
Araucaria: Simplifying INC Fault Tolerance
with High-Level Intents

Ricardo Parizotto†, Israat Haque∗, Alberto Schaeffer-Filho†,
∗Dalhousie University, †UFRGS

Abstract—Network programmability allows modification of
fine-grain data plane functionality. The performance benefits of
data plane programmability have motivated many researchers
to offload computation that previously operated only on servers
to the network, creating the notion of in-network computing
(INC). Because failures can occur in the data plane, fault
tolerance mechanisms are essential for INC. However, INC
operators and developers must manually set fault tolerance
requirements using domain knowledge to change the source
code. These manually set requirements may take time and
lead to errors in case of misconfiguration. In this work, we
present Araucaria, a system that aims to simplify the definition
and implementation of fault tolerance requirements for INC.
The system allows requirements specification using an intent
language, which enables the expression of consistency and
availability requirements in a constrained natural language. A
refinement process translates the intent and incorporates the
essential building blocks and configurations into the INC code.
We present a prototype of Araucaria and analyze the end-to-end
system behavior. Experiments demonstrate that the refinement
scales to multiple intents and that the system provides fault
tolerance with negligible overhead in failure scenarios.

I. INTRODUCTION

Network programmability has changed how we manage
and operate computer networks, providing agility for de-
ploying new network functions in the network. The P4
language [6] has paved the way towards programmability,
allowing fine-grain data plane functionality development.
This programmability has motivated the notion of in-network
computing (INC) [36]. INC advocates for offloading func-
tionality traditionally running on servers to programmable
network devices. This offloading has advantages, e.g., re-
ducing latency and improving bandwidth by intercepting and
processing network packets at the switch; thus avoiding the
need to forward them to servers. Examples of INCs in the
literature include functionalities such as aggregation [37],
load balancing [5], [43], concurrency control [26], computer
vision [15], [41] and IoT security [23].

However, these advantages come at the cost of data plane
configuration complexity, due to the necessity of writing
low-level P4-based operations (e.g., table entries, action
parameters, and register values). Configuring such functions
in the data plane is tedious and requires substantial training.
Moreover, data plane programmability needs to deal with
failures in forwarding devices and in the applications running
in them, which adds an additional layer of complexity. For
example, existing fault tolerant systems [22], [47] employing
replication techniques on data plane devices introduce addi-
tional complexities. In particular, they require configuring an

INC and its replicas while offering consistency among these
replicas to offer fault tolerance.

One way to mitigate the above complexities is to develop
a DevOps-friendly automated policy- or intent-based data
plane configuration. This approach could enable INC op-
erators to express fault tolerance requirements at a higher
abstraction level [30]. Subsequently, the underlying soft-
ware would automatically translate these specifications into
detailed low-level data plane code and configurations. Al-
though early research efforts in policy management facil-
itated some configuration capabilities, particularly in the
domain of security and quality of service (QoS) [9], they
can not enable the specification of policies for programmable
data planes. Recent developments in intent-based networking
(IBN) allow the deployment of high-level intents directly into
more fine-grain network configurations, such as OpenFlow
match+action rules, middleboxes [20], [11], [16], [2], or P4
[4], [25], [34] - an in-depth list is presented in Table I.
However, existing works in this domain do not support
fault tolerance requirements and abstractions. Consequently,
adding fault tolerance to INC still requires handling low-level
switch code without a clear and organized methodology.

TABLE I
INTENT FRAMEWORKS IN THE LITERATURE.

Examples Purpose Target
Nile [20], InsPire [38],
PGA [33],
Arkham [28]

QoS, Control Access SDN, NFV

Janus [1] Bandwidth QoS,
Temporal Policies SDN, NFV

JingJing [45] ACL rules WAN
Gherkin [11] Firewall, SFC SDN
P4-iO [34], [25] Routing, HH Detection P4

In this work, we propose Araucaria1, a system that utilizes
the expressiveness benefits of IBN for providing fault toler-
ance for INC. Araucaria enables operators to specify fault-
tolerance requirements using a high-level and declarative
language. We introduce a refinement process that translates
the operator intents into data plane code and configurations to
preserve the requirements for INC. This refinement process
comprises three main steps: translation, instrumentation, and
configuration. Initially, Araucaria translates the intent into an
intermediary representation, identifying the essential building

1Araucaria is named after the Araucaria angustifolia, which are large and
resilient trees that we can be found in the south of Brazil. The Araucaria is
a symbol of resistance in the fight for biodiversity conservation.

ar
X

iv
:2

40
4.

11
72

8v
1

 [
cs

.N
I]

 1
7

A
pr

 2
02

4

blocks to achieve the desired level of robustness. Next,
Araucaria instruments the INC source code with a set of
constructs (e.g., the parser, definition of headers, and control
flow) to enforce a replication protocol that satisfies the high-
level fault tolerance intent. Finally, the system configures the
data plane according to the translated intent and network
topology information. The configuration includes several
rules, such as multicast groups, ports, IP addresses, and
register entries. These rules ensure replicas preserve the
consistency model necessary and recover appropriately from
failures. The instrumented code can then be automatically
deployed and configured according to the intent priority.

To validate our approach, we have implemented a pro-
totype of Araucaria both for the behavior model of P4
programs (BMv2) and for a Tofino switch ASIC (Edgecore
Wedge 100BF-32X). Additionally, we conducted experi-
ments to assess the scalability of our refinement process. As
a practical case study, we evaluate Araucaria by analyzing
the system behavior when injecting failures, and show that
Araucaria can rapidly allow INCs to recover from failures.

Contributions. Overall this paper makes the following
contributions:

• Identifies a set of requirements and abstractions to
provide fault tolerance for in-network computing.

• Proposes a refinement technique to systematically in-
strument the INC source code with fault tolerance pro-
tocol building blocks, ensuring consistency guarantees.

• Evaluates a use case with an existing INC and analyses
results in terms of feasibility and scalability. Results
show that Araucaria can recover from failures in less
than 0.2s, while also keeping INC consistency.

II. BACKGROUND

In this section we discuss the essential background for
intent-based networking and programmable data planes.

A. Intent-based Networking (IBN)

Intent-based networking simplifies network management
through five essential components: profiling, translation, res-
olution, activation, and assurance [8]. Users specify their
abstract intentions in the profiling phase using high-level
representations, such as natural language. Subsequently, the
translation component refines these into policies and further
into concrete configuration commands [10]. The resolution
component solves conflicts, ensuring a conflict-free acti-
vation of the intent configuration onto network devices.
Despite the reliance on translation and conflict resolution for
deploying intents, the dynamic nature of the network may
lead to configurations no longer satisfying the initial intent.
To address this challenge, an intent assurance component
employs mechanisms to identify the discrepancies and refine
new configurations to deploy in the network [24].

B. In-Network Computing

In-network computing (INC) has been used to characterize
systems with functionality offloaded to the data plane of
networking devices [29]. INC relies on programmable
switches or SmartNICs that are already deployed on the

INC

end host end host

INC
Replicas

App

Controller

Coordinator

App

switch

pkt

Fig. 1. Fault Tolerant INC system model.

traffic path [48] to potentially reduce the need for additional
specialized equipment, such as accelerators or middleboxes.
INC is mainly motivated by the performance benefits it
can provide. Those benefits include reducing latency and
bandwidth usage, increasing throughput, and improving
energy consumption [48].

However, these advantages come with a cost: once we
offload functionality to the data plane of networking devices,
failures in these devices may affect the correctness of the
system. Fault tolerance is thus essential but adds additional
complexity to configure the INC.

III. INC FAULT TOLERANCE

To better understand fault tolerance requirements, we illus-
trate a hypothetical INC fault tolerance model in Figure 1. In
particular, a switch running an INC intercepts packets from
applications running on end hosts. The switch synchronizes
the INC state with a pre-configured set of replicas and is
able to recover from crashes. The fault tolerance of the INC
is measured as reliability (e.g, by means of consistency) and
availability of the INC when it is necessary.

Replication for availability. Redundancy is a common
approach to ensure the system is available even in case of
failures. Multiple INC replicas can keep replicated state,
where replication can take different forms: it can be either
synchronous in a way that resembles the execution of a
sequential processor [17], or asynchronous, allowing tempo-
rary inconsistency between replicas [22]. In case of a switch
crash, a coordinator can identify the failure and orchestrate
the recovery by collaborating with replicas and end-hosts.
The recovery process can also take different forms, from
simply rerouting new application requests to the replicas,
to a more complex process of replaying packets from the
applications to restore the state of inconsistent replicas.

Consistency notions. Replicas can process packets in
an ordered or unordered manner, impacting the applica-
tion’s consistency. Different types of applications may be
correct under different consistency models, such as strong
or eventual. On the one hand, strong consistency ensures
replicas process all the requests in the same total order as
the primary INC, while eventual consistency does not require
strict ordering. In addition, specific applications can achieve a
strong notion of consistency without ensuring strict ordering

1

2

Translation Engine

Intent Interface

Declarative
Spec.

.P4,

.Py

- Requirements
- Properties
- Priorities

- Errors
- Warnings

M
R0

R1

S0

S1

S2

Cluster Master Replicas

- Functionalities
- Fault-Tolerance Logic

Control Plane Codebase

Code
instrum.

Assurance

Deploy

Feedback

Developer
Operator

Syntax
Tree

3

4

5

6

Fig. 2. The high-level architecture of Araucaria.

[47]. These applications follow a system model called strong
eventual consistency (SEC), in which requests are processed
as they arrive, and conflicts are solved automatically using a
merge function. The data replicated from these applications
are called conflict-free replicated data types (CRDT) and
often apply to independent or monotonically increasing data
[40]. Examples are operations in different keys of a key-value
store or adding values to a distributed counter, e.g., counting
likes in social media posts.

IV. ARAUCARIA DESIGN

In this section, we present the design of Araucaria, a
system that relies on intents to enhance the fault tolerance
of INCs. The design of Araucaria is based on the following
insights.

Fault tolerance specification. To simplify INC fault-
tolerance, the specification of intents should abstract the im-
plementation details. Intents must also be expressive enough
to fulfill different fault tolerance requirements. To solve
these issues, Araucaria defines a constrained natural language
with primitive fault tolerance constructs, simplifying the
specification of fault tolerance requirements.

Systematic instrumentation. Instrumenting fault toler-
ance into INC is difficult because of the limited compos-
ability of the P4 language – i.e., simply importing the fault
tolerance functionality is impossible. To solve this challenge,
Araucaria provides a refinement methodology that deduces
the rules to provide fault tolerance from the input intent.
The system also defines an instrumentation strategy capable
of systematically instantiating fault tolerance building blocks
into the INC source code.

A. Overview and workflow
Figure 2 illustrates the overview and workflow of Arau-

caria. Initially, the operator defines INC fault tolerance re-
quirements (e.g., in terms of consistency notion and number
of replicas) in a declarative manner (1). The specification,
made using a high-level language, goes through a translation
process that analyzes the intent structure and semantics (2).
If the translation occurs without errors, Araucaria generates
an intermediary representation, identifying pre-defined build-
ing blocks that implement the fault tolerance logic. For exam-
ple, these building blocks include code fragments for enforc-
ing failure detection or packet replaying mechanisms. Arau-
caria then instruments the INC code by merging parsers and

control flows from the fault tolerance building blocks into
a single data plane program (3). This data plane program
is instantiated into multiple switch replicas based on the re-
quired availability (4), and an assurance module is instanti-
ated in the control plane to coordinate fault recovery. Dynam-
ically, Araucaria replicates the INC state across devices and
provides periodic feedback to the assurance module about the
status of the replicas (5). In the event of an INC failure, the
assurance module refines the data plane configurations (6),
forwarding application packets to a different replica INC.

B. Declarative intent specification

An intent is an abstract declaration of what an application
or user desires from the network [46]. In Araucaria, each
intent is associated with a predicate, including functionality,
requirements, and priorities. These predicates state a property
of an intent. Inspired by [10], [20], we formulate a con-
strained natural language to specify fault tolerance intents,
where intents are structured as a tuple of primitive ele-
ments ⟨operations, functionalities, requirements⟩. Grammar
1 presents the language specification.

⟨intent⟩ ::= ⟨op⟩ intent name ‘{’ ⟨pred⟩ ‘}’
⟨op⟩ ::= ‘Create’ | ‘Delete’ | ‘Update’ | ‘Read’
⟨pred⟩ ::= ⟨req⟩ ‘,’ ⟨func⟩
⟨func⟩ ::= functionality ‘fname’ ‘[’ ⟨input⟩ ‘]’ ‘,’
⟨reqs⟩ ::= ⟨reqs⟩ ’,’ ⟨req⟩ | ⟨req⟩
⟨req⟩ ::= ⟨avail⟩ | ⟨cons⟩ | ⟨cons⟩ ‘[’ ⟨merge⟩ ‘]’
⟨inputs⟩ ::= ⟨inputs⟩ ‘,’ ⟨input⟩ | ⟨input⟩ | ⟨empty⟩
⟨input⟩ ::= name ‘:’ value
⟨avail⟩ ::= tolerates ⟨int⟩ ‘failures’
⟨cons⟩ :: = ‘strong’ | ‘eventual’
⟨merge⟩ ::= max[hdr.value)] | ‘add’

Grammar 1. The Araucaria grammar in BNF.

The language constructs are:

• Operations define actions (Create, Read, Update, and
Delete) being applied to instances of functionalities.

• Functionalities identify the specific INC that the intent
aims to configure. Functionalities may be instantiated
with customized inputs that are used during the
refinement to identify the necessary INC building
blocks for deployment.

• Requirements is the core element in the Araucaria
intent structure. A requirement aims to provide
additional information about the intent:
– Availability lets programmers ensure that specific

INCs are available even if f failures occur [7]. We
assume failures can occur by crashing, but switches
do not experience an arbitrary behavior (i.e., no
byzantine cases).

– Consistency allows programmers to specify replica
correctness properties. The properties can vary
between a strong or weaker notion that does not
preserve ordering constraints. In addition, consistency
may be followed by an optional merge function that
provides ways to reduce conflicts between requests.

Listing 1 presents an example of an intent that can be
built using the Araucaria intent language. In this example, an
intent called ‘syncIntent’ is created. The synchronization
functionality expects an optional parameter representing the
number of processes interacting with the network functional-
ity. The intent requires the INC to tolerate two simultaneous
failures while preserving strong consistency.

Create intent syncIntent{
functionality: synchronization [

size: 3
]

availability: tolerates two failures,
consistency: strong,

}

Listing 1. Intent for synchronization functionality.

We implemented a compiler to translate Araucaria intents,
including a lexer (to identify the tokens from the intent) and
a parser (to analyze the syntactic structure of the intent and
generate an abstract syntax tree (AST)). Also, the seman-
tic analysis ensures correct input formatting and examines
potential conflicts, such as assessing whether the expressed
merge function can achieve the desired consistency mode.
The output of the intent compilation process is either an error
or a valid intent represented at a lower level. This represen-
tation contains the fault tolerance functionality decomposed
into smaller building blocks, which are discussed next.

C. Fault tolerance building blocks

Araucaria defines a fault tolerance protocol for recovering
INCs from failures. In this protocol (Figure 3), client traffic is
processed by the main INC and replicated to a set of switch
replicas. If the main INC crashes, a control plane program
(Coordinator) identifies the failure using timeouts and col-
lects the necessary state information from the replicas and the
clients. The Coordinator can aggregate their information and
identify the subset of packets that need to be retransmitted
to a replica. The aggregated information may trigger a client
replay, which recovers the replicas to a consistent state [32].

The refinement process implemented by Araucaria merges
the source code of pre-existing building blocks that enforce
the fault tolerance protocol with the INC source code.
Dynamically, the network operator can select one of the

Clients Main INC INC Replicas Coordinator

Timeout
State collection

Switch State

Crash

Replication

return

Event

Aggregation

Return(logs)

Trigger Recovery

Retransmit(pkt)

Logs Collection

Replay ended

Fig. 3. Sequence diagram for Araucaria Recovery protocol in accordance
with Figure 1.

recovery strategies instrumented into the INC according to an
application’s consistency requirement, i.e., strong or weak.

Reusable building blocks. Figure 4 provides a compre-
hensive overview of the underlying structure of a P4 program
that has been instrumented with Araucaria to support fault
tolerance employing a set of four standard building blocks:
Failure Detector, to identify if the main INC has failed;
Replication, to synchronize state with other switches; State
Collection, to determine how up to date a replica state is; and
Recovery, to handle the recovery ensuring replicas follow a
specific consistency notion after a failure.

Failure Detec.

Replication

P
a
rs
e
r

(l
og

.
cl

oc
k,

 I
D

,
ty

p
e)

Recovery
INC

functionality

Pkt_out

Mirror
to

replicas

PreparationInitialization

State Colec.

Packet
Man.

Completion

Fig. 4. Structure of an INC instrumented with fault tolerance building
blocks.

These building blocks are implemented as a set of P4
templates that are merged with the INC source code. Tem-
plates include three blocks: initialization, preparation, and
completion.

• Initialization. The initialization template includes per-
packet variables, such as custom metadata, a new header
and struct, and a parser state. The header has infor-
mation to identify servers and message types (e.g., re-
covery, collection) and to ensure linearizability through
monotonically increasing logical clocks. The parser
state can initialize these variables upon the arrival of
a packet.

• Preparation. This block includes a set of variables to
implement the building blocks we mentioned earlier.
The Preparation template precedes the INC functionality

Start
hdr.ethernet.etherType

Parse IPv4

Parse ARP

Accept

0x0806 0x0600

 Parse_Araucaria

0x0800

Fig. 5. Fault tolerance parser.

Start
hdr.ethernet.etherType

Parse IPv4

Parse ARP

Accept

0x0806 0x0600

 Parse_INC

0x0800

Fig. 6. INC parser.

 Parse_Araucaria

Start
hdr.ethernet.etherType

Parse IPv4

Parse ARP

Accept

0x0806 0x0600

 Parse_INC

0x0800

Fig. 7. Instrumented parser.

in the pipeline and consists of code that prepares the
packet for INC processing or filtering. Filtering is
essential in several cases, such as when the packet
being handled is an acknowledgment for replication or
a message for failure detection. In these cases, the INC
itself should refrain from processing these packets.

• Completion. This block includes packet management
mechanisms capable of applying multicast tables, keep-
ing storage for packet losses, and changing header
arguments. This block should be included after the INC
functionality to preserve headers and packet metadata
for correct INC processing.

D. INC source code instrumentation

To instrument the templates discussed in the previous
section into an INC, Araucaria systematically traverses the
INC code and writes include pre-processors strategically
to instantiate the building blocks in distinct parts of the INC
source code. We require INC variables to follow a specific
naming convention to avoid conflicts with variable names
used by Araucaria. This requires that INC variable names do
not start with Araucaria reserved words, thereby establishing
a contract between INC developers and DevOps.

Step #1: Metadata and header definitions. The first
phase of the instrumentation includes the definitions of
headers and structs at the beginning of the INC source
code. Araucaria variables include a new header definition
for ensuring linearizability during replication and specific
metadata used in the control flow for making per-packet
decisions. We start instrumenting the parser after merging
the INC headers, structs, and metadata definitions.

Step #2: Parser instrumentation. Our parser instrumen-
tation leverages a modular design that decouples the Arau-
caria parser state from traditional protocols such as Ethernet
and IPv4. This decoupling allows us to incrementally include
the Araucaria protocol into the INC parser, avoiding ambigui-

ties. This is achieved in two steps: first, placing the Araucaria
state between the INC header extraction and the transitions,
with the INC state working as the ‘parent’ node of the Arau-
caria state. Additionally, the Araucaria state incorporates
previous INC state transitions. By ensuring that the extraction
of an INC state is consistently followed by the extraction of
the Araucaria header, we effectively mitigate the risk of in-
troducing loops and non-determinism in the parser structure.

Figure 5 presents the parser of Araucaria, ignoring the
states for standard protocols. Figure 6 shows a general INC
parser, including the INC state. During the instrumentation,
Araucaria includes the transitions from the INC in a transi-
tion of the Parse Araucaria. The INC state transitions
are also removed, adding a single transition to the Araucaria
state. The resulting parser is presented in Figure 7.

Step #3: Control flow composition. After instrumenting
the INC parser, we start instrumenting the control blocks.
Control blocks in P4 can contain several constructs,
such as tables, actions, registers, and apply blocks. To
compose the INC source code with the fault tolerance logic,
Araucaria extends the definition of tables, actions, and
registers in the INC code to offer consistency. These include
variables for serializing requests between replicas, keeping
consistency, and actions to handle packets from the replica
and coordinator. Next, Araucaria proceeds to instrument the
source code within the apply block. Our approach includes
the entire INC apply block between the preparation and
completion templates. This will allow, for example, to
identify unordered packets in the preparation template to
avoid processing them in the INC code. Another example is
to ensure that multicasts in the completion template do not
process packets within the same switch.

E. Configuration

Beyond instrumenting the source code of the INC for
a specific intent, Araucaria generates the configuration to
the network devices. The configuration Araucaria creates
is responsible for different tasks: (1) setting up the switch
ports for replicating packets; (2) configuring the switches
and servers to operate accordingly to a specific consistency
model; and (3) setting up the communication with all the
servers running applications using the INC.

• Replication for availability. The availability require-
ment is mapped to a set of replicas. Topology informa-
tion containing the input/output ports of the devices is
used to create multicast groups. These groups ensure
the INC forwards packets to all replicas, thereby syn-
chronizing the state of the replicas.

• Defining consistency. The consistency model to be
used is configured in the servers, establishing how they
should replay packets (whenever necessary for recov-
ery). In addition, the configuration of merge functions
is created by mapping commands that solve conflicts
during the recovery.

• Recovery. Finally, Araucaria creates rules to determine
the need for retransmissions in case of a failure. These
rules comprise a list of servers and their corresponding

3 7 11 15 19 23
Time (s)

0

5

10

15

RP
S

Server 1
Server 2
Server 3

Fig. 8. Analysing the behavior after failure.

2 4 6 8
Number of servers

0
2
4
6
8

Ti
m

e
to

 re
co

ve
ry

 (s
)

Scenario 1
Scenario 2
Scenario 3

Fig. 9. Recovery on different amounts of servers.

2 4 6 8
Number of servers

0

5

10

15

20

Pk

ts
 re

tra
ns

m
itt

ed

Scenario 1
Scenario 2

Fig. 10. Number of packets to replay.

IPs. This list enables orchestrating the recovery by
triggering route and interface changes after a failure.

V. EVALUATION

In this section, we present experimental results to show
that: (i) the refinement components of Araucaria effectively
provide fault tolerance; (ii) the system provides abstractions
for reducing the overhead of recovery scenarios; (iii) the
system scales for increasingly amounts of intents.

A. Experimental settings

Implementation. The Araucaria coordinator is imple-
mented as a multithread application (∼250 LoC), capable of
sniffing the network to collect devices’ status information,
and computing the necessary information to maintain consis-
tency using Scapy. The compiler is implemented using PLY
(Python Lex-Yacc), to build the Araucaria language (∼120
LoC), while also using native Linux commands to manage
the repository of functionalities and instantiate experiments
automatically. We built the switch building blocks using
P4-16 both for V1Model (∼350 LoC), and also a proof-
of-concept for the TNA model (∼610 LoC). We employ
a specific multicast for replication, combining cloning and
recirculation to buffer packets and recovery from packet loss.

Testbed Setup. Our prototype for the V1Model is evalu-
ated in a Linux virtual machine with an Intel® i5-10210U
CPU @ 1.60GHz using 2 dedicated cores, 2 GB of memory,
and Ubuntu 20.04 LTS. To evaluate the functionality of the
system we use BMv2, a behaviour model for P4 programs.
The network is emulated using mininet. The topology in-
cludes 45 hosts connected to 2 switches, one acting as a
replica and the other as the main.

We evaluate our TNA PoC of Araucaria in a Tofino
testbed. The experiments were conducted in a setup with
two servers connected to two Wedge 100BF-32X 32-port
programmable switches with a 3.2 Tbps Tofino ASIC. Each
server is an Intel(R) Xeon(R) Silver 4210R CPU @ 2.4 GHz,
with ten cores and 32 GB memory. Each server has a network
interface card with two interfaces (one per switch).

Methodology and metrics. We run experiments to check
the feasibility of achieving fault tolerance with Araucaria,
and measure the number of requests processed per second
(RPS). To understand the scalability of multiple recovery
strategies, we investigate the latency to recover from a
failure and the number of packet retransmissions using
different intent configurations. These measurements enable
us to understand the trade-offs of different fault tolerance
techniques for INC. Finally we measure the system overhead
in terms of rules and resources used in the switches.

B. A running example

To understand the end-to-end intent specification and
refinement process, we provide a use case in our emulated
setup. In this use case, we examine the intent specified
in Section IV-B, Listing 1, discuss the refinement process,
and check the effectiveness of fault tolerance. Our use case
deploys NetGVT [31], an INC capable of synchronizing
logical clocks from distributed systems running on servers.
The nodes in the system exchange event messages with
timestamps, which are intercepted and synchronized by the
INC. Next, we demonstrate the step-by-step process of
instrumenting this INC using Araucaria.

Refinement. Listing 2 presents a fragment of configura-
tions and commands created by the Araucaria refinement
process. The ‘syncnIntent’ (Listing 1) is refined into
rules in JSON that instantiate two replicas and create a
multicast group. A mirroring port is used by Araucaria
switches to clone packets and keep a copy internally in the
switch. The refinement also translates the strong consistency
notion to CLI commands for the switches by writing the
consistency model register value to 1 (corresponding
to the strong consistency behavior).

//multicast rules created for replication
"multicast_group_entries" : [{"

multicast_group_id" : 1, "replicas" :
[{"egress_port" : 1, "instance" : 1}]

//clone port for buffering
mirroring_add 500 3

//Writing specific consistency model
register_write consistency_model 0 1

Listing 2. Fragment of commands and configurations created.

Fault tolerance analysis. To analyze the functionality
of Araucaria fault tolerance, we deployed the intent and
injected a failure in the switch running the INC. We then
analyze the number of requests sent and acknowledged by
each one of the servers.

Figure 8 presents the number of requests per second
processed by each server. After injecting a failure at the
switch, the controller identifies the crash after a timeout.
The failure leads all servers to stop transmitting packets.
After the coordinator collects the devices’ status to achieve
consistency, the servers are notified about the failure and
start the recovery by switching their communication to a
different replica (∼ 16s). Next, each server replays packets
(that were lost during the switch failure) to the new main

replica. After the replica finishes processing all the packets,
the application returns to regular operation (∼ 18s).

C. Analysing recovery configurations

To better understand the scalability of Araucaria, we run
experiments in our emulated setup varying the number of
servers and using different configuration scenarios to define
the recovery strategy:

• Scenario 1: For the replication, the main INC periodi-
cally exchanges snapshots with its replicas in a 4-second
interval, and uses server replaying of lost packets to
achieve total order (strong consistency).

• Scenario 2: For the replication, the main INC sends all
packets to replicas, and uses server replaying of lost
packets to achieve total order (strong consistency).

• Scenario 3: For the replication, the main INC sends
all packets to replicas, but relies on a merge function
and CRDTs during recovery. The merge function solves
conflicts locally at each server before the server retrans-
mits, outputting only the last packet retransmitted before
failure (strong eventual consistency).

During the experiment, we intentionally dropped packets
from the main switch to the replica, but delivered the
original packet to the host destination. After a fixed interval
of 4 seconds, we injected a crash in the main switch. This
situation creates dependency violations that need to be
corrected by the recovery procedure.

Recovery latency. Figure 9 presents how long the system
takes to recover for each scenario. We observe that the recov-
ery is slower as the number of servers increases. Achieving
total order with eight servers requires about 7 seconds in
Scenario 1 and approximately 4 seconds in Scenario 2.
This latency increase is attributed to the higher number of
dependencies that need correction. However, the latency does
not exhibit the same growth in Scenario 3, which employs
a merge function to resolve conflicts and uses Conflict-
Free Replicated Data Types (CRDTs). Conflicts are resolved
by consistently selecting the highest NetGVT’s clock value
from each server, eliminating the need to retransmit all
packets. Operations to be performed on resulting packets are
commutative, allowing them to be processed in any order in
the replicas. This significantly reduces the number of packets
requiring retransmission and avoids the need for reordering,
resulting in recovery times of less than 2 seconds for any
number of servers in our evaluation.

Retransmissions and dependencies. Figure 10 presents
the number of packet retransmissions due to dependency vio-
lations we observed per server in experiments with scenarios
1 and 2. We omit Scenario 3 since in this recovery strategy
the dependency violations are solved by the merge function.
We observe that as the number of servers increases, there is a
corresponding increase in the number of retransmissions for
Scenario 1. This explains the higher overhead to recover. In
contrast, Scenario 2 displays a lower number of retransmis-
sions (3 packets on average), because the failure in the INC
(and the subsequent loss of packets) has a lower impact than
losing entire snapshots (Scenario 1). Although reducing the

0.05 0.10 0.15 0.20 0.25
Time to recovery (s)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Fig. 11. Failover Time.

0 200 400 600 800
of intents

0.00
0.05
0.10
0.15
0.20
0.25

Tr
an

sla
tio

n
tim

e(
s)

Fig. 12. Time to translate intents.

number of retransmissions can improve the time to recovery
compared to Scenario 1, it still requires reordering packets
from multiple servers.

D. Hardware micro-benchmark

To understand the overhead of Araucaria in real hardware,
we selected the optimal configuration scenario for NetGVT
(Scenario 3) and conducted experiments to measure the re-
covery latency. Specifically, in this experiment, we used two
Tofino ASICs running Araucaria and two servers exchanging
events processed by the switches. We bring down the main
switch and measure the time taken for servers to resume
their operation after the recovery. The results in Figure 11
show that the system requires, on average, 0.16 seconds to
recover from a failure. The standard deviation is 0.03 sec.
These results show that Araucaria can rapidly recover from
failures while maintaining a strong notion of consistency.

E. Scalability

To show the scalability of the compiler, we generated
a variable amount of intents in the Araucaria language. In
Figure 12, we show the time it takes to complete translation
for a varying amount of intents using batches of multiple
sizes. These experiments were executed in a Linux virtual
machine with an Intel® i5-10210U CPU @ 1.60GHz using
2 dedicated cores, 2 GB of memory.

We observe that the time to translate intents increases
linearly with the amount of intents. Translating a single intent
takes less than 0.05 seconds while translating 800 intents
takes only 0.20 seconds. Overall, this result indicates that
the system can translate intents rapidly.

To understand the impact on resource usage, Table II
presents the number of P4 primitives generated by the refine-
ment process. We focus on these primitives in our evaluation

TABLE II
RULES AND PRIMITIVES USED BY ARAUCARIA.

Primitives/Rules Usage
Match+Action Entries 49
CloneE2E 4
Multicast Groups 1
Recirculation 1

because they can be generalized to multiple targets. Consid-
ering our emulated setup, which includes 45 hosts connected
to 2 switches, Araucaria has used 49 match+action entries to
ensure proper communication between the coordinator and
servers. The clone primitives were employed four times in
the source code, enabling the creation of packet copies for
acknowledgments, multicast, buffering, and retransmissions.
A single recirculation primitive was used for buffering pack-
ets. These results indicate that only a small amount of P4
primitives are used by Araucaria.

VI. RELATED WORK

Intents. Various platforms have been explored for intent
management, including network function virtualization [38],
software-defined networking [20], [11], [16], [2], and in-
dustrial networks [35]. Researchers have been investigating
techniques for managing Access Control Lists (ACL) [44],
[27] and Quality of Service (QoS) using intents, along
with exploring diverse abstractions to express intents. These
abstractions include policy graphs [33], natural language
[20], graphical user interfaces [13], and constrained natural
language grammars [39]. Recent works also used high-level
intents to create match+action entries for P4 programs [4],
[25]. P4I/O [34] facilitates P4 adoption by using a language
to express policies for switches, and merges different source
files using reusable templates to dynamically upgrade the
switch configuration. However, the authors only demon-
strated the concept for deploying heavy hitter detection.
Araucaria focuses on other domain by extending INC func-
tionality with specific abstractions for fault tolerance.

High-level data structures. An orthogonal research
field focuses on bringing higher-level abstractions to P4.
Examples of high-level abstractions include data structure
elasticity [18], loops [3], modularity [12] composability
[42], and heterogeneity [14]. Although these efforts can
simplify programming, they do not support functionalities
to express intents.

INC Fault tolerance. Fault tolerance is investigated in
[21], [19], focusing on applications like aggregation, key-
value store, and network functions. Notably, RedPlane [22]
proposes techniques for making switch applications fault
tolerant. RedPlane synchronizes the switch with state stor-
age to provide strong and eventual consistency. Swish [47]
provides abstractions that can enable distributed network
functions on programmable switches by replicating the state
and operations between multiple devices. However, none of
the previous approaches support the specification of require-
ments at the level of intents.

VII. CONCLUSION

In this work, we presented Araucaria, a system to provide
fault tolerance requirements expressed as intents for INCs.
The system allows intents to be specified in a constrained
natural language. Subsequently, a refinement mechanism in-
struments the INC code for ensuring fault tolerance. We have
implemented a prototype of Araucaria both in an emulated
setup based on BMv2 and on a Tofino testbed, and analyzed
our translation and refinement processes. As future work, we
plan to address other kinds of failures, including adversarial
attacks, bugs and malfunctioning. Simplifying intent man-
agement using large language models is also an interesting
perspective. Furthermore, we also plan to investigate how
eBPF can be used to reduce the overhead of recovery.

REFERENCES

[1] Anubhavnidhi Abhashkumar, Joon-Myung Kang, Sujata Banerjee,
Aditya Akella, Ying Zhang, and Wenfei Wu. Supporting diverse
dynamic intent-based policies using janus. In Proceedings of the
13th International Conference on Emerging Networking EXperiments
and Technologies, CoNEXT ’17, page 296–309, New York, NY, USA,
2017. Association for Computing Machinery.

[2] Shiyam Alalmaei, Yehia Elkhatib, Mehdi Bezahaf, Matthew Broad-
bent, and Nicholas Race. Sdn heading north: Towards a declarative
intent-based northbound interface. In 2020 16th International Confer-
ence on Network and Service Management (CNSM), pages 1–5. IEEE,
2020.

[3] Albert Gran Alcoz, Coralie Busse-Grawitz, Eric Marty, and Laurent
Vanbever. Reducing p4 language’s voluminosity using higher-level
constructs. In Proceedings of the 5th International Workshop on P4
in Europe, pages 19–25, 2022.

[4] Antonino Angi, Alessio Sacco, Flavio Esposito, Guido Marchetto,
and Alexander Clemm. Nlp4: An architecture for intent-driven data
plane programmability. In 2022 IEEE 8th International Conference
on Network Softwarization (NetSoft), pages 25–30. IEEE, 2022.

[5] Tom Barbette, Erfan Wu, Dejan Kostić, Gerald Q Maguire, Panagiotis
Papadimitratos, and Marco Chiesa. Cheetah: A high-speed pro-
grammable load-balancer framework with guaranteed per-connection-
consistency. IEEE/ACM Transactions on Networking, 30(1):354–367,
2021.

[6] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat,
George Varghese, and David Walker. P4: Programming protocol-
independent packet processors. SIGCOMM Comput. Commun. Rev.,
44(3):87–95, July 2014.

[7] Alvin Cheung, Natacha Crooks, Joseph M Hellerstein, and Matthew
Milano. New directions in cloud programming. In 11th Conference
on Innovative Data Systems Research (CIDR’ 21), 2021.

[8] Alexander Clemm, Laurent Ciavaglia, Lisandro Zambenedetti
Granville, and Jeff Tantsura. Intent-Based Networking - Concepts and
Definitions. RFC 9315, October 2022.

[9] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Slo-
man. The ponder policy specification language. In International
Workshop on Policies for Distributed Systems and Networks, pages
18–38. Springer, 2001.

[10] Yehia Elkhatib, Geoff Coulson, and Gareth Tyson. Charting an intent
driven network. In 2017 13th International Conference on Network
and Service Management (CNSM), pages 1–5. IEEE, 2017.

[11] F. Esposito, J. Wang, C. Contoli, G. Davoli, W. Cerroni, and F. Calle-
gati. A behavior-driven approach to intent specification for software-
defined infrastructure management. In 2018 IEEE Conference on Net-
work Function Virtualization and Software Defined Networks (NFV-
SDN), pages 1–6, Nov 2018.

[12] Ali Fattaholmanan, Mario Baldi, Antonio Carzaniga, and Robert Soulé.
P4 weaver: Supporting modular and incremental programming in p4.
In Proceedings of the ACM SIGCOMM Symposium on SDN Research
(SOSR), pages 54–65, 2021.

[13] Mauro Femminella, Matteo Pergolesi, and Gianluca Reali. Simplifica-
tion of the design, deployment, and testing of 5g vertical services. In
NOMS 2020-2020 IEEE/IFIP Network Operations and Management
Symposium, pages 1–7. IEEE, 2020.

[14] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao, Yu Zhou,
Bingchuan Tian, Chen Sun, Dennis Cai, Ming Zhang, and Minlan
Yu. Lyra: A cross-platform language and compiler for data plane
programming on heterogeneous asics. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data Communication
on the applications, technologies, architectures, and protocols for
computer communication, pages 435–450, 2020.

[15] René Glebke, Johannes Krude, Ike Kunze, Jan Rüth, Felix Senger,
and Klaus Wehrle. Towards executing computer vision functionality
on programmable network devices. In Proceedings of the 1st ACM
CoNEXT Workshop on Emerging in-Network Computing Paradigms,
pages 15–20, 2019.

[16] Victor Heorhiadi, Sanjay Chandrasekaran, Michael K. Reiter, and
Vyas Sekar. Intent-driven composition of resource-management sdn
applications. CoNEXT ’18, page 86–97, New York, NY, USA, 2018.
Association for Computing Machinery.

[17] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 12(3):463–492, 1990.

[18] Mary Hogan, Shir Landau-Feibish, Mina Tahmasbi Arashloo, Jennifer
Rexford, and David Walker. Modular switch programming under
resource constraints. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages 193–207, 2022.

[19] Hongyi Huang and Wenfei Wu. Hypersfp: Fault-tolerant service
function chain provision on programmable switches in data centers. In
NOMS 2022-2022 IEEE/IFIP Network Operations and Management
Symposium, pages 1–9. IEEE, 2022.

[20] Arthur Selle Jacobs, Ricardo José Pfitscher, Ronaldo Alves Ferreira,
and Lisandro Zambenedetti Granville. Refining network intents for
self-driving networks. In Proceedings of the Afternoon Workshop on
Self-Driving Networks, SelfDN 2018, page 15–21, New York, NY,
USA, 2018. Association for Computing Machinery.

[21] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee,
Robert Soulé, Changhoon Kim, and Ion Stoica. Netchain: Scale-free
sub-rtt coordination. In 15th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 18), pages 35–49, 2018.

[22] Daehyeok Kim, Jacob Nelson, Dan RK Ports, Vyas Sekar, and
Srinivasan Seshan. Redplane: enabling fault-tolerant stateful in-switch
applications. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference, pages 223–244, 2021.

[23] Carson Kuzniar, Miguel Neves, Vladimir Gurevich, and Israat Haque.
Iot device fingerprinting on commodity switches. In NOMS 2022-2022
IEEE/IFIP Network Operations and Management Symposium, pages
1–9. IEEE, 2022.

[24] Aris Leivadeas and Matthias Falkner. A survey on intent based
networking. IEEE Communications Surveys & Tutorials, 2022.

[25] B. Lewis, L. Fawcett, M. Broadbent, and N. Race. Using p4 to enable
scalable intents in software defined networks. In 2018 IEEE 26th
International Conference on Network Protocols (ICNP), pages 442–
443, 2018.

[26] Jialin Li, Ellis Michael, and Dan RK Ports. Eris: Coordination-
free consistent transactions using in-network concurrency control. In
Proceedings of the 26th Symposium on Operating Systems Principles,
pages 104–120, 2017.

[27] Xing Li, Yan Chen, Zhiqiang Lin, Xiao Wang, and Jim Hao Chen.
Automatic policy generation for {Inter-Service} access control of
microservices. In 30th USENIX Security Symposium (USENIX Security
21), pages 3971–3988, 2021.

[28] Cristian Cleder Machado, Juliano Araujo Wickboldt, Lisandro Zam-
benedetti Granville, and Alberto Schaeffer-Filho. Arkham: an ad-
vanced refinement toolkit for handling service level agreements in
software-defined networking. Journal of Network and Computer
Applications, 90:1–16, 2017.

[29] Oliver Michel, Roberto Bifulco, Gábor Rétvári, and Stefan Schmid.
The programmable data plane: Abstractions, architectures, algorithms,
and applications. ACM Computing Surveys (CSUR), 54(4):1–36, 2021.

[30] Lei Pang, Chungang Yang, Danyang Chen, Yanbo Song, and Mohsen
Guizani. A survey on intent-driven networks. IEEE Access, 8:22862–
22873, 2020.

[31] Ricardo Parizotto, Braulio Mello, Israat Haque, and Alberto Schaeffer-
Filho. Netgvt: offloading global virtual time computation to pro-
grammable switches. In Proceedings of the Symposium on SDN
Research, pages 16–24, 2022.

[32] Seo Jin Park and John Ousterhout. Exploiting commutativity for
practical fast replication. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages 47–64, 2019.

[33] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang,
Aditya Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet
Sharma, and Ying Zhang. Pga: Using graphs to express and au-
tomatically reconcile network policies. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication,
SIGCOMM ’15, pages 29–42, New York, NY, USA, 2015. ACM.

[34] Mohammad Riftadi and Fernando Kuipers. P4i/o: Intent-based net-
working with p4. In 2019 IEEE Conference on Network Softwarization
(NetSoft), pages 438–443. IEEE, 2019.

[35] Barun Kumar Saha, Deepaknath Tandur, Luca Haab, and Lukasz
Podleski. Intent-based networks: An industrial perspective. In
Proceedings of the 1st International Workshop on Future Industrial
Communication Networks, pages 35–40, 2018.

[36] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini,
and Panos Kalnis. In-network computation is a dumb idea whose time
has come. In Proceedings of the 16th ACM Workshop on Hot Topics in
Networks, HotNets-XVI, page 150–156, New York, NY, USA, 2017.
Association for Computing Machinery.

[37] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos
Kalnis, Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref,
Dan Ports, and Peter Richtarik. Scaling distributed machine learning
with in-network aggregation. In 18th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 21), pages 785–
808. USENIX Association, April 2021.

[38] Eder J Scheid, Cristian C Machado, Muriel F Franco, Ricardo L dos
Santos, Ricardo P Pfitscher, Alberto E Schaeffer-Filho, and Lisandro Z
Granville. Inspire: Integrated nfv-based intent refinement environment.
In 2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), pages 186–194. IEEE, 2017.

[39] Eder J Scheid, Patrick Widmer, Bruno B Rodrigues, Muriel F Franco,
and Burkhard Stiller. A controlled natural language to support intent-
based blockchain selection. In 2020 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC), pages 1–9. IEEE, 2020.

[40] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
Conflict-free replicated data types. In Stabilization, Safety, and
Security of Distributed Systems: 13th International Symposium, SSS
2011, Grenoble, France, October 10-12, 2011. Proceedings 13, pages
386–400. Springer, 2011.

[41] Hisham Siddique, Miguel Neves, Carson Kuzniar, and Israat Haque.
Towards network-accelerated ml-based distributed computer vision
systems. In 2021 IEEE 27th International Conference on Parallel
and Distributed Systems (ICPADS), pages 122–129, 2021.

[42] Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate
Foster. Composing dataplane programs with µp4. In Proceedings of
the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication, pages 329–343, 2020.

[43] Hesam Tajbakhsh, Ricardo Parizotto, Miguel Neves, Alberto
Schaeffer-Filho, and Israat Haque. Accelerator-aware in-network
load balancing for improved application performance. In 2022 IFIP
Networking Conference (IFIP Networking), pages 1–9. IEEE, 2022.

[44] Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu,
Qiaobo Ye, Chunsheng Wang, Xin Wu, Zhiming Ji, Yihong Sang,
Ming Zhang, et al. Safely and automatically updating in-network
acl configurations with intent language. In Proceedings of the ACM
Special Interest Group on Data Communication, pages 214–226. 2019.

[45] Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu,
Qiaobo Ye, Chunsheng Wang, Xin Wu, Zhiming Ji, Yihong Sang,
Ming Zhang, Da Yu, Chen Tian, Haitao Zheng, and Ben Y. Zhao.
Safely and automatically updating in-network acl configurations with
intent language. In Proceedings of the ACM Special Interest Group
on Data Communication, SIGCOMM ’19, page 214–226, New York,
NY, USA, 2019. Association for Computing Machinery.

[46] Yoshiharu Tsuzaki and Yasuo Okabe. Reactive configuration updating
for intent-based networking. In 2017 International Conference on
Information Networking (ICOIN), pages 97–102. IEEE, 2017.

[47] Lior Zeno, Dan RK Ports, Jacob Nelson, Daehyeok Kim, Shir Landau-
Feibish, Idit Keidar, Arik Rinberg, Alon Rashelbach, Igor De-Paula,
and Mark Silberstein. {SwiSh}: Distributed shared state abstractions
for programmable switches. In 19th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 22), pages 171–
191, 2022.

[48] Noa Zilberman. In-network computing, Apr 2019. https://www.
sigarch.org/in-network-computing-draft [Accessed: Feb 22 2024].

https://www.sigarch.org/in-network-computing-draft
https://www.sigarch.org/in-network-computing-draft

	Introduction
	Background
	Intent-based Networking (IBN)
	In-Network Computing

	INC Fault Tolerance
	Araucaria Design
	Overview and workflow
	Declarative intent specification
	Fault tolerance building blocks
	INC source code instrumentation
	Configuration

	Evaluation
	Experimental settings
	A running example
	Analysing recovery configurations
	Hardware micro-benchmark
	Scalability

	Related Work
	Conclusion
	References

