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Algorithms developed to solve many-body quantum problems, like tensor networks, can turn
into powerful quantum-inspired tools to tackle problems in the classical domain. In this work,
we focus on matrix product operators, a prominent numerical technique to study many-body
quantum systems, especially in one dimension. It has been previously shown that such a tool can
be used for classification, learning of deterministic sequence-to-sequence processes and of generic
quantum processes. We further develop a matrix product operator algorithm to learn probabilistic
sequence-to-sequence processes and apply this algorithm to probabilistic cellular automata. This
new approach can accurately learn probabilistic cellular automata processes in different conditions,
even when the process is a probabilistic mixture of different chaotic rules. In addition, we find that
the ability to learn these dynamics is a function of the bit-wise difference between the rules and
whether one is much more likely than the other.

I. INTRODUCTION

Machine learning has been widely and successfully used
in different scientific fields and beyond [1–6] due to the
broad expressive power and generality of the different
architectures available. Between these architectures,
tensor networks have also been recently considered as
a version of quantum-inspired machine learning models
[7–10]. They were first used for classification tasks and
as auto-regressive generative models [11–17]. Under
the name of exponential machines, they have also
been applied for natural language processing tasks like
sentiment evaluation [18]. In these examples, the tensor
network architecture is usually one or two-dimensional
[19, 20]. Other architectures, like tree-tensor networks,
have also been considered for tasks such as high-energy
physics [21] and radiology [22].
Tensor networks have two significant advantages. The

first one is that being linear, they can be trained very
effectively compared to non-linear models. The second
is that they can be efficiently compressed, reducing the
number of parameters associated with the network in a
controlled manner, while providing a controlled degree of
accuracy [23–25]. However, tensor network models suffer
from the inability to describe efficiently systems with
significant long-range correlations. For instance, in one-
dimensional quantum systems, they cannot efficiently
describe states with volume-law entanglement [26–30].
In [31] it was shown that tensor networks can be used

to learn the deterministic evolution of sequences. In
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particular, the authors analyzed the evolution of cellular
automata [32], which is an ideal test bed because the
dynamics can be very rich, yet the rules that generate it
are simple and local. The authors showed that the tensor
networks were able to distill the simple local dynamical
rules from time-evolved cellular automata sequences.
Similarly, tensor networks were applied to learn generic,
non-Markovian, quantum processes [33], with important
applications in quantum computing. In this work, we
aim to move beyond deterministic evolution and consider
probabilistic ones. In other words, we focus on the
more general class of sequence-to-probabilistic-sequence
scenarios, relevant for realistic noisy or probabilistic
systems such as those encountered in biology [34], or
quantum mechanics [35], to name just a few. In the
spirit of understanding in detail the functioning of this
learning model, we consider the prototypical problem
of learning probabilistic cellular automata [34]. More
specifically, we consider the cases in which the dynamics
include two or three different probabilistic rules, drawn
from a given distribution. We show that our model
can accurately learn the probabilistic cellular automata
dynamics, regardless of the complexity of the underlying
rules (e.g. regular or chaotic). We also find that the
predictions are more accurate when the rules are similar
bit-wise, and when their probabilities of occurrence are
comparable.

The rest of the work is organized as follows: in
Sec. II we give an introduction to probabilistic cellular
automata . In Sec. III we introduce the basics of
tensor networks and show the roles matrix product
states and matrix product operators play in representing
probabilities and conditional probabilities. In Sec. IV we
explain how we prepare the data and train our model. In
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Secs. V and VI we describe how to perform predictions
and characterize the performance of the trained model.
We provide analytical insights on the tensor network’s
ability to represent probabilistic cellular automata in
Sec. VII. Our results are presented in Sec. VIII. Lastly,
we draw our conclusions in Sec. IX.

II. PROBABILISTIC CELLULAR AUTOMATA

Given an input sequence xxx = (x1, x2, . . . xL) of length
L and xl ∈ (0, 1), one can consider simple local rules
to obtain an output sequence xxx′. This type of system is
known as cellular automata . In one dimension, there are
28 = 256 local rules for which the value of x′

l depends on
the values of xl−1, xl, and xl+1 [32]. These simple rules
can result in attractive or periodic dynamics. Some rules
are proven to be chaotic or even Turing complete [36, 37].

In probabilistic cellular automata , the xxx → xxx′

dynamics depends on multiple local rules, each with a
predefined probability of occurrence. In a case where
the dynamics depend on two different rules, one could
apply rule i with probability pi or rule j with probability
pj = 1 − pi. At each step, a random number r is drawn
from a uniform, continuous distribution between 0 and 1.
If r ≤ pi, rule i is applied. Otherwise, rule j is applied.
Cases with more possible rules can be dealt with using the
same approach. Two examples of probabilistic cellular
automata are visualized in Fig. 1. In panels (a) and (b),
we apply rules 18 and 51 with different probabilities and
observe vastly different dynamics.

FIG. 1. Illustration of a single realization of a probabilistic
cellular automata evolution between two different rules: rule
18 with probability p18 and rule 51 with probability p51 =
1 − p18. The left panel presents probability p18 = 0.2 while
the right panel presents p18 = 0.8. At each time step,
the sequence xxx is updated to different xxx′ following the two
probabilistic cellular automata rules.

III. MATRIX PRODUCT OPERATORS AND

LEARNING

Our goal is to train an object that, after applying to an
input sequence xxx, can produce sequences xxx′ that follow
the probability distribution of the underlying cellular
automata rules. As shown in [11, 31], the probability
amplitude of obtaining an arbitrary sequence xxx can be
computed from a special case of tensor networks, known
as matrix product state (MPS)

P (xxx) =
∑

a0,...,aL

Mx1

a0 a1
Mx2

a1 a2
. . .MxL

aL−1 aL
= Mxxx. (1)

Here, Mxl

al−1 al
is a three-legged tensor with one physical

index xl and two auxiliary indices al−1 and al which
link the l−th tensor to the previous and the next one.
The number of possible elements in al is called bond

dimension which we refer to asD. For the MPS in Eq. (1)
we use the short form Mxxx, and we note that it can be
normalized such that

∑

xxx P (xxx) = 1 [38].
In contrast, matrix product operators (MPOs) are

linear operators Wxxx′

xxx composed of four-legged tensors

W
xl x′

l

bl−1 bl
. We thus write

Wxxx′

xxx =
∑

b0 b1 ... bL

W
x1 x′

1

b0 b1
W

x2 x′

2

b1 b2
. . .W

xL x′

L

bL−1 bL
. (2)

In Eq.2, the size of the auxiliary index bl is referred to as
the operator bond dimension and we denote it with DW .
Going back to the specific issue of sequences coming

from cellular automata evolution, any input sequence xxx
or output sequence xxx′ can be written as an MPS of bond
dimension D = 1 which we refer to as Txxx and Txxx′

[26].
When an MPO acts on an MPS, the result is still an
MPS. We can thus write the conditional probability of
obtaining xxx′ from xxx as

p(xxx′|xxx) = Txxx′†Wxxx′

xxx Txxx. (3)

Once learned, the MPO Wxxx′

xxx can correctly predict the
output sequences of the probabilistic cellular automata
used in the training. A graphical representation of the
learning process can be found in Fig. 2. In this work, we
consider the scenario in which Wxxx′

xxx is time-translational
invariant, meaning that the probability distribution of
the cellular automata rules is the same at each time
step.

IV. TRAINING

For the supervised learning, we need unique pairs of xxx
and xxx′ and their corresponding conditional probability
p(xxx′|xxx). We prepare the training data by randomly
generating N different xxx and evolving them repeatedly
with S probabilistic cellular automata rules. We use
the subscript n to differentiate the input sequences xxxn
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FIG. 2. Illustration of the probabilistic learning protocol. In
the left portion, an input state and more than one output
state are contracted with the MPO object which is in turn
fed into the minimization protocol. In the right portion, we
demonstrate the prediction, contracting an input state with
the, now, trained, MPO, which is afterward subject to a
sampling algorithm to recover a possible output with correct
probability.

and the subscript s to differentiate the output sequences
xxx′
n,s from xxxn. At each time step, one input sequence xxxn

can yield up to S different output sequences xxx′
n,s (some

input and output pairs may be the same for different
rules). From this training data, we identify unique pairs
(xxxn, xxx′

n,s) and their respective normalized conditional
probability or frequency p(xxx′

n,s|xxxn) = fxxx
n,s. The latter

can be estimated by counting the occurrences of the
different output sequences from the same input sequence

fxxx
n,s =

count
(

xn → x′
n,s

)

∑

s count
(

xn → x′
n,s

) . (4)

In general, Eq. 4 can be used to approximate the
conditional probability in any data set containing labeled
input and outputs.
To learn the MPO Wxxx′

xxx from the training data, we first
express the unique input xxxn and output sequences xxx′

n,s

as MPS Txxx
n and Txxx′

n,s respectively. With the frequency of
the unique pairs fxxx

n,s, we can construct a loss function

from which to derive Wxxx′

xxx . The main idea is that for any
input sequence xxxn and all of its output sequences xxx′

n,s we
should get

Wxxx′

xxx Txxx
n =

∑

s

T̃xxx′

n,s, (5)

where T̃xxx′

n,s = fxxx
n,sT

xxx′

n,s, and this equation can be obtained
by minimizing

C0 =
∑

n

(

Wxxx′

xxx Txxx
n −

∑

s

T̃xxx′

n,s

)†(

Wxxx′

xxx Txxx
n −

∑

s

T̃xxx′

n,s

)

.

(6)

We further add a regularization term to C0 that prevents

overfitting so the overall loss function becomes

C = C0 + α Tr
(

Wxxx′†
xxx Wxxx′

xxx

)

, (7)

where the positive constant α is a regularization constant.
For this work, we use α = 0.001 as it was shown to
provide good results [31].
In general, one can minimize the loss function defined

in Eq. (7) using auto-differentiation and out-of-the-box
optimizers like stochastic gradient descent or Adam.
However, given the one-dimensional structure of the
MPO, we can adopt a more efficient and effective
approach. This approach is inspired by the ground state
search algorithm in matrix product states [26].
We locally and sequentially optimize each tensor

W
xl x′

l

b′
l−1

b′
l

by solving a linear problem. In each optimization

sweep, we update the tensors sequentially from site 1
to site L, and then back to site 1. This sweep is then
repeated until the loss function converges or falls below
a stopping criterion. For more details see App. A.

V. PREDICTION

Given a well trained MPO Wxxx′

xxx and an input sequence

xxxn, we generate an MPS Mxxx′|xxxn from which different
output sequences xxx′

n,s can be extracted with the correct

frequencies fxxx′

n,s. We use the zipper algorithm [11, 35] to
extract these output sequences. Starting from the MPS

Mxxx′|xxxn = Wxxx′

xxx Txxx
n , (8)

we first compute the normalized probability of finding
the first site of the sequence x1 = 1 from Mxxx′|xxxn ,

m1 =
Tr
(

σu
1M

xxx′|xxxn

)

Tr
(

Mxxx′|xxxn

) , (9)

where

σu
l =

[

1 0
0 0

]

, σd
l =

[

0 0
0 1

]

, (10)

are the local spin-up and spin-down operators. A random
number r is then drawn from a uniform distribution U0,1

between 0 to 1. If r < m1 then we set x1 = 1. Otherwise,
we set x1 = 0. At site l we thus have

ml =
Tr
(

σa1

1 . . . σ
al−1

l−1 σu
l M

xxx′|xxxn

)

Tr
(

σa1

1 . . . σ
al−1

l−1 Mxxx′|xxxn

) , (11)

where al = u or d depending on the 1 or 0 we set on the
previous sites. Similarly, we compare ml with a random
number r drawn from U0,1 and set xl to be either 1 (r ≤
m1) or 0 (r > m1).
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VI. CHARACTERIZATION

We consider the case of a finite number S of different
rules, and each rule s with an expected probability pes.
To evaluate the predicted probability of rule s, pps , we
prepare N testing input sequences xxxn and extract one
output sequence xxx′

n,s from each xxxn. From these N pairs
of input-output sequences, we evaluate the frequency of
a rule s. The error of our predictions is given by

ǫ =
1

S

S
∑

s=1

|pps − pes|. (12)

Occasionally, different rules can produce the same output
sequence from an input sequence. This scenario is
removed only during the characterization of performance
so that Eq. (12) remains a valid indicator.

VII. ANALYTICAL CONSIDERATIONS

It was shown that the dynamics stemming from
deterministic cellular automata can be described exactly
with MPO [31] and each of the 256 local rules can be
represented by an MPO of bond dimensions DW ≤
4. This analytical result can be extended further to
probabilistic cellular automata . To understand how
to write exact MPO solutions for probabilistic cellular
automata , we summarize here the key points on how to
generate the MPO solution for non-probabilistic cellular
automata . In the typical cellular automata where the
same rule is applied at each step, there is a one-to-
one mapping between the input and output sequences.
Hence, for the MPO Wxxx′

xxx , if one uses the sequences of

xxxn and xxx′
n,s to evaluate Wxxx′

xxx , the MPO should be 1 for
xxx′
n,s and 0 for all other possible output sequences xxx′. For

example, for a system with rule 30, the input sequence
0, 0, 1, 0, 0 becomes the output sequence 0, 1, 1, 1, 0 and
thus W 01110

00100 = 1. All other combinations of the upper

indices give 0. Since Wxxx′

xxx is the product of tensors, we

write the tensors W
xl x′

l

bl−1 bl
such that their products give

1 only when the input and the output sequences are
connected by the relevant cellular automata rule. The
required bond dimension is DW = 1 if the rule depends
only on the local site (e.g. rule 51), DW = 2 if the rule
depends on the local site and one of the nearest neighbors
(e.g. rule 153), and DW = 4 if the rule depends on the
local site and both nearest neighbors (e.g. rules 18 or
30).
We show that probabilistic cellular automata can

be written exactly with MPOs as well. To build
this MPO, we multiply the MPO for each rule by its
corresponding probability and then add them together.
The bond dimension of the resultant MPO is thus the
sum of the S constituents. We note that this analytical
solution is not unique because (i) one can perform gauge
transformations on the tensors by including matrices

between the tensors, and (ii) this analytical MPO may be
further compressed to be described exactly by a smaller
bond dimension.

VIII. RESULTS

In this section, we show the prediction performance for
various probabilistic cellular automata . For most of the
results, the number of probabilistic rules is S = 2 and
the training is done with N = 20000 training inputs of
length L = 20 unless otherwise stated. After training,
we consider N = 10000 different input sequences xxxn for
the characterization. We use the zipper algorithm in
Sec. V to sample one output sequence xxx′

n,s from each
of these inputs. We then check if the input-output
pair follows the first rule, the second rule, or none of
them. By counting how many times the output sequences
have followed one of the two rules, we can check if
these frequencies correspond to the expected conditional
probabilities. Naturally, the frequency should be 0 for
all the other rules. We note that for a system of size 20,
the full sample space would be 220, or around one million
states. Our training set of N = 20000 is therefore just
∼ 2% of the total configurations.

A. Performance of MPO learning model

We first investigate the performance of the MPO
learning model by analyzing the effects of changing the
number of training sweeps Nsweep, MPO bond dimension
DW , and the number of training samples N . In Fig. 3
we consider the case in which the two probabilistic rules
are 18 (periodic with a large period) and 51 (periodic
with period 2), with probabilities pe18 and pe51 = 1 −
pe18 respectively. In Fig. 3(a), we plot the predicted
probabilities pp18 (solid lines) and pp51 (dashed lines)
against the number of training sweeps Nsweep. The
exact probabilities are shown as the dotted lines, with
pe18 = 0.7 and pe51 = 0.3. We find that DW plays
an important role in identifying the right rules and
their corresponding probabilities. For this combination
of rules, a bond dimension DW = 5 is sufficient to
recover the exact probabilities. Further increasing DW

extends the generalizing power of the MPO, and therefore
improves the accuracy of the results. This is also
illustrated in Fig. 3(b), in which we plot the error ǫ
against the number of sweeps. When DW is larger, pp18
converges to pe18 after a smaller number of sweeps. On
the other hand, DW = 2 does not produce the right
pp18 despite increasing the number of sweeps. Lastly, in
Fig. 3(c), we plot the error ǫ against DW for different
number of training samples N . Although DW = 5 is
theoretically sufficient to give the right predictions, a
minimum N = 20000 is required to achieve accurate
convergence at Nsweep = 10. For smaller N , the error
can be mitigated by increasing DW .
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FIG. 3. MPO training for probabilistic cellular automata
with rules 18 and 51, with pe18 = 0.7 and pe51 = 0.3
respectively. (a) Predicted probabilities P

p
18 and p

p
51 against

the number of training sweeps. Different symbols present
different MPO bond dimensions: DW = 2 is shown in blue
“+”, DW = 4 is shown in orange circles, and DW = 8 is
shown in green “x”. The solid lines are for p

p
18 and the

dashed lines are for pp51. The dotted horizontal line marks the
exact probabilities pe18 and pe51. (b) Prediction error ǫ against
the number of training sweeps. The different lines represent
different DW . (c) ǫ against different DW . The different lines
represent different training samples N . The parameters used
are system size L = 20, number of samples N = 20000, and
number of sweeps Nsweep = 10, unless otherwise specified in
the subplot descriptions.

In Fig. 4, we show that our insights are generic
by comparing the results of two different pairs of
probabilistic rules. In Fig. 4(a) we consider the same
scenario with rules 18 and 51, but with pe18 = pe51 = 0.5.
For this scenario, DW = 5 is sufficient to guarantee
accurately predicted probabilities. In Fig. 4(b) we
consider a different scenario with rules 18 and 30. For
this pair of probabilistic rules, we expect and observe
that DW = 8 is sufficient to provide fast and accurate
predictions. In both cases, increasing DW beyond the
analytical consideration leads to the prediction of the
correct probabilities.

When pei deviates from 0.5, the MPO training becomes

FIG. 4. MPO training for probabilistic cellular automata
with different pairs of rules. For each rule, the probability
of occurrence is pei = 0.5. The different markers represent
different MPO bond dimensions: blue “+” for DW = 2,
orange circles for DW = 4, purple asterisks for DW = 6,
and green “x” for DW = 8. The solid and dashed lines
correspond to the predicted probabilities of different rules.
The dotted lines correspond to the exact probabilities. (a)
Predicted probabilities p

p
18 and p

p
51 against the number of

training sweeps. (b) Predicted probabilities p
p
18 and p

p
30

against the number of training sweeps. The parameters used
are system size L = 20 and number of samples N = 20000.

more difficult. If the probability of one rule is
considerably larger than the other, the optimization
algorithm could be trapped in a local minimum, resulting
in the prediction of a deterministic cellular automata
. In this case, the second rule is not regarded as a
characteristic of the probabilistic cellular automata , but
as noise. Despite the increased difficulty, our algorithm
can distinguish the two probabilistic rules satisfactorily.
To demonstrate this, we present the same two pairings
of rules shown in Fig. 4, but with pp18 = 0.9 and p51/30 =
0.1. The predicted probabilities are plotted against the
number of training sweeps in Fig. 5. In both scenarios,
we find that an MPO with DW greater than or equal
to the analytical consideration can predict the correct
probabilistic cellular automata dynamics.

Another factor that affects the difficulty of MPO
training is the distance between the probabilistic rules.
In the bit-wise representation of cellular automata [32],
the distance between rules can be characterized by their
Hamming distance Hd. For clarity, we provide an
example of the bit-wise distance between two rules: rule
18 is 00010010 bit-wise, and rule 30 is 00011110. Their
Hd is 1/4 because two bits out of eight are different.
Given a particular Hd, we generate ten different random
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FIG. 5. MPO training for probabilistic cellular automata
with different pairs of rules. The probabilities of the rules
are pe18 = 0.9 and pe51/30 = 0.1. Different markers correspond
to different bond dimensions: blue “+” for DW = 2, orange
circles for DW = 4, and green “x” for DW = 8. The solid
and dashed lines correspond to the predicted probabilities
of different rules. The dotted lines correspond to the exact
probabilities. (a) Predicted probabilities p

p
18 and p

p
51 against

the number of training sweeps. (b) Predicted probabilities
p
p
18 and p

p
30 against the number of training sweeps. The

parameters used are system size L = 20 and number of
samples N = 20000.

pairs of rules and analyze the performance of our MPO
training algorithm. For the ten different pairs of rules
studied in Fig. 6, the rules have probabilities 0.7 and 0.3
and the system size is L = 14. In Fig. 6(a) we plot the
number of training samples N needed to reduce the error
of the prediction to ǫ ≤ 0.05. We observe a significant
increase in N for Hd > 0.5, suggesting that rules that are
more different from each other are harder to learn. To
corroborate this, we plot the prediction error ǫ against
Hd for different numbers of training sweeps in Fig. 6(b).
In this panel, the lines give the average ǫ of the ten
different pairs of rules and the shaded region represents
the standard deviation. The MPO bond dimension is
DW = 8 and the number of training samples isN = 2048.
For a single training sweep, e.g. the blue continuous
line, ǫ is consistently large for all Hd. As the number
of training sweeps increases, e.g. the green dotted line
(20 sweeps), rules with a Hd < 0.5 can be predicted with
smaller errors than those with larger Hd.

Lastly, to exemplify the generality of our approach, we
consider the case in which three probabilistic rules are
present. In Fig. 7 we show the predicted probabilities
of the rules against the number of training sweeps. In
panel (a), the rules are 51, 204, and 45 with probabilities

FIG. 6. (a) Average number of training samples required to
obtain prediction error ǫ < 0.05 plotted against the bit-wise
Hamming distance Hd between the rules. The number of
training sweeps is 20. (b) Prediction error ǫ plotted against
the bit-wise Hamming distance Hd between two rules. The
blue continuous line corresponds to one training sweep, the
orange dashed line is for 5 training sweeps, and the green
dotted line is for 20 sweeps. The number of training samples
is N = 2048. In both panels, for each Hamming distance, we
average the ǫ of ten pairs of rules chosen randomly, with one
rule having a probability of 0.7 and the other 0.3. The lines
represent the average ǫ of the ten pairs and the shaded region
is the standard deviation. Other parameters used are bond
dimension DW = 8 and system size L = 14.

pe51 = 0.1, pe204 = 0.7, pe45 = 0.2 respectively. In panel
(b), the rules are 18, 30, and 45 with probabilities
pe18 = 0.8, pe30 = pe45 = 0.1 respectively. We show clearly
that our MPO training algorithm can accurately learn
the dynamics with three probabilistic rules, even if the
probability of one rule is much higher than the others.

IX. CONCLUSIONS

We have extended the matrix product operator
sequence-to-sequence learning algorithm to study
probabilistic cellular automata dynamics. Our new
MPO learning algorithm uses a different protocol to
collect and analyze the training data. Most importantly,
we introduce a loss function that considers more
than one possible output for a given input sequence
and implement a different approach to sample the
output sequence from the trained model. Given the
probabilistic nature of the problem we study, we use a
different indicator to characterize the performance of
the trained model [31]. We show that, with small MPO
bond dimensions and training samples, it is possible to
learn probabilistic cellular automata sequences both
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FIG. 7. MPO training for probabilistic cellular automata
with three rules. (a) The predicted probabilities of rules
51 (blue asterisks), 204 (orange squares), and 45 (yellow
diamonds) against the number of training sweeps. The dotted
lines represent the exact probabilities pe51 = 0.1, pe204 = 0.7,
and pE45 = 0.2. The MPO bond dimension is DW = 8.
(b) The predicted probabilities of rules 18 (blue asterisks),
30 (orange squares), and 45 (yellow diamonds) against the
number of training sweeps. The dotted lines represent the
exact probabilities pe18 = 0.8, and pe30 = pe45 = 0.1. The MPO
bond dimension is DW = 10. In all panels, the number of
training samples is N = 20000 and the system size is L = 20.

when the rules appear with very different probabilities
and when their probabilities are similar. The chaotic or
regular nature of the rules does not play a significant
role in the performance of the algorithm. For the cases
we have studied, the predicted probabilities always
converge toward the correct distribution after a small
number of training sweeps.
In future works, we could test the performance of

this learning model in extracting evolution rules from
systems with more complex probability distributions.
We also plan to investigate the performance with non-
spatially translational rules and consider rules for which
the evolution is identical for a large number of input
sequences.
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Appendix A: Optimization algorithm

For the optimization, we rely on the linear character
of the loss functions in Eq. (7). Taking the derivative

over W
xl x′

l

b′
l−1

b′
l

and setting it to zero allows us to locally

improve the tensor W
xl x′

l

bl−1 bl
of the MPO by solving the

linear equation

A
yl b′

l−1 b′
l

xl bl−1 bl
W

xl x′

l

bl−1 bl
= B

yl x′

l

b′
l−1

b′
l

. (A1)

Here A
yl b′

l−1 b′
l

xl bl−1 bl
and B

yl x′

l

b′
l−1

b′
l

are given by

A
yl b′

l−1 b′
l

xl bl−1 bl
=
∑

n

(

Ln
bl−1 b′

l−1
Rn

bl b′
l

T xl

n T yl

n

)

+ α Cbl−1 b′
l−1

Dbl b′
l

(A2)

with

Ln
bl b′

l

= Ln
bl−1 b′

l−1
W

xl x′

l

bl−1 bl
W

yl y′

l

b′
l−1

b′
l

T xl

n T yl

n δx′

l
,y′

l
, (A3)

Rn
bl−1 b′

l−1
= Rn

bl b′
l

W
xl x′

l

bl−1 bl
W

yl y′

l

b′
l−1

b′
l

T xl

n T yl

n δx′

l
,y′

l
, (A4)

Cbl−1 b′
l−1

= Cbl−2 b′
l−2

W
xl−1 x′

l−1

bl−2 bl−1
W

xl−1 x′

l−1

b′
l−2

b′
l−1

, (A5)

and

Dbl b′
l
= Dbl+1 b′

l+1
W

xl+1 x′

l+1

bl bl+1
W

xl+1 x′

l+1

b′
l
b′
l+1

, (A6)

while

B
yl x

′

l

b′
l−1

b′
l

=
∑

n,s

An,s
b′
l−1

T̃
x′

l

n,mT yl

n Bn,s
b′
l

(A7)

with

An,s
b′
l

= An,s
b′
l−1

W
yl y′

l

b′
l−1

b′
l

T̃
x′

l

n,sT
yl

n δx′

l
,y′

l
, (A8)

and

Bn,s
b′
l−1

= Bn,s
b′
l

W
yl y′

l

b′
l−1

b′
l

T̃
x′

l

n,sT
yl

n δx′

l
,y′

l
, (A9)

In the above equations, summation over common indices
is assumed, and δa,b is the Kronecker delta.

Once one solves for W xl yl

bl−1 bl
, then new A

x′

l+1 b′
l
b′
l+1

xl+1 bl bl+1

and B
x′

l+1 y′

l+1

b′
l
b′
l+1

can be generated (or A
x′

l−1 b′
l−2 b′

l−1

xl−1 bl−2 bl−1
and

B
x′

l−1 y′

l−1

b′
l−2

b′
l−1

depending on what is the next tensor to

be optimized). This is done sequentially, “sweeping”
through all the site l from 1 to L and back to 1.
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[30] R. Orús, A practical introduction to tensor networks:
Matrix product states and projected entangled pair
states, Annals of physics 349, 117 (2014).

[31] C. Guo, Z. Jie, W. Lu, and D. Poletti, Matrix product
operators for sequence-to-sequence learning, Phys. Rev.
E 98, 042114 (2018).

[32] S. Wolfram, Statistical mechanics of cellular automata,
Rev. Mod. Phys. 55, 601 (1983).

[33] C. Guo, K. Modi, and D. Poletti, Tensor-network-based
machine learning of non-markovian quantum processes,
Phys. Rev. A 102, 062414 (2020).

[34] P.-Y. Louis and F. Nardi, Probabilistic Cellular Automata

: Theory, Applications and Future Perspectives (2018).
[35] H. P. Casagrande, B. Xing, M. Dalmonte, A. Rodriguez,

V. Balachandran, and D. Poletti, Complexity of spin
configuration dynamics due to unitary evolution and
periodic projective measurements, Phys. Rev. E 108,
044128 (2023).

[36] M. Cook, Universality in elementary cellular automata,
Complex Systems 15 (2004).

[37] T. Neary and D. Woods, P-completeness of cellular
automaton rule 110, in Automata, Languages and

Programming , edited by M. Bugliesi, B. Preneel,
V. Sassone, and I. Wegener (Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006) pp. 132–143.

https://doi.org/10.1038/nature16961
https://chat.openai.com/chat
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/https://doi.org/10.1080/00107514.2014.964942
https://arxiv.org/abs/1512.02900
https://doi.org/https://doi.org/10.1038/nature23474
https://proceedings.neurips.cc/paper_files/paper/2016/file/5314b9674c86e3f9d1ba25ef9bb32895-Paper.pdf
https://doi.org/10.1103/PhysRevResearch.2.033293
https://doi.org/10.1103/PhysRevB.103.125117
https://doi.org/10.1103/PhysRevA.105.052424
https://doi.org/10.1103/PhysRevX.8.031012
https://doi.org/10.1088/2058-9565/aaba1a
https://doi.org/10.1088/1367-2630/ab31ef
https://doi.org/10.1103/PhysRevB.99.155131
https://doi.org/10.1103/PhysRevB.101.075135
https://doi.org/10.1103/PhysRevE.107.L012103
https://doi.org/10.1140/epjp/s13360-023-04160-5
https://doi.org/https://doi.org/10.1007/978-981-10-5209-5
https://arxiv.org/abs/1605.03795
https://arxiv.org/abs/1711.01416
https://doi.org/10.1103/PhysRevLett.126.170603
https://doi.org/10.1088/1361-6560/ac01f2
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1088/1742-5468/2007/10/P10014
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/https://doi.org/10.1007/BF02099178
https://arxiv.org/abs/quant-ph/0608197
https://doi.org/https://doi.org/10.1080/14789940801912366
https://doi.org/https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1103/PhysRevE.98.042114
https://doi.org/10.1103/RevModPhys.55.601
https://doi.org/10.1103/PhysRevA.102.062414
https://doi.org/10.1007/978-3-319-65558-1
https://doi.org/10.1103/PhysRevE.108.044128
https://doi.org/https://doi.org/10.25088/ComplexSystems.15.1.1
https://doi.org/https://doi.org/10.1007/11786986_13


9

[38] The computation of the norm, which needs to be used to
rescale the MPS, can be implemented by preparing the
D = 1 state 111 = ⊗

L
l=1Il where Il = (1, 1)l is the identity

vector at site l and then multiplying the MPS P (xxx) with

111.
[39] https://www.nscc.sg .

https://www.nscc.sg

