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3Brazilian Synchrotron Light Laboratory (LNLS),

Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-970, Brazil
4Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET),

1040 Ciudad Autonoma de Buenos Aires, Argentina
5Departamento de Materia Condensada, GIyA, CNEA San Mart́ın, 1650 Provincia de Buenos Aires, Argentina
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HoNiSi3 is an intermetallic compound characterized by two successive antiferromagnetic transi-
tions at TN1 = 6.3 K and TN2 = 10.4 K. Here, its zero-field microscopic magnetic structure is
inferred from resonant x-ray magnetic diffraction experiments on a single crystalline sample that
complement previous bulk magnetic susceptibility data. For T < TN2, the primitive magnetic unit
cell matches the chemical cell. The magnetic structure features ferromagnetic ac planes stacked
in an antiferromagnetic ↑↓↑↓ pattern. For TN1 < T < TN2, the ordered magnetic moment points
along a⃗, and for T < TN1 a component along c⃗ also orders. A symmetry analysis indicates that
the magnetic structure for T < TN1 is not compatible with the presumed orthorhombic Cmmm
space group of the chemical structure, and therefore a slight lattice distortion is implied. Mean-field
calculations using a simplified magnetic Hamiltonian, including a reduced set of three independent
exchange coupling parameters determined by density functional theory calculations and two crystal
electric field terms taken as free-fitting parameters, are able to reproduce the main experimental ob-
servations. An alternative approach using a more complete model including seven exchange coupling
and nine crystal electric field terms is also explored, where the search of the ground state magnetic
structure compatible with the available anisotropic magnetic susceptibility and magnetization data
is carried out with the help of an unsupervised machine learning algorithm. The possible magnetic
configurations are grouped into five clusters, and the cluster that yields the best comparison with
the experimental macroscopic data contains the parameters previously found with the simplified
model and also predicts the correct ground-state magnetic structure.

I. INTRODUCTION

The heavy rare-earth (R) elements have rich magnetic
phase diagrams with multiple phase transitions. For
instance, Dy and Ho display helical antiferromagnetic
(AFM) structures with propagation vectors along the
hexagonal axis below TN = 179 and 132 K, respectively
[1, 2]. Upon further cooling, Dy orders ferromagnetically
below TC = 85 K whereas Ho develops a conic spiral
structure below TC = 20 K. Such intriguing behavior
results from a strong interplay between the long-range
Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange cou-
pling, temperature-dependent crystal electric field (CEF)
parameters, and also anisotropic magnetic dipole inter-
actions in some cases [3].

As could be anticipated, some R-based compounds
also show intriguing properties, such as different com-
ponents of the total magnetic moment ordering indepen-
dently at different temperatures. This phenomenon has

∗ Present address: Swiss Light Source, Paul Scherrer Institute,
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been observed in a few compounds such as DyB4 [4] and
HoRh2Si2 [5]. DyB4 crystallizes in a primitive tetrag-
onal lattice, with space group P4/mbm. At the Néel
temperature TN2 = 20.3 K, a collinear AFM ordering
with the magnetic moment oriented along the tetragonal
c⃗ direction develops. Another AFM ordering occurs at
TN1 = 12.7 K, where an ab component of the magnetic
moment orders [4, 6, 7] accompanied by a slight mon-
oclinic distortion [6, 7]. HoRh2Si2 has a body-centered
tetragonal lattice (I4/mmm space group). The higher-
temperature phase transition at TN2 = 29.5 K is related
to the AFM ordering of the Ho magnetic moments along
the c⃗ axis. Below TN1 = 11.0 K, the ordered magnetic
moments tilt away from the c⃗ axis, with the tilting angle
being temperature-dependent and vanishing at TN1 [5, 8–
10]. In these two systems, it is claimed that quadrupole
interactions play a role in the occurrence of the split tran-
sitions [4–7, 11, 12], since strong spin-orbit coupling cor-
relates spin and orbital degrees of freedom, thus enabling
the ordering of high order multipoles. On the other
hand, a mean-field approximation with nearest-neighbor
exchange interaction and CEF parameters up to fourth-
order is sufficient to properly capture the macroscopic
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properties for both compounds at zero field [10, 13, 14].
The RNiSi3 (R = Y, Gd-Lu) intermetallic series crys-

tallizes in a C-centered orthorhombic lattice (Cmmm
space group, see Fig. 1). For R = Gd and Tb, ferro-
magnetic (FM) ac planes are found to be stacked antifer-
romagnetically in a ↑↓↑↓ pattern below TN = 22.2 and
33.2 K, respectively, with spontaneous moments point-
ing along a⃗ [15]. Conversely, in YbNiSi3 the stacking

follows a ↑↓↓↑ pattern with moments pointing along b⃗
[16]. The distinct stacking patterns of the magnetic end
members of this series bring attention to the intermedi-
ary members R = Dy-Tm, for which only macroscopic
magnetic measurements are available so far [17, 18]. The
behavior of HoNiSi3 is particularly interesting. Magnetic
susceptibility and specific heat data reveal successive
component-separated phase transitions at TN1 = 6.3 K
and TN2 = 10.4 K associated with AFM ordering of
the c⃗ and a⃗ moment components (Mc and Ma, respec-
tively). Whether or not higher multipole degrees of free-
dom are present and responsible for the features shown
by HoNiSi3, the natural subsequent step in the attempt
to understand its ground state is determining its mag-
netic structure. Once the magnetic structure is resolved,
additional constraints can be imposed on developing a
theoretical microscopic model that describes the macro-
scopic data.
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FIG. 1. Crystal structure of HoNiSi3 [18, 19], with solid black
line defining the unit cell. The crystal structure of the R ions
can be seen as ABBA stacking of rectangular layers along the

b⃗ direction.

In this paper, we investigate the microscopic mag-
netism of HoNiSi3 by combining a resonant x-ray mag-
netic diffraction experiment and magnetic simulations us-
ing both a simplified model and a complete set of ex-
change and CEF parameters. We find that the mag-
netic structures of both phases I (T < TN1) and II
(TN1 < T < TN2) are commensurate with the chem-
ical structure and share the same primitive unit cell,
similar to GdNiSi3 and TbNiSi3. Also, representation
analysis shows that the magnetic structure of phase II

is described by a single irreducible representation of the
Cmmm space group. In contrast, two distinct irreducible
representations are needed for phase I (one for each mag-
netic component), implying that a combined structural
and magnetic phase transition must take place at TN1.
In fact, the magnetic space group symmetry is reduced
from orthorhombic Cmmm’ in phase II to at least mon-
oclinic C2’/m in phase I. The detailed low-temperature
magnetic orderings obtained in this paper and the ther-
modynamic measurements reported in Ref. 18 allow us
to compute possible exchange constants and CEF param-
eters.
We also show how to combine the use of an unsuper-

vised machine-learning algorithm to explore the whole
parameter space of the magnetic Hamiltonian compati-
ble with the available thermodynamic measurements and
find a set of possible ground-state magnetic structures.
This approach could be particularly useful when the
number of parameters is large and the experimental data
are not sufficient to determine them uniquely.

II. RESONANT X-RAY MAGNETIC
DIFFRACTION EXPERIMENT

A. Experimental details

A platelet-shaped single crystal of HoNiSi3 was grown
from the melt in Sn flux as described elsewhere [18, 20].
Sample dimensions are 0.30×0.58×0.15 mm3. Its largest
natural face was employed in the measurements and cor-
responded to the crystallographic ac plane. Rocking
curves of general hkl reflections reveal mosaic widths be-
tween 0.02◦ and 0.04◦ full width at half maximum.

Resonant x-ray diffraction measurements were per-
formed at the x-ray diffraction and spectroscopy (XDS)
beamline of the UVX ring of the Brazilian Synchrotron
Light Laboratory in Campinas, with a 4 T supercon-
ducting multipolar wiggler source [21]. The sample was
mounted at the cold finger of a continuous-flow cryostat
(base temperature 4.7 K) with a cylindrical Be window.
The cryostat was attached vertically to the Eulerian cra-
dle of a Huber 6+2 circle diffractometer appropriate for
single-crystal x-ray diffraction, thus the probed scatter-
ing processes take place in the horizontal plane. The
energy of the incident photons was selected by a dou-
ble Si(111) crystal monochromator, with LN2 cooling in
the first crystal, whereas the second crystal was bent for
sagittal focusing. The beam was vertically focused by a
bent Rh-coated mirror placed downstream the monochro-
mator, which also provided filtering of higher harmonics.
The experiments were performed in the horizontal scat-
tering plane, i.e., parallel to the linear polarization of the
incident photons (π). A polarimeter stage was mounted
upstream a scintillator detector, which enabled selecting
either the ππ’ or πσ’ polarization channels. For our ex-
periments taken near the Ho L3 edge, a Ge(333) analyzer
was employed, yielding 2θanalyzer = 89.66◦.
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R-based magnetic compounds show strong dipolar res-
onances at the L2,3 edges, reaching maximum intensities
at energies ∼ 2 eV above the corresponding edge posi-
tions [15, 22–24]. As a preliminary x-ray fluorescence
scan for HoNiSi3 determined the Ho L3 absorption edge
to be at 8.074 keV (not shown), the photon energy was
set at 8.076 keV in our search for resonant magnetic re-
flections. In different runs, the sample was mounted in
either AB or BC configurations, probing the ab and bc
scattering planes, respectively [see the insets of Figs. 2(a)
and 2(b)]. For dipolar resonances, the magnetic x-ray
diffraction signal is sensible only to projections of the
magnetic moment along the scattering vector [25]. As
previous magnetic susceptibility data indicate that there

is no b⃗ component for the ordered Ho moment in HoNiSi3
[18], the AB and BC configurations probe the a⃗ and c⃗
components, respectively.

B. Results and analysis

A candidate magnetic structure of HoNiSi3 would be

the ↑↓↓↑ stacking pattern along b⃗ such as found in

YbNiSi3 [16], with propagation vector k⃗ = [1, 0, 0]. In
this case, the magnetic structure would break the C
centering of the charge crystal structure, and the mag-
netic reflections would be located in charge-forbidden hkl
positions of the reciprocal space with odd h + k. At-
tempts to observe such reflections at low temperatures
(T < TN1) in resonance condition were unsuccessful. In
addition, 1D reciprocal space scans were performed along
selected high-symmetry directions ([0,4,0] ↔ [0,6,0],
[0.5,10,0]↔[0.5,12,0], [1,13,0]↔[1,15,0],[0,13,0]↔[0,13,1],
[0,13.5,0]↔[0,13.5,1], and [0,14,0]↔[0,14,1] (r.l.u)), and
no evidence of a magnetic signal was found, disfavoring
the possibility of a magnetic structure with non-integer

k⃗ components.

The remaining possibility for the magnetic structure

of HoNiSi3 is the same ↑↓↑↓ stacking along b⃗ with

k⃗ = [0, 0, 0] found in GdNiSi3 and TbNiSi3 (Ref. 15).
This structure retains the C centering of the charge struc-
ture, leading to magnetic reflections at the same Bragg
positions of the charge reflections. Since magnetic x-
ray reflections are dramatically weaker than charge re-
flections even in R L-edge resonances, it is a substan-
tial challenge to confirm this magnetic structure. We
follow the same methodology employed in our previous
work [15]. Bragg reflections with particularly low struc-
ture factors for the charge crystal structure are chosen,
and πσ’ polarization is employed to further suppress the
charge signal, even though some of it is still observed due
to polarization leakage. The temperature dependence of
the residual intensities is used to evidence any possible
magnetic contribution. Figure 2(a) shows the tempera-
ture dependence of the 0 14 0 reflection with the sample
mounted in the AB configuration, which is sensitive to
magnetic moments along a⃗ (see Sec. II A). The intensity
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FIG. 2. Intensities of the (a) 0 14 0 reflection in AB
configuration and (b) 0 10 0 reflection in BC configuration
of HoNiSi3. All the measurements were done on resonance
(E = 8.076 keV) and at the πσ’ configuration. The distinct
magnetic transition temperatures obtained from these data,
TN1 = 6.7(3) K (b) and TN2 = 10.3(5) K (a), are highlighted.
The intensities in (a) and (b) are normalized by the average
values above TN2 and TN1, respectively. Insets: Schematic
view of the AB and BC configurations.

is nearly constant between T ∼ 11 and 20 K, whereas a
continuous increment is observed below TN2 = 10.3(5) K,
consistent with a magnetic diffraction signal associated
with the magnetic ordering transition for Ma previously
reported with magnetic susceptibility data [18]. Figure
2(b) shows the temperature dependence of the 0 10 0
reflection intensity in the BC configuration, showing a
clear increment below TN1 = 6.7(3) K that is consistent
with the reported magnetic ordering transition tempera-
ture for Mc [18]. Figure 3 shows the same experimental
data of Fig. 2 plotted as a function of the reduced tem-
perature T/TN , taking as TN the distinct critical tem-
peratures TN1 and TN2 for the data taken in the AB and
BC configurations, respectively. This plot is appropriate
for comparison with theoretical calculations (see below).
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Besides confirming the component-separated magnetic
transitions in HoNiSi3 by a microscopic technique, our
diffraction data reveal a magnetic structure where FM

ac planes are stacked in a ↑↓↑↓ pattern along the b⃗ direc-
tion. The experimental magnetic structures for phase II
(TN1 < T < TN2) and phase I (T < TN1) are displayed
in Figs. 4(a) and 4(b), respectively.
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FIG. 3. Symbols: Same data of Fig. 2 plotted as a function
of the reduced temperature T/TN , where TN = TN2 = 10.3 K
for the 0 14 0 reflection in the AB configuration (blue squares)
and TN = TN1 = 6.7 K for the 0 10 0 reflection in BC
configuration (green squares). Data are translated vertically
and multiplied by an arbitrary factor for better visualization.
Solid red lines are mean-field calculations for the square of
the sublattice magnetization along a⃗ (M2

a ) and along c⃗ (M2
c ).
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FIG. 4. Experimental magnetic structure of HoNiSi3 for
(a) TN1 < T < TN2 (phase II) and (b) T < TN1 (phase
I), determined by a combination of resonant X-ray magnetic
diffraction and macroscopic magnetic experiments, with Ho1

and Ho2 as used for the symmetry analysis in Sec. III A.
Below TN1, the magnetization on each site has components
both on the a⃗ and c⃗ axes.

III. THEORY

A. Symmetry analysis

The experimental magnetic structures shown in
Figs. 4(a) and 4(b), inferred from the ↑↓↑↓ stacking pat-
tern obtained here in combination with the moment di-
rections obtained from previous magnetic susceptibility
measurements [18], are compared with the symmetry-
allowed magnetic structures considering the magnetic

propagation vector k⃗ = [0, 0, 0]. Although our diffrac-
tion data also suggest magnetic moments along a⃗ and
c⃗, we cannot rule out from them any component along

b⃗ (not seen in either magnetic susceptibility and mag-
netization isotherm measurements [18]). In the nuclear
crystal structure of HoNiSi3 with Cmmm space group,
the Ho ions occupy the 4j Wyckoff site [(0, y, 0.5) and
(0,−y, 0.5) + C-centering atomic coordinates]. The pos-
sible magnetic structures were determined independently
through representation analysis using the SARAh suite
[26] and the magnetic space group formalism using the
Bilbao Crystallographic Server [27]. In the decomposi-
tion of the magnetic representation, six one-dimensional
irreducible representations (irreps) of the Cmmm space
group, appearing one time each, can generate magnetic
ordering. Three of them give rise to FM order, and the
remaining ones give rise to AFM structures with mo-
ments along each crystallographic direction. These rep-
resentations are shown in Table I along with their re-
spective magnetic space groups. Thus, at phase II the
magnetic structure is described by the Γ8 (mGM−

2 ) rep-
resentation, or alternatively by the Cmmm’ magnetic
space group. At phase I, an additional component along
c⃗ arises, which can be described with Γ4 (mGM−

3 ). Com-
bining both (mGM−

2 ) and (mGM−
3 ) representations, the

resulting magnetic space group at phase I is C2’/m.

TABLE I. Irreducible representations Γn [27] leading to AFM

structures with k⃗ = [0, 0, 0] for the Cmmm space group of the
chemical structure, along with the symmetry-allowed mag-
netic moments at the Ho1 and Ho2 positions not related by the
C-centering of the crystallographic unit cell (see also Fig. 4).
The magnetic space group corresponding to each representa-
tion is also given.

Γ Ho1 Ho2 Magnetic space group

Γ2 (mGM−
1 ) (0,my,0) (0,-my,0) Cm’m’m’

Γ8 (mGM−
2 ) (mx,0,0) (-mx,0,0) Cmmm’

Γ4 (mGM−
3 ) (0,0,mz) (0,0,-mz) Cm’mm

The possible magnetic structures that fulfill Landau’s
criteria of second-order phase transitions with a single ir-
rep are the ones with magnetic moments pointing along
the unit cell directions. In HoNiSi3, there are two phase
transitions, and for each of them, a single irrep drives
the transition. The magnetic space group of the highest
symmetry that is consistent with these two irreducible
representations is monoclinic C2’/m. Thus, the low sym-
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metry of the magnetic structure below TN1 is indicative
of a monoclinic lattice, in contrast to the reported or-
thorhombic Cmmm space group of the charge structure.
These considerations point to a symmetry-lowering struc-
tural phase transition that occurs simultaneously with
the magnetic transition at TN1. Such monoclinic dis-
tortion was not clearly manifested in our present x-ray
diffraction experiment. We should mention that the di-
rect observation of small monoclinic distortions with re-
spect to a parent orthorhombic lattice poses a signifi-
cant challenge. For such, a high-resolution x-ray diffrac-
tion experiment optimized for such goal would be needed,
which is beyond the scope of the present paper.

B. General structure of the magnetic Hamiltonian

The magnetic phases and transitions observed in
HoNiSi3 can be understood using a magnetic model that
considers exchange interactions between the magnetic
moments located at the Ho3+ ions and CEF effects:

H = Hint +HCEF . (1)

In metallic 4f -magnetic systems like HoNiSi3 and
GdNiSi3, the magnetic couplings are dominated by the
RKKY mechanism, which leads to exchange couplings
between the magnetic moments at the R ions,

Hint =
∑
i<j

Kij Ĵi · Ĵj , (2)

where Ĵi is the angular momentum operator of the mag-
netic moment located at site i and Kij is the RKKY
exchange coupling constant between magnetic moments
i and j. Kij can be AFM (Kij > 0) or FM (Kij < 0)
and are expected to decay with the inverse cubic distance
between sites i and j.
The CEF effects depend on the point symmetry of the

R ion sites in the lattice and the orbital angular momen-
tum of the ground state multiplet of the ion. The point
symmetry of the R sites is C2v (m2m), which allows for
nine CEF terms up to sixth order [28]:

Hcef =
∑

n=2,4,6

∑
m=0,2,...,n

Bm
n Ôm

n . (3)

C. Magnetic simulations guided by
density-functional theory calculations

1. Determination of the exchange couplings

To calculate the exchange coupling parameters, we fo-
cus first on the structurally related but simpler material
GdNiSi3. In this compound, the magnetic moments at
the Gd3+ ions are, according to Hund’s rule, given by
the L = 0, S = 7/2 multiplet for which the CEF effects
are not relevant [29]. This makes the density-functional

theory (DFT) determination of the total energy global
minimum in each magnetic configuration much simpler,
avoiding the large uncertainty due to the presence of
multiple metastable configurations of the L ̸= 0 sys-
tems [30–32]. Ab initio calculations were done follow-
ing a procedure similar to the one described in Refs. 33
and 34. Total-energy DFT calculations were thus car-

TABLE II. Energy values relative to the AF4 configuration,
obtained via DFT calculations for each magnetic configura-
tion shown in Fig. 5. The energies are normalized by S2 and
the number of atoms N .

Configuration Energy (eV/S2/N)
FM 0.088

AF1 0.011

AF2 0.079

AF3 0.044

AF4 0.000

AF5 0.044

AF6 0.064

AF7 0.045

ried out for GdNiSi3 considering eight possible collinear
magnetic structures (see Fig. 5). These calculations
were performed using the generalized gradient approx-
imation (GGA) of Perdew, Burke, and Ernzerhof for the
exchange and correlation functional as implemented in
the Wien2K code [35, 36]. A local Coulomb repulsion
was included for a better treatment of the highly local-
ized 4f states using GGA+U, within the fully localized
limit for the double counting correction [37]. A value of
Ueff = U − J = 6 eV was used for the effective
local Hubbard parameter, which has been successfully
implemented before for Gd compounds [38]. In the DFT
calculations, we considered the experimental lattice pa-
rameters [15, 18] and relaxed the internal positions. A
supercell of 2× 1× 2 unit cells was used to calculate the
exchange couplings out of the magnetic configurations
of Fig. 5. In this case, a 9 × 3 × 9 k-mesh was used
to sample the Brillouin zone. The resulting energies are
shown in Table II. The lowest energy was reached for the
AF4 structure, which is indeed the experimentally found
structure of this compound [15].

The next step is to parametrize the energy of each pos-
sible magnetic structure in terms of up to seven exchange
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FIG. 5. Putative magnetic configurations used for the DFT calculations. The first configuration represents a simple FM order,
while the remaining ones are different AFM arrangements. The configuration AF1 is compatible with the magnetic ordering
found experimentally for YbNiSi3 [16], while configuration AF4 corresponds to the magnetic ordering found for Gd/TbNiSi3
[15]. Each of the seven exchanges Ki is depicted by a red arrow.

coupling parameters Ki’s, according to

EFM/J2 = −2K0 − 2K1 −K2 − 4K3

− 2K4 − 4K5 − 4K6,

EAF1/J
2 = 2K0 − 2K1 −K2 + 4K3

− 2K4 − 4K5 − 4K6,

EAF2/J
2 = −2K0 − 2K1 +K2 + 4K3

− 2K4 − 4K5 + 4K6,

EAF3/J
2 = 2K1 −K2 − 2K4 + 4K5,

EAF4/J
2 = 2K0 − 2K1 +K2 − 4K3

− 2K4 − 4K5 + 4K6,

EAF5/J
2 = 2K1 +K2 − 2K4 + 4K5,

EAF6/J
2 = 2K0 − 2K1 −K2 + 4K3 + 2K4 + 4K5,

EAF7/J
2 = 2K1 +K2 + 2K4 − 4K5 − 4K6

(4)

(see Fig. 5 for the definition of each Ki). By combining
the data in Table II with Eqs. (4), the seven Ki’s (i =
0− 6) are directly obtained and shown in Table III.

In practice, it is often the case that only a few cou-
plings (Kij for i and j nearest neighbors) need to be
considered to obtain an accurate description of the mag-
netic properties [33, 34, 39]. Here, we also consider a
simplified model with only three independent exchange
constants, namely K0, K1 ≡ K4, and K2, therefore set-
ting K3 = K5 = K6 = 0 (see Fig. 5). The constrained
exchange constants are obtained by the procedure de-
scribed above, and the results are also shown in Table III.



7

TABLE III. Exchange Ki constants values obtained through
DFT and mean-field fittings for GdNiSi3. For Ho, only the de
Gennes scaling values from mean-field fittings are presented.
Positive(negative) exchange represents AFM (FM) interac-
tions.

DFT Simplified mean-field
Ki constant Gd (K) Gd (K) Ho (K)

K0 2.31 1.86 0.10

K1 0.93 -0.214 -0.012

K2 -0.030 1.16 0.064

K3 -0.020

K4 -0.78 -0.214 -0.012

K5 -0.46

K6 0.15

Once the magnetic exchange couplings for GdNiSi3 are
obtained, the corresponding ones for HoNiSi3 can be es-
timated using a de Gennes scaling [40]. This scaling,
usually valid for most R, considers that the interactions
between magnetic moments only involve the spin part
of the total magnetic moment. Under this hypothe-
sis, the couplings can be re-scaled, projecting the spin
moment onto the total magnetic moment, resulting in
Kij(R) = (gJ − 1)2Kij(Gd) (the square comes from the
two-moment interaction that involves two projections),
where gJ is the gyromagnetic factor of the R being con-
sidered. For R compounds, this scaling is frequently
performed to estimate the ordering temperature [18, 41].
The thus obtained Ki values for HoNiSi3 under the sim-
plified model with three independent exchange constants
are also given in Table III.

Classical (CMC) and Quantum Monte Carlo (QMC)
simulations using the ALPS package [42, 43], as well
as mean-field calculations using Hint were performed
to obtain the magnetization and specific-heat curves for
GdNiSi3. The results for TN and the Curie Weiss (CW)
temperature θ are shown in Table IV. The advantage of
using the mean-field model is the possibility of finding
an analytic expression for TN and θ as a function of the
couplings. For this system, they are given by

TN =
1

3
J(J + 1)(2K0 − 2K1 +K2 − 4K3

− 2K4 − 4K5 + 4K6), (5a)

θ =
1

3
J(1 + J)(2K0 + 2K1 +K2 + 4K3

+ 2K4 + 4K5 + 4K6). (5b)

If we consider the simplified model, these equations yield
TN and θ shown in Table IV. Considering the full model
(seven exchange couplings), the values are slightly mod-
ified to TN = 36 K and θ = −19 K.
Although the mean-field approximation leads to an

overestimation of the transition temperature of GdNiSi3,
it provides the correct physical picture. We thus base
our analysis of HoNiSi3 on the mean-field approximation

to be able to perform simulations for a wide range of the
model’s parameters.

TABLE IV. TN and θ of GdNiSi3 obtained from experimen-
tal data, CMC, QMC, and mean-field models using the DFT
parameters shown in Table III.

Exp. CMC QMC
Mean-field

Full Simplified
TN (K) 22.2(2) 13.5(5) 17.5(5) 36 30.1

θ (K) -30(3) -19.9(3) -27.2(3) -19 -21.1

2. Minimal model and mean-field approximation for
HoNiSi3

In this section, we develop a minimal model that is
able to explain the available experimental results. As we
show below, the bulk properties of HoNiSi3 can be ex-
plained using only two of the nine CEF terms in Eq. (3).
The tendency of the magnetic moments to stay in the ac
plane, as observed in both low-temperature AFM phases,
can be accounted for using the CEF term,

Ô2
2 = J2

a − J2
b , (6)

with a negative coefficient B2
2 . The observed tilting of the

magnetic moment towards the c⃗ direction in phase I can
be described using a positive B0

4 for the CEF operator:

Ô0
4 = 35J4

c − 30J(J + 1)J2
c + 25J2

c

+ 3J2(J + 1)2 − 6J(J + 1). (7)

Mean-field [44] calculations of the magnetization as a
function of temperature and external magnetic field were
performed to fit the available experimental data [18] us-
ing B2

2 and B0
4 as fitting parameters. Including all CEF

parameters allowed by symmetry up to the sixth order
in the fitting procedure does not lead to a significant im-
provement of the fits, nor does it change the physical pic-
ture obtained using only two parameters (nevertheless,
their effect is examined in Sec. IIID). In the fitting proce-
dure of the simplified model presented in this subsection,
a smaller de Gennes factor (∼ 0.055 rather than 0.0625)
for Ho3+ was used to compensate for the overestimation
of the transition temperatures by the mean-field approxi-
mation. The obtained parameters are B2

2 = −0.85 K and
B0

4 = 2.1 mK.
Figure 6 presents the mean-field results (solid lines) for

the simplified magnetic Hamiltonian using the estimated
model parameters obtained as described above. For a
comprehensive comparison, we included the experimen-
tal data (filled symbols) taken from Ref. 18. First, two
peaks in the magnetic specific heat as a function of tem-
perature emerge in the mean-field results, correspond-
ing to a paramagnetic (PM)-AFM and an AFM-AFM
transition. Additionally, as can be seen in Fig. 6(a), the
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FIG. 6. Mean-field results (lines) and experimental data [18]
(symbols) for (a) total magnetic specific heat of HoNiSi3 as a
function of the temperature. Inset shows the released entropy
up to 30 K. (b) The magnetic susceptibility as a function of
temperature for external magnetic field of H = 1 kOe along
with a⃗ and c⃗ directions. Inset shows the inverse magnetic
susceptibility up to 300 K (lines are almost indistinguishable
from symbols). (c) Magnetization at T = 2.2 K as a function
of an external magnetic field parallel to the a⃗ and c⃗ directions.
Inset shows the mean-field magnetic structures at phases I and
II.

transition temperatures are in good agreement with the
measured values. The magnetic entropy [see inset of Fig.
6(a)] is ∼ R ln(4) for T ∼ TN2, which can be attributed
to the B0

4 CEF term (see below). Also, the magnetic
susceptibility in the a⃗ direction as a function of the tem-

perature presents a peak at TN2, while the corresponding
one in the c⃗ direction has a peak at TN1 [see Fig. 6(b)],
in close similarity to the experimental results. The be-
havior of χc follows a CW law for T > TN1 while χa

follows closely a CW law for T > TN2. Figure 6(c) shows
the calculated magnetization as a function of the external
magnetic field. As in the experimental data, it presents a
flop transition to a state where the magnetic moments in
the a⃗ or c⃗ direction become FM for an external magnetic
field in the same direction. We also see that for both
theoretical and experimental results, the higher magne-
tization is attained when the magnetic field is along the
a⃗ direction. The resulting magnetic structure from the
model is depicted in the inset of Fig. 6(c), in full agree-
ment with the experimental structure determined in this
work (see Sec. II B).
As the intensities of the AFM Bragg reflections re-

ported in Sec. II B are proportional to the square of
the sublattice magnetization [45], they can be also cal-
culated using the mean-field model. The solid lines in
Fig. 3 show M2

a and M2
c as a function of the reduced

temperature T/TN , where TN is taken here as the mean-
field TN1 for the M2

c curve and TN2 for M2
a . It can be

seen that the comparison with experimental data is quite
satisfactory.
To gain further insight into the physical origin of the

observed AFM-AFM transition, we also analyze the sys-
tem under the molecular field approximation. In the
mean-field approach, a cluster of eight Ho3+ ions was
used to determine the magnetic order as a function of
temperature and external magnetic field. In the absence
of an external magnetic field, the two ordered phases cor-
respond to the AF4 configuration, differing only in the
direction of the magnetic moments. As a consequence,
the mean-field approach can be reduced to a molecular
field approximation in which a single magnetic moment is
under the influence of the CEF and of an effective mag-
netic field generated by the interaction with the other
magnetic moments:

Hmol = B2
2Ô

2
2 +B0

4Ô
0
4 − H⃗eff · Ĵ . (8)

Here H⃗eff = λ⟨Ĵ⟩, where λ is determined by the ex-

change interactions, and ⟨Ĵ⟩ is calculated in a self-
consistent way. For a single magnetic moment with
J = 8, the Hilbert space is spanned into 2J+1 states (|m⟩
with m = −J, · · · , J). The eigenvalues and eigenvectors
of Hmol can be readily obtained by diagonalizing the as-
sociated 17×17 matrix. This allowed us to obtain ⟨Ĵ⟩ at
finite temperatures and find a self-consistent solution. A
numerical calculation pursuing this route reproduces the
mean-field results once the correct AF4 order is selected
to determine λ.
In the PM phase, Heff = 0, and Hmol is reduced to

the CEF terms. For simplicity, we set at this point B2
2 to

zero, but we reintroduce it at a later stage. The remain-
ing term Ô0

4 with a positive B0
4 gives rise to a fourfold

ground state degeneracy (Jc = −6,−5, 5, 6) which is con-
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TABLE V. Eigenvalues Ei (in K) and associated eigenfunctions of Ho3+ (J = 8) for the CEF Hamiltonian Hcef with parameters
B2

2 = −0.85 K and B0
4 = 2.1 mK.

Ei Eigenfunctions
0.0 0.46(|−6⟩ + |−4⟩ + |4⟩ + |6⟩) + 0.24(|−2⟩ + |2⟩) + 0.17 |0⟩
0.2 0.19(|−7⟩ + |−1⟩ + |1⟩ + |7⟩) + 0.55(|−5⟩ + |5⟩) + 0.35(|−3⟩ + |3⟩)
1.8 0.51(|−6⟩ − |6⟩) + 0.46(|−4⟩ − |4⟩) + 0.18(|−2⟩ − |2⟩)
2.2 0.21(|−7⟩ − |7⟩) + 0.59(|−5⟩ − |5⟩) + 0.32(|−3⟩ − |3⟩)
27.6 0.47(|−6⟩ + |6⟩) − 0.19(|−4⟩ + |4⟩) − 0.40(|−2⟩ + |0⟩ + |2⟩)
31.9 0.33(|−7⟩ − |−3⟩ − |3⟩ + |7⟩) + 0.26(|−5⟩ + |5⟩) − 0.46(|−1⟩ + |1⟩)
36.4 0.48(− |−6⟩ + |6⟩) + 0.41(|−4⟩ − |4⟩) + 0.32(|−2⟩ − |2⟩)
43.1 0.57(− |−7⟩ + |7⟩) + 0.39(|−3⟩ − |3⟩) + 0.16(|−1⟩ − |1⟩)
51.5 0.59(|−7⟩ + |7⟩ − 0.30(|−5⟩ + |5⟩) + 0.25(|−1⟩ + |1⟩)
58.4 0.24(|−6⟩ + |6⟩) − 0.48(|−4⟩ + |4⟩) + 0.26(|−2⟩ + |2⟩) + 0.53 |0⟩
59.9 0.37(|−7⟩ − |7⟩) + 0.39(− |−5⟩ + |5⟩) + 0.41(|−3⟩ − |3⟩) + 0.22(|−1⟩ − |1⟩)
86.1 0.35(− |−4⟩ + |4⟩) + 0.61(|−2⟩ − |2⟩)
86.7 0.20(|−5⟩ + |5⟩) − 0.51(|−3⟩ + |3⟩) + 0.44(|−1⟩ + |1⟩)
103.3 0.70(|−8⟩ + |8⟩)
103.3 0.70(|−8⟩ − |8⟩)
126.1 0.28(− |−3⟩ + |3⟩) + 0.65(|−1⟩ − |1⟩)
126.2 0.14(|−4⟩ + |4⟩) − 0.46(|−2⟩ + |2⟩) + 0.73 |0⟩

sistent with the entropy [∼ R ln(4)] obtained in the PM
phase for T ≳ TN2 [see inset of Fig. 6(a)].

For temperatures slightly below TN2, a non-zero H⃗eff

emerges, signaling the transition to the AFM phase. The

direction of H⃗eff is given by the direction of maximal
magnetic susceptibility and determines the direction of
⟨Ĵ⟩. To find the direction of maximal susceptibility, we
turn on a small external magnetic field (H ≪ TN2) in

the PM phase (T ≳ TN2), where ⟨Ĵ⟩ = 0, and consider

the a⃗ and c⃗ directions (in the absence of the Ô2
2 term

the problem is symmetric under rotations around the c⃗
axis). An external magnetic field in the c⃗ direction does
not change the eigenvectors of the system (Jc is a good
quantum number for B2

2 = 0) but changes their relative
energies, leading to a susceptibility proportional to 1/T .
A magnetic field in the a⃗ direction, however, produces a
different effect because Jc is no longer a good quantum
number. The magnetic field mixes terms that differ in
∆Jc = ±1 and leads to a susceptibility in the a⃗ direction
that does not decrease as the temperature increases up
to sufficiently high temperatures where it becomes larger
than the one in the c⃗ direction. The PM to AFM transi-
tion occurs at a temperature where χa > χc.

The inclusion of the Ô2
2 term using the estimated value

for B2
2 = −0.85 K leads to a small breaking of the ground

state degeneracy (the energies of the four lowest lying
states differ by ∼ 2 K, see Table V), but does not change
the entropy significantly for T ∼ TN2. This term further
increases the magnetic susceptibility in the a⃗ direction
compared to c⃗ and reduces the temperature above which
the susceptibility in the a⃗ direction becomes larger than
in the c⃗ direction. It also breaks the symmetry between

the a⃗ and b⃗ directions, decreasing the magnetic suscepti-

bility in the latter direction.
Below TN2, the magnetic moments order in the a⃗ di-

rection. As a result, the susceptibility with the field in
this direction decreases while the susceptibility with the
field in the c⃗ direction keeps increasing [see Fig. 6(b)].
At sufficiently low temperatures, the susceptibility in the
a⃗ direction is no longer the largest, and it becomes en-
ergetically favorable to tilt ⟨Ĵ⟩, with a component in the
c⃗ direction. This leads to the AFM-AFM transition at
TN1. The tilting angle can be obtained considering a
classical magnetic moment and minimizing the energy of
the CEF. At low temperatures, the magnetic moment is
contained in the ac plane and forms an angle α with the
c⃗ axis, where

tan(α) =

√
5B0

4(8J
2 − 6J + 5) +B2

2

5B0
4(6J

2 + 6J − 5)−B2
2

. (9)

Using B2
2 = −0.85 K and B0

4 = 2.1 mK estimated
above and J = 8, we obtain α = 41.2◦. Future mi-
croscopic experiments, such as (i) neutron diffraction
when larger crystals become available, (ii) nuclear mag-
netic resonance [46, 47], or (iii) resonant x-ray magnetic
diffraction experiment with a more efficient rejection of
charge scattering and a geometry allowing for azimuthal
scans, may be able to determine α experimentally, which
could then be compared with our predicted value.

D. Full model ground-state configurations

In this subsection, we explore the parameter space of
the magnetic model [see Eq. (1)] and the correspond-
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ing ground-state configurations consistent with the exist-
ing magnetization and magnetic susceptibility data. Our
objective is to use HoNiSi3 as a case study to analyze
whether the possible magnetic structures can be con-
strained using this experimental data. Restricting the
possible ground states may assist in directing subsequent
experiments and DFT calculations to accurately deter-
mine the magnetic structure of a material. Accordingly,
we exclude here the x-ray data and coupling parameters
derived from DFT plus de Gennes scaling in this analysis.

To perform this study, we focus on magnetic struc-
tures with an eight-site cluster that corresponds to two
crystallographic unit cells (repeated in the a direction).
Our proposed magnetic model incorporates the nine CEF
terms permitted by symmetry and the seven exchange
couplings illustrated in Fig. 5. The model parameters
could theoretically be determined by fitting the exper-

imental data to the outcomes from solving the model
Hamiltonian. However, due to the high number of pa-
rameters, limitations inherent in the model, and the com-
putational demands of solving it via Monte Carlo meth-
ods, this strategy is deemed impractical.

Instead, we adopt an approximate mean-field ap-
proach, which generally offers a rapid and reliable means
to capture the primary qualitative aspects of the exper-
imental data for compounds exhibiting magnetic order.
The primary limitation of this approach is its inability to
uniquely determine the parameters, as multiple parame-
ter sets may yield similar fit qualities.

To address this challenge, we explored the parameter
space beginning with randomly chosen parameters, em-
ploying a subplex minimization technique [48] to optimize
the fit. The minimized cost function is defined as

∆2 =
∑
ζ=a,c

(
βζ

∑
i

(χExp
ζ,Ti

− χTeor
ζ,Ti

)2 + γζ
∑
i

(MExp
ζ,Hi

−MTeor
ζ,Hi

)2

)
. (10)

Here χExp
ζ,T and MExp

ζ,H represent the experimental mag-
netic susceptibility and magnetization, at temperature T
and field H, respectively, and ζ = a, c indexes the exter-
nal field direction. The theoretical mean-field values are
denoted by χTeor

ζ,T and MTeor
ζ,H . The normalization factors

βζ and γζ are determined through a preliminary mini-
mization process to ensure a balanced contribution from
both magnetic susceptibility and magnetization to the
cost function. The minimization process is repeated for
1000 random initial parameter sets and the 200 fits with
the lowest cost function are selected. Finally, the ground
states corresponding to the selected sets of parameters
are classified using a machine learning approach.

To characterize ground-state magnetic structures to be
fed to the machine-learning procedure, we use the square
modulus of the spin structure factor,

Sζ

Q⃗
=

∣∣∣∣∣∑
l

⟨Jζ

R⃗l
⟩eiR⃗l·Q⃗

∣∣∣∣∣
2

, (11)

where ⟨Jζ
l ⟩ is the mean value of the ζ = a, b, c com-

ponent of the magnetic moment at site R⃗l, and Q⃗ =

(πna/a)â + (2πnb/b)b̂, where a and b are the lattice pa-
rameters of the conventional cell of HoNiSi3, na = 0, 1,

and nb = 0, 1, 2, 3. Sζ

Q⃗
is insensitive to symmetry-related

configurations (e.g., an inversion of all magnetic mo-
ments).

The 24 = 3× 2× 4 values of Q⃗ form the feature vector
v⃗ =

(
Sa
0,0, S

a
0,1, . . . S

c
1,3

)
for the machine learning analysis,

where na and nb in Sζ
na,nb

determine the Q⃗ value. The
similarity between the ground states is quantified by the
Euclidean distance between the different feature vectors.

To analyze the data, we use the Uniform Manifold
Approximation and Projection (UMAP) [49] procedure,
a dimension reduction algorithm (as implemented in
Tensorflow [50]). UMAP is a state-of-the-art unsuper-
vised machine learning algorithm for dimension reduc-
tion based on manifold learning techniques and topo-
logical data analysis. It works by estimating the topol-
ogy of high-dimensional data and using this information
to construct a low-dimensional representation that pre-
serves the proximity relationships in the data. This di-
mensional reduction is useful for visualizing the data and
for clustering. The steps of this procedure are described
schematically in Fig. 7. Each dot in Fig. 7(d) represents
a 2D projection of the original feature vectors v⃗ (we re-
call that v⃗ is the square modulus of the structure factor).
Five clusters corresponding to five different ground-state
magnetic structures can be clearly distinguished.
The Sζ

na,nb
values corresponding to the magnetic con-

figurations for all ground states in a given cluster are
shown in Fig. 8, where only the 15 non-zero compo-
nents of the square modulus of the structure factor are
plotted for each v⃗. Nine of the Sζ

na,nb
are zero for all

ground states. For example, there are no configurations
with weight on SQ⃗=(0,0) that would correspond to a FM

component. Cluster 5 has correlations that correspond to
those observed in GdNiSi3, TbNiSi3 (magnetic order AF4
in Fig. 5), as well as in HoNiSi3. The best fit obtained
(the lowest value of ∆2) corresponds to a magnetic con-
figuration found within this cluster. The ground-state
configurations in cluster 4 present AFM (FM) correla-

tions along the a⃗(⃗b) axis. Cluster 3 corresponds to states
with FM planes stacked antiferromagnetically in a ↑↑↓↓
pattern while in cluster 1 the stacking pattern is ↑↓↓↑.
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FIG. 7. Flowchart of the procedure used to catalog the
possible fitting parameters. (a) shows a general measurement
that can be described by a Hamiltonian with an interaction
and a CEF term. (b) shows that in the multidimensional
parameter space, a regular seed can be good enough to find an
excellent fit (continuous lines represent fit quality contours).
(c) illustrates the case for HoNiSi3: Most seeds fall on different
fitting parameters. An absolute minimum could be hidden
on the irregular landscape. (d) shows the 2D projection of
the different feature vectors originally embedded in the 24-
dimensional space after applying UMAP. In this panel, the
feature vector (of each dot) corresponds to the 24 components
of the square modulus of the spin structure (see main text).
The obtained clusters are clearly separated. Figure 8 shows
explicitly the spin structures (configuration) that are grouped
in each cluster.

In the latter, correlations along the b⃗ axis are similar to
the ones observed in YbNiSi3. Finally, in cluster 2, the
correlations are similar to those found in cluster 5 but
with a non zero spin component in b⃗ direction.
The ground-state configurations in cluster 5 corre-

spond to the one obtained experimentally and deduced
from the DFT analysis (Sec. III C 2). See Table VI for a
set of parameters in cluster 5 that yields a fit to magnetic
measurement as good as the one reported in Sec. III C 2.

This analysis shows that in spite of the complexity of
this system due to its low symmetry, giving rise to a
large set of CEF and coupling parameters, the magnetic
susceptibility and magnetization experimental data can
be used to narrow considerably the search for possible
ground states using computationally inexpensive mean-
field calculations and basic machine-learning tools.

IV. CONCLUSIONS

In summary, resonant x-ray diffraction experiments
were conducted on HoNiSi3 in the temperature range
where distinct magnetically ordered phases I and II were
inferred from previous specific heat and magnetic sus-
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FIG. 8. Clustered square modulus of the structure factor
and representative magnetic configurations. The cluster la-
bels correspond to the ones determined in Fig. 7(d). The
plot on the left shows the non-zero components of the square
modulus of the structure factor Sζ

na,nb
for all the selected

ground states. The panel on the right shows two projections
of a representative spin configuration for each cluster.

ceptibility measurements [18]. Our presented data show
that both phases are characterized by a commensurate

magnetic structure with propagation vector k⃗ = [0, 0, 0]
formed by a ↑↓↑↓ stacking pattern of FM ac planes with
Ho magnetic moments being parallel to a⃗ axis in phase
II and within the ac plane in phase I. A symmetry anal-
ysis indicates that the magnetic phase I is not consis-
tent with the presumed Cmmm space-group symmetry of
the chemical crystal structure, and therefore a (possibly
very small) monoclinic distortion is inferred. Magnetic
simulations were performed using different approaches to
guide the choice of exchange and CEF parameters. First,
a simplified model using a reduced number of fixed ex-
change parameters obtained from DFT and a few CEF
terms taken as fitting parameters was able to capture the
experimental magnetic structure, as well as the magnetic
susceptibility, magnetization, and specific heat curves. In
addition, a methodology based on an unsupervised ma-
chine learning-algorithm was employed to search for the
possible magnetic structures of the ground state. Re-
markably, the parameters that give the best compar-
isons to the experimental susceptibility and magnetiza-
tion data, as well as those that are consistent with the
simplified model, belong to the same cluster that yields
the correct magnetic structure. The methodology em-
ployed here may be extended to other magnetic materials
where the complete set of exchange and CEF parameters
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TABLE VI. Two sets of parameters. Those in the simple model column are the ones used in Sec. III C 2. Those in the
optimized column are obtained by a minimization procedure as described in Sec. III D. For comparison, we show in the last
line the value of the cost function ∆2 for the two sets of parameters.

Parameter Simple model Optimized
K0 0.10 0.066

K1 -0.012 0.014

K2 0.064 -0.00018

K3 -0.012

K4 -0.012 -0.011

K5 -0.018

K6 0.034

O0
2 0.16

O2
2 -0.85 -0.7

O0
4 0.0021 0.0083

O2
4 -0.026

O4
4 -0.0055

O0
6 -0.000052

O2
6 -0.000093

O4
6 0.00013

O6
6 -0.00028

∆2 225 204

are not known a priori.
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S. Manmana, M. Matsumoto, I. McCulloch, F. Michel,
R. Noack, G. Paw lowski, L. Pollet, T. Pruschke,
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