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Abstract: Non-contact measurement of the refractive index and thickness of multilayer
biological tissues is of great significance for biomedical applications and can greatly improve
medical diagnosis and treatment. In this work, we introduce a theoretical method to simultaneously
extract the above information using a Fourier domain optical coherence tomography (FD-OCT)
system, in which no additional arrangement and prior information about the object is required
other than the OCT interference spectrum. The single reflection components can be extracted
from the observed spectrum by isolating the primary spikes in the sample reflectance profile,
and then the refractive index and thickness can be obtained by fitting the actual and modeled
values of the single reflection spectrum. In a two-layer sample example, the simulation results
show that our method can reconstruct the results with high accuracy. The relative error is within
∼ 0.01%. The complexity of our approach grows linearly with the number of sample layers,
making it well-adapted to multilayer situations. Our method takes into account both single and
multiple reflections in multilayer samples and is therefore equally applicable to samples with
high refractive index contrast.

1. Introduction

Optical coherence tomography (OCT) is a non-contact imaging technique that generates high-
resolution in vivo cross-sectional images without affecting the imaged tissue. The inception of
OCT technology is marked by the development of the time-domain OCT (TD-OCT) system,
which was first proposed by Huang et al. and used for in vitro human retinal imaging in 1991 [1].
TD-OCT works by utilizing the scanning depth of a reference arm to determine the time of flight
of the light signal reflected from the observation sample, resulting in very slow imaging speeds
and poor image quality. Subsequently, the introduction of Fourier-domain OCT (FD-OCT)
overcame the limitations of TD-OCT, which was able to capture complete depth information
simultaneously [2]. In the FD-OCT system, the reference arm is fixed and the detection system
is replaced by a spectrometer. The Fourier transform of the interference spectrum between the
light fields from the reference and the sample arms reveals the internal structure of the object.
FD-OCT has become the preferred method over TD-OCT due to its advantages of significantly
improved detection sensitivity and scanning speed, no additional mechanical movement, and
direct access to spectral data [3–5].

Conventional OCT implementations can only image reflectance profiles that vary with optical
path length. The ability to separate the refractive index and thickness of biological tissue is
critical for biomedical applications and can greatly enhance medical diagnosis and treatment. For
example, the refractive index and thickness of the cornea are related to hydration and intraocular
pressure status and thus indicate the effects of laser refractive surgery on the cornea [6]. Another
important example is the thickness of the human retinal layer, changes of which may be
associated with glaucoma [7], diabetes [8], and neuro-ophthalmic diseases including Alzheimer’s,
Parkinson’s, and multiple sclerosis et al [9]. Accurate measurement of the true thickness and
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refractive index distribution of the retinal layer can contribute to the early diagnosis and prognosis
of related diseases.

Various techniques for simultaneous measurement of refractive index and thickness using OCT
systems have been proposed for one-layer [10–37] and two- or three-layer [38–42] objects in both
time and Fourier domains. In Ref. [43], a theoretical method for measuring the refractive index
and thickness of samples with an arbitrary number of layers was proposed. In their approach,
the optical path length of each interface was first obtained through the inverse Fourier transform
of the FD-OCT interference spectrum, and then the Fresnel coefficient of each interface was
obtained through a matrix operation. The required sample refractive index and thickness can then
be extracted directly from the Fresnel equation and the definition of optical path length. Since the
output of their formalism was significantly affected by the uncertainty of the measured optical
path length, an optimization method was introduced in their later work to enhance the final results
(by sampling the optical path length to achieve the best match between the modeled interference
spectrum and the observations) [44]. However, properly selected spectral components of the
FD-OCT interference spectrum are required in their method. Moreover, since they used the
summation spectrum to model the interference spectrum, multiple reflections inside the sample
were ignored and only single scattering events were considered. This resulted in their method
being able to only handle samples with small refractive index contrast. To achieve an absolute
error ≤ 0.001, the maximum tolerable refractive index contrast is 0.213.

The primary aim of this study is to present a new theoretical method for the simultaneous
measurement of the refractive index and thickness of multilayer systems using FD-OCT. This
article is organized as follows: In section 2, we give the theoretical framework and methodology
for extracting the refractive index and thickness of multilayer samples using the FD-OCT optical
spectrum. In section 3, we demonstrate the feasibility of our approach through numerical
simulations in a two-layer system. We compare the results calculated by our method with their
real values and give the discussions. Finally, we summarize this paper in section 4.

2. Theory

An FD-OCT system based on spectral interferometry is depicted in Fig. 1. A light beam from a
low-coherence light source is divided by a beam splitter into two halves. One half is reflected off
the beam splitter and then back-reflected by a reference mirror. The other half is transmitted
through the beam splitter and then back-reflected by the object. These two back-reflected
beams are recombined by the beam splitter and then dispersed by a spectrometer into spectral
components. The corresponding spectral components interfere and form a spectral interferogram
acquired by an optical detector array.

The spectral interferogram observed by the detector can be expressed as

𝐼 (𝑘) = |𝐸𝑅 (𝑘) + 𝐸𝑆 (𝑘) |2, (1)

where 𝑘 is the wavenumber in vacuum, 𝐸𝑅 (𝑘) and 𝐸𝑆 (𝑘) represent the electric field reflected
from the reference mirror and the sample, respectively. The spectral components of the reference
and the sample beams have the form of

𝐸𝑅 (𝑘) = 𝐸0 (𝑘)𝑟𝑅 exp[𝑖(2𝑘𝑛𝑅𝑙𝑅 − 𝜔𝑡)],
𝐸𝑆 (𝑘) = 𝐸0 (𝑘)𝑟𝑆 exp[𝑖(2𝑘𝑛𝑆 𝑙𝑆 − 𝜔𝑡)],

(2)

where 𝜔 is the angular frequency, 𝐸0 (𝑘) denotes the electric field incident on the reference mirror
and the sample, 𝑟𝑅 and 𝑟𝑆 stand for the reflectivity of the reference mirror and the sample, 𝑛𝑅
and 𝑛𝑆 are the refractive indices of the medium in the reference arm and the sample arm, 𝑙𝑅
and 𝑙𝑆 represent the lengths of the reference arm and the sample arm, respectively. Substituting
Eq.(2) into Eq.(1), we obtain

𝐼 (𝑘) = 𝑆(𝑘)
{
𝑟2
𝑅 + 𝑟2

𝑆 + 2𝑟𝑅Re [𝑟𝑆 exp(2𝑖𝑘Δ𝑅𝑆)]
}
. (3)



Fig. 1. Schematic of an FD-OCT system. 𝑛𝑅 and 𝑛𝑆 are the refractive indices of the
medium in the reference arm and the sample arm. 𝑙𝑅 and 𝑙𝑆 represent the lengths of the
reference arm and the sample arm. (𝑛𝑖 , 𝑑𝑖) denotes the refractive index and thickness
of each layer of the 𝑁-layer sample. 𝑛𝑁+1 is the refractive index of the medium behind
the sample.

Here, 𝑆(𝑘) is the source power spectral density distribution

𝑆(𝑘) = |𝐸0 (𝑘) |2, (4)

and Δ𝑅𝑆 represents the optical path difference between the sample arm and the reference arm

Δ𝑅𝑆 = 𝑛𝑆 𝑙𝑆 − 𝑛𝑅𝑙𝑅 . (5)

The spectral intensity in Eq.(3) contains three terms. The first part (proportional to 𝑟2
𝑅

),
referred to as the reference-intensity term, originates from the reference arm reflection. The
second part (proportional to 𝑟2

𝑆
), referred to as the self-interference term, characterizes the

interference among the partial waves from the various sample depths. The last part, referred to
as the cross-interference term, results from the interference between the two light beams from
the sample arm and the reference arm. The first two terms represent the direct current (DC)
components while the last term denotes the alternative current (AC) component. After removing
the DC background by phase-shifting interferometry [45], the normalized spectral response of
the AC spectrum has the form of

𝐼AC (𝑘) =
𝐼 (𝑘) − 𝐼DC (𝑘)

2𝑟𝑅𝑆(𝑘)
= Re [𝑟𝑆 exp(2𝑖𝑘Δ𝑅𝑆)] .

(6)

In traditional FD-OCT, the inverse Fourier transform of the AC spectrum yields an A-line image.
For a 𝑁-layer sample in Fig. 1 which is stratified with ideally flat interfaces and non-absorbing,

isotropic, and homogeneous in refractive index, the sample beam consists of multiple partial



waves reflecting from each interface. The AC spectrum can be divided into single and multiple
reflection components as

𝐼AC (𝑘) =
𝑁∑︁
𝑗=0

𝑟sin
𝑗 cos

[
2𝑘

(
ΔRS + Δsin

𝑗

)]
+

mul∑︁
𝑗

𝑟mul
𝑗 cos

[
2𝑘

(
ΔRS + Δmul

𝑗

)]
, (7)

where the back reflectance from a single reflection at the 𝑗-th interface can be determined by the
Fresnel formula

𝑟sin
𝑗 =
←−
𝑇 0 · · ·

←−
𝑇 𝑗−1𝑅 𝑗

−→
𝑇 𝑗−1 · · ·

−→
𝑇 0, (8)

and the corresponding optical path length is

Δsin
𝑗 =

𝑗∑︁
𝑙=1

𝑛𝑙𝑑𝑙 . (9)

Here, 𝑅 𝑗 ,
−→
𝑇 𝑗 and←−𝑇 𝑗 are the Fresnel coefficients of the 𝑗-th interface

𝑅 𝑗 =
𝑛 𝑗 − 𝑛 𝑗+1

𝑛 𝑗 + 𝑛 𝑗+1
,

−→
𝑇 𝑗 =

2𝑛 𝑗

𝑛 𝑗 + 𝑛 𝑗+1
,

←−
𝑇 𝑗 =

2𝑛 𝑗+1

𝑛 𝑗 + 𝑛 𝑗+1
.

(10)

𝑛𝑙 and 𝑑𝑙 are the refractive index and thickness of the 𝑙-th sample layer, respectively. Specifically,
at the top of the sample, we have

−→
𝑇 0 =

2𝑛𝑆
𝑛𝑆 + 𝑛1

,
←−
𝑇 0 =

2𝑛1
𝑛𝑆 + 𝑛1

, 𝑟sin
0 =

𝑛𝑆 − 𝑛1
𝑛𝑆 + 𝑛1

, Δsin
0 = 0. (11)

As for the multiple reflection components, the reflectance scales as 𝑟mul
𝑗
∼ O(𝑅 𝑗 ) ( 𝑗 stands for

the number of reflections and 𝑅 represents the typical value of Fresnel reflection coefficient), and
the corresponding optical path length depends on the actual reflection process.

The profile of the back reflectance versus the optical path length can be obtained by performing
an inverse Fourier transform of 𝐼AC. According to Eq.(7), for a multilayer transparent sample, the
profile would exhibit a spike-like structure, and the height and position of each spike characterize
the reflection intensity and optical path length of the reflection event. Due to the low refractive
index contrast within biological tissue, the reflectance of multiple reflections is much weaker
than that of single reflections, making it easy to distinguish between these two reflection cases.
Fourier transforming the reflectance in the neighborhood of each spike back into the wavenumber
space can isolate the contribution of each reflection event in the AC spectrum. We use the Monte
Carlo method to search for the reflectance and optical path length in Eq.(7) to fit the actual and
modeled AC spectrum for each single reflection. During the fitting process, the fitting function of
sum squared residual (SSR) is adopted. Correctly selecting the search range for the parameters to
be fitted can significantly improve the search speed. We search the optical path length in the
neighborhood of each spike to obtain the lowest SSR value. After determining the reflectance
and optical path length of each interface, the refractive index and thickness of each sample layer
can be derived from Eq.(8), Eq.(9) and Eq.(10).

In summary, the process of extracting the refractive index and thickness of each sample layer
is as follows:



1. obtaining the normalized AC spectrum [Eq.(6)],

2. inverse Fourier transforming the normalized AC spectrum and isolating each primary spike
in the reflectance profile,

3. Fourier transforming each primary reflectance spike back into the wavenumber space to
obtain the contribution of each single reflection in the AC spectrum,

4. searching the reflectance and optical path length of each sample interface to fit the actual
and modeled AC spectrum,

5. calculating the refractive index and thickness of each sample layer through Eq.(8), Eq.(10)
and Eq.(9).

3. Results and discussions

We verify the feasibility of our method introduced in the previous section with numerically
constructed FD-OCT signals through the transfer matrix method (TMM) [46–48]. The total
reflectivity 𝑟𝑆 of a multilayer sample can be expressed as

𝑟𝑆 = −𝑄21
𝑄22

, (12)

where
𝑄 = 𝑀𝑁,𝑁+1𝑃𝑁𝑀𝑁−1,𝑁 · · ·𝑀1,2𝑃1𝑀0,1 (13)

is the transfer matrix. Here, 𝑃𝑙 and 𝑀𝑙,𝑙+1 are the propagation and reflection matrices of the 𝑙-th
layer and the 𝑙-th interface, respectively, which have the form of

𝑃𝑙 =


𝑒𝑖𝑘𝑛𝑙𝑑𝑙 0

0 𝑒−𝑖𝑘𝑛𝑙𝑑𝑙

 ,
𝑀𝑙,𝑙+1 =

1
2


1 + 𝑛𝑙/𝑛𝑙+1 1 − 𝑛𝑙/𝑛𝑙+1
1 − 𝑛𝑙/𝑛𝑙+1 1 + 𝑛𝑙/𝑛𝑙+1

 .
(14)

For simplicity, we consider a two-layer system with two refractive index configurations, one
with lower contrast to accommodate the situation in biological tissue: (a) 𝑛𝑅, 𝑛𝑆 , 𝑛3 = 1.33,
𝑛1 = 1.37, 𝑛2 = 1.45; and the other with higher contrast: (b) 𝑛𝑅, 𝑛𝑆 , 𝑛3 = 1, 𝑛1 = 1.4, 𝑛2 = 1.8.
In both cases, the length difference between the sample arm with the reference arm and the
layer thicknesses are set to be 𝑙𝑆 − 𝑙𝑅 = 200 𝜇𝑚 and 𝑑1 = 300 𝜇𝑚, 𝑑2 = 400 𝜇𝑚. The central
wavenumber of the light source 𝑘0 is taken to be 5.984 𝜇𝑚−1, corresponding to a central
wavelength of 𝜆0 = 2𝜋/𝑘0 = 1050 𝑛𝑚, which leads to a relatively low absorption by biological
tissues [49]. The spectral bandwidth 𝑊 is chosen to be 3.142 𝜇𝑚−1 and the sampling number of
wavenumber 𝑃 is selected as 4000, which correspond to an axial resolution of 𝛿𝑧 = 𝜋/𝑊 = 1 𝜇𝑚

and a maximum imaging depth of 𝑧max = 𝛿𝑧 · 𝑃/2 = 2 𝑚𝑚 in vacuum [50]. For the two-layer
system under consideration, the formula of Eq.(7) reduces to

𝐼AC (𝑘) =𝑟0 cos(2𝑘Δ𝑅𝑆) + 𝑟1 cos [2𝑘 (Δ𝑅𝑆 + 𝛿1)] + 𝑟2 cos [2𝑘 (Δ𝑅𝑆 + 𝛿1 + 𝛿2)]
+multiple reflection terms,

(15)



where the reflectances of single reflections are

𝑟0 =
𝑛0 − 𝑛1
𝑛0 + 𝑛1

,

𝑟1 =
4𝑛0𝑛1

(𝑛0 + 𝑛1)2
𝑛1 − 𝑛2
𝑛1 + 𝑛2

,

𝑟2 =
4𝑛0𝑛1

(𝑛0 + 𝑛1)2
4𝑛1𝑛2

(𝑛1 + 𝑛2)2
𝑛2 − 𝑛3
𝑛2 + 𝑛3

,

(16)

and the optical path lengths are
𝛿1,2 = 𝑛1,2 · 𝑑1,2. (17)
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Fig. 2. The normalized AC spectrum of an FD-OCT system versus wavenumber
for a two-layer sample. The left and right panels correspond to physical parameter
configurations (a) and (b) (see text for details), respectively.

The normalized spectral response of the AC spectrum calculated from Eq.(6) is shown in
Fig. 2, where the left and right panels correspond to the parameter configurations (a) and (b),
respectively. For illustration purposes, only the bandwidth around the central wavenumber is
displayed. Due to the lower refractive index contrast in configuration (a), the intensity of the
AC spectrum is much weaker than in configuration (b). The profile of reflectance with optical
path length can be obtained by performing the inverse Fourier transform on the normalized AC
spectrum. The results are shown in Fig. 3. Similarly, the left panel corresponds to configuration
(a), and the right panel corresponds to configuration (b). As shown in the figure, the reflectance
distribution exhibits a spike-like structure, as expected from Eq.(15). Each spike corresponds
to a reflection event, and the individual reflection events are well separated according to their
different optical path lengths. The three primary spikes correspond to single reflections from the
three interfaces of the sample, while the much weaker secondary spikes correspond to the results
of multiple reflections. The positions of the three primary spikes agree well with their theoretical
predictions. Due to the much weaker contrast of the refractive index, the spike heights in the
left panel are significantly lower than those in the right panel, and the secondary spikes are not
obvious.

By extracting the reflectance values within the neighborhood of each primary spike and Fourier
transforming them back into the wavenumber space, the contribution of the single reflection from
each sample interface can be separated from the total AC spectrum. The results are shown in
Fig. 4 with solid lines, where the numbers indicate the three reflection interfaces of the sample.
The upper and lower two panels correspond to the physical parameter configurations (a) and
(b), respectively. For presentation purposes, the two panels on the left indicate results within
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Fig. 3. Reflectance profile as a function of optical path length, which is derived from
the inverse Fourier transform of the normalized AC spectrum 𝐼AC. The left and right
panels correspond to physical parameter configurations (a) and (b) (see text for details),
respectively.

the neighborhood of the center wavenumber, and the two panels on the right denote results
around the edge wavenumber of the target bandwidth. The profile exhibits the expected cosine
structure, with the period characterizing the optical path length and the amplitude characterizing
the reflectance at the interface. As a comparison, the AC spectrum for each single reflection
predicted from Eq.(15) is displayed with dashed lines in Fig. 4. It shows that the AC spectrum
values recovered from the reflectance spikes agree well with their modeled values over most of
the bandwidth, except for a small portion near the edge wavenumber.

We use the Monte Carlo method to search for the reflectance and optical path length values at
each sample interface to fit the actual values of the single reflection spectrum and its modeled
values derived from Eq.(15). The SSR function is adopted to measure the goodness of fit. We
choose the search range of the optical path length to be within the neighborhood of each primary
spike location in Fig. 3 to speed up the search process. After obtaining the reflectance and optical
path length of each interface, the refractive index and thickness of each sample layer can be
derived from Eq.(16) and Eq.(17). The results under physical parameter configurations (a) and
(b) are shown in Tab. 1. In each configuration, the left column is the true physical parameter
values, the middle column indicates the deviations between the results recovered by our method
with the true values, and the right column corresponds to the relative error (RE) in percentage.
The results show that our method can reconstruct the true physical parameters with high accuracy
(relative error within ∼ 0.01%), even when the refractive index contrast is large and multiple
reflections cannot be ignored.

4. Conclusion

In summary, we propose a new theoretical framework in this article to extract the refractive
index and thickness of a multilayer sample simultaneously through an FD-OCT system, without
any prior information about the sample required. Our method works as follows: First, the
sample reflectance profile versus optical path length is obtained by performing an inverse Fourier
transform of the observed AC spectrum; Second, we separate the primary spikes in the reflectance
profile; Then, each single reflection component in the total AC spectrum is extracted by Fourier
transforming the primary reflectance spikes back into wavenumber space; Finally, we use the
Monte Carlo method to search for the target physical parameters to fit the actual and modeled
AC spectrum from each single reflection. Taking a two-layer system as an example, we verify
the feasibility of our approach. The results show that our method can reconstruct the true
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Fig. 4. AC spectrum for each single reflection versus wavenumber. The upper and
lower two panels correspond to the physical parameter configurations (a) and (b) (see
text for details), respectively. The left two panels indicate results near the center
wavenumber, and the right two panels denote results around the edge wavenumber of the
target bandwidth. The solid lines represent the AC spectrum derived from the Fourier
transform of the primary reflectance spikes in Fig. 3, and the dashed lines correspond to
the results predicted from Eq.(15). The numbers indicate the three reflection interfaces
of the two-layer sample.

sample refractive index and thickness with high accuracy. The relative error is within ∼ 0.01%.
Extending to the cases of more layers (𝑁) is straightforward. Unlike methods that search for all
physical parameters simultaneously with a complexity of O(R𝑁 ), the complexity of our method
scales as O(𝑁 · R). This allows our method to be better adapted to the cases of multilayer
samples. In addition, our theoretical framework takes into account not only single but also
multiple reflection events, thus eliminating the need for samples to have low refractive index
contrast. When the reflectivity varies significantly among different interfaces, it will be difficult to
distinguish single and multiple reflections from the reflectance profile. In this case, our approach
would no longer be applicable and additional imaging methods can be employed to determine the
interface locations.
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Table 1. Physical parameters of the two-layer sample considered. (a) and (b) denote
the two parameter configurations (see text for details). In each configuration, the left
column represents the true values, the middle column indicates the deviations between
the recovered results and the true values, and the right column corresponds to the RE in
percentage.

a b

Parameter True Deviation RE(%) True Deviation RE(%)

𝑙𝑆 − 𝑙𝑅 (𝜇𝑚) 200 −4.59 × 10−5 −2.29 × 10−5 200 +1.53 × 10−5 +7.63 × 10−6

𝑑1 (𝜇𝑚) 300 2.17 × 10−3 +7.23 × 10−4 300 +2.94 × 10−2 +9.8 × 10−3

𝑑2 (𝜇𝑚) 400 −9.84 × 10−3 −2.46 × 10−3 400 −4.65 × 10−2 −1.16 × 10−2

𝑛1 1.33 +5.75 × 10−5 +4.32 × 10−3 1 +1.11 × 10−4 +1.11 × 10−2

𝑛2 1.37 −9.7 × 10−6 −7.08 × 10−4 1.4 −1.37 × 10−4 −9.8 × 10−3

𝑛3 1.45 +3.57 × 10−5 +2.46 × 10−3 1.8 +2.09 × 10−4 +1.16 × 10−2
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