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Abstract

We consider the spatio-temporal gridded daily diurnal temperature range (DTR)
data across India during the 72-year period 1951–2022. We augment this data with
information on the El Niño-Southern Oscillation (ENSO) and on the climatic regions
(Stamp’s and Koeppen’s classification) and four seasons of India.

We use various matrix theory approaches to trim out strong but routine signals,
random matrix theory to remove noise, and novel empirical generalised singular-
value distributions to establish retention of essential signals in the trimmed data.
We make use of the spatial Bergsma (SB) statistics to measure spatial association
and identify temporal change points in the spatial-association.

In particular, our investigation captures a yet unknown change-point over the 72
years under study with drastic changes in spatial-association of DTR in India. It
also brings out changes in spatial association with regard to ENSO.

We conclude that while studying/modelling Indian DTR data, due consideration
should be granted to the strong spatial association that is being persistently exhib-
ited over decades, and provision should be kept for potential change points in the
temporal behaviour, which in turn can bring moderate to dramatic changes in the
spatial association pattern.

Some of our analysis also reaffirms the conclusions made by other authors, regard-
ing spatial and temporal behavior of DTR, adding our own insights. We consider
the data from the yearly, seasonal and climatic zones points of view, and discover
several new and interesting statistical structures which should be of interest, espe-
cially to climatologists and statisticians. Our methods are not country specific and
could be used profitably for DTR data from other geographical areas.

Keywords: Bergsma’s correlation, climatic regions, correlation matrix, diurnal temper-
ature range (DTR), empirical spectral distribution, empirical generalised singular-value
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1 Introduction

Let Tmax and Tmin denote the maximum and minimum near surface air temperatures
within a day (a period of 24 hours). Then the Diurnal Temperature Range (DTR) for
that day is defined as Tmax − Tmin. Recorded DTR data over two centuries across the
globe has become an increasingly important spatio-temporal historical record, especially
due to global warming. It is acknowledged that changes in many environmental indices
are causally linked to changes in local and global DTR values. Variations in the DTR has
significant impact on life and agriculture. It is important to understand the space-time
behaviour of DTR across locations over time.

Time series of yearly average DTR from different regions across the world have been
investigated by several authors from various perspectives, Zhong et al. [2023], Sharma
et al. [2021], Stjern [2020], Mall et al. [2021], Sen-Roy [2019], to mention a few. Some
of these articles study DTR at global level (for example Zhong et al. [2023] and Stjern
[2020]), while others make specific contributions on knowledge of DTR for the Indian
subcontinent (for instance Sharma et al. [2021] Stjern [2020], Mall et al. [2021], Sen-Roy
[2019], Vinnarasi et al. [2017], Jhajharia and Singh [2011] and Kothawale et al. [2010]).

All of these studies primarily focus on the temporal pattern of DTR. A few do recog-
nise the existence of spatial variation (that is, variations across space) and present some
results at individual spatial units, like grids. Terminologies such as “spatial distribu-
tions” and “spatial variations” that appear in some of these articles, always are synony-
mous with presentation of the results in the form of a map. It is typically left to the
reader to gain any insight into possible “spatial” variation. Since the DTR is measured
at specific times and locations, terms like “spatial distribution” might be a bit mislead-
ing, since that would normally refer to some randomness in the space variable. The only
randomness here is in the magnitude of the DTR.

The randomness in DTR is expected to have strong temporal as well as spatial
components. However the literature appears to have focused extensively on studying
the temporal behaviour of DTR, without attempting to capture the inherent spatial
dependence. Any such attempt should involve the spatial information of the grids.

Admittedly the temporal component has a strong presence which masks the other
contributors like spatial information. Wu et al. [2009] developed Multidimensional En-
semble Empirical Mode Decomposition (MEEMD) and this was applied by Ji et al. [2014]
to climate data for eliminating the oscillatory component of a time series and potentially
reveal the slow varying components. Vinnarasi et al. [2017] used this technique to Indian
DTR data. However, such techniques do not account for interdependence of the DTR
series arising from various geographic locations.
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We consider the DTR data for India, which is available since 1951. We try to extract
the interdependence of the spatial units with regard to DTR. Since the common temporal
factors make it difficult to isolate such salient patterns, we employ novel linear (random)
matrix theory techniques to de-trend the data temporally, while preserving essential
spatial signals. This technique allows us to study the time series jointly rather than
detrend them individually. We employ a second novel technique to quantify the extent
of spatial (statistical) dependence by a univariate statistics. This eliminates the need of
having to rely on subjective judgements based on maps to arrive at an understanding
of the degree of spatial association/dependence. Our method allows implementation at
various temporal units and windows, which enables us to study the temporal change
in such spatial dependence. This lead us to uncover yet unknown striking changes in
spatial association pattern of DTR across India.

We emphasise that though we focus on India, our methods are not region specific
and are applicable mutatis mutandis to other regions of the world. The analysis pipeline
proposed here can be implemented using standard software like R for any similar cohort
of time series that arise from a collection of geographical units.

Section 2 on materials and methods is divided into two sub-sections. In Section 2.1,
after describing the data, which is spatio-temporal in nature, we discuss the issues related
to organising it appropriately in a matrix form. Then in Section 2.2 we describe in brief
the ideas that we have used from matrix and random matrix theory. These include the
regular and generalised singular-value decompositions, empirical spectral distribution,
Marčenko-Pastur law. We also describe Spatial-Bergsma statistic which we will use as
a statistical measure of spatial association.

In Section 3 we present the result of our preliminary explorations using the above
ideas. In Section 4 we dig into a very detailed analysis, and describe the results of our
analysis. In Section 5 we summarise our findings briefly.

In Section S1 we show some additional analysis of the DTR, especially under different
stratifications using climatic zones and seasons. Since there are several figures in this
article, in Section S2 we provide at one place the descriptions of all the figures.

2 Materials and methods

2.1 Materials: the data

In Figure 1, the spatial domain of India is split into a grid of 362 locations, spanning
six climatic regions, between 7.5◦N–37.5◦N and 67.5◦E–97.5◦E, with a spatial resolution
of 1◦ × 1◦. The daily DTR data at each location for the 72-year period 1951–2022 is
sourced from Climate Research Services, India Meteorological Department, Govt. of
India (https://www.imdpune.gov.in/lrfindex.php). Thus, we have 362 daily time series
spanning 72 years, with some missing values. Complete data is available only for 280
of the 362 locations. This data could be grouped according to months/seasons/years in
temporal dimension and/or according to the six climatic regions in the spatial dimension.
Such grouping will of course depend on the aspects that we wish to probe.
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37.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36.5 0 0 0 0 0 5 5 5 5 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35.5 0 0 0 0 0 0 5 5 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34.5 0 0 0 0 0 0 5 5 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33.5 0 0 0 0 0 0 5 5 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32.5 0 0 0 0 0 0 0 3 3 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31.5 0 0 0 0 0 0 0 3 3 3 4 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30.5 0 0 0 0 0 0 6 3 3 4 4 4 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29.5 0 0 0 0 0 6 6 6 3 3 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 5 0
28.5 0 0 0 6 6 6 6 6 6 3 3 4 4 4 4 0 0 0 0 0 0 5 0 0 5 5 5 5 4 4 0
27.5 0 0 6 6 6 6 6 6 6 3 3 3 4 4 4 4 4 4 0 0 0 5 4 4 4 4 4 4 4 4 4
26.5 0 0 0 6 6 6 6 6 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0
25.5 0 0 0 6 6 6 6 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 0 4 4 4 4 4 0 0 0
24.5 0 6 6 6 6 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 0 0 4 4 4 4 0 0 0
23.5 0 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 2 2 0 0 4 4 4 0 0 0 0
22.5 0 0 3 3 3 3 2 2 2 4 4 4 4 4 4 4 4 4 4 2 2 2 0 0 0 4 0 0 0 0 0
21.5 0 0 3 3 3 2 2 2 2 2 2 4 4 4 4 4 4 2 2 2 2 2 0 0 0 0 0 0 0 0 0
20.5 0 0 0 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0
19.5 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0
18.5 0 0 0 0 0 1 1 2 2 2 3 3 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0
17.5 0 0 0 0 0 0 1 1 2 2 3 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16.5 0 0 0 0 0 0 1 1 2 2 3 3 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15.5 0 0 0 0 0 0 1 1 2 2 3 3 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14.5 0 0 0 0 0 0 0 1 1 2 3 3 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13.5 0 0 0 0 0 0 0 1 1 2 3 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12.5 0 0 0 0 0 0 0 1 1 2 3 3 2 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
11.5 0 0 0 0 0 1 0 0 1 2 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
10.5 0 0 0 0 0 0 0 0 1 2 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
9.5 0 0 0 0 0 0 0 0 0 1 3 3 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
8.5 0 0 0 0 0 0 1 0 0 1 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
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Figure 1: Climate grid of India: 1-Tropical monsoon; 2-Tropical savannah, wet and dry;
3-Arid, steppe, hot; 4-Humid subtropical; 5-Montane climate; 6-Hot deserts, Arid.

2.1.1 Data matrix

The time series of the daily DTR values for the 280 (or 362) locations for the 72 years
yields a 280 (or 362) dimensional vector time series with 26298 time points. We visualise
this as a 26298 × 280 (or 362) large data matrix X say. For a specific year, the row
dimension for the data sub-matrix is 365 or 366, and the rows are arranged in the
naturally increasing order of time. For now, the 280 (or 362) locations (columns) are
arranged in some fixed order (e.g. latitude x longitude), and we shall have more to say
on this below. The entries of X are subject to location dependent temporal patterns
(e.g. seasonal variation). There is also spatial dependence across the locations, which is
expected to be non-stationary across different pairs of locations.

2.1.2 Ordering the locations

Naively, the collection of 280 or 362 time series can be simply put side-by-side to form
a data matrix for analysis. However each series arising out of a grid also has two key
additional pieces of information, namely their latitudes and longitudes. Therefore, to
investigate the temporal and/or spatial behaviour of the DTR across times and regions,
we need to decide how this two-dimensional location information should be incorporated
so as to arrive at an appropriate ordering amongst these time series. The consequent
visual message might (and does) depend on this arrangement.

There are several choices for ordering the locations, dictated by convenience, geo-
graphical proximity, or division of India into the six climatic zones. One may begin
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with the lowest latitude, and move according to the increasing order of longitude of the
locations, then come back to the next latitude and repeat the process. One could even
switch the roles of the longitudes and latitudes. In any case, with this approach, two
regions in the same climatic zone might end up being distant in the ordering.

On the other hand, we could use a classification of the locations into climatic zones.
The Köppen [1918] classification of climatic zones of the world was later modified by
several scientists (see McKnight and Hess [2000]). This yields a classification of India
into six major climatic zones as given in Figure 1. We could group the locations ac-
cording to the climatic zones they belong to. This would imply that locations that are
geographically close, are not necessarily close with respect to the ordering. One may use
the latitude-longitude ordering within each zone to alleviate this problem somewhat.

We tried several different orderings, and eventually settled on a spiral ordering that
is a type of Hilbert space-filling curve, which are sometimes used in image processing
to rearrange image pixels in order to enhance pixel locality. Mathematically this can
be thought of as a bijection from N2 to N, where N = {1, 2, . . .}. In our context this
addresses both the zonal and spatial proximity of the grids reasonably well.

Visualising the locations according to the longitudes and latitudes, we start with
the lowest latitude and longitude position, say (1, 1) position, then move to the (1, 2)
position, and then move down diagonally to the (2, 1) position, then move down to the
(3, 1) position, then successively to (2, 2), (1, 3), and so on. In other words, we move
anti-diagonally and wrap around. Likewise, instead of first moving to (1, 2), one could
move first to (2, 1) etc. We refer to this ordering as the spiral ordering. This ordering
provides a significantly improved visual depiction and will get reflected in our figures
and plots, thereby conveying valuable insight into the data and its behaviour from the
spatial point of view. We shall call this 26298× 280 reorganised data matrix D.

2.2 Methods

We have used ideas from linear matrix theory, random matrix theory (RMT), and statis-
tics to analyse the data. These include the regular and generalised singular-value de-
compositions (SVD and GSVD), empirical spectral distribution (ESD), Marčenko-Pastur
(MP) law, Bergsma’s correlation ρ, and Spatial-Bergsma (SB) which is a statistical mea-
sure of spatial association based on Bergsma’s correlation. The following discussion is
general, and will remain valid irrespective of any specific ordering of the locations.

2.2.1 Correlation matrices

All correlation matrices use daily data at the grid level and the correlations are calculated
between grids. Depending on the situation, these matrices are calculated for the entire
period (or for subsets of days, such as years, months within a year, etc.), and for the
entire grid (or for subsets of grids such as climatic regions, etc.).

The correlations have been computed based on three different data matrices: D =
((ddg)), T = ((tdg)) and S = ((Sdg)) d = 1, . . . , 26298, and g = 1, . . . , 280, which repre-
sent respectively, the original DTR data, the residuals from time series decomposition
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of the original data, and the trimmed DTR data (trimming is explained later).
Two different correlations have been used. One is the product moment (Pearson’s)

correlation, and the other is the Bergsma’s correlation. The latter has been used in the
context of spatial association measures. Specifically, correlation matrices that have been
computed are listed below:

(1) Two Pearson correlation matrices RD and RS , based on D and S respectively.

(2) Two sets of Pearson correlation matrices {RD
i } and {RS

i } based respectively on the
i-th year sub-matrices of D and S.

(3) Two sets of Bergsma’s correlation matrices {BD
i } and {BS

i } based respectively on
the i-th year sub-matrices of D and S.

(4) Bergsma’s correlation matrices, {BS
i,k}, based on S for each year i, and only for grids

from each climatic region k.

(5) Bergsma’s correlation matrix BS
mi based on S for the m-th month of the i-th year

and all grids.

2.2.2 Empirical spectral distribution; Marčenko-Pastur law

The sample correlation matrix is a real symmetric random matrix. The study of the
eigenvalues of a random matrix occupies a central position in random matrix theory
(RMT). A basic notion is the following: for any real symmetric n × n random matrix
Rn, let λ1, . . . , λn be its eigenvalues (which are all real). Then the empirical spectral
distribution (ESD) of Rn is defined by

FRn(x) =
#{i ≤ n : λi ≤ x}

n
. (2.1)

This corresponds to the probability distribution which puts mass n−1 at each of the
eigenvalues. Roughly speaking this is the histogram of the eigenvalues of Rn. We shall
use the ESD for comparing sample correlation matrices obtained using various contextual
subsets of our data.

The Marčenko-Pastur (MP) law provides the asymptotic distribution of the ESD of
the sample covariance matrix when dimensions grow and the observations are indepen-
dent and identically distributed (iid, pre noise). In particular, suppose X is an n × p
matrix with iid observations that have mean 0, variance 1 and finite fourth moment.
Suppose n → ∞ and n−1p → y, 0 < y < ∞. Then the ESD of n−1X⊤X (the symbol
⊤ denotes the transpose of a matrix) converges almost surely to what is called the MP
law. For details, please refer to Bose [2021]. This law has a point mass 1−y−1 whenever
y > 1. Elsewhere (irrespective of the magnitude of y) it has the density

f(x) =
1

2π

√
(y+ − x)(x− y−), y± = (1±√

y)2, y− ≤ x ≤ y+.

Note that this limit law does not depend on the underlying distribution of the variables.
Indeed, it is also known that with a high probability, there are no stray eigenvalues to
the left of y− or and right of y+.
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This can be used to distinguish signal from noise, by identifying the eigenvalues
that are near the edges of the MP law. For example, if p = 280 and n = 365, then
y = 0.767123, and y+ = (1 +

√
y)2 = 3.519, y− = (1 − √

y)2 = 0.0154. For a random
correlation matrix, the eigenvalues that lie within this range approximately may be
attributed to noise, and the rest may be attributed to signal.

Using the MP law, the original matrix can be approximated by using the significant
eigenvalues and corresponding eigenvectors, which would be the de-noised version of the
original matrix.

2.2.3 Singular value decomposition (SVD)

Let X be an n × p matrix with real entries. Then one can choose two real matrices U
and V of orders n× n and p× p respectively, and an m× n rectangular diagonal matrix
Σ = ((σij)) (so that σij = 0 if i ̸= j) with real entries, such that, the columns {ui} and
{vj} of U and V are the (orthonormal) eigenvectors of XX⊤ and X⊤X, and

UU⊤ = In×n, V V ⊤ = Ip×p, and X = UΣV ⊤,

where In×n and Ip×p are identity matrices of dimensions n and p respectively. This is the
singular-value decomposition (SVD) of X. The elements σii, 1 ≤ i ≤ min(n, p) = r, of Σ
can and shall be chosen to be in decreasing order of i. They are called the singular-values
of X. It is then clear that

X =

r∑
i=1

σiiuiv
⊤
i . (2.2)

This decomposition breaks up the matrix X into simpler components, and all the in-
formation about the matrix X are coded in the singular-values {σii} and the left and
right singular-vectors {ui} and {vj}. The matrices U and V induce rotation whereas the
matrix Σ induces scaling. The SVD automatically adjusts for any change in the ordering
of rows and columns of X.

The crucial idea is that the singular-values that are large in magnitude are more
important, while those that are of lower magnitude could possibly be ignored. If we
drop these smaller singular-values and consider a reduced sum on the right side of (2.2),
then it will serve as a good low dimensional approximation for X, especially in situations
such as ours where n is large. This also helps in computations, and moreover, when X is
data dependent, as in our case, the retained singular-values and singular-vectors become
important data analytic tools.

We use a trimmed version of the SVD in our analysis. We also use generalised SVD,
which is a more sophisticated tool and is discussed briefly in Section S1.

2.2.4 Bergsma’s correlation; Spatial Bergsma statistic

A value of 0 for the conventional product-moment correlation (i.e. Pearson correlation)
does not imply independence. Many (non-parametric) alternatives try to address this
and other issues. One of these is Bergsma’s correlation ρ (see Bergsma [2005]), which
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has the nice property that zero correlation implies independence. This is not a rank
based method, like the Bergsma’s τ correlation. For some details about its description,
properties and estimation, see Bose et al. [2023]. We chose this correlation since it leads
to a nice spatial measure of association that we shall discuss below.

To investigate spatial association, we need a statistical measure for it. Such a measure
is built using two ingredients. Suppose we have p spatial units (for us, p = 280).

A spatial proximity weight matrix W = ((wij))1≤i,j≤p represents the extent of prox-
imity between the spatial locations. A numerical weight wij is assigned to each pair
(i, j), and larger weights signify greater spatial proximity. See Getis and Ord [2010] for
different popular choices for W . It is always assumed that wii = 0 for all i. Further, W
shall be row-standardized, so that each row sum in the matrix is equal to one. We shall
use two choices for W . The first is the lag-1 adjacency matrix

wij =

{
1 if regions i and j are adjacent locations,

0 otherwise.

The second choice ofW is obtained by applying exponential decay on a notion of distance
between the locations. Here simple Euclidean distances between the grids have been
considered to construct the base distance matrix.

The second ingredient is a similarity matrix. Suppose that we have a series of obser-
vations Xi = {xm,i,m = 1, . . . , T} at each of the p locations, i = 1, 2, . . . , p for T time
points. The similarity matrix Y is defined as S := ((simij)), where simij is some mea-
sure of similarity (dependence) between Xi and Xj . In the literature on spatial studies,
often the chosen measure of similarity is taken to be the product moment correlation.
However, our choice for sim(i, j) = ρ(Xi, Xj) where ρ(Xi, Xj) is Bergsma’s correlation
between the variables Xi and Xj , mentioned earlier.

The spatial association measure (Spatial Bergsma) SB proposed by Kappara et al.
[2023] uses Bergsma’s correlation as follows. LetXi denote a real variable for the location
i = 1, . . . , p. Then SB with a row-standardized W is defined as

SB = p−1
∑

1≤i<j≤p

(wij + wji)ρ(Xi, Xj). (2.3)

Suppose that we have observation vectors Xi = {xm,i,m = 1, . . . , T}. Let ρ̃(ij) denote
the estimated ρ, calculated for the pair (Xi, Xj) (see Bose et al. [2023] for details). Then
an estimate of SB is the spatial Bergsma’s statistics, given by

S̃B := p−1
∑

1≤i<j≤p

(wij + wji)ρ̃
(ij), (2.4)

The R code in Bose et al. [2023] (Appendix) can be used for computing S̃B. Computation
of {ρ̃(ij)} involves computation of several U -statistics with complicated kernels. When
the number of observations is large, this is computationally very intensive. Thus, we use
this concept only on the yearly average data.
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The asymptotic distribution of S̃B, as the number of observations becomes large, is
known only when the observations are independent and identically distributed across
time. This may appear to be a major hurdle since the DTR values are not expected
to show any sort of independence. Nevertheless, this can still be used fruitfully as a
comparative and a diagnostic tool once the data is reasonably time-detrended as we
have done in our analyses.

3 Preliminary exploration

Our primary focus of study is spatial association, and temporal changes therein, in the
DTR data arising from India. As mentioned earlier, complete data is available only for
280 grid points out of 362, and most of our analysis is restricted to these. However,
for certain statistics involving averages, we do use the partial data available for the
additional 82 grids points.

3.1 Empirical spatial distributions of average DTR

We first focus on the empirical spatial distribution of average DTR over various temporal
subsets. For this part we use data from all the 362 grids. The data can be grouped in
various ways, for example, year-wise, or season-wise within each year. The locations can
be stratified according to climatic regions too.
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Figure 2: Yearly average DTR values (1951–2020) for the 362 grids.

In Figure 2, for each year on the horizontal axis, we have plotted the yearly average
DTR values from the 362 locations on the vertical axis. Visually, the dispersion of the
underlying average DTR distribution has generally decreased over the years, and there
is visible shrinkage of distribution from both sides. There is also an indication of change
in the pattern somewhere in the 1960’s.

The yearly weather of India is generally divided into four seasons: December to
February (DJF), March to May (MAM), June to August (JJA), and September to
November (SON). In Figure 3, for each of the 72 years on the horizontal axis, we have
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Figure 3: Seasonal average DTR values (1951–2020) for the 362 locations. In clock-wise
direction; DJF (Dec.–Feb.), MAM (March–May), SON (Sept.–Nov), JJA (June–Aug.).

plotted the DTR averages of each season (seasonal averages) for the 372 grids on the
vertical axis. The behaviour of the DTR varies across seasons. The shrinkage of the dis-
tribution that was visible in Figure 2 is particularly pronounced during autumn (SON),
and to a lesser extent in winter (DJF). The spatial spread of DTR is narrowest and most
homogeneous during monsoon (JJA) and is widely varying in the other three seasons.

The average DTR values could also be plotted after stratifying the grids by climatic
zones or by climatic zones and seasons. Some such plots are given in Section S1.

3.2 Empirical spectral distribution of DTR correlation matrices

We now consider the (product-moment) correlation matrices {RD
i } obtained from the

daily DTR values for all pairs of the 280 grid points, for every year i. We shall study
these random matrices to assess the changes in the underlying spatial association pattern
over the years, as has been suggested by Figures 2 and 3.

In Figure 4a we have presented the ESD for each year, based on RD
i . Over the years

there has been a small but steady increase in the median value of the ESDs, and a slight
shift away from zero in the left tail of the distribution. Since the sum of eigenvalues is
fixed for a correlation matrix, the above, generally speaking, will mean that the right
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(a) ESD of RD
i , 1 ≤ m ≤ 72.

0
50

10
0

15
0

20
0

19
51

19
53

19
55

19
57

19
59

19
61

19
63

19
65

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

20
09

20
11

20
13

20
15

20
17

20
19

20
21

(b) Quantiles of the eigenvalues for each year.

Figure 4: ESD analyses of the 72 correlation matrices {RD
i }.

tail shrinks towards the middle too. In Figure 4b, we have plotted the quantiles (at 10%
interval) of the eigenvalues for each year. We notice a small but gradual decrease in the
top eigenvalues, although noticeable oscillation in these values is also present.

3.3 Correlation matrix RD and its de-noised version R̂D

Let {λD
i } be the eigenvalues of RD. Applying the MP law based cutoff, only 10 of

these were significant. Then RD is approximated by using these eigenvalues and the
corresponding eigenvectors {eDi } as the the MP law based de-noised matrix R̂D:

R̂D =
10∑
i=j

λD
j e

D
j (e

D
j )

⊤
.

The upper and lower triangles in Figure 5 are based on RD and R̂D respectively. First
note that from the upper triangle, there is visible association between spatial locations.
Indeed, of the 10 top eigenvalues, the largest is ten times in magnitude compared to
the second largest, as is evident from Figure 4b. This may not be surprising since
common temporal pattern arising due to seasonality would naturally lead to a strong
association/correlation. Nevertheless, presence of high degree of positive association
might be masking other patterns. MP law based de-noising has some effect and brings
balance to the distribution of the correlations (observe the negative values along the left
vertical). However, the correlation distribution still looks heavily positive.

Thus although the MP law has been very useful in many applications, it is not
effective here in bringing out any pattern, when implemented on RD.
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Figure 5: Upper triangle–entries from the correlation matrix RD; Lower triangle–
corresponding entries from the MP de-noised version of RD.

4 Analysis

The preceding explorations indicate that in order to bring out meaningful spatial as-
sociation patterns, it is imperative to remove association due to predominant temporal
patterns. Time series decomposition was carried out for each of the 280 daily-DTR-time
series. Time trends and seasonal components were removed and the spatial correlation
matrix RT was obtained based on the resulting time-detrended data T . By applying
MP law, there were 18 significant eigenvalues and once again there is only one dominant
eigenvalue. Thus we explore alternate methods for removing dominant trends to bring
out the spatial association pattern underlying the DTR data.

4.1 Trimmed-DTR matrix S: detrending by SVD

SVD is used to project the data onto a lower ranked subspace. The common strategy is
to use the truncated SVD after dropping the relatively smaller singular-values.

However the objective here is to remove the predominant patterns to elucidate the
finer and yet unknown (spatial) patterns. For D, the presence of a few (predominantly
temporal) strong signals are masking other (spatially) significant signals. Our strategy
would be to remove components corresponding to a few dominant singular-values of D,
and work with the resulting trimmed DTR matrix S.

For that purpose we identified the minimal number of singular-values D required
to reasonably time-detrend the data, while retaining as much of the overall signal as
possible. Efficacy of time detrending was assessed by computing the autocorrelation
function (ACF), and the overall signal coverage was measured by the percent share of
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Figure 7: Autocorrelation series for the 280 time series based on trimmed data S.

singular-values retained. Employing these two criteria, we stopped after the top 12
singular-values. Referring to Figure 6, these cover 72% of the singular-values. Taking
out the components σiiuiv

⊤
i from D, 1 ≤ i ≤ 12, we obtain the trimmed data matrix

S = D −
12∑
i=1

σiiuiv
⊤
i . (4.1)

The autocorrelation plots of the time series from each row of S given in Figure 7 show
that this trimming removed a lot of temporal patterns.

Now consider the correlation matrix RS obtained from S. Applying the MP law on
the ESD of RS now shows 33 significant eigenvalues, compared to only 10 for RD (and
18 for the correlation matrix based on the residuals from time-series decomposition T ,
as mentioned earlier). See Figure S6 on eigenvalues of correlation matrices in Section
S1.

In addition to these, we also consider the entire ESDs. Figure 8 shows that the
ESD of RD is extremely long tailed. The ESD for RS has a much more balanced
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Figure 8: Eigenvalues of the correlation matrices: top panel, RD; bottom panel, RS .

distribution. Trimming has shifted the spatial association behaviour, as captured by
the yearly correlation matrices, and also made the distributions more balanced. Later
in Section 4.4 we have also considered the behaviour of the spectral distribution of the
yearly correlation matrices {RS

i }. In Section S1 we have given further information on
the singular-vectors removed.

4.2 Generalised SVD to assess spatio-temporal information in S

The method employed above is not a traditional de-trending technique. We need to
assess if there has been loss of spatial information. We use GSVD for this purpose. See
Section S1.5 for a brief description of GSVD. For each successive pairs of years data
from both D and S (resulting in 71 such pairs from each), we computed the GSVD. The
results are shown in Figure 9, where we have given the boxplots for the log-generalised
singular-values for all such successive pairs, separately for D and S.

Recall that in GSVD the right singular-vectors are held common while the left
singular-vectors are allowed to vary between the two matrices. In the current con-
text this translates into holding the vectors capturing the spatial rotation fixed, while
allowing the temporal rotation to vary from year to year.

As Figure 9 shows, the empirical distributions of the generalised singular-values
remain same or similar for pairs arising from D and S. This confirms that the temporal
information retained in S is comparable to that in D.

Recall that to identify significant signals, the MP law was used for the eigenvalues
of the correlation matrices. To carry out similar exercise for the generalised singular
values, we needed a similar result on the null distribution of generalised singular values.
This seems to be missing in the literature.
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(b) Trimmed DTR data S.

Figure 9: Empirical distributions of the (log) generalised singular-values based on pair-
wise successive years data from D (left panel) and S (right panel). The (empirical)
critical values for the generalised SVs are marked by horizontal lines.

Hence we estimated the null distribution of GSVs empirically (see Section S1.6 and
Figure S1) and obtained the critical values from that. By comparing the observed GSV
distributions and the critical values, it appears that (in the log scale) the GSVs for S
has a more “regular” distributional behaviour compared to that for the original DTR
matrix.

We have also carried out the reverse exercise to assess spatial information retention
using D⊤ and S⊤ (see Section S1.7) with similar conclusion as above.

This exercise assures that S can be used as proxy for “time-detrended” series, and
it retains the spatial features of D. Hence S is suitable for studying potential spatial
patterns in the DTR data, and will be considered next for further analyses.

4.3 Exploring spatial association pattern

Now we consider the correlation matrix RS obtained from S. Prior to ascertaining
existence of any pattern within that matrix, we first explored it from various perspectives.

For example we identified a few selective grids that cover some of the major cities
in India, and plotted the correlation vectors in the form of heat maps corresponding to
the latitude and longitude information of individual grids. The resulting images given
in Figure 10 exhibit strong spatial patterns around these cities. There appears to be
strong association in the immediate vicinity for each of these cities.

Let us fix a grid g1, and consider the grid g2 which yields the maximum correlation
with g1. Consider the difference in latitudes and longitudes between g1 and g2. The
distribution of these differences across all grids has a significant mode at 0, while the
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Figure 10: Correlations within grids for S that cover each of the four major cities. top
left, Delhi; top right, Kolkata; bottom left, Chennai; bottom right, Mumbai.
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Figure 11: Distribution of distance between grids with maximum association, measured
in terms of differences in latitude (in black) and longitude (in red) for S.

distribution of the difference in longitudes is approximately uniform around ±1. In
Figure 11) we have plotted these two distributions. Such salient patterns were not visible
earlier but are emerging now. The question remains whether we can present this pattern
for all grids via a single plot. We first stratify the grids according to the climatic regions
they belong to. Following which we employ the Hilbert space filling curve approach
and arrange the grids in a spiral manner described earlier. We present in Figure 12
the correlation matrix with the grids ordered as described above. This enables us to
visualize much more clearly the spatial association pattern, and also indicates variation
in strength and range where maximum association between locations take place. Analysis
of the eigenvectors corresponding to significant eigenvalues as per the MP law support
the observation of climatic region-specific spatial association pattern.

4.4 Exploring temporal changes in spatial association pattern

The inherent assumption in obtaining the preceding pattern is that it is temporally
static, and hence the entire data was used to arrive at the conclusions. To study similar
association patterns for any smaller time interval, for example individual calendar year,
would result in the task of summarising numerous such matrices.

We achieve this by studying the ESD of each of the correlation matrices {RS
i }.

Studying the ESD in lieu of the entire correlation matrix enables us to investigate for
patterns in a much smaller dimension while retaining the essential features of the data.
Figure 13 presents the ESD for each year. The ESDs clearly indicate the occurrence of
a drastic change in the spatial association pattern in the late 1960s.

4.5 Spatial Bergsma: A univariate spatial association measure

The correlation matrices present a 280 × 280 dimensional summary of the association,
and the ESDs present a 280×1 dimensional summary. We use spatial Bergsma measure
of Kappara et al. [2023] to arrive at a univariate measure for the spatial pattern observed.
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Figure 12: Correlations based on S with grids arranged first according to climatic regions
and then in spiral Hilbert space filling curve manner. Upper triangle, original correlation
matrix; Lower triangle, the MP de-noised version.
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Figure 14: Spatial Bergsma measure with two spatial weight matrices for S: red, lag-1
adjacency; blue, exponential distance decay.

As described earlier in Section 2.2.4, the key ingredients to derive such a measure are
a spatial weight matrix and a similarity measure. We used two candidates for spatial
weight matrix, namely the lag-1 adjacency matrix and the exponentially decaying dis-
tance matrix. For similarity measure we would be using Bergsma’s ρ for its useful ability
to depict independence (corresponding to the zero value of the measure).

Figure 14 presents the SB statistics at the all India level for each year based on
S along with the same for each of the six climatic regions. It illustrates that both
degree of association and variation in association, are climatic region specific. The SB

statistic shows without any doubt that there has been at least one, and possibly more,
major change(s) in spatial association pattern over the Indian region. Such changes in
association has had varying degrees of effect in different climatic regions.

4.6 El Niño Southern Oscillation and spatial association

Figures 12 and 14 have already established that climatic regions have different impacts on
the centrality and the dispersion of the spatial association measure SB for India. It is well
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Figure 15: Boxplot of spatial Bergsma statistics, based on individual year’s S and cate-
gorized according to ENSO information.

known that El Niño-Southern Oscillation (ENSO) is a key global weather phenomenon,
and affects the climate of much of the tropics and subtropics (see https://www.noaa.gov/
for more information).

We augmented the yearly SB statistics values obtained in the earlier section with
the ENSO data. Figure 15 shows the impact of ENSO on the distributional behaviour
of SB. We can see that the variations in SB are much less in the El Niño phase, and it
can be argued that this is because the influence of the phase is so strong that it takes
over and dictates the variation in DTR.

5 Conclusions

Data explorations indicate that in order to bring out meaningful spatial association
patterns, it is imperative to remove association due to predominant temporal patterns.
The trimmed DTR matrux S, trimmed-off by the top 12 singular-values, and the corre-
sponding singular-vectors, was found suitable as proxy for “time-detrended” series, with
significant spatial signals still contained in it. Unsurprisingly, there is a strong associ-
ation in the immediate vicinity for each of the grids, with patterns slightly differing in
north-south and east-west directions. However such association should not be taken as
indicative of causation.

Overall, the ESD based analyses support the presence of a climatic region-specific
spatial association pattern. Climatic regions have had different impacts on the centrality
and the dispersion of a spatial association measure. We can see that associations have
also been affected by global climatic phenomenon like ENSO, in particular by the El
Niño phase. Influence of global factors have been reported in the literature earlier also
Vinnarasi and Dhanya [2019].

The yearly ESD based analyses clearly indicate a drastic change in the spatial as-
sociation pattern in the late 1960s. The SB statistic confirms without any doubt that
there has been at least one, and possibly more, major change(s) in the spatial association
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pattern in the Indian region.
While most of the methodological techniques used here exist in the literature, a

novel synergistic manner of employing these techniques to data can (and did) bring out
new features. In the current situation it brought out yet unknown spatial association
patterns and temporal breakage in it. Such a pipeline of analysis can be deployed to
other investigative studies on spatio-temporal data as well.

We have obtained the null distribution of generalised singular values empirically, and
have used it profitably to assess the eigenvalues that have significant signals. This is
due to the fact that distributional results on the generalised singular values for random
data matrices appear to be absent in the literature. It is worth pursuing this from the
theoretical perspective.

We are in broad agreement with the findings of other researchers that DTR showed
an increase during early seventies till the turn of the millennium (see for instance Mall
et al. [2021]). This is clear even while accounting for spatial variation and using a more
robust measure (than mean) against outliers.

In future the spatial association/dependence pattern that emerged in our analysis
could help build composite spatio-temporal models, e.g. by using separable Gaussian
space-time processes.
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S1 Supplementary information

We probe the DTR values further, using stratifications via climatic zones and seasons.
The six climatic zones will be numbered as: (1) Tropical monsoon, (2) Tropical savannah,
wet and dry (3) Arid, Steppe, hot, (4) Humid subtropical, (5) Montane climate, and (6)
Hot deserts, Arid.

S1.1 Exploration of average DTR values by climatic zones and seasons

As mentioned earlier, we could use stratification by climatic zones, and by seasons within
each climatic zone.
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Figure S1: Average DTR values for 72 years at the 362 locations in the six climatic
zones, the six zones (1-6) presented in the order left to right and top to bottom panel.

Figure S1. Yearly average DTR, in each climatic zone: As mentioned earlier,
India has six climatic zones. DTR behaviour across these zones are quite different.
Nevertheless, the change in pattern somewhere in the 1960’s observed earlier in the
aggregated yearly data is also visible in each of these zones. There appears to be a
systematic oscillation in the average DTR values for the desert climatic region. It is quite
pronounced when checked at the four seasons level (approximately every 5-6 years).
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Figure S2: Average DTR values for Dec. to Feb. for 72 years, at the 362 locations in the
six climatic zones (1)–(6) in the order left to right and top to bottom panel.

Figure S2. Yearly average DTR, in each climatic zone and season: We can
also plotting the DTR using both the seasons and the zones. This is done for the winter
season (December-January-February) in this figure. Sudden change in location of the
DTR distribution is seen even at a climatic region level for any given season.

S1.2 Empirical singular-value (SV) distribution

The significant top singular-values of D could be identified if the null distribution of
singular-values for a random matrix of the same size were available. The limit distri-
butions of such high-dimensional matrices as the dimensions grow, are known and are
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universal, in that they do not depend on the underlying distribution of the standard-
ized i.i.d. entries and could be used as the null distribution. Instead, we obtained the
empirical distribution of the singular-values based on 1000 simulations of matrices of
order 26298 × 280 with N(0,1) entries. Figure S3 provides this empirical distribution.
Based on the scaled DTR data, at 5% (two-sided) significance levels, there were only 3
singular-values out of 280, that were not found significant.

150 160 170 180

0.0
0

0.0
1

0.0
2

0.0
3

Figure S3: Empirically estimated null distribution of singular-values.

S1.3 Further findings from SVD of D

Figures S4 and S5 present some aspects of the top 6 left singular-vectors of D. Un-
surprisingly they have association with the seasonal patterns as captured at the month
level. It has been reported in the literature (for example, de F. Forster and Solomon
[2003]) that weekdays and weekends can have different impacts on DTR. Figure S5 also
suggests that there could be an association between these variates.

S1.4 Eigenvalues of RD, RT and RS

The spatial association of DTR over the Indian subcontinent could be studied via the
ESDs from the correlation matrices based on D, T or S. Figure S6, clearly shows
presence of a handful of dominant eigenvalues for the first two, and a more reasonable
decay of eigenvalues for the third.

S1.5 Generalised singular-value decomposition (GSVD)

GSVD is a simultaneous linear transformation of two matrices D1 and D2 of orders
N1 ×M and N2 ×M . In implementations it is assumed that the number of rows should
be more than the number of columns, so that min(N1, N2) ≥ M .

Before we give a description of GSVD let us indicate what D1 and D2 shall be in
our context. Let the matrix D1 be the N1 ×M sub-matrix of D whose n-th row vector
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Figure S4: Components of top left singular-vectors of D, at monthly level.

26



19
51

.0
19

57
.0

19
63

.0
19

69
.0

19
75

.0
19

81
.0

19
87

.0
19

93
.0

19
99

.0
20

05
.0

20
11

.0
20

17
.0

19
51

.1
19

57
.1

19
63

.1
19

69
.1

19
75

.1
19

81
.1

19
87

.1
19

93
.1

19
99

.1
20

05
.1

20
11

.1
20

17
.1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

19
51

.0
19

57
.0

19
63

.0
19

69
.0

19
75

.0
19

81
.0

19
87

.0
19

93
.0

19
99

.0
20

05
.0

20
11

.0
20

17
.0

19
51

.1
19

57
.1

19
63

.1
19

69
.1

19
75

.1
19

81
.1

19
87

.1
19

93
.1

19
99

.1
20

05
.1

20
11

.1
20

17
.1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

19
51

.0
19

57
.0

19
63

.0
19

69
.0

19
75

.0
19

81
.0

19
87

.0
19

93
.0

19
99

.0
20

05
.0

20
11

.0
20

17
.0

19
51

.1
19

57
.1

19
63

.1
19

69
.1

19
75

.1
19

81
.1

19
87

.1
19

93
.1

19
99

.1
20

05
.1

20
11

.1
20

17
.1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

19
51

.0
19

57
.0

19
63

.0
19

69
.0

19
75

.0
19

81
.0

19
87

.0
19

93
.0

19
99

.0
20

05
.0

20
11

.0
20

17
.0

19
51

.1
19

57
.1

19
63

.1
19

69
.1

19
75

.1
19

81
.1

19
87

.1
19

93
.1

19
99

.1
20

05
.1

20
11

.1
20

17
.1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

19
51

.0
19

57
.0

19
63

.0
19

69
.0

19
75

.0
19

81
.0

19
87

.0
19

93
.0

19
99

.0
20

05
.0

20
11

.0
20

17
.0

19
51

.1
19

57
.1

19
63

.1
19

69
.1

19
75

.1
19

81
.1

19
87

.1
19

93
.1

19
99

.1
20

05
.1

20
11

.1
20

17
.1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

19
51

.0
19

57
.0

19
63

.0
19

69
.0

19
75

.0
19

81
.0

19
87

.0
19

93
.0

19
99

.0
20

05
.0

20
11

.0
20

17
.0

19
51

.1
19

57
.1

19
63

.1
19

69
.1

19
75

.1
19

81
.1

19
87

.1
19

93
.1

19
99

.1
20

05
.1

20
11

.1
20

17
.1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure S5: Components of top left singular-vectors of D, at weekday/weekend level for
each year.
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(c) Trimmed data S.

Figure S6: Eigenvalues of correlation matrices RD, RT and RS .

holds the DTR values for the n-th time point across all the M = 280 grids. The m-
th column of D1 holds the DTR values of the m-th grid across different time points.
Let D2 be the N2 ×M corresponding matrix for the subsequent year. This one-to-one
correspondence between the two sets of conditions is at the foundation of the GSVD
comparative analysis of the two data sets.

Here we use GSVD to obtain a simultaneous linear transformation of the two matrices
D1 and D2 to reduced M ×M space, with shared row-space basis vectors as follows:

D1 = U1∆1[0 P ]V and D2 = U2∆2[0 P ]V

where U1, U2 and V are orthogonal matrices of dimensions N1×N1, N2×N2 and M×M
respectively.

Let r be the rank of the matrix
[
D⊤

1 D⊤
2

]
, with r ≤ M . Then P is an r × r upper

triangular non-singular matrix, and [0 P ] is an r×M matrix. In the case of DTR data,
there is no additional information available to assume that the matrices may be rank
deficient and thus it is expected that r = M .

The matrices ∆1, ∆2 are non-negative quasi diagonal matrices of orders N1 × r and
N2 × r respectively, and further,

∆⊤
1 ∆1 +∆⊤

2 ∆2 = I,

where I is the r × r identity matrix.
Write

∆⊤
1 ∆1 = diag(α2

1, . . . , α
2
r) and ∆⊤

2 ∆2 = diag(β2
1 , . . . , β

2
r ),

where 0 ≤ αi, βi ≤ 1 for all i. The ratios α1/β1, . . . , αr/βr are called the generalized
singular values of the pair (D1, D2). If βi = 0, then the generalized singular value αi/βi
is infinite.

The GSVD is unique up to phase factors of ±1 of each triplet of corresponding
column and row basis vectors, except in degenerate subspaces defined by subsets of pairs
of generalized singular values of equal ratios. Note that the basis vectors for row spaces
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of the two matrices are shared (i.e. held common between the two matrices). Thus these
generalised singular values capture useful essence of the two matrices relative behaviour
with regard to the column spaces.

The anti-symmetric angular distances between D1 and D2 are,

θi = arctan(αi/βi)− π/4, 1 ≤ i ≤ r.

They indicate the relative significance of the i-th basis vectors from the column spaces
of D1 and D2, and are arranged in decreasing order of significance in D1 relative to D2.

S1.6 Empirical generalised singular-value (GSV) distribution

We were unable to locate any theoretical results on distributional behaviour of the
generalised singular values in literature. We propose to use Empirical GSV distribution
instead. We implemented two alternate methods to simulate the null situation. In
the first method, we simulate data of size similar to our current analysis setup and
derive GSVs. We repeat this process 1000 times and use the collected GSVs to form
an empirical distribution. In the second method, we use (random ??) permutations on
the actual data and obtain the GSVs in each case, repeating the process 1000 times, to
obtain a second empirical distribution. There were no discernible differences in these
two estimates of the empirical distribution of GSVs.
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Figure S7: Simulated null distribution for 366× 280 and 365× 280 matrices with inde-
pendent N(0, 1) elements, based on 1000 simulations: left panel–GSV; right panel–log
GSV); top panel–boxplots; bottom panel–estimated overall density.
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(a) Original DTR data D.
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(b) Trimmed DTR data S.

Figure S8: Empirical distributions of the (log) generalised singular-values based on trans-
posed half-yearly data (i.e. in grid x day organisation), with original DTR data in left
panel and SVD-based-trimmed DTR data in the right panel. The (empirical) critical
values for the generalised SVs are marked by horizontal lines.

S1.7 GSVD on DTR data and spatial information

To assess retention of spatial information in S compared to D, we could consider the
sub-matrices pertaining to each year’s data from D⊤ and S⊤. In that case the number
of rows will be 280 from the 280 spatial locations/grids and number of columns would
be 365 or 366.

However, a technical requirement in the computation of GSVD is that the number
of columns be less than the number of rows for the pair of matrices being decomposed.
Thus we can not simply use the transposed matrices D⊤

1 and D⊤
2 and proceed as before.

So we consider each year’s data matrix Di and Si and further split it into two equal sized
matrices with row sizes 182 (or 183) corresponding to the two halves of a calendar year,
ignoring a singleton row for non-leap-years and consider the transpose these matrices.
The results for GSVs on these “transpose matrices” are given in Figure S8. The end
conclusion remains as before (see Figure 9), Figure S8 also shows that the empirical dis-
tributions of the generalised singular-values remain same or similar for the two matrices
D and S in the spatial direction as well.

S1.8 Analysis of alternate DTR data for India

We employed the same analysis pipeline on an alternate data source for DTR for the
Indian region from http://www.cru.uea.ac.uk/cru/data. We gathered monthly DTR
data for the same 72 years and same 1 degree resolution in each of east-west and north-
south direction. There were 258 grids covering India with complete data for all 72
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years. Figure S9 shows the same spatial pattern from this monthly DTR data as was

Figure S9: Correlation matrices based on monthly DTR data of India from CRU. left
panel–original DTR data; right panel–trimmed DTR with 12 singular values and grids
arranged according to climatic regions).

identified by the daily DTR data. This provides substantial confidence in the novel
analysis pipeline proposed here.

S1.9 Analysis of other geographic location: Bahia-Brazil

Daily DTR data from Bahia of Brazil for the period January 01, 2000 to Decemebr 31,
2022 was considered. This data is not gridded, unlike the data from India considered
in this manuscript. Instead, each of the 417 municipalities in Bahia contributes to
an individual time series. Overall coverage is approximately about 10 degrees in both
east-west and north-south direction. Thus overall this data covers a relatively smaller
area with higher number of time series. Figure S10 elucidates novel spatial pattern for

Figure S10: Correlation matrices based on daily DTR data from 417 municipalities of
Bahia, Brazil. left panel–original DTR data; right panel–trimmed DTR with 5 singular
values with municipalities arranged according to spatial proximity).

Bahia, although the underlying data is neither gridded, nor at similar spatial resolution.
Also temporal coverage in this data is much shorter (only 23 years) and climatological
coverage is also limited, since Bahia has mostly tropical wet and dry or savanna climate
(which is one of 6 climatic regions in India).

31



S2 Notes on figures

We present below, at one place, a description of all the figures given in this article.
“DTR” data is primarily in a matrix form ((Xij))i∈t,j∈s, where t is an index set for time,
which could represent day/season/year, and s is an index set for space, which could be
the grids of size 1◦× 1◦ that cover India, or a climatic subset of those. The “DTR” data
could be the original DTR data D, the time series decomposition based detrended DTR
data T , or the SVD based detrended trimmed DTR data S.

For original daily DTR data, D, t spans 26298 days covering 1-Jan-1951 to 31-Dec-
2022 and s covers the 362 grids that cover India. We have complete data for the 72
years (1951-2022) for 280 of these grids, so often the size of s is 280. However s could
also represent one of the six climatic zones of India.

In various figures DTR values have been summarised using functions like average over
a (sub)set of time and/or space, correlation matrices, empirical spectral distributions,
singular-values, singular-vectors, eigenvalues, generalised singular-values, etc. We use
the following notation to describe the figures:

D = ((dij))26298×280 is the data matrix.

UΣV ⊤ = D is the singular-value decomposition, where Σ = Diag(σj , j = 1, . . . , 280),
and the singular-values {σj}’s are arranged in decreasing order.

S = ((Sij))26298×280 = D −
∑12

j=1 σjujv
⊤
j is the trimmed data matrix.

T = ((Sij))26298×280 is the residual matrix after a time series decomposition of each
column of D using additive models each consisting of a trend component (estimated by
simple moving average), a seasonal component and a random/residual component.

RD is the 280× 280 correlation matrix based on D.

RD
i is the 280× 280 correlation matrix based on D for the i-th year.

RS is the 280× 280 correlation matrix based on S.

RS
i is the 280× 280 correlation matrix based on S for the i-th year.

{λD
j } and {λS

j } are the eigenvalues, in decreasing order, of the correlation matrices RD

and RS .

R̂D :=
∑10

j=1 λ
D
j e

D
j (e

D
j )

⊤
is the de-noised approximation of RD.

R̂S :=
∑33

j=1 λ
S
j e

S
j (e

S
j )⊤ is the de-noised approximation of RS .

SBS
i : Spatial Bergsma statistic using S, for the i-th year.

SBS
ij : Spatial Bergsma statistic using S, for the i-th year in the j-th climatic zone.

Figure 1: India divided into 362 1◦ × 1◦ grids, each grid labelled by one of the six
climatic region codes.

Figure 2: Boxplots for each of the 72 years, of the yearly averages from the 362 grids.

Figure 3: Boxplots for averages over the daily data from D, for each given season (DJF,
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MAM, JJA, SON), year (i = 1, . . . , 72) and grid (j = 1, . . . 362).

Figure 4: For every year i, the left panel are the bulk eigenvalues (presented in the form
of boxplots without outliers) of RD

i , The right panel is the plot of percentiles, 0(10)100,
of these eigenvalues.

Figure 5. Heat map: the upper triangle is based on the correlations from RD; the lower
triangle is for the corresponding entries from the matrix R̂D.

Figure 6: Plot of the cumulative sums of the singular-values of D.

Figure 7: 280 auto-correlation series for each column of S treated as a time series.

Figure 8: Box plots of the eigenvalues {λD
j } and {λS

j } of RD and RS .

Figure 9: Consider the daily trimmed DTR matrix S. Let Sy1 and Sy2 be data on two
successive years (y1 and y2) from S. GSVD enables simultaneous decomposition of these
matrices as

Sy1 = U1∆1[0 P ]V and Sy2 = U2∆2[0 P ]V

where U1, U2 and V are orthogonal matrices, ∆1, ∆2 are non-negative quasi diagonal
matrices which satisfy ∆⊤

1 ∆1 + ∆⊤
2 ∆2 = I and P is an upper triangular non-singular

matrix. Then generalised singular-values (gsv) are the ratios of the respective elements
from the diagonals of ∆1 and ∆2. Typical implementation of this algorithm ensures
these ratios are positive and decreasing. The figure gives 71 boxplots of these gsvs for
each successive pairs of years. The figure also includes similar boxplots for the gsvs
based on D.

Figure 10: For each of the four major cities, Delhi, Kolkata, Chennai and Mumbai, the
correlations (from RS), with the other cities have been plotted as heat maps.

Figure 11: Fix a grid g1, and consider the grid g2 which yields the maximum correlation
(based on RS) with g1. Consider the difference in latitudes and longitudes between g1
and g2. The two distribution of these differences across all grids have been plotted.

Figures 13–12 are similar to Figures 4a–5 but based on S instead of D.

Figure 12: Heat map: the upper triangle is for the correlations from RS ; the lower
triangle is for the corresponding entries from the matrix R̂S . For both matrices, the
grids are arranged first by climatic regions, and within each region in a spiral manner
according to a Hilbert space filling curves.

Figure 13: For every year i, plot of bulk of the eigenvalues (as boxplot without outliers)
of RS

i .

Figure 14: Spatial Bergsma statistics SB with two spatial weight matrices, W1 (lag-1
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adjacency, in red) and W2 (exponential distance decay in blue), for S. In the left panel,
the yearly SBS

i , i = 1, . . . , 72. In the right panel, the yearly SBS
ij , for 1 ≤ i ≤ 72, 1 ≤

j ≤ 6.

Figure 15: Boxplots of {SBS
i }, i = 1, . . . , 72 for the three ENSO categories.

Figure S1: Average DTR values for each of the 72 years at the 362 locations in the six
climatic zones, the six zones (1-6) presented in the order left to right and top to bottom
panel.

Figure S2: Average DTR values in the winter season (December to February) for each
of the 72 years, at the 362 locations in the six climatic zones, with the six zones (1-6)
presented in the order left to right and top to bottom panel.

Figure S3: Simulated null distribution of Singular Values based on matrices of dimen-
sions 26298× 280 with independent N(0, 1) elements and 1000 replications.

Figure S4: Components of the top 6 left singular-vectors of D, split according to
months, yielding 6× 12 boxplots.

Figure S5: Components of the top 6 left singular-vectors of D, split according to year,
and within each year by weekday or weekend, yielding 72×2 plots for each component.

Figure S6: Eigenvalues of correlation matrices, based on D, S and T .

Figure S7: Simulated null distribution of Generalised Singular Values (left panel) and
log GSV (right panel), with boxplots from each of 1000 simulations on top panel and
estimated overall density in the bottom panel. Based on matrices of dimensions 366×280
and 365× 280 with independent N(0, 1) entries.

Figure S8: For each year i, split S⊤
i into two approximately equal halves and perform

GSV decomposition on the resulting two 280 x 182 (or 183) dimensional matrices. Figure
shows boxplots of these GSV’s from each year. Also included are similar boxplots based
on D⊤

i .

Figure S9: This figure is similar to Figures 5 and 12 but with alternate data source
and is based on monthly data instead of daily DTR data from India (and without MP
de-noising).

Figure S10: This figure is similar to Figures 5 and 12 but with data from Bahia, Brazil
(and without MP de-noising).
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