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Current carrying chiral edge states in quantum Hall systems have fascinating properties that are
usually studied by electron spectroscopy and interferometry. Here we demonstrate that electron
occupation, current, and electron coherence in chiral edge states can be selectively probed and con-
trolled by low-energy electromagnetic radiation in the microwave to infrared range without affecting
electron states in the bulk or destroying quantum Hall effect conditions in the bulk of the sample.
Both linear and nonlinear optical control is possible due to inevitable violation of adiabaticity and
inversion symmetry breaking for electron states near the edge. This opens up new pathways for
frequency- and polarization-selective spectroscopy and control of individual edge states.

I. INTRODUCTION

The Quantum Hall (QH) effect is one of the most stud-
ied phenomena in condensed matter physics [1], with far-
reaching applications in many other areas. One of the
most important insights in the QH effect physics was the
intricate relation between the electron states in the insu-
lating bulk of the sample and the current carrying chi-
ral edge states [2, 3] which have been extensively studied
with real space imaging and momentum resolved electron
spectroscopy [4-9]. Moreover, coherence of unidirectional
electron transport in QH edge states stimulated mas-
sive research in QH edge state interferometry. Various
types of electron interferometers have been implemented,
both in conventional semiconductor quantum wells and
in graphene samples, and for both integer and fractional
statistics of carriers [10-22].

Terahertz optical spectroscopy of Landau-quantized
electron states in two-dimensional (2D) electron gas is
of course yet another massive field of research. However,
its utility in probing or manipulating the electron states
under the conditions of QH effect is highly problematic,
because resonant optical transitions between bulk Lan-
dau levels will lead to nonequilibrium carrier population,
which therefore enables nonzero bulk DC conductivity
across the sample. As was argued in Ref. [23], even vac-
uum cavity fields under the ultra-strong coupling condi-
tions could break the topological protection of the integer
QH effect and destroy some of the high quantum number
plateaux.

In this paper we show that the optical spectroscopy
and even coherent optical control of the QH edge states
are still possible and can be in fact very effective with-
out destroying the QH effect conditions in the bulk. The
key physical reason for this is that the optical transi-
tions between electron states near the sample boundary
(within a few magnetic lengths from the edge) have sig-
nificantly different transition energies and polarization
selection rules as compared to the bulk of the sample.
This permits highly selective excitation of a given 1D
edge channel with single quasiparticle sensitivity without
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FIG. 1. (a) Photons interacting with electrons moving near
one of the edges of a sample which is subjected to a quantiz-
ing magnetic field. (b) Near the edge of the sample, energies
and wave-functions of the electrons are modified in such a way
that new channels open up for the absorption of photons or
nonlinear optical rectification. Dipole forbidden (solid green)
and Pauli blocked (solid blue) channels deep in the bulk be-
come active for electrons moving near the edge (marked as
dashed green and solid red, respectively).

disturbing the rest of the sample. Furthermore, inver-
sion symmetry breaking near the sample boundary (see
highly asymmetric wave functions in the supplemental
video) enables strong second-order optical nonlinearity
in electric dipole approximation, resulting in efficient op-
tical rectification of incident radiation and direct optical
driving of a quasi-DC current in edge states. These qual-
itative features are illustrated in Figs. 1 and 2, with more
quantitative discussion in the sections below.

High spatiotemporal and energy selectivity of the op-
tical excitations of chiral edge states not only makes it
a sensitive spectroscopy tool complementary to electron
transport measurements but also enables coherent con-
trol of individual edge channels in QH interferometers en-
dowing them with new optoelectronic functionality. Fur-
ther enhancement in selectivity could be possible with
near field tip-enhanced optical microscopy as opposed to
far-field illumination sketched in Fig. 1. Therefore we
hope that our paper will stimulate further collaboration
between optical and QH effect communities.

In this paper we focus at the integer QH effect in semi-
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FIG. 2. (a) The plots of eigenenergies as a function of momen-
tum k. Electron states in shaded regions contribute to photon
absorption for a given Fermi level shown with red horizontal
line. (b) The absorbance spectrum. Absorption due to the
edge states appears at frequencies higher than the bulk cy-
clotron resonance frequency w.. The shaded colored regions
under the black curve show the contributions of individual
transitions between the neighboring LLs, with matching col-
ors between (a) and (b).

conductor quantum well samples for parabolic electron
dispersion. The graphene edge states offer a greater va-
riety of the optical transitions due to two kinds of edge
terminations and will be considered elsewhere, as well
as edge states with fractional statistics of carriers. The
structure of the paper is as follows. In section II we pro-
vide both asymptotic and exact numerical solutions for
electron eigenstates and eigenenergies in the presence of
an edge treated as a hard-wall boundary, which of course
provides maximum nonadiabaticity. We also calculate
dipole matrix elements of the optical transitions between
both bulk and edge states. In section III we compute a
single-photon absorption probability for a quantized opti-
cal field and obtain spectra of 2D absorbance which show
a series of sharp characteristic peaks at high frequen-
cies that are entirely due to nonadiabatic edge states.
In section IV, we demonstrate different optical mecha-
nisms that give rise to direct current (DC) generation
by nonlinear rectification of the incident radiation. We
calculate the second-order nonlinear DC current which
exist already in electric dipole approximation due to in-
version symmetry breaking near the edge. We also eval-
uate the DC current due to optical rectification beyond
electric dipole approximation, which exists due to the op-
tical field gradient on the sample. Appendix summarizes
the results for electron eigenstates in the adiabatic ap-
proximation for comparison, derives the electron density
flux for an arbitrary electric potential, and gives the list
of second-order nonlinear density matrix elements con-
tributing to the rectification current.

II. CHIRAL EDGE STATES CLOSE TO THE
BOUNDARY

Consider a QH system with electrons constrained to
the x,y plane in a quantizing magnetic field B along z-
axis described by the vector potential A= —yBZ. Near
the boundary in y direction located at y = 0, the elec-
tron states experience the edge potential ®(y), so that

the Schr'ddinger equation for a wave-function of the form
Yr(z,y) ~ e*¥x(y) becomes
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where m is the electron mass, F is the energy eigenvalue,
w. = eB/(mec) is the cyclotron frequency, yx = kf? is
the position of the center of the cyclotron oscillator, and
¢? = ch/(eB) the magnetic length.

In the adiabatic approximation which is usually in-
voked when discussing edge states (see Appendix A),
®(y) is considered such a slow function of y that its
change over the magnetic length scale is neglected. In
this case, while the energies of the LLs increase towards
the edge, the energy separation between them does not
change and the dipole matrix elements of all transitions
between them do not change either. Furthermore, the
drift velocities of electrons in the channels do not depend
on the LL index.

The adiabatic approximation becomes increasingly in-
adequate when the distance to the edge becomes of the
order of a few magnetic lengths. In order to proceed,
we need to specify the shape of the edge potential. It
obviously depends on the details of the interface and is
affected by the presence of the surface states, any space
charge accumulation which tends to further sharpen the
potential profile [24], etc. In order to obtain quantitative
results we take the simplest nonadiabatic potential: the
hard wall condition [8, 25], or a step in ®(y) at y = 0,
which for a high enough potential barrier means that
for a given LL index n and x-component of momen-
tum k, xnk(0) = 0 and xnx(y — o) = 0. Although
obviously an idealization of any realistic boundary, the
hard wall condition captures the main physical effects
of the nonadiabatic interface, namely asymmetry of the
wave functions near the boundary (see the supplemen-
tal video), nonequidistant eigenenergies E,j of the edge
states as shown in Fig. 3, modified polarization selection
rules which increasingly favor y-polarization as the states
are pressed to the edge, and inversion symmetry break-
ing which leads to nonzero permanent dipole moments
and modified LL number n selection rules: the transi-
tions with n changing by 2 become allowed in the electric
dipole approximation. Finally, the electron drift velocity
in the state [nk) i.e., the diagonal matrix element of the
velocity operator, becomes n and k dependent and has a
standard form (see Appendix B for derivation):
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Note that this expression does not depend on the spe-
cific form of the eigenstates ¥, (z,y); moreover, Eq.(2)
does not depend on any assumptions about the nonuni-
formity scale of the potential ®(y) in comparison with
the magnetic length £..

We will consider the observational consequences of
these effects one by one below, keeping the derivation de-



tails and lengthy formulas in the Appendix. Before using
a numerical solution of Eq. (1) with a hard wall potential
to calculate the optical response, we point out two ap-
proximate analytical solutions of Eq. (1) for a hard-wall
boundary condition ®(y > 0) = 0 and x,x(0) = 0.

A. Asymptotic solution for n > 1

In this case, analytical solutions can be obtained
within the quasi-classical approximation [26]. For y; >
V/2E/(mw?), the quasi-classical solution of Eq.(1) cor-
responds to two turning points in the region y > 0 (one
at y > yr > 0 and another at y, > y > 0), for which
E = mw? (y — yx)? /2. In this case the solution obeys
Bohr-Sommerfeld quantization rule, which for Eq. (1)
corresponds to standard eigenenergies F,, = hiw.(n+1/2).
For yr < /2E/(mw2) there is one turning point at
y > yr > 0 and another one due to reflection from the
wall at y = 0. Denoting the turning point at y # 0 as y*,
we write the quasi-classical solution of Eq. (1) as

() ! /y*d (W) - = 3)
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where hgnk(y) = /2m [Enr, — mw2(y — yx)2/2] = 0 and
gnk(y*) = 0. Here N, is the normalization factor. Tak-
ing into account the boundary condition on the ideally
reflecting wall, i.e., x,x(0) = 0, we obtain the transcen-
dental equation for the eigenenergies as

2. 27t (n + 3/4)hw,
e Zﬂnk - Sln(zﬂnk) ’

with cos(Bnr) = —hk/v2mE,. For yr « k > 0 and
1 — hk/V2mE,; < 1, we have B, — m, i.e. Epp =
(n+3/4)hw,.. As we see, the energy is increased by fuw./4
as compared to the LL in the bulk. This is the result of
changing boundary conditions from a smooth effective
potential to a hard wall. For y; = 0, B, = 7/2, which
gives E, = (2n + 3/2)hw.. Here the energy is raised by
more than a factor of 2 as compared to the LLs in the
bulk. For yi; < 0, one can find the asymptotic solution
for E,r > nhw., which corresponds to the large wave-
number limit, |k|¢, > /n. In this case we need to have
Bnk — sin(2B,1)/2 < 1, ie., Bpr — 0. Denoting g, =
h2k?/(2m), we obtain

(4)
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implying that the energies increase and the distance be-
tween LLs grows non-equidistantly. This already sug-
gests that for a vertical wall or for any non-adiabatic
potential one can realize resonant optical transitions be-
tween edge states without causing resonant absorption
between bulk LLs.

B. Solution for any n but large wavenumbers k

Let us denote V (y) = mw?(y — yx)?/2. Under the con-
dition V'(y)ly—y ~ V'(W)ly0 < V/(1)ly0. where B =
. 1/3
V(y"), and for & = (2[kl/£2)"* (y = (B = &)/ (hwe k1)),
Eq. (1) can be transformed to
o°x
0¢?
We can choose our solution as the Airy function Ai(§),
which goes to zero for £ — oo and satisfies the boundary
condition x(y = 0) = 0, with the corresponding eigenen-
ergies

—&x =0

Eni = e + (hwe)? /%16, (6)

where &, are zeros of the Airy function, i.e., Ai(§,) =
0,n = 0,1,2.... Here & is the zero with value closest
to & = 0, and their values |¢,| increase with increas-
ing n. One can verify that Eq. (6) is valid as long as
|k|£. > y/n. The eigenfunctions x,x(y) corresponding to
eigenenergies E,; are defined in the interval 0 < y < oo

as
12N
xnk(y)—NnkM(y(@) +&) . (7

with N, being the normalization factor which is given

as,
~ [? 1/3 [es} )
Va=(gy) [ atee.

The dispersion of eigenenergies (6) has the similar struc-
ture to those in the previous subsection, even though the
former does not rely on n being large.

C. Exact numerical solution for eigenstates and
dipole matrix elements

Finally, we compute the eigenvalues and the eigenfunc-
tions for Eq. (1) numerically using Numerov’s algorithm.
Fig. 3 shows the eigenenergies for the first 11 LLs as a
function of yi/¢. = kf., and the energy differences be-
tween neighboring eigenvalues. It demonstrates not only
the bending of flat LLs of the bulk states near the edge
of the sample, but also the fact that the optical tran-
sitions become increasingly nonequidistant and move to
higher energies as compared to the transitions between
bulk LLs. It is also worth pointing out strong inhomoge-
neous broadening of the inter-LL optical transitions.

The dipole matrix elements and selection rules are
modified drastically in the presence of the boundary,
mostly due to inversion symmetry breaking. In the elec-
tric dipole approximation, the general expression for car-
rier velocity along & direction which includes both diag-
onal (n = m) and off-diagonal (n # m) elements is

<nk‘|@w|mk/> = 6kk’wc (ykénm - ynk;mk) ) (9)
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FIG. 3. (a) Numerically obtained energy eigenvalues (nor-
malized with fiw.) from Eq. (1) in the presence of hard
wall at y = 0 for the first eleven eigenvalues correspond-
ing to n = 0,1...10 respectively, as a function of the center
of cyclotron rotation yx/f. = kf.. (b) Difference between
consecutive energy eigenvalues as a function of kf.. Here

Enk = Enk/ﬁwc.

with Ynk.me = (nklylmk). In the bulk, vertical tran-
sitions between mth and nth LLs obeys the following

selection rule,
Ynk;mk n
—— =fnm = . 10
EC ,m—+1 \/; ( )

This simple relation, however, does not hold for edge
states. In Fig. 4, we plot the dipole elements as a func-
tion of the center of the cyclotron rotation yi/l. = kl.
for transitions involving the first several LLs. The panel
(a) shows that the dipole elements deviate from Eq. (10)
as y, approaches the edge. At the same time, previ-
ously forbidden transitions n — n + 2 are activated, as
shown in panel (b). Furthermore, the permanent, intra-
LL dipole matrix elements differ from their bulk values
as well (panel (c)), such that their differences between
consecutive LLs change from zero to finite values. Both
effects are a consequence of inversion symmetry breaking
and lead to large second-order nonlinearity in electric-
dipole approximation, as we will see below.

III. QUANTUM THEORY OF THE PHOTON
ABSORPTION

Since one of the most interesting possibilities offered by
the optical field is to excite a single electron into a given
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FIG. 4. Magnitude of the normalized dipole matrix elements
as a function of the center of the cyclotron rotation yi/fc =
kl. for (a). n > n+1, (b) n » n+ 2 and (c) the difference
of intra-LL dipole elements. Here §i; = yik;ji/Le-

edge state, we need a fully quantized theory of fermions
in a QH sample interacting with a quantized electromag-
netic field. We will derive both the probability of a single
photon absorption and the absorbance of a classical field.
It is convenient to describe the quantum state of
electrons in terms of occupation numbers of |nk) =
Xnk(y)e*®  states, for example |---1,p--Oprgr o),
where 1, and 0, are occupied and unoccupied states.
Fermionic annihilation and creation operators are act-
ing on these states in the usual way: dng| - 1pk---) =
|-+ Opg---) and &Lk|"'0nk'“> = |---1yx---). The
electron Hamiltonian is then ﬁe = vak Enkdlkdnk.
The Hamiltonian and the operator of the vector po-
tential of the EM field incident on the sample are

. PO 1
Hpn = Z hwyq (blqbvq + 2) ; (11)
v.q

27c2h
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where I;Vq and Biq are the photon annihilation and cre-
ation operators acting on the photon Fock states [n,q),
wg = c|q|, V is the quantization volume with periodic
boundary conditions, and e,q is the polarization vector



such that q - e, q = 0. The total Hamiltonian is
ﬁ = FIe + th + Hint ) (13>

where the interaction Hamiltonian ﬁim = —%j - A and

the current operator is j = —eV. From the general re-
lation Vnkn/'k! = _iwnk;n’k'rnk;n’k’y where hQJnk;n’k’ =
FE, — E, ., we can express the current matrix elements
through the dipole matrix elements discussed in the pre-
vious section:

jnk;n’k:’ = jnk;n’k(skzk’v (14)
(jz)nk;n/k = eWcYnkn'k, (15)
(jy)nk;n/k = iewnk;n/kynk;n’ka (16)

which results in the modified polarization selection rules:

(ja:)nk;n/k +1 (]y)nk n'k — 0. (17)

Wnk;n'k

As follows from Eq. (17) and Fig. 3(b), for electron
states near the edge the transition frequency wyp;n/t be-
comes several times larger than w, and therefore the y-
component of the current matrix element becomes signif-
icantly larger than the x-component.

Now consider normal incidence of the radiation on the
Hall sample, when q = ¢z, and take the field quantiza-
tion volume as a ray bundle of volume V' = [,[,[,. For our
purpose it is sufficient to consider only one spatial mode
at frequency wy = cg and polarization e,. It is straight-
forward to generalize it to a multimode wave-packet. As
a result, in the rotating-wave approximation (RWA) the
interaction Hamiltonian becomes

I 27h
Hine == Viog
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As an initial state of electrons we take

H ., [0

{nk}o:,c

where |0.) is the vacuum state of the electron system,
{nk}occ denotes occupied states. The values of n change
from n = 0 to n = nr where nr is the index of the
highest occupied LL in the bulk, whereas the values of k
change up to k,p, for which E,; = Er, where Er is the
Fermi energy. An initial single-photon state of the field
is

Ui (0) = bf0,),

where |0,) is the vacuum state of the field. We seek the
solution of the Schrodinger equation as

U(t) = Cy(t)¥pn(0)T.(0)

{n'k}oce,n

il anpe(0) . (18)

In Eq. (18) the summation is performed only over the in-
dices n,n' and k which at the initial moment of time cor-
respond to occupied states |n'k) and empty states |nk).
At t = 0 we have Cg(0) = 1 and Cp,(0) = 0. The
Schrodinger equation leads to linear equations for the
complex amplitudes Cy(t) and C,,i(t), that are similar
to those for a quantum field interacting with an inho-
mogeneously broadened ensemble of two-level quantum
emitters [27]. Solving them, one can obtain a complete
quantum dynamics of light-matter interaction. In par-
ticular, in the perturbative linear regime we obtain the
absorption probability per unit time and per given tran-
sition n’ — n as

. (0) (0)
47T|.]nk;n’k . eZ|2 r (pn’k;n’k Pk nk)
h{’u(lwl’l/lz) 2+ (wnk;n’k - w)2 ’
(19)

-An/—>n =

where I is the homogeneous broadening of inter-LL tran-
sitions determined by disorder-induced scattering and
pgk)jk = (1 +6(Efk’EF)/(kBT))_1 is the Fermi distribu-
tion function at temperature 7. For small I" as compared
to the inhomogeneous broadening of transitions between
edge states, the Lorentzian in Eq. (19) becomes the delta
function 7 (wpk:nr — w) and one recovers the Fermi’s
golden rule expression. In the case of a finite I" stochastic
noise terms appear in the equations for complex ampli-
tudes according to the stochastic Schroedinger equation
approach [27], but this will not affect the linear absorp-
tion probability.

The summation over k£ can be replaced by integra-
tion, >, — gs%fdk, where we also added the spin
degeneracy factor g;. Here L, is the sample length
(quantization length of electron states) in x-direction
along the edge. The total absorption probability is ob-
tained by adding the contributions from all LL transi-
tions, Aipr = % Zn n An'—n. Here we also converted
the probability per unit time into the total dimensionless
probability of absorbing a photon by multiplying the for-
mer by the photon pulse duration At ~ [, /c. Defined this
way, the photon absorption probability will also describe
the dimensionless absorbance of the classical monochro-
matic wave by a 2D system. Here we obviously assumed
a rectangular temporal profile of the pulse for simplic-
ity. Propagation of single-photon pulses of an arbitrary
shape involves a bit more algebra and can be found, e.g.,
in Ref. [28].

The resulting expression depends on the geometric pa-
rameter lf—lz, which can be written as a dimensionless

factor

h

mgc

f_

o~

x

<

This factor measures the overlap of an incident radiation
beam with electron states in the (x,y) plane and is ex-
pected to be much smaller than 1, especially due to the
ratio £./l,. Indeed, for a GaAs/AlGaAs quantum well
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FIG. 5. Normalized absorbance spectra given by Eq. (20) (solid black line) of g-polarized photons for (a) Fermi energy above
the fifth LL and (c) Fermi energy above the tenth LL. Panels (b) and (d) show the difference between the absorbance of § and
Z polarization for the same Fermi levels (z-polarized absorbance subtracted from y polarized one). The shaded colored regions
under the black curves show the contributions of individual transitions between the neighboring LLs. The insets in (a) and (c)
show the regions of phase space which contribute to the absorption of photons for each pair of neighboring LLs. The colors of
shades in the inset match those in the main figure for each panel. Other parameters are I' = 0.02 w. and temperature 7' = 0.

with the conduction band effective mass of 0.067mq [29]
and in a magnetic field B =1 T, we have fiw. ~ 1.7 meV
and /., ~ 26 nm. If we want to focus incident THz radi-
ation tightly on one edge of the sample in order to bring
the overlap closer to 1, one should illuminate a metal
tip or fabricate a metallic nanoantenna along the sample
edge.

In order to show universal, geometry-independent ab-
sorbance spectra, we normalize the absorbance by this
geometric overlap factor, namely

Atot _ ZAn . (20)

n,n’

A (w) =

The resulting spectra o/ (w) of absorbance (or single-
photon absorption probability) are shown in Fig. 5(a) and
(c) for the case of y-polarized radiation. The shaded re-
gions under the black curve show the contributions of in-
dividual transitions between neighboring LLs; the range
of these transitions in momentum space is shown in the
insets, with colors matching the shaded regions in the
main figure. The salient feature of the total absorbance
spectra is the existence of the sharp peaks at frequencies
where the contributions from two different transitions
overlap. The overlaps exist in the region of momenta
k > 0 and frequencies w, < w < 2w, as one can also see
from the spread of transition energies in Fig. 3(b). For
higher frequencies and for the states closer to the edge
(k < 0) the overlaps disappear and the peaks in Fig. 5
turn into dips, as is also clear from Fig. 3(b) where the

order of transition energies between neighboring LLs gets
inverted upon crossing k = 0. These peaks and dips pro-
vide a clear spectroscopic signature of individual edge
states. Moreover, they also provide an opportunity of
exciting nonequilibrium carriers into a given edge state
and then observe a corresponding change in the edge-
state interferometry. Due to a large spectral detuning
from the bulk transitions at w = w, this is possible with-
out destroying the QH effect conditions in the bulk of the
sample.

One detrimental factor that could possibly affect
the edge state spectroscopy, especially with broadband
pulses, is the presence of a strong peak at w = w, due
to the bulk state transition np — ng + 1. However, this
peak can be subtracted out in the measurements of dif-
ference between absorbance in x- and y-polarizations, as
shown in Fig. 5 (b) and (d). Here we make use of the
fact that near the edge the x- and y-components of transi-
tion matrix elements become increasingly different, with
a much stronger y-component, as follows from Eq. (17).
Thus, difference measurements will get rid of the bulk
peak and may result in easier observable peaks and dips
for edge states.

As one can see from Fig. 5, the magnitude of ab-
sorbance peaks normalized by the geometric factor f is
of the order of 1-2. Therefore, the fraction of light ab-
sorbed in individual peaks is essentially the above factor
f measuring the overlap of the incident radiation with
the sample area. While there is no doubt that f < 1,
one needs to keep it large enough to ensure that the ab-



sorption is detectable.

One can also estimate the magnitude of absorbance
analytically by taking the limit I' — 0 which converts
Eq. (19) into the one given the Fermi’s Golden Rule,
with the delta-function in the integrand describing energy
conservation. Performing integration in k, we obtain

: 2
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(21)

nk;n

where we also took the population difference equal to
1. Using the expression for energy dispersion pro-
vided in the Eq. (5) (or Eq. (6)), we find Opwniink =
2wy kink/(3k). For a y-polarized field we have |jngn/k -

e’ = eQw%km,k\ynkm/kF. This gives
l 3ra
oA = ST i PR, s (22)

where « is the fine structure constant, k scales as

wiﬁn,k, and the momentum dependence of |y.nk|?
can be extracted from Fig. 4. For example, if we take
the Wavenumber of the initial state at the Fermi level,
k=~ kp~ \/an + 1, the absorbance due to the tran-
sition between these LLS is

l n n
Api—n = f3ma/2np + 1 M (23)

IV. GENERATION OF DC CURRENT BY
OPTICAL RECTIFICATION

The DC current carried by chiral edge states in QH ef-
fect experiments is proportional to the diagonal elements
of the density matrix,

= _72 ’Uw nk; nkpnk nk * (24)

The net current from both edges is zero, but it becomes
nonzero if a DC voltage AV is applied. Indeed, using
Eq. (24) together with Eq. (2), one can find out that
in equilibrium, the difference between the currents along
opposite edges AJy = 622";.; AV, where ng is the number
of filled LLs in the bulk.

However, inversion symmetry breaking for edge states
gives rise to a possibility of generating the DC or quasi-
DC current by an optical field through the second-order
process of the optical rectification, which becomes al-
lowed in the electric dipole approximation and moreover
quite efficient. In order to support a net current only one
edge needs to be illuminated; otherwise the contributions
of two opposite edges will still cancel each other.

This optically driven DC current is due to the nondi-
agonal elements of the density matrix,

2
jdc = cB Z Zynk;mkpmk;nk . (25)

L,mcc
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The density matrix elements are found by solving the
master equation,

Oppm | 1
+ ﬁ Z (Hm/pum - anHVm) =0. (26)

ot

to which we will add phenomenological relaxation terms.
Here Hyg = dapFo+Vaps(t) and a, § represent the quan-
tum state comprising the Landau level index and the
momentum. The light-matter interaction Hamiltonian
in electric-dipole approximation is V() = ey(Ee~ ™! +
E*e™t), where we assume the field to be classical in
this section. Since all optical transitions are vertical in
the electric-dipole approximation, we suppressed the mo-
mentum index for simplicity, such that y;x.;x — ¥;; and
Pik:jk — pij- Of course the momentum index has to be
restored when integrating over k in Eq. (25).

We proceed by expanding the elements of the density
matrix in perturbative series with respect to the interac-
tion Hamiltonian,

Dptims 1 4
o _anmpgi]rjl_ ) - 7 Z ( anl(/J’rZL pggvum) )

(27)

with n and m denoting the quantum states corresponding
to Landau level indices n and m respectively. We are
only interested in the terms up to the second order in
the optical field. The linear in £ term yields

(0) (0)
i (K2 - 2)
1 _ 73 BB gefzwt

Ba ™ B wge —w — iy

where p((xﬁ) = (pgo)l) .

From Eq. (25) and taking into account the structure
of the perturbative solution, it is clear that there are
two types of contributions to the DC current at zero
frequency, i.e., < |€|%2. One type of terms in Eq. (25)
scale as yn;(n+2)pgi)+2);n. They are enabled by nonzero
dipole matrix elements y,,(,42) of the transitions which
change the LL index by 2, i.e, n — n + 2. The
second group of terms scale as yn;(nJrl)pEi)Jrl)m where

pgi)ﬂ);n C (Ym+1);(n+1) — Ynin). As one can see from

Fig. 4, both Yn;(n+2) and (y(n+1);(n+1) - ynn) are OIlly
nonzero for electron states close to the edge, when the
center of the cyclotron rotation yy is within several mag-
netic lengths £, from the edge.

The second-order nonlinear density matrix elements
contributing to the DC current satisfy the equations of
motion,

8/7512;%77,—1) . 2)

( e
ot + an;(”_l)pn;(nfl) - _Ey(t) X

(1) _ )
yn?(n*Q)p(n72);(n71) y(n*2)§("*1)pn;(nf2)

1) (€]
+yn%(n+1)p(n+l);(n—l) - y(n+1)?(n*1)pn;(n+1)

1
+(yn;n - y(n71);(n71))P£;2n_1) ) (29)



FIG. 6. Nonlinear DC current resulting from second-order
optical rectification process, as a function of the normalized
optical field frequency. The calculations included the first
five Landau levels for chemical potential Er = 3hw.. Red
curve: the electric dipole contribution to the nonlinear cur-

7P+, . .
rent from Eq. (32), =d=—-de— normalized by the “diagonal”

DC current Jy from Eq. (24) and factor ¢ from Eq. (31).

Blue dashed curve: beyond electric-dipole contribution to the
(I11) (Iv)

nonlinear current, %, normalized by [Jp and factor
gra
Cerad from Eq. (35).
(2)
W iis1yiin-1) | . 2 -
— +w =
ot (n+1)§(n_1)p(n+1);(n—l)

ie (1) (1)
—Eﬁ(t) Yn+1)inPr;(n—-1) ~ Yni(n=1)P(n+1):n

1
(Wt 1:41) = Ynm1)(n=1) Py 1y |+ (30)

where we have defined Z(t) = e~ 4 £t Time-
independent solution to these equations under illumina-
tion with a monochromatic field gives rise to a large num-
ber of terms contributing to the DC current, which grows
rapidly with increasing doping. For convenience, in Ap-
pendix C below we list the density matrix elements that
contribute to the rectification current for the Fermi level
Er = 3hw. between n = 2 and n = 3 bulk LLs, chosen
to make plots in Fig. 6.

In Fig. 6 the red curve shows the rectification current
normalized by the conventional “diagonal” DC current
(24) and by the factor

_ e

C - h2w2 (31)

proportional to the optical field intensity, as a function
of the optical field frequency. The current is a sum of the

above two contributions, jd(CI) and jd(gl) given by

gt _ B / dk sy

32
de mec | 21 ’ (32)

where
J0 y01p%) + y12pg21) + y23,0§22) +ce, (33)

JID = 9020%) + y13pg21) + y24p5122) tee.  (34)

The expressions for the second-order density matrix ele-
ments are given in Appendix C.

The main peak at the cyclotron frequency in Fig. 6
is due to the n = 2 — n = 3 transition near the
edge. With increasing optical frequency, the term (Fsi —
Es)/h—w flips sign and consequently we observe a nega-
tive peak in the plot. Additional kinks are due to activa-
tion/deactivation of various transitions. They are going
to be smeared by finite temperature effects and/or in-
creased scattering.

Since the normalized nonlinear current in Fig. 6 is of
the order of 1, the dimensional current magnitude is frac-
tion ¢ of the conventional edge current (24). The factor ¢
is essentially the Rabi frequency squared of incident light
normalized to the cyclotron frequency squared. When ¢
becomes of the order of 1, population transfer effects be-
tween the LLs in the bulk become important even despite
the detuning from the bulk inter-LL resonance. This
could create bulk conductance across the sample and de-
stroy the QH effect. Therefore, to maintain the QH effect
conditions in the bulk, it is desirable to keep ¢ < 1. The
optimal situation to observe or utilize the nonlinear rec-
tification current would be to illuminate one edge of the
sample under zero DC bias conditions, when the conven-
tional current is zero.

A. Beyond electric-dipole approximation

Yet another second-order nonlinear optical contribu-
tion to the rectified DC current originates from the spa-
tial nonuniformity of the electric field of the incident radi-
ation, i.e., beyond the electric-dipole approximation. In
the lowest order, the light-mater interaction Hamiltonian
becomes

V(t)=e Kys + 23y5> ety (ye + Qayg) e“"t} .

This gives rise to the following additional matrix elements
contributing to the rectification current,
e

Vint2ym = §(y2)(n+2);n (ayge_i‘”t + 8yg*eWt) ,

Vinsiitn1) = 501001 (9™ +9,7").

Solving the density matrix equations in the second order
of the field as in the previous subsection, we obtain addi-
tional contributions to the density matrix elements. For
example the factor y12y20E€*E in the first term in p%) in
Appendix C is modified as y12y20E*E + y12y30E* 0y E /2 +

Y3200, E* /2, and similarly for other terms.



We denote the resulting contributions as J/// and J'V
in the spirit of Eq. (33) and Eq. (34), respectively, and
calculate the resulting rectification current J, d(gH) + d(({v)
similarly to Eq. (32). It is shown as a blue curve in Fig. 6.
The current is normalized by the conventional “diagonal”

DC current (24) and by the factor

e2030,|&|?

h2w? (35)

Cgrad =

proportional to the gradient of the optical field intensity.
With this normalization, the optical rectification current
is close in magnitude to the one obtained in electric dipole
approximation and shown as a red curve. Note, however,
that the normalization factor in the denominator con-
tains the optical field intensity gradient £.9,|E|* which
is much smaller than |€]?, unless the optical field is fo-
cused to the size of the order of /., i.e., tens of nm, by
using a nanotip or nanoantenna at the sample edge as
sketched in the inset to Fig. 6. Without nanofocusing,

the electric-dipole current is greater in magnitude by the
leI?

factor ~ W

V. CONCLUSIONS

In conclusion, we demonstrated the feasibility of the
optical spectroscopy and selective coherent optical con-
trol of chiral edge state populations and current under the
conditions of the integer QH effect. The physical mecha-
nism enabling the selective control is inversion symmetry
breaking and violation of adiabaticity for electron states
near the edge. As a result, optical transitions between
the edge states have significantly different transition en-
ergies and polarization selection rules as compared to the
bulk of the sample. This enables selective excitation of
a given edge channel with single quasiparticle sensitiv-
ity without disturbing the rest of the sample. The 2D
absorbance shows characteristic peaks at different edge
state resonances at frequencies significantly higher than
the bulk cyclotron transition. A large fraction of inci-
dent light in the illuminated area of the sample can be
absorbed. The overall absorption probability of single
photons depends on their overlap with the edge state area
and will benefit from nanofocusing with a tip or nanoan-
tenna. Furthermore, inversion symmetry breaking near
the sample boundary enables strong second-order opti-
cal nonlinearity already in electric dipole approximation,
resulting in efficient optical rectification of incident radi-
ation and direct optical driving of a quasi-DC current in
edge states. The predicted optical effects can be used to
to study or control edge currents by optical means and
to control the interference pattern in QH interference ex-
periments.

While the calculations in this paper were performed
for nonrelativistic electron dispersion in semiconductor
quantum wells, one should expect qualitatively similar
results in graphene samples. Another natural extension

of this work is to investigate the optical control of edge
current under fractional QH effect conditions. We hope
that this study will attract attention of both QH and
optical communities and lead to interesting collaborative
experiments.
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Appendix A: Electron states in adiabatic
approximation

For the reader’s convenience, here we summarize the
results for electron states in the adiabatic approximation,
when the electric potential ®(y) varies much slower than

the magnetic length. For a magnetic field, B = B% we

choose the vector potential of the form A = —yBz, which
yields the single-electron Hamiltonian

1 By\? p?
H=— pw_ﬂ +p7y_ecp’
2m c 2m

where m is the electron mass. Since there is no explicit
x dependence, we can seek the wavefunction as

(A1)

P(z,y) =™ x(y) , (A2)
for which the Schroedinger equation yields
0%y 2m 1 9
CX L TR E At ed(y) — =muw? (y — ~0.
a2 TR [T (y) — gmwe (y = ) ]X(y) 0
(A3)

where we have defined the cyclotron frequency, w. =
eB/(mc), the position of the center of the cyclotron rota-
tion yg = k2, and the magnetic length ¢, = /ch/(eB).

In the adiabatic approximation, the potential ®(y)
is varying slowly near the edge, ®(y) =~ ®(y) +
(y — yk) (Oy®(y)|y=y, ) The particle energies are

Oy ®(Y)ly=y,
w.B

1
E,.. = <n+ 2) hw, — e® (yk+

S "

The term % in the right-hand side of Eq. (A4)
is the shift of the center of the cyclotron rotation with
respect to the initial point y; under the action of the
electric field By ~ —0,®(y)|y=y,- The last term on the
right-hand side of Eq. (A4) is the kinetic energy of the
drift motion in crossed E and B fields.



The eigenfunctions become
—(y=yr—cOy W) ly=y, /(we B))* /(V2L:)?
2nnly/ml,

Y Yk £8y¢(y)|y=yk
< Wz ) (a)

€

Xnk (y> =

where n is the LL index and H,, is a Hermite polyno-
mial. In this case, while the energies of the LLs increase
towards the edge, the energy separation between them
does not change as compared to the bulk states, and the
dipole matrix elements of all transitions between them
do not change either. Furthermore, the drift velocity of
electrons along the edge does not depend on the LL in-
dex:

(0) = =50y @)y (A6)

Appendix B: Electron density flux for an arbitrary
potential

It is interesting that the electron density flux and
drift velocity can be found for an arbitrary potential
®(y), provided Eq. (1) allows a finite solution corre-
sponding to a certain discrete spectrum of F,; and a
set of eigenfunctions of the form v,x(z,y) = e** Xk (y),
where Xk (¥)ly—s+oo — 0, [ dady 7 (x,y)bme (2,y) =
OnmOrk/. To prove this, we introduce the operator
of two-dimensional electron density for the nth LL,
Ny (z,y) = Wi(z, y)¥(z,y) where the field operators
are given in the second-quantized form: \i/(:v,y) =

>k Unk (2, y)ank, Ui = Yo i, y)&jlk with the annihi-

lation and creation operators as é,j and &Lk respectively.
The operator of two-dimensional spatial electron density
is then

Na(z,9) =3 Xorr W)Xk @) b
k,k’

(B1)

where ppiny = dlk&nk’- The same result can be
obtained by using the transition operator pprnk =
|nk)(nk'|. The operator ppimi obeys the Heisenberg
equation,

%% - _% (Enk - Enk’) ﬁnk;nk’ .
If the fermions are interacting with classical electromag-
netic fields, the Heisenberg operator ppni:.nk/, after av-
eraging over the initial state of the system, becomes the
matrix element of a standard density matrix ppi.nk . The
general expression for the probability flux of the electron
density can be expressed through the Wigner function,
defined as

(B2)

Wi(z,y, K) =
Z r(rc—172) (@ YV (K 4572) (T3 Y) Pr(K - 2) i (K~ /2)

10

where k — k' = k, (k+ k')/2 = K. The Wigner func-
tion W, (z,y, K) determines both the operator of spatial
density,

S Wl 9, K) = Nl ), (B3)
K
and the distribution over momenta,
/dxdy W (@, y, K) | k=t = Prkink- (B4)

It follows from Eq. (B2) that

6ﬁn(K+n/2);n(K7n/2) _
ot

7 R
% (Bn(k+r/2) = Bn(k—r/2)) Pr(K-+r/2)m(K—r/2) -
(B5)

Suppose that we have a well-localized state in k so
that 0k < k (a narrow spectrum in k means narrow
localization along y near the edge). In this case we
have En(KJrK/z) — En([(,,{/g) ~ /QakEnklk:K. Then from
Eq. (B5) and taking into account Egs. (B3) and (B4) one
can obtain

Wn(2,y,K) | 10Ew|  OWal(x,y, K)
ot h Ok |,_x O

—0. (B6)

For a quadratic spectrum of the type E,r = Eno + apk?
Eq. (B6) is exact and does not require a narrow spectrum.
Using Egs. (B6) and (B3), one can obtain

ON,(z,y) 10En N, (z,y)
ot h Ok ox

where k is the central value of the given narrow spectrum.
From Eq.(B7) one obtains the expression for the observed
particle velocity in the state |nk) i.e., the diagonal matrix
element of the velocity operator, which has a standard
form:

—0  (B7)

10En
~h Ok

Note that this expression coincides with the one obtained
from the solution (A5) for a uniform electric field but it
does not depend on the specific form of the eigenstates
Unk(z,y); furthermore, Eq. (B8) does not depend on any
assumptions about the nonuniformity scale of the poten-
tial ®(y) in comparison with the magnetic length £..

Appendix C: Second-order nonlinear density matrix
elements

For reader’s convenience, we provide below the the
list of second-order nonlinear density matrix elements
that contribute to the optical rectification current in the
electric-dipole approximation for our chosen value of the
Fermi level, Fr = 3hw,:
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)

)

P§20) _ y12y20AP((J%) _ y20y12Ap;(Lg) . (yoo - y11) leAp((J(j)L)
62|8|2/h2 w10 (AQO — Z"Y) w10 (Agl =+ i’y) w10 (Alo — i’}/) ’
p(221) _ y20y01AP(()?) _ Z/01y20APE)g) yzgyglApg(:);) _ Z/31y23A,0g;,) _ (y11 — yzz)ymAng)
e?|E12/h? wor (A1g +1y)  war (Agg —4y)  wor (Ag1 —y)  wor (Age + 1) wa1 (Agy — 1)
szz) _ y31y12AP§g) _ y12y31AP§%) y34y42Ap§?3 _ y42y34Ap§i) _ (Y22 — y33)y32Apg;,)
e2|E|2/h? w3z (Aor +17)  waz (Az1 — i) w32 (Aue —iy)  wsz (Ays + 1) w2 (A2 — 1)
o _ Yany2s Aply B ya3ya2 Aply
e2|E|2/h? wyz (Asg +197)  waz (Agp — i)’
P%) _ yzlyloAP((ﬁ) _ ymyglApg) (Yoo — y22) y20AP(()g)
e2|€|?/h? wao (A1 —7y)  wao (A21 —77) wao (Agg —iy)
(2) A (0) A (0) _ A (0)
P31 _ _YsY:apig 0 Y21Y328Pr3 (y11 — y33) Ys1Apig
e2|€|2/h? w1 (Aop —7y)  wsy (Asp — i) wyy (Agp —iy)
sz) _ y43y32Ap(203) _ (Y22 — yaa) y42AP$1)
e2|€|2/h? waz (Asz — 1) waz (Ag2 — i)

Here Ap&oﬁ) = (p&ocz - p(ﬁoﬁ)) is the equilibrium population difference and A,g = wap — w.

* asingh.n19@gmail.com
! belyanin@tamu.edu

[1] R. E. Prange and S. M. Girvin, eds., The Quantum Hall
Effect (Springer US, 1987).

[2] B. I. Halperin, Phys. Rev. B 25, 2185 (1982).

[3] A. H. MacDonald and P. Stfeda, Phys. Rev. B 29, 1616
(1984).

[4] N. Pascher, C. Rossler, T. Ihn, K. Ensslin, C. Reichl,
and W. Wegscheider, Phys. Rev. X 4, 011014 (2014).

[5] A.Marguerite, J. Birkbeck, A. Aharon-Steinberg, D. Hal-
bertal, K. Bagani, I. Marcus, Y. Myasoedov, A. K. Geim,
D. J. Perello, and E. Zeldov, Nature 575, 628 (2019).

[6] T. Johnsen, C. Schattauer, S. Samaddar, A. Weston,
M. J. Hamer, K. Watanabe, T. Taniguchi, R. Gorbachev,
F. Libisch, and M. Morgenstern, Phys. Rev. B 107,
115426 (2023).

[7] G. Li, A. Luican-Mayer, D. Abanin, L. Levitov, and
E. Y. Andrei, Nature Communications 4, 1744 (2013).

[8] T. Patlatiuk, C. P. Scheller, D. Hill, Y. Tserkovnyak,
G. Barak, A. Yacoby, L. N. Pfeiffer, K. W. West, and
D. M. Zumbiihl, Nature Communications 9, 3692 (2018).

[9] S. Kim, J. Schwenk, D. Walkup, Y. Zeng, F. Ghahari,
S. T. Le, M. R. Slot, J. Berwanger, S. R. Blanken-
ship, K. Watanabe, T. Taniguchi, F. J. Giessibl, N. B.
Zhitenev, C. R. Dean, and J. A. Stroscio, Nature Com-
munications 12, 2852 (2021).

[10] B. J. van Wees, L. P. Kouwenhoven, C. J. P. M. Harmans,
J. G. Williamson, C. E. Timmering, M. E. I. Broekaart,
C. T. Foxon, and J. J. Harris, Phys. Rev. Lett. 62, 2523
(1989).

[11] C. de C. Chamon, D. E. Freed, S. A. Kivelson, S. L.
Sondhi, and X. G. Wen, Physical Review B 55, 2331
(1997).

[12] Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu,
and H. Shtrikman, Nature 422, 415 (2003).

[13] S. B. Chung and M. Stone, Phys. Rev. B 73, 245311
(2006).

[14] A. Stern and B. I. Halperin, Phys. Rev. Lett. 96, 016802
(2006).

[15] D. E. Feldman and A. Kitaev, Phys. Rev. Lett. 97,
186803 (2006).

[16] Y. Zhang, D. T. McClure, E. M. Levenson-Falk, C. M.
Marcus, L. N. Pfeiffer, and K. W. West, Phys. Rev. B
79, 241304 (2009).

[17] A. Stern, B. Rosenow, R. Ilan, and B. I. Halperin, Phys.
Rev. B 82, 085321 (2010).

[18] C. Déprez, L. Veyrat, H. Vignaud, G. Nayak, K. Watan-
abe, T. Taniguchi, F. Gay, H. Sellier, and B. Sacépé,
Nature Nanotechnology 16, 555 (2021).

[19] D. E. Feldman and B. I. Halperin, Phys. Rev. B 105,
165310 (2022).

[20] J. Nakamura, S. Liang, G. C. Gardner, and M. J. Man-
fra, Nature Physics 16, 931-936 (2020).

[21] Y. Ronen, T. Werkmeister, D. Haie Najafabadi, A. T.
Pierce, L. E. Anderson, Y. J. Shin, S. Y. Lee, Y. H. Lee,
B. Johnson, K. Watanabe, T. Taniguchi, A. Yacoby, and
P. Kim, Nature Nanotechnology 16, 563-569 (2021).

[22] J. Nakamura, S. Liang, G. C. Gardner, and M. J. Man-
fra, Phys. Rev. X 13, 041012 (2023).

[23] F. Appugliese, J. Enkner, G. L. Paravicini-Bagliani,
M. Beck, C. Reichl, W. Wegscheider, G. Scalari, C. Ciuti,
and J. Faist, Science 375, 1030 (2022).

[24] D. B. Chklovskii, B. I. Shklovskii, and L. I. Glazman,
Phys. Rev. B 46, 4026 (1992).

[25] W. N. Mei and Y. C. Lee, Journal of Physics A: Mathe-
matical and General 16, 1623 (1983).

[26] L. D. Landau and E. M. Lifshitz, Quantum Mechanics:
Non-Relatiwistic Theory (Elsevier Science, 1981).

[27] M. Tokman, A. Behne, B. Torres, M. Erukhimova,
Y. Wang, and A. Belyanin, Phys. Rev. A 107, 013721
(2023).


mailto:asingh.n19@gmail.com
mailto:belyanin@tamu.edu
http://dx.doi.org/10.1007/978-1-4684-0499-9
http://dx.doi.org/10.1007/978-1-4684-0499-9
http://dx.doi.org/10.1103/PhysRevB.25.2185
http://dx.doi.org/ 10.1103/PhysRevB.29.1616
http://dx.doi.org/ 10.1103/PhysRevB.29.1616
http://dx.doi.org/ 10.1103/PhysRevX.4.011014
http://dx.doi.org/ 10.1038/s41586-019-1704-3
http://dx.doi.org/ 10.1103/PhysRevB.107.115426
http://dx.doi.org/ 10.1103/PhysRevB.107.115426
http://dx.doi.org/ 10.1038/ncomms2767
http://dx.doi.org/10.1038/s41467-018-06025-3
http://dx.doi.org/ 10.1038/s41467-021-22886-7
http://dx.doi.org/ 10.1038/s41467-021-22886-7
http://dx.doi.org/10.1103/PhysRevLett.62.2523
http://dx.doi.org/10.1103/PhysRevLett.62.2523
http://dx.doi.org/10.1103/PhysRevB.55.2331
http://dx.doi.org/10.1103/PhysRevB.55.2331
http://dx.doi.org/10.1038/nature01503
http://dx.doi.org/10.1103/PhysRevB.73.245311
http://dx.doi.org/10.1103/PhysRevB.73.245311
http://dx.doi.org/10.1103/PhysRevLett.96.016802
http://dx.doi.org/10.1103/PhysRevLett.96.016802
http://dx.doi.org/10.1103/PhysRevLett.97.186803
http://dx.doi.org/10.1103/PhysRevLett.97.186803
http://dx.doi.org/ 10.1103/PhysRevB.79.241304
http://dx.doi.org/ 10.1103/PhysRevB.79.241304
http://dx.doi.org/ 10.1103/PhysRevB.82.085321
http://dx.doi.org/ 10.1103/PhysRevB.82.085321
http://dx.doi.org/10.1038/s41565-021-00847-x
http://dx.doi.org/10.1103/PhysRevB.105.165310
http://dx.doi.org/10.1103/PhysRevB.105.165310
http://dx.doi.org/10.1038/s41567-020-1019-1
http://dx.doi.org/10.1038/s41565-021-00861-z
http://dx.doi.org/10.1103/PhysRevX.13.041012
http://dx.doi.org/ 10.1126/science.abl5818
http://dx.doi.org/10.1103/PhysRevB.46.4026
http://dx.doi.org/10.1088/0305-4470/16/8/010
http://dx.doi.org/10.1088/0305-4470/16/8/010
https://books.google.com/books?id=SvdoN3k8EysC
https://books.google.com/books?id=SvdoN3k8EysC
http://dx.doi.org/ 10.1103/PhysRevA.107.013721
http://dx.doi.org/ 10.1103/PhysRevA.107.013721

[28] M. Tokman, J. K. Verma, J. Bohreer, and A. Belyanin,
Phys. Rev. Lett. 131, 233802 (2023).

[29] 1. Lo, W. C. Mitchel, R. E. Perrin, R. L. Messham, and
M. Y. Yen, Phys. Rev. B 43, 11787 (1991).

12


http://dx.doi.org/10.1103/PhysRevLett.131.233802
http://dx.doi.org/ 10.1103/PhysRevB.43.11787

	Coherent optical control of quantum Hall edge states
	Abstract
	Introduction
	Chiral edge states close to the boundary
	Asymptotic solution for n 1
	Solution for any n but large wavenumbers k
	Exact numerical solution for eigenstates and dipole matrix elements

	Quantum theory of the photon absorption
	Generation of DC current by optical rectification
	Beyond electric-dipole approximation

	Conclusions
	Acknowledgements
	Electron states in adiabatic approximation
	Electron density flux for an arbitrary potential
	Second-order nonlinear density matrix elements
	References


