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Abstract

The global public health landscape is perpetually challenged by the looming threat of infectious diseases.

Central to addressing this concern is the imperative to prevent and manage disease transmission during

pandemics, particularly in unique settings. This study addresses the transmission dynamics of infectious

diseases within conference venues, presenting a computational model designed to simulate transmission pro-

cesses within a condensed timeframe (one day), beginning with sporadic cases. Our model intricately captures

the activities of individual attendees within the conference venue, encompassing meetings, rest intervals, and

meal breaks. While meetings entail proximity seating, rest and lunch periods allow attendees to interact

with diverse individuals. Moreover, the restroom environment poses an additional avenue for potential in-

fection transmission. Employing an individual-based model, we meticulously replicated the transmission

dynamics of infectious diseases, with a specific emphasis on close-contact interactions between infected and

susceptible individuals. Through comprehensive analysis of model simulations, we elucidated the intricacies

of disease transmission dynamics within conference settings and assessed the efficacy of control strategies

to curb disease dissemination. Ultimately, our study proffers a numerical framework for assessing the risk

of infectious disease transmission during short-duration conferences, furnishing conference organizers with

valuable insights to inform the implementation of targeted prevention and control measures.
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1. Introduction

The profound impact of the COVID-19 pandemic on global public health and economic stability over the

past few years underscores the critical need for comprehensive reflection on preventive measures and disease

control strategies [1, 2]. As the pandemic era wanes, we must scrutinize and enhance our understanding

of measures to curb the spread of infectious diseases. Despite the extensive body of literature on epidemic

dynamics and forecasting, there remains a paucity of research on disease transmission dynamics within

specific contexts. Notably, evaluating the potential for disease outbreaks following large-scale international

events such as conferences and business meetings is paramount in an era characterized by interconnectedness

and globalization.

Numerous mathematical models have been proposed to predict the evolution of epidemic dynamics and

evaluate the efficacy of various prevention and control strategies. These models often take the form of differ-

ential equations based on the SIR (susceptible-infectious-recovered) or SEIR (susceptible-exposed-infectious-

recovered) frameworks [3, 4, 5, 6, 7]. Additionally, data-driven models have emerged to forecast dynamics

through analysis of reported data [8, 9, 10, 11, 12]. While compartmental and data-driven models are valu-

able for examining community transmission during epidemics, they may not adequately capture sporadic

transmission within specific settings. To address the stochastic dynamics of disease transmission arising from

close interpersonal contact, researchers often employ individual-based models, which simulate the epidemic

progression for each individual [13, 14, 15, 16].

The present study endeavors to develop a computational model capable of simulating the spread of

infectious diseases within the confines of a one-day conference venue, with a specific focus on respiratory

diseases triggered by viral infection. Our model incorporates various activities–such as meetings, breaks,

and meal times–that participants typically engage in, facilitating dynamic contact patterns as individuals

interact with diverse attendees throughout the day. Moreover, we acknowledge the potential for infection

transmission in restroom facilities due to environmental factors. The individual-based model proposed in

this study offers a quantitative approach to assessing the risk of disease transmission during short-duration

conferences and evaluating diverse prevention and control strategies to mitigate infection spread.

2. Methods

2.1. Individual-based model

We investigated the dynamics of a one-day conference involving N participants, denoted as Ci, where i

ranges from 1 to N . Initially, only a handful of participants were assumed to be infected with the virus prior

to the conference. Our analysis was confined to activities within the conference venue, as depicted in Figure

1a. Transmission events may arise from interpersonal infections or environmental contamination in restroom

facilities. To simulate disease spread, we employed an individual-based model that mirrors the behavior of

each participant.
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In our model, each of the N individuals is characterized by their epidemic status, classified as susceptible

(S), exposed (E), or infectious (I). At the outset, all individuals are either susceptible or infectious, with

susceptibility transitioning to exposure upon contact with the virus during the conference. Given the duration

of a one-day conference, individuals typically do not progress from exposure to infectiousness within the same

day. We adopted an SEI model to delineate the progression of epidemic statuses, whereby the infectious

compartment remains stable throughout the conference duration (Figure 1b).

Figure 1: (a) Status map of the conferene venue. (b) Schematic representation of the individual-based model illustrating

disease transmission dynamics and the SEI model for each individual. Individuals transition among susceptible (S), exposed

(E), and infectious (I) states following the indicated arrows. Transition rates are individual-dependent and may vary over time.

Our model meticulously accounts for the activities of each participant as dictated by the conference

itinerary, encompassing meetings, breaks, and meals. A representative conference schedule is outlined in

Table 1. During meetings, participants remain stationary, whereas, during breaks and meal times, they

can move about and engage with others. Notably, restroom visits during these intervals pose potential

opportunities for infection transmission. By simulating these individual activities, we estimated the potential

number of individuals susceptible to infection following a one-day conference.

Table 1: The schedule of the conference

Time Schedule

8 : 30− 9 : 00 Rest time

9 : 00− 10 : 00 Meeting

10 : 00− 10 : 30 Rest time

10 : 30− 12 : 00 Meeting

12 : 00− 14 : 00 Lunch break

14 : 00− 16 : 00 Meeting
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2.2. Individual activities

We analyzed each individual Ci, considering their spatial dynamics, represented by ri, and their epidemic

status, denoted as si. The epidemic status is classified as susceptible (S), exposed (E), or infectious (I), with

the transition from susceptible to exposed occurring subsequent to an infection event (to be detailed below).

To capture the movement of individuals across different locations ri(t) = (xi(t), yi(t)), we delineated

two distinct modes: meeting and resting. During the meeting mode, participants are seated and stationary,

adhering to pre-arranged seating arrangements. Typically, participants are assigned fixed seats for the

duration of the conference. In cases where seat assignments vary, participants generally return to their

original seats following breaks. Hence, we assumed each participant occupies a designated seat during the

meeting sessions.

Conversely, during resting periods or the lunch break, participants can vacate their seats, traverse the

venue, and engage in conversations. Movement patterns are simulated using a numerical two-dimensional

random walk scheme, with parameters detailed in Table A.1 in Appendix A.1. Moreover, when individuals

come into close proximity, they may momentarily pause their walk movement to engage in conversation

before resuming their walk. Restroom visits were also accounted for during resting periods or the lunch

break. Furthermore, participants may opt to remove their masks during the lunch break so that the mask-

wearing rate is largely reduced. After the resting or lunch break period, most participants return to their

original positions; however, a small fraction of participants, say 10%, may change their seats.

2.3. Restroom timing

The restroom serves as a focal point for potential infection transmission. To effectively model the infection

events in this area, it is crucial to estimate the timing of participants’ restroom visits. Typically, the

waiting time for each participant to utilize the restroom follows an exponential distribution. However, since

participants generally refrain from restroom visits during meetings, we must adjust the timing estimation to

align with the conference schedule.

In order to gauge the timing of restroom usage, we must ascertain, from the current time t, the probability

of a participant using the restroom at time t + a. To this end, we define a probability function p(a; t)

such that p(a; t)∆a denotes the probability of a participant utilizing the restroom during the time interval

(t+ a, t+ a+∆a) from the first time, commencing from the current time t.

Let q(a; t) denote the likelihood of a participant refraining from using the restroom between the current

time t and t + a, while f(a; t) represents the density function such that f(a; t)∆a indicates the probability

of a participant utilizing the restroom during the time interval (t+ a, t+ a+∆a). Derived from q(a; t) and

f(a; t), the probability density p(a; t) is formulated as:

p(a; t) = C(t)−1f(a; t)q(a; t), C(t) =

∫ +∞

0

f(a; t)q(a; t)da. (2.1)
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Detail derivations of the functions q(a; t), f(a; t), and p(a; t) are given in Appendix A.1.

To calculate the time interval that a participant uses the restroom, we utilize the distribution function

F (a; t), defined as

F (a; t) =

∫ a

0

p(a′; t)da′.

By employing F (a; t) along with a uniform random number s in the interval [0, 1], we can solve the equation

s = F (a; t) to determine the time a for a participant at the current moment t. The next visit to the restroom

is scheduled at t+ a. The numerical scheme to determine when a participant should next use the restroom,

based on the current time t, is detailed in Appendix A.1.

Utilizing the numerical scheme outlined in Appendix A.1, we can approximate the timing of restroom

usage for each participant based on their designated schedule {Ti}. Beginning from the current time, we

compute the next restroom visit for each participant. The duration of restroom usage is determined by a

random number specifically generated from the gamma distribution. Once an individual has finished using

the restroom, we calculate their next scheduled visit and repeat the process accordingly.

2.4. Virus transmission

We investigated two scenarios for virus transmission: either an infectious individual transmits the virus

to a susceptible individual or a susceptible individual contracts the virus from a contaminated restroom.

2.4.1. Close contact infection

Participants can move around during the resting or lunch breaks. If two individuals are within a certain

distance of each other, known as the close contact distance (cdm), they are considered to be in close contact.

Moreover, close contact infection may also occur during meetings if the distances between nearby seats are

less than the close contact distance. If individuals i and j are in close contact, the duration of the contact

is denoted as ti,j . When a susceptible individual comes into close contact with an infectious individual,

the likelihood of exposure depends on both the duration of contact and the measures taken to prevent

transmission.

Let βmax denote the maximum probability of virus infection when a susceptible person comes into contact

with an infected person for a sufficient amount of time. Infection of a susceptible individual i by an infectious

individual j can be expressed as:

βi,j(ti,j) = βmax × (1− e−ti,j/τ )×Mi,j . (2.2)

Here, Mij signifies the protective effects of wearing masks; ti,j indicates the contact time between individual

i and individual j; τ represents a time constant that controls the increase of individual infection rate. The
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factor Mi,j denotes a reduced factor for the infection rate when i and/or j wear a mask. We set the factor

Mi,j =


1.0, i and j are unmasked

0.33, i is masked and j is unmasked

0.11, i is unmasked and j is masked

0.017, i and j are masked

(2.3)

in our model simulation.

Now, consider the effect of vaccine protection, let Vi represent the impact factor of vaccine (or recovery

from infection) of an individual i. When a susceptible person i contacts with multiple infectious individuals,

the infection rate βi is given by

βi =

1−
∏

i contacts with j

(1− βi,j(ti,j))

× (1− Vi). (2.4)

We set

Vi =

{
0, i has not been vaccinated

0.3, i is vaccinated or recovered from infection
(2.5)

in our model simulation.

2.4.2. Infection from the contaminated restroom

To formulate the infection rate of an individual from the contaminated restroom, we need to model the

temporal changes of virus concentration and estimate the infection rate of infected objects to individuals in

the restroom.

In the restroom, the virus concentration increases due to infectious individuals breathing and decreases

through normal ventilation or regular disinfection. Thus, assuming each infectious individuals in the restroom

releases the virus at a rate α, and the virus is diluted in a time-dependent rate b(t), changes in the virus

concentration X(t) can be expressed by the following differential equation:

dX

dt
=

1

V

∑
infections i

αMiεi(t)− b(t)X(t). (2.6)

Here V represents the volume of the restroom, εi(t) indicates whether the individual i enters the restroom

at time t, defined as

εi(t) =

{
1, i is at the restroom

0, otherwise.
(2.7)
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The factor Mi represents the protective factor of wearing a mask and is defined as:

Mi =


1, i is unmasked

0.11, i is infectious and masked

0.33, i is susceptible and masked.

(2.8)

The dilution rate b(t) represents the effects of normal ventilation and regular disinfection.

When a susceptible individual enters the restroom, the risk of getting infected depends on the amount

of virus present. The infection rate increases as the concentration of the virus rises. Therefore, we can

formulate the infection rate of a susceptible individual as:

βi(t) = βmax
(X(t)/X0)

4

1 + (X(t)/X0)4
Mi(1− Vi), (2.9)

where Mi and Vi are coefficients that represent the effects of wearing a mask and being vaccinated. In this

context, a Hill function for X(t) is presented to express how the concentration of the virus impacts the rate

of infection, and X0 denotes the virus concentration at the initial moment.

It is assumed that infection contaminates the environment through touch and droplets upon entering

the restroom, potentially infecting susceptible individuals upon contact with contaminated objects such as

door handles, toilet seats, and sinks. At this juncture, the infection status of susceptible is influenced by

whether the infectious individuals are vaccinated and whether proper hand hygiene practices are followed.

The probability of infection for a susceptible individual after using the restroom depends on the sequence of

interactions with these objects. The ultimate comprehensive infection probability for susceptible individual

i is denoted as µi(t0, s). For a detailed derivation, please refer to Appendix A.3.

Utilizing the provided infection rate, when an individual uses the restroom between the time period of

t = t0 and t = t0 + s, the likelihood of being infected by the virus and contaminated objects within the

restroom is represented by:

pi(t0, s) = 1− exp

[
−
∫ t0+s

t0

βi(s)ds

]
× (1− µi(t0, s)) (2.10)

Please see Appendix A.4 for a detailed derivation. This allows us to determine whether an individual becomes

infected after finishing restroom use.

In the simulations, our primary focus is on highly infectious viruses, such as the Omicron strain of

SARS-CoV-2. Therefore, we assumed the maximum infected probability βmax = 0.9.

3. Results

We employed the individual-based model to analyze disease transmission dynamics during a one-day

conference. Our objective is to assess the extent of infections among participants following the conference,
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given a few initially infected individuals. For our simulations, we utilized the schedule outlined in Table 1,

with the conference commencing at 9:00 am and all participants arriving 30 minutes prior. Throughout the

simulations described below, we considered a scenario with N = 250 participants and initially 3 infectious

individuals.

3.1. Infections without control measures

Initially, we explored scenarios where no control measures, such as mask-wearing, vaccination, or restroom

disinfection (ventilation), were implemented. Our model simulations aimed to estimate the final tally of

infections by the end of the one-day conference. In the absence of control measures, simulations revealed

that the number of infections ranged from 100 to 240, with an average of 210 (84%). Figure 2a illustrates

the frequency distribution of infection numbers.

To delver deeper into the infection dynamics, we scrutinized the average infection counts during distinct

time frames, including resting periods, meetings, lunch breaks, and restroom use (Figure 2b). Our analyses

unveiled that few infections occurred during meetings, whereas most infection events transpired during

lunch breaks and rest periods. Notably, a significant number of infections were also linked to restroom

usage. These findings underscore the necessity of implementing control measures during breaks and resting

periods, alongside adopting measures such as restroom disinfection (ventilation) to mitigate the spread of

infections.
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Figure 2: Comparison of infections number with and without prevention and control measures. (a) Cumulative average infections

without prevention and control measures. The horizontal axis represents the number of infections, while the vertical axis

denotes the frequency of infection occurrences. (b) Distribution of Infections across various time periods. Color bars indicate

the number of infections during resting, meetings, lunch breaks, and restroom usage, with or without prevention and control

measures, respectively. All results were derived from 2000 independent runs.
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3.2. Effects of different control measures

We proceed to evaluate the effectiveness of various control measures. Our primary recommendation

involves enforcing mask-wearing among participants, except during lunch breaks. To gauge the efficacy of

this measure, we conducted simulations by varying the mask-wearing rate among participants while holding

other parameters unchanged. Figure 3a illustrates the relationship between the average number of infections

and the percentage of participants wearing masks. Our findings indicate a significant reduction in the number

of infections with an increase in the mask-wearing rate. Notably, when 90% of participants wear masks, the

average number of infections decreases to 105 - a stark contrast to the 200 infections recorded when no one

wears a mask. This underscores the substantial protective effect of increasing mask-wearing rates, effectively

minimizing the risk of infection among susceptible individuals and playing a pivotal role in epidemic control.
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Figure 3: Impact of (a) mask wearing rate, (b) wearing masks of all initial infections, and (c) initial infections number on the

epidemic dynamics. All results were derived from 1000 independent runs.

One strategy to curb the spread of infectious diseases at conferences involves mandating masks for

all initially infected individuals. Through nucleic acid testing (NAT), participants testing positive can be

identified, albeit they may need to attend the conference for various reasons. Our approach entails requiring

these infections to wear masks to mitigate the final number of infections. Figure 3b illustrates that infection

numbers mostly range between 60 and 150, with the highest concentration falling between 100 and 120.

Notably, the infection count is lower compared to scenarios without any prevention or control measures,

indicating the efficacy of this approach in curtailing the final epidemic size.

Another approach to prevent the spread of infectious disease at conferences involves preventing infected

individuals from attending altogether. In the case of COVID-19, this can be achieved through NAT to reduce

the number of initial infections. To assess the effectiveness of NAT, we varied the initial infection numbers
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(1, 3, 6, 10) and assumed a 60% mask-wearing rate among participants. Our results reveal a significant

reduction in the final size following the conference with a decrease in the number of initial infections (Figure

3c). Specifically, there exists a strong correlation between the initial infection number and the final epidemic

size.

3.3. Effects of adjusting the meeting schedule

Our findings indicate that most infections occur during rest periods or lunch breaks. To minimize the

risk of infections, adjustments to the meeting schedule, such as reducing the duration of these breaks, were

considered. We began by analyzing the impact of shortening the rest periods, examining resting intervals of

10, 15, 20, 25, or 30 minutes. Figure 4a shows that reducing the rest time from 30 to 15 minutes does not

significantly impact the number of infections. Therefore, merely shortening rest periods may not effectively

reduce the overall number of infections.

Figure 4: Impact of (a) shortening rest periods in the meeting schedule and (b) adjusting lunch time on infection numbers.

The rest durations explored were 10, 15, 20, 25, and 30 minutes, respectively. Adjustments included splitting a 2-hour lunch

into a 1-hour rest and a 1-hour lunch, with varying mask-wearing rates among individuals during the resting period. Results

were based on 1000 independent runs.

Further exploration involved adjusting the structure of lunch breaks, such as dividing a 2-hour lunch into

a 1-hour lunch and a 1-hour rest period. The adjustment replaced a 1-hour lunch break with a resting period

so that participants would wear the mask during the resting period. According to Figure 4b, the number

of infections decreases as the mask-wearing rate increases because of the shortening of the lunch break.

The configuration of a 1-hour lunch followed by a 1-hour rest period results in fewer infections compared

to a continuous 2-hour lunch period. These outcomes suggest that restructuring lunch and rest times can

effectively reduce infection numbers, contributing positively to epidemic control measures.
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3.4. Impact of multiple control measures on epidemic evolution

In our analysis, we considered various prevention and control measures individually to understand their

impact on the epidemic. However, to comprehensively assess the effectiveness of epidemic prevention and

control, we conducted a comprehensive analysis of multiple control measures. These measures, detailed in

Table 2, include participant mask-wearing, schedule adjustments, restroom management, and reducing initial

infections through NAT.

To compare the efficacy of these measures, Figure 5 represents the final infection numbers under different

scenarios: no control measures, single control measures, and a combination of multiple measures. The results

demonstrate that implementing any single control measure, such as wearing masks or schedule adjustments,

leads to a reduction in infection compared to no intervention. However, the most significant infection

reduction occurs when multiple control measures are combined.

From the simulation results in Figure 5, we observe that reducing the initial infection number to 1,

maintaining a 60% mask-wearing rate among participants, adjusting the lunch schedule to a 1-hour lunch

and a 1-hour rest, and implementing restroom disinfection and ventilation can reduce the final infection

count from 200 to 100, representing a 50% reduction.

No intervention

Schedule adjustment

Mask-wearing(60%)

Mask-wearing(80%)

Initia
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fection reduction 

Restroom management

Multip
le control m

easures
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Figure 5: Effect of multiple control measures on infections. These measures include no intervention, participant mask-wearing

(60% or 80%), schedule adjustments, initial infection reduction, restroom management, and a combination of multiple measures.

Details of each measure are provided in Table 2. All results were based on 1000 independent simulation runs.

4. Conclusion

Our study presents a comprehensive computational model designed to simulate the spread of infectious

disease during one-day conferences at an individual level. By categorizing conference schedules into various
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Table 2: Prevention and control measures

Types of control measures Specific control measures

Participant mask-wearing Mask-wearing rate of 60% or 80% among participant

Schedule adjustment Adjustment of the 2-hour lunch break to 1-hour lunch and

a 1-hour rest

Restroom management Regular disinfection and ventilation of restrooms

Initial infection reduction Reduction of initial infectious to 1

Multiple control measures Combination of participant mask-wearing (at 60% rate),

schedule adjustments, restroom management, and initial

infection reduction

activities such as meetings, resting periods, and lunch breaks, we accurately capture participant movements

and the potential for infection within a short timeframe. Notably, our model considers the transmission

dynamics of highly infectious viruses like the Omicron strain of SARS-CoV-2.

Our results underscore the importance of implementing effective prevention and control measures to

mitigate the spread of infectious diseases during conferences. Without any interventions, our simulations

show a high rate of infection, with nearly 84% of participants becoming infected by the end of the conference

day. However, implementing single control measures, such as mask-wearing, reducing initial infections, and

adjusting meeting schedules, can effectively reduce the final infection count.

Of particular significance is the finding that the simultaneous implementation of multiple control measures

yields the most substantial reduction in infections. By combining measures such as participant mask-wearing,

schedule adjustments, restroom management, and initial infection reduction, the number of infections can

be significantly lowered, potentially to a very low level.

The computational model proposed in this study serves as a valuable quantitative assessment and predic-

tion tool for studying the dynamics of epidemic evolution under various prevention and control conditions.

It enables the prediction of the potential impact of different prevention and control measures under different

scenarios, providing insights for policymakers and conference organizers alike.

Our findings offer practical guidance for conference organizers in minimizing the risk of disease transmis-

sion at their events. Furthermore, our research contributes to the quantitative assessment of prevention and

control measures against COVD-19 and similar infectious diseases, providing a foundation for future studies

in this area.
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Appendix

A.1. Parameters of the random walk

Table A.1 listed the parameters used to simulate the random walk of individuals.

Table A.1: Parameters of the random walk

Parameter Description Value(a) Unit

CR the conversation rate of two indi-

viduals

uniform(0, 1) sec−1

TR upper limit of the conversation

rate of two individuals

0.075 sec−1

NR movement probability of individ-

ual

uniform(0, 1) sec−1

MR upper limit of the movement prob-

ability

0.175 sec−1

talklimit upper limit of individual conversa-

tion time

Gamma(ta, tb) sec

ta a parameter of limited conversa-

tion time

80 sec

tb another parameter of limited con-

versation time

6 sec

cd close conversation distance 0.5 m

cdm close contact distance 2 m

sa the abscissa of the initial coordi-

nate position

2 m

sb the ordinate of the initial coordi-

nate position

2 m

(a) uniform(0, 1) means a random number with uniform distribution in [0, 1],

Gamma(ta, tb) means a gamma distribution random number with parameter ta and

tb.

A.2. Timing of the next visit to the restroom

The function p(a; t) represents the probability density such that p(a; t)∆a denotes the probability of a

participant utilizing the restroom during the time interval (t+a, t+a+∆a) from the first time, commencing

from the current time t. The function q(a; t) denotes the likelihood of a participant refraining from using the
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restroom between the current time t and t+a, and f(a; t) represents the density function such that f(a; t)∆a

indicates the probability of a participant utilizing the restroom during the time interval (t+ a, t+ a+∆a).

We have

p(a; t) = C(t)−1f(a; t)q(a; t), C(t) =

∫ +∞

0

f(a; t)q(a; t)da. (A.1)

A.2.1. The function q(a; t) and f(a; t)

To estimate the functions q(a; t) and f(a; t), we introduce the following assumptions:

(1) Each participant typically visits the restroom with a uniform frequency f0, implying that the probability

of a restroom visit within a short time interval ∆t is f0∆t;

(2) The conference schedule time points (depicted in Figure A.1) are denoted as:

T = (T0, T1, T2, · · · , T2n),

where T0 signifies the commencement of the conference, the intervals [T2k, T2k+1] represent rest or

lunch breaks, and [T2k+1, T2(k+1)] signify meeting periods. Participants do not visit the restroom

during meetings;

(3) All participants depart from the conference venue at T2n;

(4) Restroom visits by participants are independent events.

Figure A.1: Estimating the timing of restroom usage.

Firstly, we assumed that participants are presently in a break period t ∈ [T2k, T2k+1], disregarding

scheduled meetings, allowing participants to utilize the restroom at their convenience freely. Consequently,

we have:

q(a; t) = e−f0a. (A.2)

Now, we account for the impact of the meeting schedule:
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(1) It the time point t+a falls within the resting interval [T2k, T2k+1], i.e., 0 < a < T2k+1− t, we maintain:

q(a; t) = e−f0a. (A.3)

(2) When the time point t + a aligns with the meeting period, i.e., t + a ∈ [T2j+1, T2(j+1)], or a ∈
[T2j+1 − t, T2(j+1) − t] (j ≥ k), participants abstain from restroom visits during meetings. Therefore:

q(a; t) = q(T2j+1 − t; t). (A.4)

(3) If the time point t+a coincides with the resting period, i.e., t+a ∈ [T2j , T2j+1] (j ≥ k+1), participants

may exhibit a heightened need for restroom visit due to lack of access during meetings. Let f̂j denote

the adjusted restroom visit frequency during t+a ∈ [T2j , T2j+1]. Noting that q(a; t)|a=T2j−t = q(T2j−1−
t; t), we express:

q(a; t) = q(T2j−1 − t; t)e−f̂j(a+t−T2j), a ∈ [T2j − t, T2j+1 − t]. (A.5)

The adjusted frequency f̂j can be determined by assuming participants have an equivalent probability

of not using the restroom during [t, t+T2j+1] as they would without meetings. Hence, comparing (A.2)

with (A.5), we derive:

e−f0(T2j+1−t) = q(T2j−1; t)e
−f̂j(T2j+1−T2j),

yielding:

f̂j =
f0(T2j+1 − t) + ln q(T2j−1 − t; t)

T2j+1 − T2j
.

Moreover, following the frequency adjustment, the probability q(T2j−1 − t; t) equates to that without

meetings, i.e.,

q(T2j−1 − t; t) = e−f0(T2j−1−t).

Thus, the adjusted frequency becomes:

f̂j =
T2j+1 − T2j−1

T2j+1 − T2j
f0, (A.6)

resulting in:

q(a; t) = e−f0(T2j−1−t)+f̂j(T2j−t)e−f̂ja. (A.7)

In summary, we obtain (where t ∈ (T2k, T2k+1)):

q(a; t) =


e−f0a, t < a+ t ≤ T2k+1

e−f0(T2j+1−t), T2j+1 ≤ a+ t ≤ T2(j+1), j ≥ k

e−f0(T2j−1−t)+f̂j(T2j−t)e−f̂ja, t2j ≤ a+ t ≤ T2j+1, j ≥ k + 1.

(A.8)
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Here, T2n+1 = +∞, thus f̂n = f0.

Let f(a; t)∆a represent the probability of a participant using the restroom during the time interval

(t+ a, t+ a+∆a), then:

f(a; t) =


f0, t < a+ t ≤ T2k+1

0, T2j+1 ≤ a+ t ≤ T2(j+1), j ≥ k

f̂j , T2j ≤ a+ t ≤ T2j+1, j ≥ k + 1.

(A.9)

A.2.2. The fuction p(a; t)

Now, let’s evaluate C(t), which is given by

C(t) =

∫ +∞

0

f(a; t)q(a; t)da

=

∫ T2k+1−t

0

f0e
−f0ada

+

n−1∑
j=k+1

∫ T2j+1−t

T2j−t

f̂je
−f0(T2j−1−t)+f̂j(T2j−t)e−f̂jada

+

∫ +∞

T2n−t

f̂ne
−f0(T2n−1−t)+f̂n(T2n−t)e−f̂nada

= 1− e−f0(T2k+1−t) +

n−1∑
j=k+1

e−f0(T2j−1−t)(1− e−f̂j(T2j+1−T2j)) + e−f0(T2n−1−t).

The probability p(a, t) is then given by

p(a; t) = C(t)−1f(a; t)q(a; t)

= C(t)−1 ×


f0e

−f0a, t < a+ t ≤ T2k+1

0, T2j+1 ≤ a+ t ≤ T2(j+1), j ≥ k

f̂je
−f0(T2j−1−t)+f̂j(T2j−t)e−f̂ja, T2j ≤ a+ t ≤ T2j+1, j ≥ k + 1.

(A.10)

A.2.3. The function F (a; t) and the numerical scheme to determine the next time to visit the restroom

To calculate the time interval that a participant uses the restroom, we utilize the distribution function

F (a; t), defined as

F (a; t) =

∫ a

0

p(a′; t)da′.

The graph of the function F (a; t) is shown in Figure A.2. By employing F (a; t) along with a uniform random

number s in the interval [0, 1], we solve the equation s = F (a; t) to determine the time a for a participant at

the current moment t. The next visit to the restroom is scheduled at t+ a.
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Figure A.2: Plot of the function F (a; t)

Let’s define

φi(a, t) =

{
1− e−f0a, i = k

e−f0(T2i−1−t)(1− ef̂i(a+t−T2i)), (k < i ≤ n)

Then C(t) can be expressed as (we note t2n+1 = ∞)

C(t) =

n∑
i=k

φi(T2i+1 − t; t).

A detailed calculation leads to:

F (a, t) =



C(t)−1φk(a; t), 0 ≤ a < T2k+1 − t,

C(t)−1

j∑
i=k

φi(T2i+1 − t; t), T2k+1 − t ≤ a < T2(k+1) − t,

C(t)−1

(
j−1∑
i=k

φi(T2i+1 − t; t) + φj(a; t)

)
, T2j − t ≤ a < T2j+1 − t (k + 1 ≤ j ≤ n).

Here is a numerical scheme to determine when a participant should next use the restroom, based on the

current time t:

Input: The current time t, the schedule {Ti}
Output: The time of the next restroom visit t+ a.

1. Find the value of k such that T2k < t < T2k+1.

2. Calculate Ai = φi(T2i+1 − t; t), (i = k, k + 1, . . . , n).

3. Calculate

C =

n∑
i=k

Ai.
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4. Generate a uniform random number s ∈ [0, 1].

5. Find the value of j such that k ≤ j ≤ n and

1

C

j−1∑
i=k

Ai < s <
1

C(t)

j∑
i=k

Ai,

then calculate

s0 = s− 1

C

j−1∑
i=k

Ai

6. Solve the equation

φj(a; t) = s0

for a, and the time of the next restroom visit is given by t+ a. Explicitly,

t+ a =

{
t− f0

−1 ln(1− s0), j = k,

T2j − f̂−1
j ln(1− s0e

f0(T2j−1−t)), j > k.
(A.11)

Utilizing the above numerical scheme, we can approximate the timing of restroom usage for each partic-

ipant based on their designated schedule {Ti}.

A.3. Environmental infection rate of restroom

Here, we calculate the dynamics of environmental viral load in the restroom during the conference and

subsequently estimate the environmental infection rate. Initially, our focus lies on assessing virus transmission

within the restroom environment. Consequently, we primarily consider the dynamics of viral load, accounting

for both its increase and decrease due to regular ventilation and disinfection procedures. Moreover, indi-

viduals using the restroom must be categorized as either infectious or susceptible. If deemed infectious, the

total viral load in the environment at that time requires calculation. Conversely, for susceptible individuals,

the environmental infection rate needs to be determined.

Subsequently, we delve into the transmission of the virus from contaminated objects to individuals. We

presume that infectious individuals contaminate the environment through touch and droplets upon entering

the restroom, posing a risk of infection to susceptible individuals upon contact with contaminated surfaces.

The infection risk for susceptibles is influenced by factors such as vaccination status and hand hygiene

practices. Notably, we assumed that transmission via touch is primarily through direct contact rather than

airborne transmission, thus rendering mask-wearing rates irrelevant in this context.

First, we introduce several key notations used in our derivation:

• V : The volume of the restroom.

• X(t): The virus load of the restroom at the current moment. Initially, X = 0. The viral load increases

as infectious individuals enter the restroom, and decreases due to regular ventilation and disinfection.
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• α: The rate infectious individuals release the virus.

• b(t): The reduction rate of virus at time t.

• βi(t): The environmental infection rate of susceptible i in the restroom from time t, so that βi(t)∆t

indicates the probability that susceptible i was not infected before time t, but was infected within

[t, t+∆t].

• βmax: The maximum infection rate of the virus to individuals.

• βmax(i): The maximum infection rate of the virus to individual i.

• S0: The basic infection rate of infected objects to individuals in the restroom (including door handles,

stalls, and sinks).

• d(t): Indicates whether the restroom door handle of the restroom is infected.

• hj(t): Indicates whether the jth stall in the restroom is infected.

• µi: The probability that susceptible individual i in the restroom is infected by infected objects.

• PW : The probability that individuals go to the restroom and wash their hands.

• Mi: The protective effect of wearing a mask for individual i:

Mi =


1, i is unmasked

0.11, i is infectious and masked

0.33, i is susceptible and masked

(A.1)

• Vi: The impact factor of vaccine for susceptible individuals:

Vi =

{
0, i, do not has vaccine

0.3, i is vaccinated, or recovered from infection
(A.2)

• εi: Indicates whether individual i enters the restroom at time t:

εi(t) =

{
1, i is infectious and enters the environment

0, otherwise
(A.3)

For each object in the restroom, a status variable indicates its infection status. When the infectious

enters the restroom and comes into contact with the object, if the infection status of the object becomes 1,

it means the object is infected. The infection status of all objects changes to 0 after the next disinfection

cycle. To implement this, we assign a corresponding infection state variable for each object (including the
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door, each stall in the restroom, and each sink). Then, based on the contact between the object and the

infectious individual, we set the infection state variable accordingly.

Using this process, we can determine the infection situation d(t) of the door handle and the infection

situation hj(t) for the jth stall in the restroom. The corresponding expressions for these are as follows: the

infection situation of the door handle d(t) is defined as:

d(t) =


1, if the handle is infected, T0 < t < T1,where T0 is the time of the first infectious

indivituals entering the restroom (assuming the individual will definitely touch the door),

T1 is the time of the first disinfection from T0

0, if the door is not infected, at other times

For restrooms without a restroom door, we d(t) = 0 for simplicity. The infection status of the jth stall

hj(t) is expressed as:

hj(t) =


1, the jth stall is infected, T0,j < t < T1,where T0 is the time when the infectious

individuals first enter the jth stall, T1 is the first disinfection time from T0

0, if the jth stall is not infected, at other times

We did not consider the sink’s infection here, assuming hand washing can effectively eliminate virus trans-

mission. However, in practice, individuals may become infected through sinks, albeit with low probability.

It’s important to note that the function of the infection status is not easily described by a unified

mathematical formula. In practical calculations, the infection status of each object should be determined

based on the specific calculation process rather than relying solely on mathematical formulas.

Next, let’s examine the probability µi that a susceptible individual is infected by contaminated objects

in the restroom. Suppose individuals enter the restroom at time t0 and stay there for a duration of s. We

assume the order of object contact is: restroom door → stall j → restroom door → sink. Then, individuals

come into contact with the restroom door and the stall at t = t0, and with the restroom door and the sink

at t = t0 + s.

Let wi indicate whether individual i washes hands. Individual i washes hands with probability PW and

does not wash hands with probability 1 − PW . Based on our assumptions, if the basic infection rate of

object contact is S0, the probability of individual i becoming infected after contact with the door at time t

is:

S0d(t)(1− Vi).

Therefore, the probability of individual i remaining uninfected after contact with the door is:

1− S0d(t)(1− Vi).

Similarly, the probability of individual i remaining uninfected after contacting the stall j at time t is:

1− S0hj(t)(1− Vi).
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Considering these situations, the probability that individual i remains uninfected after contacting the outside

door and the stall j at time t0, and remains uninfected after contacting the restroom door at time t0 + s is:

(1− S0d(t0)(1− Vi))(1− S0hj(t0)(1− Vi))(1− S0d(t0 + s)(1− Vi)).

The probability of individual i becoming infected is then:

1− (1− S0d(t0)(1− Vi))(1− S0hj(t0)(1− Vi))(1− S0d(t0 + s)(1− Vi)).

Considering whether individuals wash their hands, the final comprehensive infection probability is:

µi(t0, s) = (1− wi)(1− (1− S0d(t0)(1− Vi))(1− S0hj(t0)(1− Vi))(1− S0d(t0 + s)(1− Vi))). (A.4)

Equation (A.4) provides the infection of individual i. However, it’s important to emphasize that the infection

rate should not be solely calculated using this formula in practical calculations. Instead, the infection

situation should be determined by simulating the process of an individual using the restroom.

A.4. The infection rate of individuals after using the restroom

The following method outlines the calculation of the probability of each individual being infected after

using the restroom during a rest period. The primary approach is to compute the probability of individuals

remaining uninfected after using the restroom and then deduce the probability of them becoming infected.

In our model, we neglect scenarios involving individuals conversing in the restroom. Consequently, there

are two primary pathways through which susceptible individuals may become infected in the restroom:

direct exposure to viruses present in the environment and contact with contaminated objects. Therefore,

the probability of individuals contracting an infection in the restroom depends on factors such as the viral

concentration in the environment, the duration of the individual’s restroom visit, and the likelihood of

contact with contaminated surfaces.

Assuming an individual i enters the restroom at time t0, we computed the probability of that individual

becoming infected during their stay in the restroom for a duration of s.

Let’s denote:

• pi(t0, s): Probability of individual i being infected from entering the restroom at time t0 until time

t0 + s (refer to Figure A.3).

• qi(t0, s): Probability of individual i remaining uninfected during the time from entering the restroom

at t0 until t0 + s.

• βi(t0 + s)∆s: Probability of individual i being infected within the time interval [t0 + s,∆s].
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Figure A.3: (a) Schematic of pi(t0, s) and (b) Schematic of qi(t0, s+∆s)

By definition, qi(t0, s+∆s) represents the probability of individual i remaining uninfected after a duration

s + ∆s from t0. It can be segmented into two parts using the multiplication rule of probability: qi(t0, s),

the probability that individual i remains uninfected after a duration s, multiplied by qi(t0 + s,∆s), the

probability that individual i remains uninfected in the subsequent ∆s. This process is illustrated in Figure

A.3. Thus

qi(t0, s+∆s) = qi(t0, s)qi(t0 + s,∆s)

= qi(t0, s)(1− βi(t0 + s)∆s)

= qi(t0, s)− βi(t0 + s)qi(t0, s)∆s

(A.1)

Organizing the above equation, we derive:

qi(t0, s+∆s)− qi(t0, s) = −βi(t0 + s)qi(t0, s)∆s

lim
∆s→0

qi(t0, s+∆s)− qi(t0, s)

∆s
= −βi(t0 + s)qi(t0, s)

∂qi(t0, s)

∂s
= −βi(t0 + s)qi(t0, s).

Given that qi(t0, 0) = 1 (indicating individual i is uninfected upon entering the restroom), we obtain the

differential equation
∂qi(t0, s)

∂s
= −βi(t0 + s)qi(t0, s), qi(t0, 0) = 1.

Solving this differential equation (with t0 as a parameter), we find:

qi(t0, s) = exp

[
−
∫ s

0

βi(t0 + s′)ds′
]
.

Hence, the probability of individual i being infected within s after entering the restroom is:

pi(t0, s) = 1− qi(t0, s) = 1− exp

[
−
∫ s

0

βi(t0 + s′)ds′
]
.

In other words:

pi(t0, s) = 1− exp

[
−
∫ t0+s

t0

βi(s
′)ds′

]
. (A.2)
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Using the previously calculated βi(t):

βi(t) = βmax(i)(t)Mi(1− Vi), (A.3)

we have

βi(t0 + s) = βmax(i)(t0 + s)Mi(1− Vi),

where βmax(i)(t0 + s) is defined by:

βmax(i)(t) = βmax
(EV (t)/E0)

4

1 + (EV/E0)4
. (A.4)

Additionally, we must consider situations where susceptible individuals are infected by objects in the

restroom. Assuming a susceptible individual enters the restroom at t0 and stays for a duration s, the time

interval during which they are in the restroom is (t0, t0 + s). Using the comprehensive infection probability

µi(t0, s) derived previously, the probability of susceptible individual i remaining uninfected can be calculated

as

1− µi(t0, s).

Thus, the probability of susceptible individual i remaining uninfected in the restroom after entering at t0

and staying for s is:

qi(t0, s)(1− µi(t0, s).

Consequently, the infection rate of individual i is:

pi(t0, s) = 1− exp

[
−
∫ t0+s

t0

βi(s
′)ds′

]
× (1− µi(t0, s)). (A.5)

Ultimately, if an individual contaminates objects within the restroom or becomes infected by contami-

nated objects after entering, relying solely on a formula to compute the infection rate might lead to logical

confusion. Hence, we recommend simulating this process based on each individual’s entry into the restroom

rather than relying solely on formulaic calculations. By simulating the process, the actual infection rate

can be accurately determined. The steps and implementation details for simulating this process can be

elucidated based on the formula derivation process outlined above.
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