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Abstract In this article, we apply the Finsler spacetime to
develop the Einstein field equations in the extension of mod-
ified geometry. Following Finsler geometry, which is fo-
cused on the tangent bundle with a scalar function, a scalar
equation should be the field equation that defines this struc-
ture. This spacetime maintains the required causality prop-
erties on the generalized Lorentzian metric manifold. The
matter field is coupled with the Finsler geometry to produce
the complete action. In this work, we use modified grav-
ity to develop the Einstein field equations from the varia-
tional principle. Developed Einstein field equations are em-
ployed on the strange stellar system to improve the study.
The interior of the system is made of a strange quark, main-
tained by the MIT Bag equation of state. In addition, the
modified Tolman-Oppenheimer-Volkov (TOV) equation is
formulated. In particular, the anisotropic stress attains the
maximum at the surface. The mass-central density variation
justifies the stability of the system.

1 Introduction

General relativity (GR) is based on a spacetime manifold
furnished with the metric tensor consisting of the Lorentzian
signature. The Einstein equations are determined from the
metric. The geodesic equation of the system figures out the
motion of the particles. Different characteristics and behaviour
of spacetime in four dimensions together with higher dimen-
sions have been studied by several theoretical physicists [1–
5]. Most investigations are concentrated on spacetime, es-
pecially the Einstein field equations. There are diverse rea-
sons for an investigation of gravitational theories. Plenty of
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them are immense on the theoretical predictions, pointed out
that GR should be superseded in a more general aspect and
a few tested results. In addition to astrophysical relevance,
there are vast applications of spacetime to de Sitter gauge
theory, induced gravity, string theory, and ADS/CFT corre-
spondence [6–8].

To realize the formation and evolution of galaxies, figure
out the dynamics and morphologies of galaxies, early-stage
formation of the universe, reionisation of the universe, the
rotational curves of galaxies, formation of stars, different
stages of stars, the merger of the binary compact objects,
several observational, simulation and experimental studies
are being pursued [9–16]. The parametrized post-Newtonian
(PPN) formalism is a mathematical mechanism to find the
deviation of GR and the experimental results [17–19]. How-
ever, the PPN formalism is confined to only metric theo-
ries of gravitation. Observations and measurements of the
magnitude and redshift of supernovas are also innovative
studies [20–22]. The outcomes of the data analysis of su-
pernovae reveal that, at present, the decelerating parameter
(q) lies in the domain of −1.0 ≤ q ≤ −0.5 [23, 24]. The
accelerating phase of the universe is confirmed by the nega-
tive values of the decelerating parameter. The net outcomes
of these results are the contrary behaviour described by GR.

The observation of the motion of point particles provides
an adept explanation of the physical properties of spacetime.
The geodesic of geometry of spacetime can be considered
as the observed trajectory. The appropriateness of geometry
can be verified from the matching of predicted geodesic with
the observed curve. Finsler geometry is the geometry where
the manifold accounted with the Finsler function. It has a 1-
homogeneous function on the tangent bundle of spacetime,
and the length measure for curves is associated with the
Lorentzian metric. Generalized expression of the length for
a curve on a manifold generalized the metric geometry [25–
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S[γ] =
∫

dτF (x(τ), ẋ(τ)).

Lorentzian metric gab determines the function F as F (x, ẋ)=
|gab(x)ẋaẋb|1/2. Here, x and ẋ stand for position vector and
tangent vector, respectively. According to the definition, the
geometric fields along with the objects not merely depend
on the points of the manifold but also depend on its tangent
directions.

It is impossible to describe the dynamic physical pro-
cesses without a clock. Due to the versatility of the postulate
of the Finsler clock, Finsler geometry has emerged in differ-
ent contexts to describe physics. The importance of Finsler
geometry has been realized and explored from the viewpoint
of fundamental approaches of theoretical physics: from dif-
ferent aspects of different gravity theories; hyperbolic poly-
nomials defined in the generalized backgrounds [28]; to de-
fine the modified dispersion relations of Planck scale in the
effective classical geometry and the corresponding breaking
of local Lorentz invariance [29–31], and in linear as well as
nonlinear optical media the covariant formulations for elec-
trodynamical system [32, 33]. The Finslerian extension also
provides an acceptable explanation of the anomaly that GR
does not fulfil for the phenomenological level, astronomical
and cosmological data, dark matter and dark energy [34–36].

Modification of GR introduced by Buchdahl [37] by in-
troducing Ricci scalar R as an arbitrary function f (R) in the
Einstein-Hilbert action and followed by a few more litera-
tures in this gravity [38, 39]. Later on different modifications
have been done by modifying the geometric term of the ac-
tion: f (G) gravity [40, 41], f (T) gravity [42, 43], f (R,G)

gravity [44] and so on (where G and T are the Gauss-Bonnet
scalar and torsion scalar, respectively). Regarding the vali-
dation of f (R) gravity, it fails to uphold the Solar system
tests [45, 46]. The gravity is also unaccounted for the stable
stellar configuration [47, 48]. In addition, the scalar-tensor
gravity and f (R) gravity are classically equivalent to each
other [49, 50]. In non-modified frame several has studied
strange stellar objects [51–55].

Including the matter Lagrangian with any arbitrary form
of Ricci scalar (R) as well as the trace of energy momen-
tum tensor (T ) Harko et al. [1] define the f (R,T ) gravity.
Theoretical divisions of cosmology along with astrophysics
have successfully been studied the f (R,T ) gravity [56–62].
For the self-gravitating, the spherically symmetric system,
the effects of the stability for the locally isotropic system has
been explored by Sharif et al. [63]. Noureen et al. introduce
the perturbation effects in the system. Several scientists have
also studied different characteristics of dynamical instability
of spherically symmetric anisotropic collapsing stars [64–
67]. Palatini approach of f (R,T ) gravity, independent of
metric, are presented in the literature [68, 69]. The hydro-
static equation for the stellar system for isotropic together

with anisotropic system reviewed by Moraes et al. [70] and
Deb et al. [71]. Coupling of matter with curvature reveals
that the energy momentum tensor is non-conserved (∇µ T µν ̸=
0) [1, 72], i.e., the presence of the additional force due to the
coupling. Hence, the conclusion can be drawn that gravity
violates the equivalence principle of GR [73].

Interestingly, Chakraborty [74] considering the action
(coupling of the matter and geometry) maintained the re-
striction to the case where the test particle moves along a
geodesic. As a consequence, it is shown that the originated
matter from two non-interacting fluids within the stellar sys-
tem holds conservation of the effective energy-momentum
tensor. From the modification of gravitation, Lagrangian in-
troduces the supplementary force in f (R,T ) gravity which
is also used to stabilize the stellar system in addition with
the hydrodynamic force, anisotropic force and gravitational
force [71]. Shabani and Farhaudi [59] provide the conse-
quences of cosmological and Solar system in the f (R,T )

gravity, which were consistent with the observational data.
The justification of the dark matter galactic effects and the
gravitational lensing also support the validity of the modi-
fied theory [75]. In Finsler spacetime, modified gravity ap-
plications studied in the literatures [76, 77].

In this article, we define the Finsler structure based on
the following characteristics:

(i) Finsler function is the fundamental variable of the ge-
ometry that has a homogeneous scalar equation on the tan-
gent bundle.

(ii) The geometric structure is constructed from the Finsler
function and is of simplified form.

(iii) The fundamental dynamical variable is no more the
metric in the Finsler geometry as it is in the semi-Riemannian
geometry.

(iv) By the variation of the action integral, the field equa-
tion is obtained.

(v) For pseudo-Riemannian geometry, the Finslerian space-
time geometry becomes similar to the dynamics determined
from the Einstein field equations.

(vi) The modified gravity maintains the system.
(vii) The interior of the stellar system is made up of the

up (u), down (d) and strange (s) quarks, respectively and the
matter distribution is maintained by the phenomenological
MIT bag EOS.

From the physics point of view, the geometry is a non-
metric spacetime geometry, but the main motivation of con-
sidering is that it introduces the intrinsic local anisotropy.
This anisotropy contributes to the structure of astrophysical
objects through the so called Finslerian parameter. Plan of
the present study is in the following order:

The concise definition of the Finsler spacetime in Sec.
2.1. In Sec. 2.2 we introduce the action principle and com-
plete gravity equation including matter and as the stage where
we have developed the Einstein field equation for modified
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gravity with the Finslerian background. The quadratic form
of the Finsler structure is a semi-definite Riemannian struc-
ture. We have shown its consistency with the Einstein field
equations. We reviewed the formation of the stellar system
and hydrostatic equation with the MIT bag model equation
of state (EOS) in Sec. 3. Sec. 4 is devoted to the discussion
of the stellar system and the generalized mass-radius limit
for strange stellar configurations. In Appendix 4, we explain
the constant flag in two-dimensional Finsler space.

2 Finsler spacetime

The basic notion in generalization of modified gravity pre-
sented in this article is based on the description of space-
time. In Sec. 2.1, we have followed up the basic notion of
geometry on the Finsler spacetime [78]. The generation of
Lorentzian metric spacetime has been introduced here. In
Sec. 2.2, we have developed the Einstein field equations for
the modified theory of gravity, i.e., the Lagrangian density
is any arbitrary function of Ricci scalar and trace of the en-
ergy momentum tensor in the Finslerian extension. The field
equation developed from the action principle, where the to-
tal action is the combination of matter and geometry.

2.1 The Definition

The definition of Finsler spacetime has been generalized in
the literatures [4, 79–81] from the original definition of
Beem [82] which are formulated and employed to describe
the variety of indefinite Finsler length.

A Finsler spacetime (M,L) is a four dimensional smooth
manifold where L : T M → R is a continuous function on
the tangent bundle, known as the Finsler-Lagrange function,
which satisfies the following properties:

(i) L is positive homogeneous, which has degree two,
with respect to the fiber coordinates of TM.

(ii) L is reversible in the sense |L(x,−y)|= |L(x,y)|.
(iii) The Euler-Lagrange equation d

dT ∂̇iL−∂iL = 0.
For every initial condition (x, ẋ) ∈ T ∪N there exist a

unique solution, with N the kernel of L.
(iv) L is smooth and respect to the fiber coordinate, the

Hessian gL
ab of L so that gL

ab =
1
2 ∂a∂bL.

(v) For the preimage L−1(0,∞) ⊂ T M, there is a con-
nected component T , such that on T the smooth gL exist
with Lorentzian signature (+, -, -, -).

The essence of four conical sub-bundles of T M \ {0}
originated from the difficulty in defining Finsler spacetime.
This characterizes the properties of the indefinite Finsler ge-
ometry as follows:

(a) N is the sub-bundle where L = 0 and the fiber Nx =

N ∩TxM.

(b) A is the sub-bundle with smooth L and non-degenerate
gL where the fiber is Ax = A ∩TxM is known as the set of
admissible vectors.

(c) A0 = A \N is the sub-bundle where L is used for
normalization with the fiber A0x = A0 ∩TxM.

(d) T is the conic sub bundle where L > 0 and the fiber
Tx =T ∩TxM. The signature of the L metric is the Lorentzian
signature (+, -, -, -).

The extensive section is the assurance of the existence
of the convex cone Tx in each tangent space TxM from the
definition of T . The convexity of the Tx is elaborately stud-
ied in the literature [4]. The interrelations, such as A0 ⊂ A
and T ⊂ A0 differentiate the earlier definitions of Finsler
spacetime. There is no correlation between N and A , thus
we can consider that the L is not differentiable along the di-
rection L(x, ẋ) ̸= 0 as well as L(x, ẋ) = 0 [81].

2.2 Basic Formalism

The Einstein field equations can be derived from the action
principle. The action is integral of the Lagrangian density
over spacetime. Total action can be defined as a combination
of the matter and the Einstein-Hilbert action, which couples
gravity to matter as follows

S = kSEH +SM.

Let us now consider a Finsler space (M,F ). In the Fins-
lerian language, the Einstein-Hilbert action can be consid-
ered over the sphere bundle Σ given by

SEH =
∫

Σ

d4x̂d3
θ
√

g
√

h( fabyayb)|Σ . (1)

The restriction is not required of
√

g and
√

h to Σ . Dur-
ing calculation, we omit the subscript |Σ for the restriction
of the functions to Σ , and all functions are meant to be eval-
uated there.

All quantities in the action are a function of F respect
of g. The action, which is the integral of Lagrangian density,
is varied with respect to F . The dynamics of F , which de-
scribes the equation of motion, are equivalent to the Einstein
equations:

δSEH =
∫

d4x̂d3
θ
√

g
√

h
(1

2
fabgab

δgab + fRδRab

+
1
2

fabhab
δhab −2 fRRab

δF

F

+3 fτ(Tab −gabLm))δgab

)
yayb, (2)

where fR = ∂ f/∂Ric, fτ = ∂ f/∂τ and over the sphere bun-
dle the function f = fabyayb [26, 83]. Here,

√
g and Rab are

independent of variation of θ .
The variation of habδhab can be defined as

hab
δhab = (gab − yayb)δgab −6

δF

F
. (3)
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The correlation of δgab and δF
F can be written as δgab(x̂)=

2gab
δF
F . On substituting Eq. (3) and the correlations in the

variational Eq. (2) , we have

δSEH =
∫

Σ

d4x̂d3
θ
√

g
√

h
(

2 f gab −6 fab

+6 fτ(Tab −gabLm)
)

yayb δF

F
. (4)

The matter action of the Finsler space is based only on
the Lagrangian density (L) of the system, which is a scalar
on the space. Therefore, we can consider that it only de-
pends on the manifold geometry. In the Finslerian setting
with Finsler function (F ) considered as a fundamental vari-
able that determines spacetime, the matter action for matter
fields ψi looks like

SM =
∫

Σ

d4x̂d3
θ
√

g
√

hL(g,ψi).

Due to the independency of L and g on θ over the fiber
coordinates, on the manifold M, we can integrate the system,
which leads to the standard matter action if we divide out the
volume of the three sphere.

The energy momentum tensor of the matter under con-
sideration can be defined as the calculus of variation of the
matter action with respect to the metric. In the Finsler set-
ting, the variation with respect to the Finsler function leads
to an expression that involved the Energy-Momentum ten-
sor of p-form fields on Lorentzian metric spacetime as T ab

as well as its trace T = T abgab = 4L+ 2gab
∂L

∂gab
, following

Pfeifer and Wohlfarth [4]. The variation with respect to the
Finsler function is as follows

δSM =
∫

Σ

d4x̂d3
θ
√

g
√

h(12Tab −2T gab)yayb δF

F
. (5)

Combining the Einstein-Hilbert action with the matter
leads to the total action that couples gravity to matter as fol-
lows

S[F,ψi] = kSEH +SM.

After performing the variation with respect to F

δS[F ,ψi]= kδSEH +δSM

=
∫

Σ

d4x̂d3
θ
√

g
√

h
(

k(2 f gab −6 fab

+6 fτ(Tab −gabLm))+(12Tab −2T gab)
)

yayb δF

F
. (6)

The following equation leads to determine the structure
of spacetime(
(3 f +Ric)gab −6 fab +6 fτ(Tab −gabLm)

)
yayb

=−12Tab

k
yayb. (7)

The tensors in the bracket are y independent due to con-
sideration of the space with vanishing Cartan tensor.

We consider f = Ric+ 2ητ , linear combinational form
of Ric and τ , with a constant η as adopted by Harko et al. [1].
In this study, we assume Lm =−P , with P = 1

3 (pr +2pt)

and set the coupling constant k = c4

4πF G .
The second derivative of Eq. (7) with respect to fiber

coordinates results in the Einstein equations as follows

Rab −
1
2

Rgab =
8πF G

c4 Tab +η(τgab +2gabP). (8)

The effective energy momentum tensor of the system
can be defined as

T e f f
ab = Tab +

ηc4

8πF G
(τgab +2gabP). (9)

Hereafter, we shall consider the geometrized unit, i.e.,
G = c = 1.

Now, the covariant divergence of the stress-energy ten-
sor is

∇
aTab =− η

8π

{
gab∇

a
τ +2∇

a(gabP)
}
. (10)

Following the above, we can write

Te f f
a
b;a = 0.

3 Basic Equation for the stellar system

To define the stellar structure, we assume the Finsler struc-
ture is of the form

F 2 =−eλ (r)ytyt + eν(r)yryr + r2F
2
(θ ,φ ,yθ ,yφ ). (11)

The metric structure coefficient can be written as

gµν =
∂

∂yµ

∂

∂yν

(
1
2
F 2

)
,

where (gµν) = (gµν)
−1 and also note that each gµν is homo-

geneous of degree zero in y.
For a non-zero vector y = yµ( ∂

∂xµ ) |p∈ TpM, F induces
an inner product on TpM which is given by

gy(u,v) = gµν(x,y)uµ vν ,

where u = uµ( ∂

∂xµ ) |p, v = vµ( ∂

∂xµ ) |p∈ TpM\{0}.
Hence, the metric potential of the system can be defined

as

gµν = diag(−eλ (r),eν(r),r2gi j),

the term gi j arises from F
2
.

The energy momentum tensor of the anisotropic system
can be considered in the following form

T µ

ν =−(ρ + pt)uµ uν + ptδ
µ

ν +(pt − pr)vµ vν , (12)
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with uν and vν as the four-velocity and radial four-vector,
respectively. The energy density, radial and tangential pres-
sures of the anisotropic fluid are successively represented by
ρ , pr and pt .

The Einstein field equations for an anisotropic stellar
system are in the form

ν ′e−ν

r
− e−ν

r2 +
Ric
r2 = 8πF

(
ρ +

η

24πF
(3ρ − pr −2pt)

)
= 8πF ρ

e f f ,

(13)

λ ′e−ν

r
+

e−ν

r2 − Ric
r2 = 8πF

(
pr −

η

24πF
(3ρ − pr −2pt)

)
= 8πF pe f f

r ,

(14)

e−ν

[
λ ′′

2
+

λ ′2

4
− λ ′ν ′

4
+

λ ′−ν ′

2r

]
= 8πF

(
pt −

η

24πF
(3ρ − pr −2pt)

)
= 8πF pe f f

t ,

(15)

where Ric represents the Ricci scalar, derived from F
2
.

To define the strange stellar system, we consider mono-
tonically decreasing non-singular matter density within the
spherically symmetric system as considered by Mak and
Harko [84], in the following form

ρ(r) = ρc

[
1−

(
1− ρ0

ρc

)
r2

R2

]
, (16)

where ρc and ρ0 are the central and surface densities, respec-
tively.

Fig. 1 Variation of the density (ρ) as a function of the fractional ra-
dial coordinate r/R, with bag constant (Bg) = 83 MeV/fm3 and Finsler
parameter (Ric) = 1.2 for the LMC X −4.

Fig. 1 shows the variation of density with the fractional
radial function for different coupling constants.

We presumed the internal matter distribution of the strange
stellar system is defined by the phenomenological MIT bag
model EOS followed by Chodos et al. [85]. The three flavoured
quarks considered as the basic foundation of the bag are re-
garded as massless and non-interacting. Following this, the
total quark pressure can be assumed as

pr = ∑
f

p f −Bg,

where p f represents the pressure of the up (u), down (d) and
strange (s) quarks successively, and the vacuum energy den-
sity (also known as bag constant) of the system is B. Here,
the pressure of individual quarks is related to the energy
density ρ f of the individual quarks in the following man-
ner p f = 1

3 ρ f .
The energy density of each de-confined quark is as fol-

lows

∑
f

ρ
f = ρ +Bg.

Fig. 2 Variation of the radial pressure (pr) as a function of the frac-
tional radial coordinate r/R, with bag constant (Bg) = 83 MeV/fm3 and
Finsler parameter (Ric) = 1.2 for the LMC X −4.

Hence, the co-relation of the energy and pressure inside
the strange stellar system can be interpreted as

pr =
1
3
(ρ −4Bg). (17)

All the corrections required for the energy and pressure
functions of SQM have been maintained by introducing ad
hoc bag function.



6

The radial pressure must be on the surface of a stellar
system, therefore from Eq. (17), we can conclude

ρ0 = 4Bg,

where ρ0 is the surface density (i.e. at r = R).
Hence, the modified form is as follows

pr =
1
3
(ρ −ρ0). (18)

Following Moraes et al. [86], we consider the tangential
component of pressure inside the system is related to the
matter density in the form

pt = ρc1 + c2. (19)

Fig. 3 Variation of the tangential pressure (pt) as a function of the
fractional radial coordinate r/R, with bag constant (Bg) = 83 MeV/fm3

and Finsler parameter (Ric) = 1.2 for the LMC X −4.

The variations of the physical quantities, like the radial
and tangential pressure shown in Figs. 2 and 3 respectively
in reference of the fractional radial coordinate for different
coupling constant.

From the conservation equation of the stress-energy ten-
sor, we obtain the hydrostatic equation of the strange stellar
system in the following form

−p′r−
λ ′

2
(ρ+ pr)+

2
r
(pt − pr)+

η

24πF

(
3ρ

′− p′r−2p′t
)
= 0.

Now, following Eq. (14), the simplified form of the above
equation can be written as

p′r = −

[
pr

{
(4πF r3 +

ηr3

6
(ρ + pr)+2rRic−3m)

}
−2pt(rRic−m)− ηr3

6
(3ρ −2pt)+mρ

− ηr
24πF

(3ρ
′−2p′t)(rRic−m)

]/
(rRic−m)(r− ηr

24πF
).

(20)

The expected result for the hydrostatic equilibrium con-
dition in the Finslerian background for the strange stellar
system can be obtained from η = 0.

4 Discussion and Conclusion

In order to enhance the analysis of a feasible Finslerian gen-
eralization of the Einstein equations, we have developed an
action-based Einstein field equation for the modified gravity
(Eq. 7), evaluating the Finsler function of the Finsler space-
time. Our Finsler gravity theory incorporates the definition
of the matter fields coupled with the Finsler spacetime by the
principle which produces the necessary action from the La-
grangian norm on Lorentzian spacetime. We have obtained
the Einstein field equations through variance about the ba-
sic function of geometry. It could suggest that, in the metric
geometry limit, it becomes comparable to the Einstein field
equations for coupling variable (η) = 0 [52]. To develop a
physically stable system, we choose Ric ≥ 1.

As a further formal development, we represent a model
of the strange stellar system in the modified gravity back-
ground in the extension of the Finslerian structure. The mod-
ified density and pressure are developed from the coupled
matter action, which depends on the coupling constant’s be-
haviour.

The overall force operating is the anisotropic flow in
addition to the differential pressure provided by the grav-
ity operating on the shell by the substance (mass) within it.
This determines the fluid element’s hydrostatic equilibrium,
which is at rest within the structure, as well as the overlying
matter, which decreases with the radial coordinate. The dif-
ference in the stress of the tangential and radial component
of pressures (anisotropic stress) is displayed in Fig. 4. In par-
ticular, the anisotropic flow is shown to be well defined over
the system and reaches the maximum at the surface of the
stellar model.

Regarding the variation of the total mass M in terms of
normalized M⊙ with respect to the radius for an opted value
of Ric = 1.2 and Bg = 83MeV/ f m3 is presented in Fig. 5.
The maximum mass point corresponds to the specific η , and
the radius is marked by a solid circle. An increment of the
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Table 1 Numerical values of the physical parameters for different coupling constant η for the strange star LMC X −4 of mass 1.29M⊙ (1 M⊙ =
1.475 km) with Ric =1.2 and Bg = 83 Mev/fm3.

Value of η η = -0.8 η = -0.4 η = 0.0 η = 0.4 η = 0.8

Predicted Radius (km) 9.946 9.708 9.475 9.246 9.021
ρe f f c (gm/cm3) 7.694×1014 8.366×1014 9.106×1014 9.923×1014 10.830×1014

ρe f f o (gm/cm3) 5.237×1014 5.569×1014 5.918×1014 6.287×1014 6.674×1014

Pe f f c (dyne/cm2) 8.087×1034 8.789×1034 9.550×1034 10.370×1034 11.270×1034

2M
R 0.38 0.39 0.40 0.41 0.42

Red Shift (Zs) 0.27 0.28 0.29 0.30 0.31

Table 2 Numerical values of the physical parameters for different Ric for the strange star LMC X −4 of mass 1.29M⊙ (1 M⊙ = 1.475 km) with
coupling parameter η =0.4 and Bg = 83 Mev/fm3.

Value of Ric Ric = 1 Ric = 1.1 Ric = 1.2

Predicted Radius(km) 9.456 9.349 9.246
ρe f f c (gm/cm3) 8.653×1014 9.284×1014 9.923×1014

ρe f f o (gm/cm3) 6.731×1014 6.290×1014 6.287×1014

Pe f f c (dyne/cm2) 6.731×1034 8.541×1034 10.370×1034

2M
R 0.402 0.407 0.412

Red Shift(Zs) 0.293 0.299 0.304

Fig. 4 Variation of the anisotropic stress (∆) as a function of the frac-
tional radial coordinate r/R, with bag constant (Bg) = 83 MeV/fm3 and
Finsler parameter (Ric) = 1.2 for the LMC X −4.

η increases the maximum mass and respective radius. We
obtain the maximum mass for η = 0 is 2.788 M⊙, with a ra-
dius of 10.002 km. It is interesting to note that the mass de-
creases by 6.33% and the corresponding radius reduces by
6.88% for η = 0.8. Further, we found that for η = -0.8, the
total mass rises by 7.06% along with the radius increment
by 7.43%. By these, we can characterize that the higher cou-

pling parameter compacted the stellar system. All variations
for the mass-radius relation are suitable for the singularity
condition.

Fig. 5 Variation of the mass of a strange star as a function of radius.
Solid circles represent the maximum mass and radius of the respec-
tive curves. Here curves are drawn for Bg = 83 MeV/fm3 and Finsler
parameter (Ric) = 1.2.

The essential condition of a stellar system to be stable is
dM
dρc

> 0. Variation of the stellar mass in M⊙ with the cen-
tral density ρc is shown in Fig. 6. The variation enunciates
the central density attain the value 1355.445 MeV/ f m3 for
the maximum mass 2.788 M⊙ corresponds to Ric =1.2 and
η = 0, whereas the uttermost value of the central density
are 1602.481 MeV/ f m3 and 1149.021 MeV/ f m3 for η =
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0.8 and -0.8 respectively. Complete circles over the curves
show where the highest mass amounts are found with central
density.

Fig. 6 The variation of mass of a strange star as a function of the cen-
tral density (ρc). Solid circles represent the maximum mass and radius
of the respective curves. Curves are drawn for Bg = 83 MeV/fm3 and
Finsler parameter (Ric) = 1.2.

The lower mass gap of 2.5–5 M⊙, which lies between the
heaviest known neutron star and the lightest defined black
hole, has always been astonished scientists. In the recent ob-
servations by adv LIGO and Virgo, they have observed two
events, GW200210 and GW190814 [87–89], where the sec-
ond companion masses are 2.83+0.47

−0.42 M⊙ and 2.6+0.1
−0.1 M⊙

respectively, lie in this mass gap. The mass gap might not
actually exist but rather be a result of limits than something
else. The secondary companion is typically thought to be
a very light black hole due to the maximum mass restric-
tions of known nuclear EOS and the GR relativistic TOV
equation. Depending on the coupling parameter and Finsler
parameter, the modified gravity equation for a compact ob-
ject combined with known EOS can result in a more massive
stellar structure than GR. For further progress, we are work-
ing on the gravitational echoes and tidal deformity of the
structure.

We have developed a concise study in the tabular format
(Table 1) for the observed mass of LMC −X4 of different
physical parameters. The study is developed for Bg = 83
Mev/fm3 and Ric = 1.2 under the chosen values of η as -
0.8, -0.4, 0.0 , 0.4 and 0.8. On the other hand, Table 2 shows
the diversity of the physical parameters with the variation of
the Finsler parameter Ric.

According to the present study, it is clear that with the
increment of the coupling parameter as well as the Finsler
parameter, the radii of the system become lesser, and the

central density increases significantly, which depicts that the
Finslerian background is a strong candidate to describe the
compact system.

Appendix: Two Dimensional Finsler Space with constant
flag

The appearance of the Finsler spacetime with Lorentzian
signature is the point of interest. On the Finsler manifold,
every point of the Finsler structure F is not positive defi-
nite. F=0 for the massless stipulation. Finsler space can be
classified into two types: (i) Riemannian space, where F 2

is quadratics in y and (ii) Randers space [90], where

F (x,y)≡ a(x,y)+b(x,y), (.1)

with a =
√

ãµν(x)yµ yν where ãi j is the Riemannian metric
and b = b̃µ(x)yµ where, b̃µ is 1 form.

Let us consider the isometric transformation of x under
the infinitesimal coordinate transformation as follows

x̃µ = xµ + εṼ µ .

The corresponding y transforms as

ỹµ = yµ + ε
∂Ṽ
∂xν

yν ,

with |ε|<< 1.
The Finsler structure can be expanded by incorporating

the transformations of x and y. The expansion is considered
up to the first order in |ε| as follows:

F̃ (x̃, ỹ) = F̃ (x,y)+ εṼ µ ∂F

∂xµ
+ εyν ∂Ṽ µ

∂xµ

∂F

∂yµ
. (.2)

Using the expansion of the structure, the killing equation
of the space can be expres as

KV (F )≡ Ṽ µ ∂F

∂xµ
+ yν ∂Ṽ µ

∂xµ

∂F

∂yµ
= 0. (.3)

By introducing the Randers length element defined in
Eq. (.1) and since the rational and irrational terms of the
Killing equation are independent of each other, therefore

Ṽµ|ν +Ṽν |µ = 0,

Ṽ µ ∂ b̃ν

∂xµ
+ b̃µ

∂Ṽ µ

∂xν
= 0. (.4)

In Riemannian background, for a fixed radial coordinate
r, if the metric has the form FRS =

√
(yθ )2 + sinη(yφ )2

then the system can be consider as spherical symmetric with
constant curvature. The “Finslerian sphere" is the equivalent
to the spherical symmetry of Riemannian space. The most
of the celestial objects should hold the feature of spherical
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symmetry. The “Finslerian sphere" also preserves the max-
imum possible symmetry. This is the topologically equiva-
lent of a sphere from the mathematical definition. The flag
curvature in Finsler geometry is generally the sectional cur-
vature of the Riemannian frame. The constant Ricci scalar
and the constant flag curvature are equivalent to each other.
A two-dimensional Finsler space has only one independent
Killing vector [91]. Bao et al. [26] provide the two-dimensional
Randers-Finsler space with constant positive flag curvature
λ = 1 as follows

FFS =

√
(1− ε2 sin2

θ)yθ yθ + sin2
θyφ yφ

1− ε2 sin2
θ

− ε2 sin2
θ yφ

1− ε2 sin2
θ
.

with 0 ≤ ε ≤ 1. For ε = 0, the metric return to the Riemann
sphere.
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