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S1 Additional Methods Details

S1.1 Particle and Inter-particle Interactions Details

The triangular particles are composed of fifteen, partially overlapping circular subparticles

that are rigidly held together. Each triangular edge is composed of six subparticles, the

outermost of which serve as the vertices of the triangular particle and are shared with the

neighboring edge. The triangular particles have an edge length of 1σ, while the subparticles

have a diameter of σLJ = 0.25σ, where σ is the lengthscale of the system in reduced units.

The subparticles on two edges of the equilateral triangle are assigned type A, while

the subparticles on the third edge (including their vertices) are assigned type B. The type
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A - type A subparticles of differing triangular particles interact via a Lennard-Jones (LJ)

potential, which is illustrated in Figure 1a, and defined as:

VLJ(rij) = 4ϵij[(
σLJ

rij
)12 − (

σLJ

rij
)6] + c rij < rc, (S1)

where rij is the distance between the centers of an ij-pair, σLJ is the distance in which the

potential goes to zero, and ϵ is the depth of the potential well. For static simulations, ϵ

is held constant throughout the simulation, while ϵ is oscillated in time during oscillatory

simulations as detailed in the main text. c is the value necessary to shift the potential so that

VLJ(rc) = 0. For type A subparticles, σLJ defines the spatial extent of the LJ interaction,

and the cutoff distance is set so that rc = 2.5σLJ.

The type B - type B and type A - type B subparticles interact via the Weeks-Chandler-

Anderson potential,S1 which truncates and shifts the LJ potential given in Equation S1 to

only include the repulsive portion of the curve where ∂Uij(r)

∂r
< 0. In order to truncate and

shift the potential, we set ϵAB = ϵBB = 1.0 and rc =21/6σLJ.

S1.2 Simulation Details

All simulations are performed using Langevin dynamics, as implemented in LAMMPS.S2

Simulations started with a randomly distributed system of 150 triangular particles in a

periodic box of size L x L with no particle overlap. Simulations with a volume fraction of ϕ

= 0.1 were done in a box with dimensions 25.48σ x 25.48σ, while simulations at a volume

fraction of ϕ = 0.005 occurred in a box with dimensions of 113.98σ x 113.98σ.

To relax the system, initial velocities were assigned and the simulation was allowed to

equilibrate for 1,000,000 steps (5,000τ). During this process, all subparticles interacted via

the WCA potential, as this ensures there is no particle overlap and establishes an equilibrated

random distribution of triangles. After equilibration, the type A attractive interactions were

turned on, and the simulation was allowed to proceed for 30,000,000 steps (150,000 τ).
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Simulations were evolved in time using the velocity-Verlet algorithm with a timestep of

0.005τ . To mimic solvent dynamics and maintain a constant temperature, the Langevin

thermostat was used. The Langevin equation is defined as

m
dv

dt
= −γv − dU

dr
+ η(t). (S2)

In addition to the conservative force, −dU
dr

, that arises from the inter-particle interactions,

each triangular particle experiences a friction force and a random force. The friction force

is defined as −γv, where γ tunes the strength of the friction and v is the velocity describes

the frictional interaction between the implicit solvent and the particles. In LAMMPS, we

set γ by the damp parameter, with damp = m
γ
, where m is mass.S2 We set damp = 0.35 in

reduced units. The random force, η(t) in Equation S2, mimics the random bumps and kicks

the solvent atoms will provide to the subparticle at temperature T . The LAMMPS code

was modified so that it used a Gaussian random number for η(t) to ensure the appropriate

fluctuation statistics.

S1.3 Data Analysis Details

Once the attractive LJ interactions have been turned on, atom positions are recorded every

10τ to monitor the progression of the self-assembly process. To have an even sampling while

calculating the final yields, the final 7,500τ of each simulation is sampled every 15τ in the

static system.

In the temporally variant system, however, sampling the system with a constant interval

will result in uneven sampling of the system as it switches between ϵmin and ϵmax. To ensure

even sampling between the ϵmin and ϵmax half-cycles during the calculation, the last 7,500τ of

the simulations is divided into slices of 150τ and ten evenly spaced snapshots from the first

complete period of each slice were recorded. For periods equal to or shorter than 0.05τ (ten

steps), every step of the first complete period of each slice was recorded to evenly monitor
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time within the ϵmin and ϵmax half-cycles.

S1.3.1 Capsid Counting

To determine the number of assembled capsids, the locations of the type A subparticles that

are positioned at the attractive vertex of each triangular particle are compared to the attrac-

tive vertices of the other nearby triangular particles. We consider two triangular particles to

be part of a potential capsid if the distance between the centers of their attractive vertices

are less than 0.85σ. A distance less than 0.85σ was determined to encompass the fluctua-

tions possible in the capsid shape. If any subparticle tip is found to have five neighboring

subparticle tips within a distance of 0.85σ, the capsid is considered assembled.

S1.3.2 Aggregate Counting

We also analyze the number of other aggregate structures to better understand the overall

assembly process. After determining the number of capsids within the system, the particles

that are not within assembled capsids are analyzed to determine what size aggregate they

are assembled into. We compare the three vertices of each triangular particle with the three

vertices of the nearby particles to determine if the maximum length between any two vertices

is less than 2.1σ. A maximum distance of 2.1σ ensures that two particles are assembled, but

accounts for all configurations the particles can take in the snake-like aggregates. Aggregates

are then built by noting which particles belong to each aggregate.

S2 Temperature in the intermediate period regime

Langevin Dynamics is utilized to move the simulation forward in time and maintain a con-

stant temperature. In LAMMPS,S2 a Langevin parameter, damp = m
γ

where m is the mass

of the triangular body and γ tunes the frictional strength, is defined in units of τ and deter-

mines how rapidly the temperature is relaxed to the target temperature. In this work, we
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set damp = 0.35τ .

For oscillation periods similar to the timescale of the damp parameter (0.35τ), the average

temperature of the simulation is higher than the target temperature of 1.0. Figure S1 shows

the average temperatures observed in the simulations over the last 5,000τ for a range of

oscillation periods compared to the average temperature for the static potential system.

Temperatures at the fast oscillation limit and at oscillations great than 10τ are comparable

to the static system, and periods within an intermediate range from 0.04τ to 5τ are outside

a 5% error of the target temperature.

Figure S1: Average temperature for ϵ = 1.25kBT . The average temperature and its
standard deviation over the last 5,000τ of the simulation is plotted vs. the oscillation period
τosc. The average static temperature is represented by a black dashed horizontal line, and the
grey shaded region indicates its standard deviation. We present the average temperatures
at ϵ = 1.25kBT for an amplitude of 0.4kBT as this value is closest to the median ϵ value
observed in Figure 5b.

Due to the nature of the Lennard-Jones potential, an increased sampling temperature

requires an increased ϵ value for orderly assembly to emerge. To standardize our results for

an average ϵ value over the full range of oscillation periods, we scale ϵavg by the observed

average temperature ( ϵavg
Tavg

) to scale the system to represent the behavior for a time averaged

temperature of 1.0. This rescaling was only performed for Figure 5 as other figures do not

include results from oscillation periods between 0.04τ to 5τ .
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S3 Kinetic traces of structure formation within the static

system from ϵ = 0.75kBT to ϵ = 2.15kBT .

In Figure S2 we expand Figure 2b to include additional interaction strengths.

Figure S2: Formation of capsids and aggregates vs. time for different ϵ values
in the non-oscillatory system. The formation of various aggregate and capsid species is
plotted here vs. time for different ϵ values over a simulation time of 150,000τ . The different
aggregate sizes are indicated by the color bar, and the kinetic traces are the average of three
independent trajectories.
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S4 Mean square displacement and rotational relaxation

of a single triangular particle.

We examine the interplay between the oscillation period and the time it takes to diffuse

characteristic length-scales that characterize important energetic and structural changes. To

quantify particle diffusion, we calculate the mean square displacement for a lone triangle

and plot it vs. simulation time in Figure S3a. Additionally, we calculate the rotational

autocorrelation function and plot it against simulation time in Figure S3b. The timescales

needed to traverse characteristic distances and rotation are presented in Table 1.

Figure S3: Mean square displacement and orientational autocorrelation function
for a single particle. a)The mean square displacement is plotted vs. simulation time for
a single triangular particle. Based on the linear fit line in green and the Einstein relation,
the diffusion coefficient was calculated to be D = 0.024 ± 0.007σ2/τ . b) The rotational
autocorrelation function for a single triangular particle fit with N(t) = N0exp(−t/τ), where
τ = 7.103τ , and describes the time to decay to 1/e ∗ N0. The mean square displacement
and rotational autocorrelation function were both calculated from 18 individual trajectories
with a recording interval of 0.05τ .

S5 Time averaging in the fast oscillation limit.

Based on earlier work theoretical work by Szleifer and coworkers,S3,S4 the effective potential

in our system can be described at the fast oscillation limit by a static LJ potential with a well

depth of ϵavg, which is simply the time-dependent ϵ value averaged over a single oscillation

period.

To show this correspondence, we first write the effective potential at the fast oscillation
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limit as:

U eff(r) =

∫ τosc

0

U(r, ϵ(t))dt, (S3)

where U(r, ϵ(t)) is the time dependent potential energy of the system at time t, which is

integrated over a single oscillation period, τosc.S3 We can then substitute in the full LJ

potential with a time dependent ϵ on the right hand side, such that:

U eff(r) =

∫ τosc

0

4ϵ(t)[(
σ

r
)12 − (

σ

r
)6]dt. (S4)

At the fast oscillation limit, any changes to r during a single oscillation period are small. As

a result, Equation S4 becomes

U eff(r) = 4[(
σ

r
)12 − (

σ

r
)6]

∫ τosc

0

ϵ(t)dt

= 4 < ϵ >τosc [(
σ

r
)12 − (

σ

r
)6],

(S5)

where < ϵ >τosc is the time averaged attraction strength over a single period, which we term

ϵavg.

Finally, since in our simulations, half the oscillation period is spent at ϵmax and half at

ϵmin,

⟨ϵ⟩τosc =
ϵmax + ϵmin

2
= ϵavg. (S6)

S6 Kinetic traces of structure formation with both static

and oscillatory interactions.

To investigate in more detail how assembly mechanisms change with oscillatory interactions,

in Figure S4 we compare the kinetic traces of the aggregate species in the static system

(Column 1) to kinetic traces in the oscillatory system at three different periods. An oscillation

period of 0.02τ , which is within the fast oscillation limit, results in very similar assembly
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to the non-oscillatory system. Intermediate periods, shown in Columns 3 and 4, however,

result in very different aggregate assembly kinetics.

Figure S4: Formation of aggregate species over time for different oscillation peri-
ods. The formation of various aggregate species averaged over three indepedent trajectories
is shown over time for different ϵ values and oscillation periods at an amplitude of 0.4kBT .
Column 1 shows results from the static potential system, Column 2 shows results from the
fast oscillation limit, and Columns 3 and 4 show results from two different intermediate
periods. Different assembled structures are tracked over the simulation as indicated by the
color bar.
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Abstract
Multiple dissipative self-assembly protocols de-
signed to create novel structures or to reduce
kinetic traps have recently emerged. Specifi-
cally, temporal oscillations of particle interac-
tions have been shown effective at both aims,
but investigations thus far have focused on sys-
tems of simple colloids or their binary mix-
tures. In this work, we expand our understand-
ing of the effect of temporally oscillating in-
teractions to a two-dimensional coarse-grained
viral capsid-like model that undergoes a self-
limited assembly. This model includes multi-
ple intrinsic relaxation times due to the inter-
nal structure of the capsid subunits and, un-
der certain interaction regimes, proceeds via a
two-step nucleation mechanism. We find that
oscillations much faster than the local intrin-
sic relaxation times can be described via a time
averaged inter-particle potential across a wide
range of interaction strengths, while oscillations
much slower than these relaxation times re-
sult in structures that adapt to the attraction
strength of the current half-cycle. Interestingly,
oscillations periods similar to these relaxation
times shift the interaction window over which
orderly assembly occurs by enabling error cor-
rection during the half-cycles with weaker at-
tractions. Our results provide fundamental in-
sights to non-equilibrium self-assembly on tem-

porally variant energy landscapes.

1 Introduction
Self-assembly is the process by which a disor-
dered system forms ordered patterns or nanos-
tructures without external intervention due to
the interactions that are encoded within the
assembling components and their environment.
The driving forces behind self-assembly can or-
ganize lipids into bilayers,1 gather capsomers
into viral capsids,2–6 and arrange block copoly-
mers into a wide range of microphase topolo-
gies.7

Several studies have worked to uncover gov-
erning principles that would enable the de-
sign of interparticle interactions that lead to
well-ordered, self-assembled equilibrium states.
As a result, we now know that the strength,
placement, and specificity of the interactions
between the assembling components,,8–13 their
shapes,8,9,12,14 and their concentrations5,15 can
all be tuned to stabilize a specific equilibrium
target structure. However, the ability to reach
these equilibrium assemblies is highly depen-
dent upon the assembly kinetics.5,16 Strength-
ening the interactions that lower the free energy
of the target structure often increases the ki-
netic barriers to its formation, making it a chal-
lenge to design components that reliably self-
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assemble on a reasonable timescale.10,16–18 In-
sightful work has been done to characterize the
different dynamic pathways a system can take
during self-assembly and the various types of
kinetic traps that may emerge.18,19 One recent
article has even been able to optimize interac-
tions that not only select a target equilibrium
structure, but also simultaneously control spe-
cific kinetic features along its assembly path-
way.20

Alternatively, dissipative self-assembly pro-
cesses can result in well-ordered structures
by driving a system out of equilibrium
and either creating new assembly routes to-
wards equilibrium structures or forming non-
equilibrium steady-states (NESSs).21,22 These
non-equilibrium self-assembly pathways couple
an assembling system to an energy source, such
as when particles are self-propelled with a con-
stant directional force13,23,24 or when assem-
bly occurs within a shear flow.25,26 Recently,
large deviation theory has been successfully
employed to optimize both interactions and ex-
ternal shear forces in order to target specific
steady states.25

The energy source in dissipative self-assembly
may be temporally modulated through the
change of an internal or external parameter,
such as environmental changes that modify the
interactions between assembling particles27–29

or that change their interactions with an ex-
ternal field.30–35 The self-assembly of many bi-
ological structures occurs within complex and
ever-changing environments, and even certain
naturally-forming non-biological materials ap-
pear to require time-variant environments to
assemble – recent investigations have revealed
that cycling between undersaturation and su-
persaturation may be necessary for the forma-
tion of naturally-occurring dolomite.36,37

One way to optimize a time-dependent dissi-
pative self-assembly pathway is to employ feed-
back control, in which the assembly process is
monitored in real time and the driving forces
are adjusted on the fly, based on that feedback,
to guide the process towards a desired outcome.
One such approach adjusted the inter-particle
interactions during assembly simulations based
on the ratio of correlation and response func-

tions and the degree to which they indicated an
optimal balance of local microscopic reversibil-
ity (to avoid kinetic traps) and overall global
irreversibility (towards assembly).38 More gen-
erally, it has been shown that high dimensional
non-equilibrium time-dependent forces are able
to guide an assembly towards a desired struc-
ture, however there is an unavoidable ener-
getic cost to doing so.39 Bevan and coworkers
constructed an experimental system to demon-
strate the feasibility of feedback control: the
2D assembly of charged colloids were monitored
in real time via optical microscopy while be-
ing subjected to a tunable electric potential.
Within this set-up, the electric potential was
adjusted based on feedback from the structural
order parameter in order to construct perfectly
crystalline configurations.40–42 Even so, it is
clear that the need to monitor and adjust as-
sembly conditions in real time would present
significant difficulties to widely implementing
feedback control approaches.

As an alternative to monitoring and adjust-
ing each assembly process in real-time, informa-
tion can be gathered from multiple simulations
or experimental realizations of a dissipative as-
sembly process and used to construct time-
dependent protocols that are optimized for the
ensemble of likely assembly pathways. One such
approach employed evolutionary reinforcement
learning to determine time-dependent temper-
ature and chemical potential protocols for the
efficient assembly of patchy disks into desired
polymorphs.43 Similarly, Markov state models
have been constructed from simulations of col-
loidal oligomers and capsids in order to design
optimal time-dependent interaction profiles for
the finite-time folding and assembly of those
systems.44 However, significant data is required
in order to optimize each time-dependent pro-
tocol, which will depend on the specifics of the
system, and the implementation of these time-
dependent protocols in real systems may prove
challenging.

Oscillatory or cyclic changes to the environ-
ment in which assembly proceeds may provide
a more experimentally accessible avenue to de-
sign new dissipative assembly pathways. A
number of studies have shown that the cycli-
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cal exposure of oil droplets to an external mag-
netic field can facilitate local relaxation pro-
cesses in the resulting aggregates, thereby en-
abling them to overcome kinetic barriers to
equilibration.30–35,45 In simulations of photosen-
sitive nanoparticles, light-induced aggregation
proceeded more rapidly after short pauses in the
light irradiation.46 Simulations by Risbud and
Swan found that toggling inter-particle deple-
tion interactions on and off at a timescale that
allowed for sufficient particle diffusion relaxed
kinetic traps and resulted in the more rapid
formation of low-defect colloidal crystals.47 Fi-
nally, joint experiment and simulation work
showed that the cyclic toggling of an external
electric field on a timescale close to the char-
acteristic melting time could anneal defects in
colloidal crystals.48

Temporal environmental oscillations may also
provide experimentally accessible ways to cre-
ate and maintain long-lived non-equilibrium
steady states (NESSs). Tagliazucchi and
coworkers used simulations and theory to show
that novel non-equilibrium steady state phases
of binary pH-sensitive colloids can form when
pH oscillations are faster than the colloid’s
characteristic diffusional timescale,27,28 and a
similar effect was observed with three dimen-
sional close packed colloids.29 Additional sim-
ulations have shown that oscillations in inter-
particle interactions and external fields can
result in ellipsoids adopting a non-equilibrium
chiral smectic phase49 and in the formation
of non-equilibrium lamellar structures in ho-
mopolymer mixtures.50

Prior work has focused on the assembly of
extended NESS structures or the annealing of
defects in extended colloidal crystals. In this
work, however, we investigate the assembly of a
self-limited capsid-like model with multiple in-
herent length scales and relaxation timescales
that arise from the internal structure of the
capsid building blocks. Specifically, we probe
the impact of oscillatory time-dependent in-
teractions on the assembly mechanisms over a
range of oscillation timescales and amplitudes.
In Section 2, we outline the coarse grained vi-
ral capsid-like model. In Section 3.1, we dis-
cuss assembly with static interactions. Then,

in Section 3.2, we perform simulations with
oscillatory interactions that are faster than,
slower than, or similar to inherent relaxation
timescales within the model to probe their in-
fluence on assembly. Finally, in Section 3.3, we
vary oscillation amplitude to investigate how
these temporal oscillations can act as an error
correction technique. As summarized in Sec-
tion 4, we find that the inherent timescales of
the model system are critical in determining the
effect of fast, intermediate, and slow oscillatory
interactions on the resulting assembly process.

2 Modeling

Figure 1: Schematic of the coarse-grained
capsid-like model and inter-particle po-
tential. (a) Triangular particles with two type
A edges (green) and one type B edge (blue)
start in a random distribution within the sim-
ulation box. Type A - type A interactions are
defined via a Lennard-Jones potential, while the
type A - type B and type B - type B particles
interact via a Weeks-Chandler-Anderson poten-
tial.51 As the simulation proceeds, triangles can
assemble into hexameric capsid-like structures
or into larger snake-like aggregates. (b) The
Lennard-Jones potential for the type A - type
A interaction, showing the two different values
of ϵ – ϵmin and ϵmax – with the time-averaged
ϵavg shown in purple.
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Viral capsid models have proven essential in
the theoretical and computational study of self-
assembly, due in part to their organization into
self-limiting ordered structures.5,15,19,52–59 In-
spired by earlier studies on capsid assembly, in
this work we investigate the assembly of two-
dimensional, rigid triangular particles that as-
semble into capsid-like hexamers, as shown in
Fig. 1a. The model was based upon a simi-
lar one in Mallory and Cacciuto’s work on the
role of self-propulsion in capsid-like colloidal as-
sembly.13 The placement of attractive particles
(green) on only two edges of the triangles causes
these monomer units to assemble either into
distinct hexamers or into extended snake-like
structures (see Fig. 1a).

The triangular monomers are composed of
fifteen partially overlapping circular subparti-
cles that are rigidly held together, as shown in
Fig. 1a. Each subparticle is assigned one of two
different types, A or B, which determines its in-
terparticle potential. The subparticles on two
edges of the equilateral triangle are assigned
type A (green) and interact via a Lennard-Jones
(LJ) potential, the strength of which can be
tuned by changing ϵ, the LJ well-depth. The
subparticles on the third edge are assigned type
B (blue) and interact via the Weeks-Chandler-
Anderson (WCA) potential.51 Thus, type B
subparticles are purely repulsive, and interac-
tions between type A and type B subparticles
are also defined by the WCA potential. The
placement of these differently-interacting sub-
particles introduces an overall anisotropic inter-
action between the individual triangular parti-
cles. Fig. 1b illustrates the attractive interac-
tions between the type A subparticles of differ-
ent triangular particles for various ϵ values. A
more detailed descriptions of the particles and
interactions can be found in the Supporting In-
formation.

Oscillatory interactions are implemented by
switching the ϵ value of the type A-type A in-
teractions between ϵmin and ϵmax in a square
wave pattern. We investigate the effect on cap-
sid formation of variations in both the oscilla-
tion period and its amplitude (defined as the
magnitude of the shift in each direction from
the central, ϵavg-value). Variations in ϵ are con-

sidered here as a way to investigate the effects
of a temporally-dependent interaction strength
on assembly.

Simulations begin with a randomly dis-
tributed system of 150 triangular particles in a
periodic box with no particle overlap. Langevin
Dynamics is utilized to evolve the system in
time, which also provides a thermostat to main-
tain a constant temperature over the simulation
and mimics the drag and random fluctuations
associated with the dynamics of solvated parti-
cles. The system is first allowed to equilibrate
with the type A interactions turned off and all
subparticles interacting via the WCA potential,
as this ensures that there is no particle overlap
while establishing a random initial distribution
of the triangles, both spatially and orienta-
tionally. After the equilibration period, the
Type A attractive interactions are turned on,
and the system is progressed for 150,000τ . See
Supporting Information for additional details.

3 Results and Discussion

3.1 Capsid assembly is non-
monotonic with attraction
strength.

We first model the formation of the complete
capsid-like hexamers within a series of static
environments, each with fixed effective inter-
actions, ranging from ϵ = 0.75kBT to ϵ =
2.25kBT . Figure 2a shows the resulting capsid
yields and sample configurations as a function
of ϵ for three different simulation times, and
Figure 2b shows how the presence of differently-
sized aggregates changes with ϵ and simulation
time.

In keeping with prior work on similar models
of viral capsids,5,13,19,53,55,57 we observe in Fig-
ure 2a that capsid assembly is non-monotonic
with interaction strength. As ϵ increases from
0.75kBT to 1.35kBT , capsid yield also increases.
However, above ϵ = 1.35kBT , capsid yield
decreases. This non-monotonic trend is due
to a transition from thermodynamically equi-
librated systems on the left-hand side of the
curve to kinetically constrained systems on
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the right-hand side as interactions become too
strong for full equilibration to occur within the
simulation time. Sampling for various lengths
of time verifies this transition from thermo-
dynamic to kinetic products, as the left-hand
side of the curve remains unchanged for sam-
pling times ranging from 75,000τ to 600,000τ ,
while the right-hand side shifts to higher values
as sampling times lengthen and the kinetically
constrained structures have additional time to
relax.

The inset snapshots in Figure 2a provide fur-
ther evidence of this transition. At low ϵ in-
teraction strengths, such as shown for ϵ =
0.95kBT , most triangles exist as free monomers
or in small aggregates, and only a few complete
capsids form. By ϵ = 1.35kBT , the snapshot
shows almost complete capsid formation. How-
ever, at ϵ = 1.75kBT , well-formed capsids ap-
pear alongside larger, snake-like and kinetically
trapped aggregates, with the number of snake-
like aggregates decreasing and the number of
capsids increasing as simulation times lengthen.

To better probe capsid assembly kinetics, in
Figure 2b we track the percent of the triangu-
lar monomers that are assembled into differ-
ently sized aggregates as a function of simu-
lation time. At a weaker interaction strength
of ϵ = 0.95kBT , the system almost instanta-
neously assembles into small aggregates of 2-6
monomers (turquoise) in length, which slightly
decreases over the first 1 × 104τ of the simu-
lation as a small number of capsids (cyan) as-
semble. At an intermediate attraction strength
of ϵ = 1.35kBT , a significant number of longer
aggregates composed of 7-10 (purple) and 11+
(magenta) monomers rapidly form initially, but
then decrease on the same timescale as cap-
sid structures emerge. At a stronger attrac-
tion of ϵ = 1.75kBT , where the capsid yield
curve has crossed into the kinetic regime, most
monomers rapidly assemble into the largest ag-
gregates (magenta), which only slightly and
gradually convert into capsids over the remain-
der of the simulation time. By 150, 000τ , most
monomers remain in these very large aggregates
due to the difficulties in overcoming the high
energetic barriers associated with strong inter-
particle interactions.

Figure 2: Capsid yield and aggregate for-
mation within the static system. a) Cap-
sid yield curves are plotted after three different
simulation times vs. the attraction strength,
ϵ. As simulation time increases, the capsid
yield does not change on the left hand side of
the curve. However, on the right hand side,
capsid yield increases with longer simulation
time. Inset are final snapshots of the system at
ϵ = 0.95kBT , ϵ = 1.35kBT , and ϵ = 1.75kBT . b)
The percentage of triangular monomers within
each group of different sized aggregates is plot-
ted over 150,000τ for three different ϵ values
(ϵ = 0.95kBT , ϵ = 1.35kBT , and ϵ = 1.75kBT ).
Aggregates of varying size are shown with the
color bar, with the hexameric structure shown
in cyan. Capsid yields and kinetic traces are
averaged over five independent trajectories, and
the error bars in (a) display the standard devi-
ation.

Interestingly, at the intermediate and
stronger attraction values, the assembly process
in Figure 2b follows a non-classical, two-step
assembly pathway.60,61 During non-classical
assembly pathways, which have been seen
in protein11,62,63 and colloidal particle crys-
tallization,64–66 the system assembles into a
condensed, disordered phase that has a lower
free energy barrier to nucleation than the dis-
assembled system, so that the final assem-
bled structure grows from pre-formed aggre-
gates.63,65,66 This process is clearly in evidence
at both ϵ = 1.35kBT and ϵ = 1.75kBT in Fig-

5



ure 2b, where capsid counts increase as the
initially assembled larger aggregates decrease.
To probe exactly the ϵ values at which this
changeover in assembly mechanism occurs, we
expand Figure 2b in Figure S2 and plot the
results for values ranging from ϵ = 0.75kBT to
ϵ = 2.15kBT at 0.10kBT intervals. Evidence
for this two-step mechanism can be seen as
early as ϵ = 1.25kBT , and a clear cross-over
is seen around ϵ = 1.45kBT , where non-capsid
monomers are present in smaller and larger
aggregates in about equal numbers, with both
types of aggregates decreasing as capsids form.
At higher ϵ values, the two-step pathway domi-
nates, with most monomers assembling rapidly
into the larger, snake-like aggregates.

Having established the assembly behavior of
the 2D model capsid system within a series of
static environments, we now temporally vary
the inter-monomer attractions by switching the
strength of the Lennard-Jones potential be-
tween two values during assembly. We define
the stronger attraction strength as ϵmax and
the weaker interaction strength as ϵmin. The
oscillation amplitude defines the distance of
ϵmax and ϵmin from a central ϵavg value, where
ϵavg = (ϵmax+ϵmin)/2. See Figure 1. We also de-
fine the period of oscillation, τosc, as the time it
takes to complete a full cycle, with half the cycle
at ϵmax and the other half at ϵmin. In the rest of
the paper, we investigate how these oscillatory
interactions influence capsid formation across a
variety of oscillation periods (Sections 3.2) and
oscillation amplitudes (Section 3.3).

3.2 Assembly depends on the os-
cillation frequency.

First, we consider how different oscillation pe-
riods, τosc, affect the assembly process. Dur-
ing the ϵmax half-cycle, triangular monomers
are more strongly attractive and assemble to-
gether, while in the ϵmin half-cycle, such struc-
tures may rearrange or be broken apart. The
degree to which assembly and disassembly oc-
curs depends upon the time spent in each half-
cycle, and how that time compares to the time
required for the system to equilibrate.

Previous studies investigating oscillations in

inter-colloidal potentials compare τosc to a char-
acteristic diffusional time-scale, td = σ2/D,
where σ specifies the size of the assembling col-
loids and D is the diffusion coefficient.27,47 Os-
cillation periods that are significantly shorter
than the characteristic diffusional time-scale
(τosc << td) are considered to be at the fast
oscillation limit, while at the slow oscillation
limit, periods are long enough to allow the sys-
tem to relax to different equilibrium structures
during each oscillation half-cycle.27,28,47

As can be seen in the structure shown
in Figure 1, more than one length-scale is
needed to fully describe the assembling parti-
cles; the diameter of the circular subparticles
is σLJ =0.25σ, while the edge length of the
triangular particles is 1σ. In addition, at the
higher attraction strengths we probe, capsid
formation proceeds via the initial formation of
a condensed disordered phase (see Fig. 2a) and
its subsequent relaxation. The multiple length-
scales and assembly pathways within this model
are expected to influence how capsid formation
varies with oscillation frequency.

To better understand the interplay of the
oscillation period and these inherent length-
scales, we list in Table 1 a set of key dis-
tances that characterize important energetic
and structural changes, ranging from the dis-
tance required to reduce the attractive inter-
action to a tenth of its maximum strength to
the full edge length of a single triangular par-
ticle. To estimate how long it would take for
the triangular particles to traverse these dis-
tances, we plot the mean squared displacement
vs. time for a single triangular particle in Fig-
ure S3a. Since the relevant length scales span
the ballistic and diffusive time regimes, we esti-
mate the time it takes for the particle to move
over these critical distances directly from the
results in Figure S3a. Additionally, we plot in
Figure S3b the rotational autocorrelation func-
tion vs. time for a single triangular particle
and calculate the mean rotational lifetime us-
ing an exponential decay fit. Below, we first
consider oscillations at the fast limit, where the
period is shorter than the timescales associated
with these key distances (τosc << {td}), and
show that the assembly behavior in this regime
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can be described by the ϵ value averaged over a
single oscillation period, ϵavg. Next, we investi-
gate slow oscillations, where the period is longer
than the timescales that correspond to the dis-
tances in Table 1 (τosc >> {td}), such that the
system has time to at least partially equilibrate
to the current ϵ value during each half period
of the oscillation. Lastly, we simulate oscilla-
tions in the intermediate regime (τosc ≈ {td})
and show how the window of capsid assembly
shifts with the oscillation period.

Table 1: Characteristic lengths and their
corresponding relaxation times. Impor-
tant length-scales within the model are pro-
vided along with the estimated time, td, that
it takes for a single, isolated, triangle particle
to move over that distance or to lose its rota-
tional orientation, based on its mean squared
displacement and its rotational autocorrelation
function (see Figure S3).

Characteristic Distance Distance (σ) td (τ)

0.72σLJ (−ϵ → −0.1ϵ) 0.18 0.59
Diameter of Subparticle 0.25 0.91
Edge of Triangle 1.00 10.33
Rotational Relaxation3 – 7.10
3For the rotational relaxation, td describes the mean
lifetime for the exponential decay from the rotational

correlation function in Figure S3b.

The fast oscillation limit obtains the
equilibrium yield curve for a well-depth
of ϵavg. In prior work on colloidal assem-
bly under an oscillatory potential, Szleifer and
coworkers employed the Fokker-Planck equa-
tion while dividing up the oscillation period
into a series of infinitesimally small time steps
to show that, when the period of oscillation
is much, much shorter than the inherent diffu-
sional time-scale of the simulated colloidal par-
ticles, the oscillatory interaction potential can
be described by a static effective inter-particle
potential that is equal to the time-averaged po-
tential over a single oscillation period.27,28 In
our system, where we oscillate the well-depth
of the Lennard-Jones potential such that half
of each oscillation period is at a strength of
ϵmax and half at a strength of ϵmin, the time-
averaged potential over a single period works

out to be the LJ potential with a well depth of
ϵavg = (ϵmax + ϵmin)/2 (see SI for details).

Figure 3: Assembly at the fast oscillation
limit. (a) A kinetic trace is shown from a single
150,000τ trajectory of the assembling capsids
at an attraction strength of ϵavg = 1.35kBT , an
oscillation amplitude of 0.2kBT , and an oscilla-
tion period of 0.02τ . Inset displays a zoomed
in schematic of the oscillation waveform to com-
pare the oscillation frequency to the timescale
of capsid assembly. (b) Capsid yield curves at
150,000τ are plotted for three different ampli-
tudes as well as the non-oscillatory system at
a period of 0.02τ . (c) Capsid yield curves at
150,000τ are plotted for the oscillatory system
at a period of 0.02τ and the static potential are
shown at two different densities. (d) Capsid
yield curves at three different simulation times
are plotted for the static system (solid lines)
and compared to the results for the system with
interactions oscillated for a period of 0.02τ with
an amplitude of 0.2kBT (dashed lines). Percent
capsid formation is averaged over three inde-
pendent trajectories, and the average standard
deviations for the capsid yield measurements
were ±3.2% for the static systems and ±3.8%
for the oscillatory systems.

To test the the behavior of our system at the
fast oscillation limit, in Figure 3 we compare the
degree of capsid formation at static ϵ values to
that at the corresponding ϵavg values for var-
ious oscillation amplitudes, monomer concen-
trations, and simulation times. An oscillation
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period of 0.02τ was chosen (see Fig. 3a), which
is expected to yield fast limit behavior since it
is much shorter than the calculated time-scales
of interest in Table 1. In Figure 3b, we con-
firm that this period reproduces the static non-
monotonic yield curve across three different os-
cillation amplitudes. In Figure 3c, we test the
correspondence between the static and effec-
tive potentials across changes in particle den-
sity. The static yield curves (solid lines) at vol-
ume fractions of ϕ = 0.1 and ϕ = 0.005 dif-
fer, which is expected since a decreased volume
fraction requires a stronger ϵ for capsid forma-
tion. However, at both densities, the oscillatory
potential with a period of 0.02τ and an ampli-
tude of 0.2kBT (dashed lines) returns the cor-
responding static yield curve for ϵavg. Finally,
in Figure 3d, we investigate the timescales of
relaxation at the fast oscillation limit as com-
pared to those in the static system by compar-
ing the oscillatory and static capsid yield curves
after simulation times of 75,000τ , 150,000τ , and
600,000τ . We find that capsid formation at the
fast oscillation limit increases with simulation
time in precisely the same way as capsid forma-
tion does within the corresponding static poten-
tial. This result suggests that kinetic traps af-
fect the system dynamics at the fast oscillation
limit in the same way as in the static system,
supporting the prior claim that even a system’s
non-equilibrium dynamics can be described by
an appropriate time-averaged potential at the
fast oscillation limit28 and explaining the obser-
vation that in both Fig. 3b and Fig. 3c, the cor-
respondence between the oscillatory and static
curves is as good for the kinetically constrained
right-hand side of the curve as it is for the ther-
modynamically equilibrated left-hand side. In
summary, when the Lennard-Jones potential is
oscillated at a very short period of 0.02τ , the
system organizes in the same manner as with
the non-oscillatory potential across a number
of tested variations.

Under slow oscillations, the system
adapts to the ϵ value of each half-cycle.
Next we look at the slow oscillation limit, where
the period is longer than the displacement times
{td} in Table 1, and the system has sufficient
time within a single half-cycle to adapt itself

substantially to the current ϵ value. Figure 4
plots capsid yield as a function of simulation
time for the static reference case (a) and three
longer oscillation periods (b-d), for three differ-
ent ϵavg values, all with an oscillation amplitude
of 0.4kBT .

In the Figure 4a static case, a weaker attrac-
tion strength of ϵavg = 1.05kBT results in the
capsid yield quickly plateauing to about 40%, a
moderate attraction strength of ϵavg = 1.35kBT
results in nearly complete capsid assembly over
a slightly longer time-scale, and a stronger in-
teraction strength of ϵavg = 1.65kBT results in
kinetic trapping and slow capsid assembly.

Figure 4: Capsid formation changes with
each half-cycle. Capsid formations at differ-
ent ϵavg values are shown at an oscillation ampli-
tude of 0.4kBT for three longer periods, as com-
pared to the non-oscillatory capsid formation
curves in (a). We show (b) τosc = 6, 250τ , (c)
τosc = 12, 500τ , and (d) τosc = 50, 000τ . Each
period has the waveform overlaid in gray to
show the oscillation period. The kinetic traces
are averaged over three independent trajecto-
ries.

In Figure 4b-d, we plot capsid formation
along with the oscillation profiles for periods
of 6,250τ , 12,500τ , and 50,000τ , where τosc >>
{td}. For the weakest interaction strength of
ϵavg = 1.05kBT (in blue), at the given ampli-
tude of 0.4kBT , the simulation oscillates be-
tween a well-depth of ϵmin = 0.65kBT and
ϵmax = 1.45kBT . For all three τosc periods, cap-
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sids rapidly assemble in the ϵmax half-cycle and
rapidly disassemble in the ϵmin half-cycle, where
interactions are too weak for the structures to
remain intact. As with the weakest ϵavg value,
simulations at the strongest ϵavg value inves-
tigated here of 1.65 kBT (in orange) also dis-
play significantly different assembly behaviors
in each half-cycle. At these stronger attraction
strengths, capsids no longer rapidly fall apart
during the ϵmin half-cycles, however the kineti-
cally trapped snake-like structures can still re-
lax to form additional capsids. As a result,
significant capsid formation occurs during the
ϵmin half-cycles of ϵavg = 1.65kBT . These cap-
sids remain intact during the ϵmax half-cycles,
however the stronger attractive forces keeping
the subparticles together also largely arrest the
relaxation of kinetic traps and thus the for-
mation of additional capsids. Behavior with
the intermediate ϵavg of 1.35 kBT (in purple) is
more complex. The system oscillates between
ϵmin = 0.95kBT and ϵmax = 1.75kBT , both of
which result in only modest capsid yields in the
static system (see Figure 2a), and we observe
that same modest yield in all three longer os-
cillation periods in Fig. 4b-d, despite the fact
that a high yield is obtained for ϵ = 1.35kBT in
the static case in Fig. 4a.

Overall, when considering oscillations that
are slow compared to the characteristic dis-
placement times in Table 1, we see that the
system substantially adapts to each half-cycle,
which can result in capsid yields that grow and
shrink over each oscillation or in capsid yields
that remain static during most ϵmax half-cycles
and then further increase during most ϵmin half-
cycle. It is important to note that even the
very long oscillation periods investigated here
are still slower than the time needed to fully re-
lax the kinetic traps of the system, which can
take longer than 75,000τ even at ϵ = 1.45 kBT ,
just slightly above the capsid yield curve’s peak
(see Fig.2a).

Intermediate oscillation periods causes
yield curves to shift to stronger ϵavg-
values. In order to probe how oscillatory inter-
actions influence capsid assembly between the
fast and slow oscillation limits, in Figure 5 we
plot the capsid yield curves across a range of

oscillation periods at an amplitude of 0.4kBT .
Details of aggregate formation for three of these
periods are shown for a range of ϵavg values in
Figure S4.

For all periods, capsid assembly remains non-
monotonic with interaction strength, and the
window of orderly assembly is approximately
the same width for systems undergoing oscilla-
tory interactions as for those with static inter-
actions. However, as the period of oscillation
increases in Figure 5a, the capsid yield curves
shift to higher ϵavg values.

Figure 5: Capsid yield curves for dif-
ferent periods of oscillation. (a) Capsid
yield curves after 150,000τ are compared to the
scaled ϵavg value for different oscillation periods
at an amplitude of 0.4kBT . The black, dashed
line indicates 50% capsid formation on the left
hand side of the yield curves. (b) The scaled
ϵavg values that result in 50% capsid formation
on the left hand side of the capsid yield curve
are plotted vs. τosc. The dark gray bar indicates
the non-oscillatory regime, the light gray bar
plots the upper asymptotic limit of a sigmoidal
fit, and the dotted line indicates the midpoint
between the two. Points in (b) that are shown
in (a) are represented by a closed circle, while
additional periods not shown in (a) are denoted
by an open circle. Capsid formation is averaged
over three independent trajectories, and the er-
ror bars on the static curve show its standard
deviation.

One technical complication that arises as the
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oscillation period increases slightly from the
fast oscillation limit period of 0.02τ is that the
Langevin thermostat is not able to generate the
target temperature from about 0.03τ to about
5τ . To enable comparisons that include these
oscillation frequencies, the ϵavg values in Fig-
ure 5 were therefore scaled appropriately for the
actual observed temperature at each oscillation
period. A plot of these temperatures vs. oscilla-
tion period is shown in Figure S1 in the SI, and
additional details on the scaling can be found
there as well.

To quantify the capsid yield curve shift, in
Figure 5b we plot the scaled ϵavg value that re-
sults in 50% capsid formation on the left hand
side of the yield curves in Fig. 5a (i.e., where
it intersects the black dashed line) vs. the os-
cillation period, τosc. The ϵ value that results
in 50% capsid formation in the static system is
indicated by the dark gray bar, while the corre-
sponding ϵavg value for the long oscillation pe-
riods is indicated by the light grey bar.

The result for the fast oscillation limit (τosc
= 0.02τ) overlaps with the non-oscillatory dark
gray bar, as previously observed in Fig. 3. For
oscillation periods between 0.02τ and about
0.5τ , the scaled ϵavg values are clustered around
the dark gray bar and there is no sustained shift
away from the static ϵ value. After 0.5τ , how-
ever, the scaled ϵavg value at 50% capsid for-
mation steadily increases with oscillation pe-
riod, crosses the dotted line that indicates the
halfway point between the fast and slow oscil-
lation limits at a period of about τosc = 7τ , and
then plateaus at the slow oscillation value (light
grey bar).

To make sense of the shift with oscillation pe-
riod in Fig. 5, we return to the inherent length-
scales of our model and their corresponding lo-
cal relaxation time-scales, as described in Ta-
ble 1. After aggregates nucleate, there are three
important local relaxation processes that facil-
itate the second stage of the hexagonal capsid
formation from either smaller or larger aggre-
gates: (1) the diffusion of subparticles away
from one another; (2) the sliding of triangu-
lar particle edges along one another; and (3)
the rotation of a triangular particle away from
or towards another. All three of these move-

ments are more likely to occur during the ϵmin

half-cycle when attractions are weaker. Table 1
provides estimates for the timescales of these
local relaxation processes, based on simulations
of a single triangular particle (see Figure S3).
First, the diffusion of one subparticle out of the
LJ attractive well of a neighboring subparticle
is characterized by the length-scale of the LJ at-
traction. The distance a subparticle must move
for the attractive interaction to be reduced to
a tenth of its full strength is 0.18σ, which is
estimated to take approximately 0.6τ . Second,
the edge length of a single triangular particle is
1.0σ, and the corresponding diffusion time for
that distance is 10.3τ . Third, the mean lifetime
for the rotational degree of freedom is estimated
to be 7.1τ , based on the rotational correlation
function calculated in Figure S3. These intrin-
sic local relaxation timescales aid our interpre-
tation of the shift in the capsid yield curves with
oscillation period in Fig. 5.

At a period of τosc = 0.5τ , where the steady
shift towards higher ϵavg values starts, there is
just enough time during each ϵmin half-period
for a subparticle to move away from a neigh-
bor so that their attractive LJ interaction is re-
duced by two thirds. At a period of about 1.2τ ,
the ϵmin half-cycle is just slightly longer than
the time it takes for a subparticle’s LJ interac-
tion to be reduced to a tenth of its maximum
strength, on average. That is, particles that
were originally interacting are likely to diffuse
far enough from their original configurations so
that they no longer experience a significant at-
traction to their original neighbors.

The black dashed line indicates the half-way
mark between the fast and slow oscillation be-
haviors, which happens at an oscillation period
of about τosc = 7τ . From Table 1, we see
that several local relaxation processes that are
helpful in the formation of capsids are achiev-
able within an ϵmin half-period of 3.5τ . Within
this half-cycle, particles can diffuse far enough
from their original configurations so that they
no longer experience a significant attraction
to their original neighbors, even shifting the
full diameter of a subparticle. If a particle
located in an aggregate can shift a subparti-
cle away from their original configuration, this
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could lower the energetic barrier for the triangle
to diffuse from an aggregate structure.

After a period of 20τ , we observe the start
of a plateau in the scaled ϵavg values that cor-
responds to 50% capsid formation. Interest-
ingly, a period of 20τ corresponds to a half-
cycle of 10τ , which is about the time needed
for a triangular particle to diffuse 1σ, or the dis-
tance of one full edge of the triangle. This edge
length is an important distance in disrupting
longer aggregates, since a particle in the middle
of a snake-like aggregate would need to diffuse
about 1σ to leave the aggregate and thereby
break up a longer aggregate. In addition, this
length is central to the motions of a trimer of
particles that enable full capsid formation from
a half-capsid structure on the end of a snake-
like aggregate, as can be seen in Figure 1. Given
the mean rotational lifetime of approximately
7τ , it is clear that by an oscillation period of
20τ , triangular particles can fully diffuse from
aggregate structures and rotate to better align
with other particles to facilitate capsid forma-
tion during the ϵmin half-cycles.

3.3 Shift in capsid yield with am-
plitude provides evidence for
the critical role of error cor-
rection.

Previously, Risbud and Swan47 and oth-
ers30–35,45 observed that oscillating attractions
could result in local relaxation, since the system
was able to relax kinetic barriers via diffusion
when the attractions were turned off. In our
model, the formation of capsid-like structures
is also limited by kinetic traps at stronger at-
tractions, as demonstrated in Figure 2a by the
increase in capsid yield with longer simulation
times. In addition, at these higher ϵ values, the
initial formation of snake-like structures that
can convert into capsid-like hexamers makes
it clear that error correction – the ability of
sub-optimally assembled particles to rearrange
themselves into a more favorable structure –
plays an important role in the total capsid
yield, both in the static and oscillatory in-
teraction cases. Indeed, in Figure 4b-d, at

the slow oscillation limit with an amplitude of
0.4kBT , we directly observed the effect of er-
ror correction on the capsid formation process
during the lower ϵmin half-cycles for the case
where ϵavg = 1.65kBT . Capsid yields almost
always remained static in the ϵmax half-cycles,
but ratcheted up to higher levels in the ϵmin

half-cycles. In this section, we further probe
how the ϵmin half-cycles affect error correction
within this model system by varying the oscil-
lation amplitude. As the amplitude increases,
ϵavg stays the same, but attractions oscillate
between a weaker ϵmin and stronger ϵmax. Re-
sults are shown in Figure 6 for an intermediate
oscillation period of 100τ , which is long enough
for most local relaxation processes to occur –
see Table 1 and the almost-completed shift to-
wards the long-time oscillation value at 100τ in
Figure 5b.

In Figure 6a, we show a series of capsid yield
curves at different oscillation amplitudes plot-
ted vs. ϵavg. As amplitude increases, yield
curves shift to the right to higher ϵavg values –
values where orderly assembly is not observed
in the static system. However, when we plot
these same yield curves vs. ϵmin instead of ϵavg
in Figure 6b, the curves for all amplitudes col-
lapse into one curve, which is very close to the
capsid yield curve for the static potential. This
collapse of the yield curves indicates that, at os-
cillation periods sufficiently longer than the lo-
cal intrinsic relaxation processes in the system,
the main determinant of capsid yield in the os-
cillatory system is simply the value of ϵmin. In-
deed, this full shift from the yields observed at
ϵavg to those observed at ϵmin as the oscillation
periods lengthen can be clearly seen in Figure 5.

To further probe this shift to the ϵmin value
fully determining the yield at oscillation times
longer than the local relaxation processes, in
Figure 6c we show the percent of the triangular
monomers in each aggregate size as a function
of time for a series of simulations with varying
amplitudes and ϵmin values. From the top row
to the bottom row, ϵmin increases, while within
each row, ϵmin is held fixed while the amplitude
increases from left to right. Notably, we find
that the kinetic assembly traces for a given ϵmin

value are essentially the same across the three
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Figure 6: Capsid yield and aggregate
formation for different oscillation ampli-
tudes. Capsid yield curves are plotted in (a)
vs. ϵavg and in (b) vs. ϵmin for five different os-
cillation amplitudes with an oscillation period
of 100τ and the static potential case. The for-
mation of different sized aggregates is plotted
vs. time in (c) for three different amplitudes at
a period of 100τ . Although they have different
ϵavg values, ϵmin = 0.95kBT for all amplitudes in
row 1, ϵmin = 1.25kBT for all amplitudes in row
2, and ϵmin = 1.55kBT for all amplitudes in row
3. Capsid yield curves and monomer counts in
the different aggregate types are averaged over
five independent trajectories. In the static case,
the error bars represent the standard deviation.

amplitudes. This result supports our finding
that, as long as oscillation periods are longer
than the local intrinsic relaxation processes and
ϵmax is above the threshold for kinetic trap for-
mation, the strength of ϵmin is what determines
the degree to which kinetically trapped aggre-

gates are able to relax into fully formed capsids.

4 Conclusion
In this work, we have expanded upon previ-
ous studies to investigate how temporal oscilla-
tions influence the dissipative self-assembly of
anisotropic 2D triangular particles that assem-
ble into capsid-like structures. At stronger at-
tractions, the formation of these hexamers oc-
curs through a non-classical, two-step nucle-
ation pathway and is prone to kinetic trap-
ping, resulting in a non-monotonic dependence
of capsid yield on attraction strength in both
the static and oscillatory cases.

Our results highlight the correspondence be-
tween the different oscillation time-scales and
the particle motions, both translational and ro-
tational, that govern local relaxation processes.
At the limit of oscillations that are very fast
compared to these intrinsic time-scales, assem-
bly proceeds as if the system were subject to
the static attraction that is the time-averaged
strength over a single oscillation period, defined
by the averaged LJ well-depth, ϵavg. At the slow
oscillation limit, the system evolves according
to the attractive forces at play within the cur-
rent half-cycle. In between these extremes, the
assembly yield curve shifts from one determined
by ϵavg to one determined by ϵmin, the attrac-
tion strength during the weaker attraction half-
cycles, since it is the error correction made pos-
sible at those times that determines the degree
to which kinetic traps can be overcome.

Temporal oscillations in inter-particle attrac-
tions may offer experimentally accessible dissi-
pative self-assembly protocols for a wide range
of materials. Such oscillations could be imple-
mented by changes in temperature, external ap-
plied fields, light irradiation, pH changes, or
other mechanisms. Our results provide insights
that could aid in the design of such protocols.
Specifically, even without closed feedback loops
or detailed simulations of the specific system of
interest, designing protocols with interactions
that oscillate over times similar to the intrinsic
relaxation times of that material may be used to
relax kinetically trapped structures, so long as
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the attractions between the particles are weak
enough at times to allow those relaxation pro-
cesses to proceed and thereby facilitate error
correction within an assembling material.
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