (a) TMOBBAS, (b) GMP and their log-returns over time at all 10
different depths for AMZN (Each graph contains two y-axes. The left y-axis is for TMOBBAS
(or GMP), and the right y-axis is for the log-return. The evolution of TMOBBAS (or GMP) is
represented by the blue line while the evolution of the log-returns is represented by the orange line.)
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Dynamic Method
Figures for TMOBBAS
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Figure 25: The dependence of estimated tail index a (represented by black solid lines) and its
corresponding 95% CI (depicted by two red dashed lines) on the number of order statistics at depths

2,3, -+ 10 for AMZN
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Figure 26: The dependence of estimated tail index « (represented by black solid line) and its corre-
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Figure 27: TMOBBAS Implied volatility surfaces for depths 1,2, ...,10 for AMZN
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Figure 28: TMOBBAS Implied volatility surface for EWP
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A.2.2

Figure 29: The dependence of estimated tail index « (represented by black solid lines) for GMP and
its corresponding 95% CI (depicted by two red dashed lines) on the number of order statistics at
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Figure 30: The dependence of estimated tail index « (represented by black solid line) of GMP and
its corresponding 95% CI (depicted by two red dashed lines) on the number of order statistics for
EWP for AMZN
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Figure 31: GMP Implied volatility surfaces for depths 1,2, ..., 10 for AMZN
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Figure 32: GMP Implied volatility surface for EWP
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B Figures for GOOG
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Figure 33: The evolution of (a) TMOBBAS, (b) GMP and their log-returns over time at all 10
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Figure 35: Comparison of empirical CDF (represented by black solid lines) of tail and its fitted CDF
of GPD of (a) TMOBBAS and (b) GMP at all 10 depths for GOOG
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B.2 Dynamic Method

B.2.1 Figures for TMOBBAS
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Figure 38: The dependence of estimated tail index « (represented by black solid lines) and its
corresponding 95% CI (depicted by two red dashed lines) on the number of order statistics at depths

2,3, -+ 10 for GOOG
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Figure 39: The dependence of estimated tail index « (represented by black solid line) and its corre-
sponding 95% CI (depicted by two red dashed lines) on the number of order statistics for EWP for

GOOG
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Figure 40: TMOBBAS Implied volatility surfaces for depths 1,2, ..., 10 for GOOG
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Figure 41: TMOBBAS Implied volatility surface for EWP

B.2.2 Figures for GMP
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Figure 42: The dependence of estimated tail index « (represented by black solid lines) for GMP and
its corresponding 95% CI (depicted by two red dashed lines) on the number of order statistics at
depths 2, 3, --- 10 for GOOG
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Figure 43: The dependence of estimated tail index « (represented by black solid line) of GMP and
its corresponding 95% CI (depicted by two red dashed lines) on the number of order statistics for

EWP for GOOG
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Figure 44: GMP Implied volatility surfaces for depths 1,2, ..., 10 for GOOG
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Figure 45: GMP Implied volatility surface for EWP
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