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Abstract

In this paper, we introduce a novel statistical model for the integrative analysis of Riemannian-
valued functional data and high-dimensional data. We apply this model to explore the dependence
structure between each subject’s dynamic functional connectivity – represented by a temporally
indexed collection of positive definite covariance matrices – and high-dimensional data represent-
ing lifestyle, demographic, and psychometric measures. Specifically, we employ a reformulation
of canonical correlation analysis that enables efficient control of the complexity of the functional
canonical directions using tangent space sieve approximations. Additionally, we enforce an in-
terpretable group structure on the high-dimensional canonical directions via a sparsity-promoting
penalty. The proposed method shows improved empirical performance over alternative approaches
and comes with theoretical guarantees. Its application to data from the Human Connectome Project
reveals a dominant mode of covariation between dynamic functional connectivity and lifestyle, de-
mographic, and psychometric measures. This mode aligns with results from static connectivity
studies but reveals a unique temporal non-stationary pattern that such studies fail to capture.

1 Introduction

One of the primary goals of large-scale neuroimaging studies, such as the Human Connectome Project,
ABCD, and the UK Biobank, is to understand the relationship between complex neuroimaging traits
and non-imaging high-dimensional variables, including cognitive abilities, neurodegenerative condi-
tions, mental health disorders, psychometric test scores, and other external factors (Zhu et al. 2023).
In the context of functional connectivity studies, such complex imaging data are typically networks
that are derived from fMRI data and are characterized by a single covariance matrix that captures the
temporal correlation between the fMRI signals of different brain regions. For instance, Xia et al. (2018)
study correlation patterns between functional connectivity and psychiatric symptoms. Other studies,
such as Smith et al. (2015) and Liu et al. (2022), investigate the relationship between functional
connectivity and behavioral and demographic measures.

Traditional analyses often view brain functional networks as static. Yet, there is growing evidence
that these networks are inherently dynamic and exhibit significant temporal fluctuations (Hutchison
et al. 2013), which appear to be linked to various aspects of human behavior (Liégeois et al. 2019).
Therefore, they are best represented by a time-indexed collection of covariances, that is, a Riemannian
manifold-valued function where the manifold consists of the space of symmetric positive definite (SPD)
matrices.

This work seeks to identify joint variation between these functional dynamic networks and mul-
tivariate variables, such as lifestyle, demographic, and psychometric measures. To this purpose, we
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develop a novel asymmetric canonical correlation analysis model that allows us to explore the underly-
ing relationships between Riemannian manifold-valued functional data and high-dimensional variables.
While our motivation stems from dynamic functional connectivity, the proposed method is general and
can be applied to a variety of other settings.

Numerous models have been developed to model manifold-valued functional data, (see, e.g., Dai
and Müller 2018; Lin and Yao 2019; Dubey and Müller 2020; Zhang et al. 2020; Dubey and Müller
2021; Zhou and Müller 2021; Bhattacharjee and Müller 2021; Stöcker and Greven 2021), which can be
more broadly viewed as object data (Marron and Dryden 2021) – a generalization of functional data
(Ramsay and Silverman 2015; Hsing and Eubank 2013; Kokoszka and Reimherr 2017). Regression
models for manifold-valued data with low-dimensional predictors have been proposed in Petersen and
Müller (2019), Zhao et al. (2020), and Zhao et al. (2021). See also Petersen et al. (2022) for a
review. Nonetheless, models that facilitate the integration of manifold-valued functional data with
high-dimensional variables have not been extensively explored.

Canonical correlation analysis (CCA) is one of the principal tools for data integration (Hotelling
1936; Uurtio et al. 2018; Zhuang et al. 2020; Yang et al. 2021) and can be used to identify shared
structure between two low-dimensional sets of variables by seeking linear combinations of these sets –
with weights referred to as canonical vectors – that exhibit maximum correlation. Extensions of CCA
to high-dimensional data have been proposed, for instance, in Witten et al. (2009), Lin et al. (2013),
Chen et al. (2013), Gaynanova et al. (2016), Gao et al. (2017), Yoon et al. (2020), and Wang and Zhou
(2021). The setting of functional data has been considered in He et al. (2010), Shin and Lee (2015),
and Huang and Renaut (2015) and that of more complex imaging data in Cho et al. (2021) and Liu
et al. (2021). Inferential aspects have been explored in Yang and Pan (2015), McKeague and Zhang
(2022), and Kessler and Levina (2023). Methods that estimate both shared and individual structure
have been proposed in Lock et al. (2013), Feng et al. (2018), Carmichael (2020), Shu et al. (2020), and
Yuan and Gaynanova (2021), and their connection to CCA has been studied in Murden et al. (2022).

Yet, despite the large body of literature on CCA and its extensions, existing approaches are not
able to effectively estimate common structure between Riemannian manifold-valued functional data
and high-dimensional multivariate variables, and more broadly, between imaging and high-dimensional
data. To bridge this gap, we propose a model that leverages a regression-based characterization of
CCA which allows us to incorporate appropriate notions of complexity for the functional and high-
dimensional canonical vectors. Specifically, our approach takes advantage of the inherent smoothness
and geometric nature of the functional data, employing tangent space approximations based on a data-
driven function basis computed using the Riemannian Functional Principal Components Analysis
(RFPCA) framework (Dai and Müller 2018; Lin and Yao 2019; Shao et al. 2022). Moreover, it
tackles the high dimensionality of the multivariate data by imposing sparsity. It therefore performs
feature selection, resulting in models that are more interpretable and mitigate overfitting issues. In
the motivating application, this will result in the identification of a small and interpretable set of
multivariate variables linked to specific functional dynamic connectivity patterns.

The asymmetric setting considered in this work is of interest not just for its potential applications
but also methodologically, as it has some distinct features that are not found in the purely sparse
or functional settings. Specifically, we show that if the functional data can be efficiently represented
using a finite subspace, the proposed method can consistently estimate the high-dimensional canonical
vectors without requiring the direct estimation of the precision matrix of the high-dimensional data –
a notoriously difficult problem in high-dimensions and typically solvable only under specific structural
assumptions (Cai et al. 2016). This feature renders the proposed methodology novel even in the
simpler setting of classical functional and high-dimensional data integration.

In addition to accommodating manifold-valued functional data and high-dimensional data, our
proposed method has several other desirable properties in comparison to existing CCA models, which
we highlight below:

1. It can estimate multiple canonical directions simultaneously, without requiring iterative deflation
strategies and leveraging shared sparsity structure across canonical vectors.
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2. It is computationally efficient, with its complexity essentially reducing to solving a regularized
multivariate linear regression problem.

3. It does not require a consistent estimator for the precision matrix of the high-dimensional data.

4. The canonical vectors satisfy the correct orthogonality conditions, ensuring that the proposed ap-
proach is invariant to data rescaling, while simultaneously maintaining an interpretable sparsity
structure on the high-dimensional canonical vectors.

5. When the number of observations is larger than the dimension of the high-dimensional data and
the hyper-parameter controlling sparsity is set to 0, our approach reduces to classical multivariate
CCA.

The rest of the paper is organized as follows. In Section 2, we introduce the proposed asymmetric
CCA model. In Section 3, we introduce the associated estimator and in Section 4, we explore its
theoretical properties. In Section 5, we apply our method to data from the Human Connectome
Project to study dynamic functional connectivity, and in Section 6, we study its empirical performance
by means of simulation studies. Proofs and more technical details are left to the appendices.

2 Model

2.1 Elements of Riemannian geometry

Let M be an M -dimensional Riemannian manifold and let TxM denote the tangent space at a point
x ∈ M equipped with Riemannian metric ⟨⋅, ⋅⟩x. Moreover, for any x ∈ M, denote the exponential map
by Expx ∶ U →M, where U ⊂ TxM is an open set containing the origin that guarantees that this map
is a bijection onto its range Im (Expx). The logarithmic map at x, denoted by Logx ∶ Im (Expx) →M
is the inverse of the exponential map Expx. We denote by dM(⋅, ⋅) the Riemannian distance function
on M, which generalizes the Euclidean distance to manifolds. We refer to Lee (2012) and Lee (2018)
for an introduction to the differential geometric concepts used in this work.

In our final application, M will represent the non-Euclidean manifold of SPD matrices equipped
with the affine-invariant metric (see, e.g., Fletcher and Joshi 2007; Pennec et al. 2019)). The affine-
invariant metric at P ∈ M between W,Z ∈ TPM is defined as ⟨W,Z⟩M = tr (P −1WP−1Z). Let exp and
log denote the matrix exponential and logarithm, defined here on the sets of symmetric matrices and
positive definite matrices, respectively, and let ∥⋅∥F denote the Frobenius norm of a matrix. Then, the
affine-invariant Riemannian distance is defined as dM(P,Q) = ∥log(P −1/2QP−1/2)∥F . The logarithmic
map LogP (Q) = P 1/2 log (P −1/2QP−1/2)P 1/2 will allow us to compute unconstrained tangent space
representations of our data, i.e., symmetric matrices. Roughly speaking, the tangent space represen-
tations allow us to apply simple Euclidean mathematical operations without breaking the geometry
of the space of SPD matrices and the exponential map ExpP (W ) = P 1/2 exp (P −1/2WP−1/2)P 1/2 will
allow us to map tangent space elements back to the manifold M. In this case, the exponential and
logarithmic maps Exp and Log are global bijections betweenM and the space of symmetric matrices.

Next, we present the mathematical tools necessary to model Riemannian-valued functions. Let T
be a compact subset of R and let µ ∶ T → M be a sufficiently smooth curve on M. A vector field
V along µ is a map from T to the tangent bundle TM such that V (t) ∈ Tµ(t)M for all t ∈ T . The
collection of vector fields V along µ defines a vector space. Define L2(Tµ) to be the space of square
integrable vector fields V along µ equipped with inner product ⟪U,V ⟫µ ∶= ∫T ⟨V (t), U(t)⟩µ(t)dt and
induced norm defined by ∥ ⋅ ∥2µ = ⟪⋅, ⋅⟫µ, where U and V are both vector fields along µ. Then, L2(Tµ)
is a separable Hilbert space (Lin and Yao 2019).

For a curve µ and Riemannian-valued function y ∶ T → M, we denote as Logµ y the function t ↦
Logµ(t) y(t). Similarly, for a vector field V along µ, we denote as Expµ V the function t↦ Expµ(t) V (t).
In our setting, y will be random, and µ will represent the mean of y. Under appropriate assumptions,
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the vector field Logµ y along µ will be a random element of L2(Tµ), which intuitively represents a

linearized and centered version of y. Indeed, ifM= Rd, then Logµ(t) y(t) = y(t) −µ(t) for every t ∈ T .
Later, we will need to compare vector fields along different curves µ and µ̂. To this purpose,

following Lin and Yao (2019), we introduce the parallel transport operator. We denote the parallel
transport operator on M along geodesics as Px,p ∶ TxM → TpM. A fundamental property of this
operator is that it preserves inner products of tangent vectors, i.e., for any u, v ∈ TxM, ⟨u, v⟩x =
⟨Px,pu,Px,pv⟩p. We can then define parallel transport for vector fields U,V along curves f, h ∶ T →
M. Specifically, given U ∈ L2(Tf) and V ∈ L2(Th), we define Γf,hU ∈ L2 (Th) as the map t ↦
Pf(t),h(t)U(t). Therefore, Γf,h can be viewed as a map from L2(Tf) to L2(Th). Therefore, while
U and V cannot be ‘compared’ directly since for every t, U(t) and V (t) may belong to different
tangent spaces, we can compare Γf,hU and V , since they are both elements of L2(Th). In particular,
∥Γf,hU − V ∥h quantitatively describes the difference between U and V . We refer to Proposition 2 of
Lin and Yao (2019) for additional properties of the parallel transport operator.

2.2 Modeling Riemannian-valued data

Let (y,X) be a pair of random variables, where X ∈ Rp is a zero-mean random vector, with co-
variance ΣX ∈ Rd×d, representing the high-dimensional multivariate variables, and the process y is a
Riemannian-valued random process with continuous sample paths. We assume that ∀x ∈ M,∀t ∈ T
we have E [d2M(y(t), x)] < ∞.

Next, we define the Fréchet mean of the process y on M as

µ(t) = arg min
x∈M

E [d2M(y(t), x)] .

We assume that the Fréchet mean µ(t) exists and is unique for every t ∈ T , and µ is a continuous
function. For more details on the Fréchet mean, see Bhattacharya and Patrangenaru (2003). Moreover,
we assume

Pr{For all t ∈ T ∶ y(t) ∈ Im (Expµ(t))} = 1,

which ensures that Logµ(t)y(t) is defined almost surely for all t ∈ T .

Let the tensor product U ⊗ V ∶ L2(Tµ) → L2(Tµ), between U,V ∈ L2(Tµ), be defined as
(U ⊗ V ) (W ) = ⟪U,W⟫µV for all W ∈ L2(Tµ). If E [∥Logµ y∥2µ] < ∞, then the covariance function

C of Logµ y is defined as C = E [Logµ y ⊗ Logµ y] and is nonnegative and trace class. Therefore, it
admits the eigendecomposition

C =
∞
∑
j=1

ωjϕj ⊗ ϕj , (1)

with ωj a sequence of real numbers converging to 0, and ϕj ∈ L2(Tµ) satisfying ⟪ϕj , ϕk⟫µ = δjk, where
δjk = 1 if j = k, and 0 otherwise. The functions {ϕj} are called the population loading functions, or
population principal components, of Logµ y. Moreover, with probability one, we have that the process
Logµ y admits a Principal Component expansion

Logµ y =
∞
∑
j=1

Yjϕj ,

where Yj = ⟪ϕj ,Logµ y⟫µ are pairwise uncorrelated random variables, and satisfy E [Yj] = 0 and
Var (Yj) = ωj . The variables Yj are called the population principal scores. For further details on the
principal component basis and eigendecomposition of the C, see Lemma A.1 in the appendices.

2.3 Asymmetric Riemannian CCA

In this section, we introduce the asymmetric CCA model, which can be naturally formalized by
mirroring the multivariate and functional versions (He et al. 2010) of the problem. We define the first
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canonical direction pair (ψ1, θ1) as a solution, if one exists, to the following problem

maximize
ψ∈L2(Tµ), θ∈Rp

Corr2 (⟪Logµ y,ψ⟫µ,X⊺θ) . (2)

Analogously, we can define the subsequent pairs (ψk, θk) to maximize the same objective function,
with the condition that each pair is orthogonal to the previous ones, namely, ⟪ψk,Cψk′⟫µ = δkk′ and
θ⊺kΣXθk′ = δkk′ . When they exist, we refer to ψk as the kth canonical function, and to θk as the kth
canonical vector. Given the canonical function ψk ∈ L2(Tµ), we can map it back to the original space
via the exponential map. This procedure is illustrated in Figure 1.
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Figure 1: In this figure, we illustrate the process of projecting the Riemannian-valued functional
data and the high-dimensional data to define maximally correlated variables. We leverage tools
from differential geometry to compute linear tangent representations Logµy of the temporally-indexed
Riemannian-valued data y, which are equipped with a notion of inner product ⟪⋅, ⋅⟫µ, that is, a pro-
jection operator. For the multivariate data, we use the conventional notion of projection, i.e., the
Euclidean inner product. We therefore seek ψ and θ whose respective data projections define maxi-
mally correlated variables.

While equation (2) provides an intuitive formulation of the canonical correlation problem, it has
been noted in Cupidon et al. (2008) that the maximum of this problem may not be attained by any
ψ ∈ L2(Tµ), θ ∈ Rp. To address this issue, it is necessary to reformulate the problem with respect to
the pair of canonical variables (U,V ) = (⟪Logµ y,ψ⟫µ,X⊺θ), resulting in the following minimization
problem for the first canonical pair:

maximize
U∈U , V ∈V

Corr2 (U,V ) , (3)

where U = {⟪Logµ y,ψ⟫µ ∶ ψ ∈ L2(Tµ)}, V = {X⊺θ ∶ θ ∈ Rp}, and U and V are the closures of U and
V, respectively. This guarantees that an optimal canonical variable pair (U,V ) does exist. However,
they cannot necessarily be written in terms of the canonical vectors, i.e. it does not necessarily hold
that U ∈ U can be written as U = ⟪Logµ y,ψ⟫µ for some ψ ∈ L2(Tµ). To simplify the exposition, we
defer the details of this formulation to Appendix A.

Given that the Riemannian-valued random process y and its associated representation Logµ y ∈
L2(Tµ) are infinite dimensional, we must resort to some form of dimension reduction. Specifically, we
make the following assumption:

Assumption 2.1. There exists a complete orthonormal system for L2(Tµ), {ϕj}∞j=1, and d ∈ N with

d ≤ p such that Logµ y = ∑dj=1 Yjϕj, where the Yj are random variables with Var (Yj) < ∞.

We refer to d as the rank of the functional data. Note that, to define the orthonormal system {ϕj}∞j=1,
we could employ the principal components in Section 2.2, or alternatively, we could design its basis
functions to capture specific features of interest.

Next, define Y = (Y1, . . . , Yd) and let ΣY be the d × d covariance of Y . Let ∥⋅∥2 denote the
Euclidean 2-norm of a vector in Rd. Without loss of generality, we suppose that X and Y are mean 0.
When Assumption 2.1 is satisfied, the following theorem states that the infinite-dimensional canonical
correlation problem in equation (3) is equivalent to solving a suitably formulated finite-dimensional
regression problem.
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Theorem 2.1. Assume that condition 2.1 holds. Then, there are at most d nontrivial canonical
variable pairs {(Uk, Vk)}, and each pair (Uk, Vk) can be written in terms of the associated canonical
directions: Uk = ⟪Logµ y,ψk⟫µ and Vk =X⊺θk for some ψk ∈ L2(Tµ) and θk ∈ Rp. Additionally, suppose
ΣX ∈ Rp×p and ΣY ∈ Rd×d are invertible. Let B be the solution to the multivariate least-squares problem

minimize
B∈Rp×d

E [∥Σ−1/2Y Y −B⊺X∥22] , (4)

and let
B⊺ΣXB = H̃D2H̃⊺ (5)

be an eigen-decomposition of B⊺ΣXB. Define

T = BH̃D−1 ∈ Rp×d, (6)

H = Σ
−1/2
Y H̃ ∈ Rd×d. (7)

Then, the kth column of H, ηk, characterizes the kth canonical function ψk through ψk = ∑dj=1 ηkjϕj,
and the kth column of T is the kth high-dimensional canonical vector θk. Moreover, the optimum
values attained by the maximization problem in equation (3) are the diagonal entries of Γ2, which we
denote by γ21 , . . . γ

2
d.

The proof of Theorem 2.1 can be found in Appendix A.5. This suggests a novel methodology for
deriving estimates of the canonical functions {ψk} and the canonical vectors {θk}. This entails defining
a subspace, spanned by {ϕj}j=1,...,d, onto which the tangent space representations of the functional
data are projected. Subsequently, the canonical functions and vectors can be characterized by the
equations (4)-(7), using empirical estimates in place of the theoretical population values.

Crucially, as opposed to other methods in the literature (see, e.g., Chen et al. 2013; Gao et al.
2017), the proposed model circumvents the direct estimation of Σ−1X , i.e., the precision matrix of the
variable X, which is a notoriously difficult problem in high dimensions as it can be estimated only
under restrictive structural assumptions. Our strategy will yield interpretable results by enforcing
sparsity directly on the canonical directions {θk} through an additional penalty term on the estimate
of B. The complexity of the functional canonical direction is controlled by projecting the functional
data on a finite-dimensional subspace. Such an approach leverages the smooth nature of the functional
data (and its tangent space representation) — which is reflected in the eigenvalues of the covariance
rapidly decaying to zero — suggesting that such a projection can serve as an efficient and interpretable
approximation.

Remark 1. In Assumption 2.1, the Riemannian-valued random function has been assumed to have
a finite-dimensional representation. This is an important step in order to whiten the functional data
and allow CCA to find patterns that are small in magnitude but nevertheless correlated with the high-
dimensional data. However, Theorem 2.1 remains valid even when Assumption 2.1 is replaced with
the weaker assumption that there exists a complete orthonormal system {ϕi}∞i=1 for L2(Tµ), and a set
of indices I ⊂ {1,2, . . .}, with finite cardinality ∣I ∣ = d, such that

Corr (Xk,⟪Logµ y, ϕj⟫µ) = 0, k = 1, . . . p,∀j ∈ Ic,
Corr (⟪Logµ y, ϕi⟫µ,⟪Logµ y, ϕj⟫µ) = 0, ∀i ∈ I,∀j ∈ Ic,

where Ic denotes the complement of I in {1,2, . . .}. Intuitively, this implies that there is only a finite
number of basis elements {ϕi}i∈I that capture the correlation between X and Logµ y through the scores

{⟪Logµ y, ϕi⟫µ}i∈I . For more details on this weaker assumption, see also Appendix A.3.
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3 Estimation

Suppose we are given N observations

(yi, xi), i = 1, . . . ,N,

each being a realization of the pair (y,X). We propose the following estimation procedure, outlined
in four steps.

Step A: RFPCA

We first compute the sample version of the Fréchet mean, defined as

µ̂(t) = arg min
x∈M

1

N

N

∑
i=1
d2M (yi(t), x) .

We then estimate the tangent space representations of the functional data observations using
Logµ̂ yi ∈ L2 (T µ̂). Next, we define an orthonormal basis for the tangent space representations
using the RFPCA framework proposed in Dai et al. (2017), Lin and Yao (2019), and Shao
et al. (2022) to estimate a data-driven basis {ϕ̂j}dj=1. Specifically, we estimate the tangent-

space covariance operator C using the sample covariance function Ĉ = 1
N ∑

N
i=1 Logµ̂ yi ⊗ Logµ̂ yi.

Each population loading function ϕj and associated eigenvalue ωj can be estimated using the

eigenfunction ϕ̂j and eigenvalue ω̂j of Ĉ. The empirical Principal Component expansion of
{Logµ̂ yi} is then given by

Logµ̂ yi =
d

∑
j=1

Ŷijϕ̂j ,

where Ŷij = ⟪ϕ̂j ,Logµ̂ yi⟫µ̂ are the PC scores. Here we assume that the rank of the Principal
Component expansion d is such that d < min(p,N). For completeness, in Appendix E, we
provide a detailed description of the RFPCA algorithm, including a computationally efficient
explicit basis construction for the space of SPD matrices equipped with the affine invariant
metric.

Step B: Regularized regression

Next, we use the scores Ŷij to represent the manifold-valued functional data and estimate the
canonical directions leveraging the characterization in Theorem 2.1. We let X ∈ RN×p and Ŷ ∈
RN×d denote the data matrices (xij)ij and (Ŷij)ij , respectively, where our notation emphasizes
that the entries of Ŷ are estimates.

Define Σ̂Y = 1
N Ŷ

T Ŷ and Σ̂X = 1
NXTX. We estimate the matrix B in equation (4) using B̂, which

is derived by solving the following group lasso problem:

B̂ = arg min
B∈Rp×d

2

N
∥Ŷ Σ̂

−1/2
Y −XB∥

2

F
+ λ ∥B∥ℓ1,ℓ2 , (8)

where ∥ ⋅ ∥F denotes the Frobenius norm and ∥B∥ℓ1,ℓ2 = ∑
p
i=1∥bi∥2 is a group lasso penalty. Here,

bi refers to the ith row of B.

Step C: Eigenanalysis

Given Σ̂
1/2
X B̂, we then compute its right singular vectors ˆ̃H ∈ Rd×d and singular values matrix

D̂ ∈ Rd×d, that is,

B̂T Σ̂XB̂ = ˆ̃HD̂2 ˆ̃HT .
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Step D: Estimates computation

We define

T̂ = B̂ ˆ̃HD̂−1, (9)

Ĥ = Σ̂
−1/2
Y

ˆ̃H, (10)

where T̂ ∈ Rp×d and Ĥ ∈ Rd×d are estimates of T and H, respectively. Then, T̂ = [θ̂1, . . . , θ̂d]
is a matrix whose columns θ̂k are the estimates of θk, and Ĥ = [η̂1, . . . , η̂d] is a matrix whose
columns η̂k are the estimates of ηk. The estimated canonical functions are therefore given
by ψ̂k = ∑dj=1 η̂kjϕ̂j , for k = 1, . . . d, resulting in the estimated canonical functions and vectors

(ψ̂k, θ̂k).

Algorithm 1 Asymmetric Sparse-Functional CCA

Input: Pairs (yi, xi)i=1,...N of manifold-valued functional data and high-dimensional data; rank
of the manifold-valued functional data d.

1. Obtain ϕ̂j , ω̂j , for j = 1, . . . d, and Ŷ applying Intrinsic RFPCA to (yi)i=1,...N .

2. Compute Σ̂Y = diag (ω̂j) and Σ̂X = 1
NX⊺X.

3. Compute B̂ solving the group lasso problem in equation (8) using the glmnet package (Friedman
et al. 2010).
4. Compute Ĥ = [η̂1, . . . , η̂d] and T̂ = [θ̂1, . . . , θ̂d] in equations (9) and (10).

5. Compute the estimated canonical functions ψ̂k = ∑dj=1 η̂kjϕ̂j for k = 1, . . . d.

6. Return {θ̂k}dk=1, the estimated canonical vectors associated with X, and {ψ̂}dk=1, the estimated
canonical functions associated with y.

The sparsity-promoting regularization norm employed in equation (8) encourages entire rows of

the matrix B to be set to zero. From the equation T̂ = B̂ ˆ̃HD̂−1, it follows that the corresponding rows
of T̂ will also be zero. This yields canonical vectors {θk} with a group sparsity structure, meaning
they share identical sparsity patterns. The main steps of the estimation procedure are summarized in
Algorithm 1.

3.1 Special instances

To demonstrate the versatility of our model, we present a few special cases. Even if some of these
settings are simpler than the motivating neuroimaging application, the proposed method still provides
an innovative approach to analyzing such data.

• In situations where yi ∈ M, meaning our imaging data are manifold-valued observations without
a temporal dimension, Algorithm 1 can be adapted by using tangent-space PCA (Marron and
Dryden 2021) rather than RFPCA, similar to the setting considered in Kim et al. (2014). This
model is especially useful for studying static connectivity networks.

• When the imaging data take the form of classical functional data, that is yi(t) ∈ M ⊂ R for
all t ∈ T , one can apply Algorithm 1 by replacing RFPCA with classical FPCA (Ramsay and
Silverman 2015; Yao et al. 2005). In addition, when yi(t) ∈ M ⊂ Rd, multivariate FPCA can be
employed (Happ and Greven 2018).

Central to the proposed methodology is a CCA model for pairs of observations (yi, xi), where
yi ∈ Rd, xi ∈ Rp, d ≪ N , and the covariance of yi is full-rank. In the imaging setting, we use a
dimension reduction model to compute the low-dimensional component. However, this setting may

8



Algorithm 2 Asymmetric Sparse CCA

Input: Pairs (yi, xi)i=1,...N of low- and high-dimensional data. Let Y = (yij)ij and X = (xij)ij .
1. Compute Σ̂Y = 1

NY⊺Y and Σ̂X = 1
NX⊺X.

2. Compute B̂ solving the group lasso problem

B̂ = arg min
B∈Rp×d

2

N
∥YΣ̂

−1/2
Y −XB∥

2

F
+ λ ∥B∥ℓ1,ℓ2 (11)

using the glmnet package (Friedman et al. 2010).
3. Compute Ĥ = [η̂1, . . . , η̂d] and T̂ = [θ̂1, . . . , θ̂d] in equations (9) and (10).

4. Return {η̂k}dk=1, the estimated canonical vectors associated with {yi}Ni=1, and {θ̂k}dk=1, the esti-
mated canonical functions associated with {xi}Ni=1.

also be of independent interest and plays a crucial role in the development of the theoretical results.
Therefore, we outline the algorithm for this particular setting in Algorithm 2.

In this special case, our approach is closely related to the Eigenvector-CCA model proposed in
Wang and Zhou (2021). Yet, notable differences exist between the two approaches. For example, we
ensure that the estimated canonical vectors satisfy the correct orthogonality conditions Ĥ⊺Σ̂Y Ĥ = Id
and T̂ ⊺Σ̂X T̂ = Ip. Furthermore, our proposed model does not rely on the assumption that the data
have been generated from a regression model.

4 Theory

Here we investigate the convergence properties of the proposed estimators. We first study the asymp-
totic properties of the asymmetric Sparse CCA model outlined in Algorithm 2, which sets the stage
for studying the asymptotic convergence properties of the asymmetric Sparse-Functional CCA model
outlined in Algorithm 1.

4.1 Estimation error rates for asymmetric Sparse CCA

In this section, we state error bounds for the asymmetric Sparse CCA model outlined in Algo-
rithm 2. We assume the observations yi ∈ Rd and xi ∈ Rp are independent copies of the random
variables Y and X, respectively. We denote with γk the kth canonical correlation attained in the
population version of the problem and recall that T = [θ1, . . . θd] ∈ Rp×d. Moreover, we denote with
K =max{i ∈ {1, . . . d} ∶ γi > 0} the number of nontrivial canonical vectors. To simplify the notation, we
use the conventions γ2d+1 = −∞ and γ20 = ∞. We use cond (A) = ∥A∥2 / ∥A−1∥2 to denote the condition
number of an invertible matrix A, and ∥A∥2 denotes the largest singular value of A. The norm ∥A∥2,∞
denotes the maximum Euclidean norm of the rows of A, and ∥A∥ℓ1,ℓ2 = ∑

p
i=1∥ai∥2, where ai is the ith

row of A. The notation a ≲ b indicates inequality up to an absolute constant, i.e., there exists an
absolute constant C > 0 such that a ≤ Cb. Next, we introduce the main assumptions.

Assumption 4.1. The random variables X and Y are strict sub-Guassian random vectors with invert-
ible covariance matrices ΣX and ΣY , respectively. Strict sub-Guassian random vectors are introduced
in Definition B.2 of the appendix.

Assumption 4.2. It holds that d ≤ p, d log(p) = o(N), cond (ΣY )2 d = o(N), and γ1 > . . . > γK are
bounded from below and are distinct.

Assumption 4.3. The norms ∥ΣX∥2,∞ , ∥T ∥ℓ1,ℓ2 are bounded from above and are larger than 1,

∥Σ−1X ∥2 , ∥Σ
−1
Y ∥2 ≥ 1, and η̂⊺Σ̂1/2

Y Σ
1/2
Y η ≥ 0 for k = 1, . . .K.
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The sub-Gaussian condition in Assumption 4.1 ensures that X and Y do not have heavy tails,
allowing us to use standard concentration results for the estimation of ΣX and ΣY . Strict sub-
Gaussianity (Kereta and Klock 2021) facilitates the proofs by allowing the sub-Gaussian norm of a
random variable and its variance to be used interchangeably.

In Assumption 4.2, the condition that d log(p) = o(N) allows p to grow exponentially in N/d (i.e.,
p ≲ eN/d) while still retaining consistency of the estimator for the canonical vectors. The critical
component of the condition cond (ΣY )2 d = o(N) is that d = o(N), which ensures that ΣY can be
estimated at a sufficiently fast rate by its sample estimator Σ̂Y . The presence of cond (ΣY )2 allows us
to show that ∥Σ̂Y ∥2 ≲ ∥ΣY ∥2 and to ignore lower order terms of d

N , simplifying the theorem statement.
We assume that the correlations γ1, . . . γK are distinct in order to estimate each canonical vector
separately instead of estimating entire subspaces.

Assumption 4.3 is not essential, and mainly serves to simplify the statement of the theorem. Since

the canonical vectors are defined only up to a sign, we use condition η̂⊺Σ̂1/2
Y Σ

1/2
Y η ≥ 0 to account for

the sign ambiguity of the CCA solutions, allowing us to compare the estimates of the canonical vectors
with their population counterparts through the differences ∥θk − θ̂k∥2 and ∥ηk − η̂k∥2.
Theorem 4.1. Suppose Assumptions 4.1-4.3 hold. Fix α ∈ (0,1), and for some absolute constant C >
0, define the regularization parameter in Algorithm 2 as λ = C

√
d
N log(pα−1). Then, with probability

1 − α, we have that, for k = 1, . . .K,

∥θk − θ̂k∥
2

2
≲ ( d

N
log (pα−1))

1/2 γ21 ∥ΣX∥2,∞ ∥T ∥
2
ℓ1,ℓ2

min (γ2k−1 − γ2k , γ2k − γ2k+1)
2

∥Σ−1X ∥2
γ2k

, (12)

∥ηk − η̂k∥22 ≲ (
d

N
log (pα−1))

1/2 γ21 ∥ΣX∥2,∞ ∥T ∥
2
ℓ1,ℓ2

min (γ2k−1 − γ2k , γ2k − γ2k+1)
2
∥Σ−1Y ∥2 , (13)

where θk and ηk denote the high- and low-dimensional population canonical vectors, respectively.

The proof follows directly from Theorem B.2 in the appendices. We refer to this bound as a “slow”-
rate bound, as it makes fewer assumptions but results in slower convergence rates relative to the sample
size N . Specifically, we make no sparsity assumptions on the high-dimensional canonical vectors. In
Theorem B.3, we provide the “fast”-rate bound, where under more restrictive assumptions, the term

( d
N log (pα−1))1/2 is replaced by d

N log (pα−1), similar to what is observed in lasso regression problems
(Hastie et al. 2015). The proof of Theorem 4.1 hinges on two key components: firstly, deterministic
group lasso bounds for in-sample prediction error (Gaynanova 2020), and secondly, the rates at which
∥ΣXY − Σ̂XY ∥2,∞ and ∥B⊺(ΣX − Σ̂X)B∥2 converge to zero under the sub-Gaussian assumptions for X

and Y . Here, Σ̂X and Σ̂XY represent the sample covariance matrices. As an intermediate step in the
proof, we show Theorem B.1, which gives similar slow and fast rate bounds for the estimated canonical
correlations γ̂k.

Under the stated assumptions the canonical vector estimates are consistent. Moreover, our rates
of convergence depend on the dimension of the high-dimensional data, p, only through log(p). The
bounds for the kth canonical directions depend on the nearest canonical correlation gaps, resembling
those concerning the variance in the PCA literature.

We emphasize that our rates are dependent on ΣX only through ∥ΣX∥2,∞, and not ∥ΣX∥2. The
norm ∥ΣX∥2,∞ can be much smaller than ∥ΣX∥2, particularly when many of the Xj ’s are correlated
with one another. This property highlights the robustness of the proposed methodology in the high-
dimensional setting, where highly correlated covariates are commonplace.

We are able to establish our error bounds for each canonical vector θk, ηk, independently, and these
bounds depend on each other only through the norms of the canonical vectors ∥T ∥2ℓ1,ℓ2 , and through
the neighboring canonical correlation gaps. It is also worth noting that the error associated with θ
depends on Σ−1X but not Σ−1Y . Similarly, the error associated with η depends on Σ−1Y but not Σ−1X .
Hence, Y can be poorly behaved without impacting the estimation of θ, and vice-versa.
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4.2 Estimation error rates for asymmetric Sparse-Functional CCA

In this section, we investigate the asymptotic properties of our proposed estimators ψ̂k and θ̂k, outlined
in Algorithm 1, for the canonical functions ψk and canonical vectors θk. In this setting, the observations
are pairs of Riemannian-valued functional data yi ∈ L2(Tµ) and high-dimensional multivariate data
xi ∈ Rp. Given the technical nature of many of the assumptions, we refer the reader to Assumptions
C.1-C.4 in the appendices for a complete list.

As in the multivariate case, we denote with γk the kth canonical correlation attained in the pop-
ulation version of the problem, and we denote with K = max{i ∈ {1, . . . d} ∶ γi > 0} the number of
nontrivial canonical vectors. We again use the conventions γ2d+1 = −∞ and γ20 = ∞. Recall that we
denote by d the rank of the functional data and p the dimension of the multivariate data. We suppose
that the canonical vectors {θk} are s-sparse with a consistent group structure. We let XS denote
the random vector where we omit covariates {Xj} that do not contribute to the association struc-
ture with Y . For the high-dimensional terms to match the speed of convergence of the functional

terms, we assume that Σ
1/2
X satisfies the group restricted eigenvalue condition RE(s,3, d), introduced

in Definition B.3, with parameter κ = κ(s, d,Σ1/2
X ), which yields ‘fast’-rate bounds.

Theorem 4.2. For some absolute constant C > 0, define the regularization parameter in Algorithm 1

as λ = C
√

d
N log(p). Then, under Assumptions C.1-C.4, for k = 1, . . .K, we have

∥ψk − Γµ̂,µψ̂k∥2µ = OP
⎛
⎝
d2s log(p)

N

∥ψk∥2µ κ ∥ΣX∥2,∞
min (γ2k−1 − γ2k , γ2k − γ2k+1, γk−1 − γk, γk − γk+1)

2

⎞
⎠
, (14)

∥θk − θ̂k∥
2

2
= OP

⎛
⎜⎜
⎝

ds log(p)
N

∥Σ−1XS
∥1/2
2
+ ( γ1γk )

2
∥ΣX∥2,∞ ∥Σ−1X ∥2 κ

2

min (γ2k−1 − γ2k , γ2k − γ2k+1, γk−1 − γk, γk − γk+1)
2

⎞
⎟⎟
⎠
, (15)

where we have omitted the terms E [∥Logµ y∥
4

µ
] and Var (⟪ϕj ,Logµ y⟫µ) for j = 1, . . . d.

The theorem presented here is a special case of Theorems C.2 and C.3. As in Theorem 4.1, the rate
of convergence depends on p only through the term log(p) and on ΣX only through ∥ΣX∥2,∞. Our rate
also depends on the dimensionality of the reduced representation of the functional data, d, linearly
and quadratically in the estimation of θk and ψk, respectively. The quadratic term d2 is most likely
not tight but arises from our choice to estimate each ϕj via ϕ̂j , individually, rather than estimating
subspaces. As in Theorem 4.1, the convergence rates depend on the neighboring correlation gaps.

It follows from Theorem 4.2 that if terms other than d, s, p, and N are treated as constants, then, if
d2s log(p) = o(N), we have that ψ̂k and θ̂k are consistent estimators for ψk and θk, respectively. Thus,

for the proposed methodology, p is allowed to grow exponentially with respect to N
d2s

(i.e., p ≲ e
N
d2s )

while consistency is retained.

5 Application to dynamic functional connectivity

5.1 Data and preprocessing

We analyze resting-state fMRI images from 1003 subjects in the Human Connectome Project dataset
(Van Essen et al. 2012). Throughout the duration of these 15-minute fMRI scans, participants were
at rest and not engaging in any specific activities. Details on the acquisition process can be found
in Glasser et al. (2013) and Smith et al. (2013). The fMRI images have been pre-processed using
the minimal pre-processing HCP pipeline (Glasser et al. 2013), including spatial artifact, distortion
removal, and mapping onto a common reference template (Smith et al. 2013).
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Figure 2: This figure illustrates the first mode of covariation between dynamic connectivity and be-
havioral measures. On the top panel, we show (Expµ̂ (−cψ̂1) ,−cθ̂1), which we refer to as ‘First CCA

Mode +’, on the bottom panel we show (Expµ̂ (+cψ̂1) ,+cθ̂1), which we refer to as ‘First CCA Mode
-’. These represent two extremities of the spectrum identified by the first mode of covariation. Within
each panel, we show the canonical function of SPD covariances Expµ̂ (±ψ̂1) at three different times,

and a subset of the selected entries of the canonical vector ±θ̂1. The depicted mode of covariation
suggests that subjects with an increasing variance over time within the visual (VIS) and default mode
(DFN) functional systems, as well as an increasing covariance between these systems, positively corre-
late with higher scores in ‘ProcSpeed AgeAdj’ – assessing processing speed – and ‘PicVocab AgeAdj’
– evaluating language/vocabulary comprehension and negatively correlate with using cannabis and
opiates (variables THC, SSAGA Mj Use, and SSAGA Times Used Opiates).

We define 360 spatially localized regions of interest (ROIs) using the multimodal parcellation
proposed in Glasser et al. (2016). These 360 regions are further aggregated into 10 distinct functional
systems following the definition in Power et al. (2011). These are the somatosensory/motor network
(SMT), cingulo-opercular network (COP), auditory network (AUD), default mode network (DMN),
visual network (VIS), frontoparietal network (FPT), salience network (SAL), ventral attention network
(VAT), dorsal attention network (DAT), and a category for Other Regions (OTH), which includes areas
that are not strictly classified within the aforementioned functional systems.

We partition the fMRI data into 20 time intervals of equal length. For each interval, we reduce the
fMRI data to a ‘functional fingerprint’ representation that is a 10 × 10 SPD covariance that captures
the temporal correlation between the fMRI signals of different functional systems within a specific
time interval. These matrices are denoted as yi(tj) where i = 1, . . . ,N = 1003 represents the subject
and j = 1, . . . ,20 denotes the time interval.

In addition, an extensive set of 150 subject traits of lifestyle, demographic, and psychometric
measures are also provided for the same cohort of 1003 subjects. We denote these by xi, with i =
1, . . . ,N = 1003. To account for potential confounding factors, we regressed out of the 150 variables
nine confounders identified in Smith et al. (2015), and the squares of the continuous ones, using
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multivariable linear regression.

5.2 Analysis

We apply Algorithm 1 to the pairs (yi(⋅), xi). Specifically, we model the SPD-valued functional
data {yi(⋅)} using the affine-invariant Riemannian metric. The Frechét mean µ̂ and tangent space
representations {Logµ̂ yi} are computed. See Section 3.1 for details. Both the hyperparameters λ and
d, the number of PCs used to reduce the dimension of the SPD-valued functional data, are chosen by
cross-validation. Specifically, for every candidate d, the parameter λ is chosen to minimize the cross-
validated prediction error of the regression model in equation (8), while d is chosen by examining
the scree plot of the cross-validated canonical correlations. We chose the smallest d for which the
cross-validated correlations appear to level off, that is, d = 12.

The outlined procedure results in a set of K estimated canonical directions (ψ̂k, θ̂k)
K

k=1, where {θ̂k}
are the canonical vectors associated with {xi}, and {ψ̂k} are the (tangent-space) representations of
the canonical functions associated with {yi}. After inspection of the cross-validated correlations and
their associated variance, we decided to retain only the first pair of canonical directions.

5.3 Results and Discussion
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Figure 3: On the left panel, for both ‘First CCA Mode -’ and ‘First CCA Mode +’, we show the
temporal dynamics of selected entries of the dynamic mode of connectivity shown in Figure‘2. Notably,
some of these, e.g., the DFM-PCC covariance, remain stationary for both ‘First CCA Mode +’ and
‘First CCA Mode -’, while others, e.g., the DFM-VIS covariance, have markedly different patterns.
On the right panel, we show a complete list of the 39 variables, of the canonical vector ±θ̂1, selected
by the proposed model out of an initial set of 150, along with their relative importance.

In Figure 2, we display the first canonical direction (ψ̂1, θ̂1) by plotting

(Expµ̂ (−cψ̂1) ,−cθ̂1) , (Expµ̂ (+cψ̂1) ,+cθ̂1) ,
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for a fixed positive constant c. In the figure, we refer to (Expµ̂ (−cψ̂1) ,−cθ̂1) as ‘First CCA Mode -’

and to (Expµ̂ (+cψ̂1) ,+cθ̂1) as ‘First CCA Mode +’. Intuitively, these represent the two extremities
of the first mode of covariation between functional dynamic connectivity and lifestyle, demographic,
and psychometric measures. The exponential map Expµ̂(⋅) allows us to map the canonical function
back to the manifold of SPD-valued functions. The identified mode of covariation appears to link sub-
jects with increasing variance over time within the visual and default mode functional systems, and
increasing co-variance over time between these functional systems, to ‘positive’ lifestyle, demographic,
and psychometric measures, such as better ‘ProcSpeed AgeAdj’ score, which tests the ‘speed of pro-
cessing’ and better ‘PicVocab AgeAdj’ score, which tests the ability to match an audio recording of a
word to the most closely related picture. On the other hand, a more ‘stationary’ connectivity pattern
is associated with more ‘negative’ lifestyle traits, such as a positive test for THC (THC), whether
the subject has ever used cannabis (SSAGA Mj Use), and the number of times the subject has used
opiates (SSAGA Times Used Opiates).

The multivariate component of the identified mode of covariation resembles the one found between
static functional connectivity and lifestyle, demographic, and psychometric variables in Smith et al.
(2015). However, as illustrated in Figure 3, our analysis reveals the non-stationary nature of this mode,
with the latter portion of the scan emerging as the most informative in terms of functional connectivity.
It is during this phase that the differences between the extremities of the mode of covariation become
more evident.

It is plausible that a latent variable linked to both the identified dynamic connectivity and the
behavioral components of the first mode of covariation is responsible for the observed correlation
between them. This variable potentially reflects the subjects’ experience, such as growing impatience or
distractions, during the 15-minute resting-state MRI session where they were instructed not to engage
in specific tasks. Indeed, it appears that the ‘First CCA Mode -’ subjects (who are more likely to test
positive for THC and have used opiates) maintain a consistent ‘wandering mind’, whereas the ‘First
CCA +’ subjects (who are likely to have better pattern completion skills and language/vocabulary
comprehension) show a behavioral drift. This results in a progressive activation of the visual cortex
and default mode network, and their cooperation, which might reflect a growing unease and consequent
search for external stimuli.

6 Simulations

We perform numerical experiments to investigate the finite sample performance of the proposed ap-
proach. First, we describe the data generation process. Then, we discuss the metrics utilized to
evaluate the methods’ performance. Lastly, we introduce the alternative approaches for comparison
with our method and comment on the results.

6.1 Data generation

Recall that y ∶ T →M is a random Riemannian process, X ∈ Rp is a high dimensional random vector,
and µ ∶ T →M is a fixed smooth curve onM modeling the population mean of y. Here, we fix p = 200
and choose M to be the manifold of m ×m SPD matrices, with m = 3. We let the time domain of
y be T = [−1,1]. In the following, we aim to generate realizations of (y,X) according to a model
that ensures that the K population canonical vectors and canonical functions are prespecified vectors
{θk}Kk=1 ⊂ Rp and functions {ψk}Kk=1 ⊂ L2(Tµ), respectively, with K = 2. We apply our proposed
method and alternative approaches to this data to estimate the canonical vectors and functions, and
then compare these estimates with the prespecified population quantities.

The procedure to generate the data is as follows. Take a random vector Y ∈ Rd, a set of vectors
{ηk}k ⊂ Rd, with d = 3, and an orthonormal basis {ϕj} ⊂ L2(Tµ). Moreover, define Logµ y = ∑dj=1 Yjϕj
and y = Expµ (Logµ y). It follows from Theorem 2.1 that if the multivariate data (Y,X) have pop-
ulation canonical vector (ηk, θk) then the functional/multivariate data (y,X) will have population
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canonical pairs (ψk, θk), with ψk = ∑dj=1 ηkjϕj . Additionally, we impose a group-sparse structure on
the canonical vectors {θk}. To replicate a realistic setting, we add an extra mode of variation Wϕd+1
to Logµ y, with W a random variable that is independent of X and Y , and with Var (W ) = 1/2. This
aims to contaminate the observations without affecting the canonical functions and vectors.

To generate the multivariate data (Y,X) given prespecified canonical pairs {(ηk, θk)}, we use the
model introduced in Chen et al. (2013). This involves setting ΣX ∈ Rp×p, ΣY ∈ Rd×d, the canonical
vector pairs {(ηk, θk)}, and the canonical correlations γ1, . . . γK , for k = 1, . . .K. Then, we define
(Y,X) as

(Y
X
) ∼ N (0,(ΣY ΣY X

ΣXY ΣX
)) , (16)

where N denotes the multivariate normal distribution and ΣY X = ΣY (∑Kk=1 γkηkθTk )ΣX . It is easy to
show that the population canonical vectors of (Y,X) are (ηk, θk) with correlations γk, for k = 1, . . .K.
The set of canonical vectors {ηk} is defined by generating K orthogonal random vectors, which are then
normalized to satisfy the constraint η⊺kΣY ηj = δkj . Similarly, the canonical vectors {θk} are randomly
generated and constrained to satisfy the condition θ⊺kΣXθj = δkj . The group sparsity assumption is
enforced by ensuring that only k1 = 20 elements of each canonical vector (the same elements across
all vectors) are non-zero. Additionally, the variables Xj corresponding to the non-zero components of
θj have marginal covariance matrix ΣXS

= diag(2, . . .2
´¹¹¹¹¹¸¹¹¹¹¹¶

10

,1, . . .1
´¹¹¹¹¹¸¹¹¹¹¹¶

10

) ∈ Rk1×k1 . The covariance ΣX is then

defined as

ΣX = (
ΣXS

0
0 Ip−k1

) . (17)

The covariance ΣY is set to be diagonal with diagonal values being 3,2,1. The true canonical corre-
lations are chosen to be γ1 = .95 and γ2 = .6.

We let the mean curve µ at each t ∈ T be a SPD matrix µ(t) ∈ Rm×m. We set µ(0) by randomly
generating its eigenvectors and setting the associated eigenvalues equal to (1,2,3). The mean µ(t)
at the other time-points t ∈ T is generated by applying a time-variant rotation to the eigenvectors
of µ(0). We choose each principal component ϕj to take the form ϕj(t) = E(t)P (t), for j = 1, . . . d,
where E is chosen at random from a set of orthogonal basis vectors for L2(Tµ), and P is chosen at
random from a basis of orthogonal polynomials on [−1,1]. This ensures that {ϕj} are orthogonal to
one another as elements of L2(Tµ).

In our experiments, we generate N i.i.d. pairs (Yi,Xi) from the multivariate CCA model in
equation (16), for different choices of N . Next, we generate yi via Expµ (∑dj=1 Yijϕj) and evaluate it
at L = 50 locations tl ∈ [−1,1], yielding yi(tl) for i = 1, . . .N and l = 1, . . . L. The observations

({yi(tl)}l,Xi)i , i = 1, . . . ,N,

are used to estimate the canonical vectors and functions and compare different approaches.

6.2 Metrics

We use the following metrics to compare the estimated accuracy of the models considered.

A. Normalized Euclidean error for the canonical vector

∥θ1/ ∥θ1∥2 − θ̂1/ ∥θ̂1∥2∥2
This is a natural metric for evaluating the estimation accuracy.

B. F1-score for the canonical vector

2 ⋅ P ⋅R
P +R,
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where P = TP
TP+FP is the precision, R = TP

TP+FN is the recall, TP is the number of true positives,
FP the number of false positives, FN the number of false negatives.

C. L2 Parallel transport error for the canonical function

∥Γµ̂,µψ̂1 − ψ1∥µ

This metric allows us to use the L2(Tµ) norm to compare the estimates to the true population
analog, by parallel transporting ψ̂1 ∈ L2(T µ̂) and defining Γµ̂,µψ̂1 ∈ L2(Tµ).

D. Tangent Correlation
Using a large test set {ỹi, x̃i}, generated from the same distribution as the training data, we
compute the sample correlation as follows:

Corr ((⟪Logµ ỹi,Γµ̂,µψ̂1⟫µ)i , (x̃
⊺
i θ̂1)i) .

We refer to this metric as the ‘Tangent’ correlation as it respects the manifold structure of the
data.

E. Euclidean Correlation
Using a large test set {ỹi, x̃i}, generated from the same distribution as the training data, we
compute the sample correlation as follows:

Corr ((vec (ỹi)⊺ vec (ψ̂1))i , (x̃
⊺
i θ̂1)i) .

We refer to this metric as the ‘Euclidean’ correlation as it ignores the manifold structure of the
data.

6.3 Approaches for comparison

We compare 4 different approaches, detailed below.

1. Proposed approach. We apply Algorithm 1 without modifications. We use cross-validation
to choose the regularization parameter λ in the group-lasso regression step as implemented by
the glmnet package (Friedman et al. 2010).

2. Sparse PCA-based approach: IRFPCA + sparse PCA + classical CCA. We use IRFPCA, as
in our approach, to reduce the dimensionality of the functional data. We use sparse PCA, using
the elasticnet R package (Zou et al. 2006), to reduce the dimensionality of the multivariate
data. Then, we use the estimated PCA scores as input for classical multivariate CCA. We
provide sparse PCA with the exact number of principal components that are correlated with the
functional data, i.e., k1 = 20, and restrict the number of non-zero principal loadings per principal
component to be 2.

3. Sparse CCA-based approach: IRFPCA + sparse CCA. We again use IRFPCA to reduce the
dimension of the functional data. Next, we use the Penalized Matrix Analysis (PMA) approach
to sparse CCA proposed in Witten et al. (2009) to compute canonical pairs between the PC scores
from IRFPCA and the high dimensional data. The PMA approach to sparse CCA assumes that
the covariance matrices of the data are the identity matrices, giving it a slight disadvantage. We
choose the amount of penalization for θ1 using the suggested permutation-type approach (Witten
et al. 2009), and choose the penalization parameter for η1 to induce virtually no penalization.
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4. Multivariate FPCA-based approach: Multivariate FPCA + Asymmetric sparse CCA in
Algorithm 2. This approach is analogous to the one proposed, except that the IRFPCA step
is replaced by multivariate FPCA (Happ and Greven 2018). Therefore, it disregards the SPD
manifold structure of the data. Specifically, it transforms each SPD matrix into a vector extract-
ing the lower triangular part of the matrix. Then it applies multivariate FPCA to the resulting
vector-valued functions.

We have chosen these alternative approaches in order to dissect specific components of the CCA
problem. Specifically, approach 2 isolates the effect of selecting important features and identifying
correlated components in two separate stages, and approach 3 isolates the effect of not taking advantage
of the group sparsity structure in the canonical vectors and making restrictive assumptions on the
covariance of the high-dimensional data. Approach 4 isolates the effect of treating manifold data as
if it were Euclidean. Note that Approach 4 is technically solving a different canonical correlation
problem than approaches 1-3 as it aims to maximize the Euclidean correlation rather than the tangent
space correlation. For this reason, the underlying population canonical vectors and functions differ
from those in the proposed model. Therefore, we only use metric E when evaluating the performance
of approach 4.

Moreover, depending on the choice of ΣX , either the PMA sparse CCA approach or the sparse
PCA approach is at a disadvantage. Assuming ΣX to be the identity matrix meets the assumptions
of PMA sparse CCA but renders dimension reduction through sparse PCA less effective. Conversely,
choosing ΣX to not be the identity matrix benefits sparse PCA at the expense of the PMA sparse
CCA approach.

6.4 Results and Discussion

In our experiments, we set p = 200 and vary N . For each value of N , we run 15 trials. We provide
the IRFPCA model with the true rank, indicating the number of functional principal components
associated with the variable X, that is, d = 3.

In Figure 4, we present the performance of approaches 1-3 measured using all defined metrics A-E.
As previously mentioned, Approach 4 is assessed using only metric E due to its differing underlying
model. In the high-dimensional setting, where N = 50 and p = 200, all four approaches showed similar
performance across all metrics. This setting likely identifies the detectability limits of CCA methods.
However, when provided with more samples, our approach quickly outperforms the other approaches.
Differences in performance were more notable in the estimation of the Euclidean error for the canonical
vectors, F1-score, and out-of-sample correlation. This suggests that the most challenging aspect of the
setting considered is estimating the canonical vectors as opposed to the canonical functions. This can
be explained by the similar modeling strategies adopted for the functional data. Approach 4, while
able to find correlated components in the data according to the Euclidean notion of correlation (E),
it suffered from bias due to treating the functional data as Euclidean.

For approach 2, the differences in performance can be explained by its two-step strategy that
involves first selecting the important features and reducing the dimension of the multivariate data,
followed by identifying correlated components. Specifically, the sparse PCA step is based solely on
the variance structure of X, and not on its correlation with the functional data. In our simulation,
the variables of X correlated with Y have the same or smaller variance than those not correlated with
Y . As a result, sparse PCA, which is unsupervised, struggles to tease them apart.

7 Discussion and Conclusion

In this paper, we introduce a novel statistical model for identifying shared variation patterns between
manifold-valued functional data and high-dimensional data. The proposed asymmetric CCA approach
is designed to control the complexity of the canonical directions associated with the functional data by
using Riemannian FPCA. This facilitates the identification of a lower-dimensional, smooth subspace
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Figure 4: (Top left): Performance evaluation using metric A, which measures the normalized Euclidean
error in the first high-dimensional canonical vector, on approaches 1-3. (Top right): Performance evalu-
ation using metric C, which is the parallel transport error in the first canonical function, on approaches
1-3. (Bottom left): Performance evaluation using metric B, the F1-score of the first estimated high
dimensional canonical vector compared to the associated population vector, on approaches 1-3. (Bot-
tom right): Performance evaluation using out-of-sample correlations. We use out-of-sample tangent
correlation (metric D) for approaches 1-3, and out-of-sample Euclidean correlation (metric E) for ap-
proach 4.

onto which these data can be projected. It controls the complexity of the high-dimensional canon-
ical directions, which lack spatial structure, through a sparsity-promoting penalty that leads to the
selection of the important variables. As opposed to other methods in the literature, this is achieved
without requiring the estimation of the precision matrix of the high-dimensional data, which is in
general prohibitive.

We apply asymmetric CCA to explore the association structure between resting-state dynamic
functional connectivity, represented as time-indexed covariance matrices, and high-dimensional behav-
ioral, lifestyle, and demographic features. Our analysis reveals a non-stationary pattern in functional
connectivity, indicating that the usual assumption of temporal stationarity may not hold, even in
resting-state studies. While this work focuses on an application in dynamic connectivity, the pro-
posed method can be easily adapted to accommodate different Riemannian structures and to employ
different data representation models, paving the way for several future extensions.

Appendices

The appendices are organized as follows. In Appendix A, we formalize the CCA problem for random
elements of Hilbert spaces and prove Theorem 2.1. In Appendix B, we present intermediate results
and associated proofs, and conclude with the proof of Theorem 4.1. In Appendix C, we prove Theorem
4.2, our main theoretical result on the asymptotic errors made in estimating the canonical vectors and
functions. In Appendix D, we present several norm and matrix identities that are utilized throughout
the appendices. Finally, in Appendix E, we provide additional details on the IRFPCA algorithm
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(Lin and Yao 2019), which is used in the proposed Algorithm 1. We also present an explicit basis
construction for the space of symmetric positive definite matrices equipped with the affine invariant
metric, providing a computational speed-up compared to the Gram-Schmidt procedure proposed in
Lin and Yao (2019).

A Canonical Correlation Analysis of Random Elements of Hilbert
Spaces

In this section, we provide a more rigorous formalization of the CCA model. We mirror the development
of Hsing and Eubank (2015) and Huang and Renaut (2015), but provide a less technical presentation
by emphasizing the role of the canonical variables rather than the canonical vectors when formulating
the general CCA problem. For an introduction to Hilbert space concepts and random elements taking
values in Hilbert spaces, we refer to Hsing and Eubank (2015). For an introduction to classical CCA,
we refer to Uurtio et al. (2018).

In Section A.1, we define the infinite-dimensional version of the CCA problem, and establish the
existence of solutions in our asymmetric setting (Theorem A.1). In Section A.2, we state preliminary
definitions and results for the subsequent sections. In Section A.3, we state the necessary assump-
tion (Assumption A.1) to reduce the infinite-dimensional CCA problem to a finite-dimensional CCA
problem (Theorem A.2). In Section A.4, we prove the results of the section and additionally prove
Theorem 2.1.

A.1 Problem Statement

Let χ1 and χ2 be measurable functions from a probability space (Ω,F ,P) to separable Hilbert spaces
H1 and H2, respectively (See Section 7.2. of Hsing and Eubank 2015). Here, H1 and H2 are arbitrary
Hilbert spaces, but throughout the paper they correspond to H1 = L2(Tµ) and H2 = Rp, and similarly
χ1 and χ2 correspond to χ1 = Logµ y and χ2 = X. Hilbert space inner products are denoted by ⟨⋅, ⋅⟩,
with associated norms ∥⋅∥. The specific choice of the norm or inner product will be clear from the
context. We assume that E [∥χi∥2] < ∞ so that the mean and covariance of χi are well-defined for
i = 1,2. The mean element of χi is defined as hi ≡ E [χi] ∈ Hi, and for simplicity, we assume hi = 0 for
i = 1,2.

A seemingly natural way to formalize the canonical correlation problem for the infinite-dimensional
case, which is analogous to the finite-dimensional case, is

maximize
f∈H1, g∈H2

Corr2 (⟨χ1, f⟩, ⟨χ2, g⟩) (18)

where Corr is the usual correlation defined between two finite-variance real-valued random variables
defined on (Ω,F ,P). If they exist, the solution (f, g) would be the first canonical vector pair. Equiv-
alently, we can write this problem in terms of the canonical variables U,V as

maximize
U∈U , V ∈V

Corr2 (U,V ) (19)

where U = {⟨χ1, f⟩ ∶ f ∈ H1}, V = {⟨χ2, g⟩ ∶ g ∈ H2}. However, the maximum of this problem may not
be attained by any U ∈ U , V ∈ V (Cupidon et al. 2008).

It turns out we can be amend this by simply taking the closures of U and V. Let L2 (Ω,F ,P) denote
the Hilbert space of square-integrable random variables on Ω with inner product ⟨U,V ⟩ = Cov(U,V )
for U,V ∈ L2 (Ω,F ,P). Note that U being square-integrable means that Var(U) < ∞. If we replace
U , V in the problem above with their closures as subsets of L2 (Ω,F ,P), denoted U , V, (for further
discussion of U , V, see the discussion following Example 7.6.5 of Hsing and Eubank (2015)) then it
can be shown that the maximum will be attained for some U ∈ U , V ∈ V, provided that a certain linear
operator is assumed to be compact. In our setting, this compactness condition holds because we use
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H2 = Rp, a finite-dimensional space. The result can be found in Theorem 10.1.2 of Hsing and Eubank
(2015), which we restate in our context here.

The following result establishes the existence of solutions to the general CCA problem in our
asymmetric setting where dim(H1) = ∞ but dim(H2) = p < ∞, and that there are at most p nontrivial
solutions.

Theorem A.1. If dim(H1) = ∞ and dim(H2) = p < ∞, then there exists U1 ∈ U and V1 ∈ V which are
solutions to

sup
U∈U , V ∈V

Corr2 (U,V ) ,

with Var(U1) = Var(V1) = 1. For k = 2, . . . p, there exists Uk ∈ U and Vk ∈ V, which are solutions to

sup
U∈U∶Cov(U,Ui)=0,i=1,...,k−1
V ∈V∶Cov(V,Vi)=0,i=1,...,k−1

Corr2 (U,V ) ,

with Var(Uk) = Var(Vk) = 1. Moreover, for all U ∈ U and V ∈ V which are uncorrelated with U1, . . . Up,
V1, . . . Vp, respectively, the pair (U,V ) is a trivial solution, that is,

sup
U∈U∶Cov(U,Ui)=0,i=1,...,k
V ∈V∶Cov(V,Vi)=0,i=1,...,k

Corr2 (U,V ) = 0.

The pairs {(Uk, Vk)}pk=1 are called the canonical variable pairs. We refer to the problem of finding
{(Uk, Vk)}pk=1 as the population canonical correlation problem.

Remark 2. Intuitively, we must cast the problem in terms of the canonical variables U ∈ U , V ∈ V
rather than canonical vectors f ∈ H1, g ∈ H2 because U = {⟨χ1, f⟩ ∶ f ∈ H1} and V = {⟨χ2, g⟩ ∶ g ∈ H2}
are not large enough for the supremum of the CCA problem to be attained. To emphasize this point,
given an optimal U ∈ U of the form U = limj→∞⟨χ1, fj⟩ for some sequence (fj)j ∈ H1, then U can not
necessarily be written as an inner product U = ⟨f,χ1⟩, because limj→∞ fj may not belong to H1.

In the next section, we introduce an assumption that allows us to make the infinite-dimensional
CCA problem finite dimensional, and furthermore formulate the CCA problem in terms of the canonical
vectors rather than the canonical variables. From now on, we assume dim(H2) = p < ∞ as in Theorem
A.1.

A.2 Background

We begin with preliminary definitions and properties of the random element χ1. In particular, we
introduce the covariance operator K1. The eigenvectors of K1, also known as the principal components
of χ1, are fundamental to our approach for two reasons: they provide a data-driven subspace for
projecting χ1 and their properties simplify our proofs.

Given that E [∥χ1∥2] < ∞ and χ1 has mean 0, the covariance operator of χ1 is well-defined as
K1 ≡ E [χ1 ⊗ χ1]. Here, the tensor product f ⊗ g ∶ H → H between f, g ∈ H for a Hilbert space H, is
defined as (f ⊗ g) (h) = ⟨f, h⟩g for all h ∈ H.

In the lemma below, we collect the properties of χ1 and K1 used in what follows. An orthonormal
sequence of elements {ej}∞j=1 of a Hilbert space H such that span{ej} = H is referred to as a complete
orthonormal system (CONS) for H.

Lemma A.1. Let Im (K1) denote the image of K1 and Im (K1) ⊆ H1 denote its closure in H1. Then,
the following statements hold.

1. With probability 1, χ1 ∈ Im (K1), and for any f ∈ Im (K1)⊥, ⟨f,χ1⟩ = 0
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2. K1 has the eigendecomposition K1 = ∑∞j=1 ωjej ⊗ ej, where ej ∈ H1 for j = 1, . . .∞ and ω1 ≥ ω2 ≥
. . . ≥ 0. {ej}∞j=1 forms a CONS of Im (K1), and ωj → 0 as j → ∞. We refer to {(ej , ωj)}∞j=1 as
the eigensystem of K1, with eigenvectors ej and eigenvalues ωj.

3. With probability 1, χ1 = ∑∞j=1⟨χ1, ej⟩ej. We refer to the {⟨χ1, ej⟩}∞j=1 as the principal scores, and
they are uncorrelated random variables with E [⟨χ1, ej⟩] = 0 and Var (⟨χ1, ej⟩) = ωj.

4. {⟨χ1, ej⟩ /ω1/2
j } forms a CONS for U and U = {∑∞j=1 aj⟨χ1, ej⟩ ∶ ∑∞j=1 ωja2j < ∞}.

Remark 3. Item 1 elucidates the role of Im (K1) as the subspace of H1 where χ1 resides. Item 2
shows that the eigenvectors {ej} are a CONS for Im (K1), which implies Item 3, that the principal
scores {⟨χ1, ej⟩} characterize χ1. Item 4 establishes that the set of potential canonical variables, U , is
equivalent to the set of linear combinations of the principal scores.

For an arbitrary CONS {ej}∞j=1 for Im (K1), the associated scores {⟨ej , χ1⟩} may not be orthogonal

in U , but as the following result shows, the associated scores still span U . This is the property that
allows us to not rely on the principal component basis and instead use an arbitrary CONS for H1 in
Assumption A.1.

Lemma A.2. For any complete orthonormal system {ej}∞j=1 of Im (K1), U = span{⟨ej , χ1⟩}. Thus,

any element of U ∈ U can be written as ∑∞j=1 aj⟨χ1, ej⟩ where the aj are such that Var (U) < ∞.

A.3 Reduction to a finite dimensional problem

We can now introduce Assumption A.1 on the correlation structure between χ1 and χ2.

Assumption A.1. There exists a complete orthonormal system {ej}∞j=1 for H1 and a set of indices
I ⊂ {1,2, . . .}, with finite cardinality ∣I ∣ = d, such that

Corr (V, ⟨χ1, ej⟩) = 0, ∀V ∈ V, j ∈ Ic, (20)

Corr (⟨χ1, ei⟩, ⟨χ1, ej⟩) = 0, ∀i ∈ I,∀j ∈ Ic, (21)

where Ic denotes the complement of I in N = {1,2, . . .}.

Remark 4. The complete orthonormal system {ej}j is not required to be the principal component
basis. In the case when H2 = Rp and χ2 =X, equation (20) can be rewritten as

Corr (Xi, ⟨χ1, ej⟩) = 0, ∀i = 1, . . . p, j ∈ Ic. (22)

Intuitively, this assumption states that all elements ψ of H1 whose projections ⟨χ1, ψ⟩ are correlated
with X belong to a d-dimensional subspace. This is the assumption stated in Remark 1 of the main
manuscript.

Remark 5. Assumption A.1 is weaker than the assumption that χ1 admits a finite-dimensional rep-
resentation χ1 = ∑dj=1⟨χ1, ej⟩ej, for a set of vectors {ej}dj=1 ⊂ H1. To see this, we first note that the

elements {ej}dj=1 ⊂ H1 are orthonormal. Then, we complete {ej}dj=1 ⊂ H1 to form a CONS {ej}∞j=1 for
H1, and take I = {1, . . . d}. Given that the elements {ej} are orthonormal, we have that ⟨χ1, ej⟩ = 0
for all j ∈ Ic, with probability 1. Hence, conditions (20) and (21) are satisfied.

Making this assumption enables us to reduce the infinite-dimensional CCA problem to a finite-
dimensional CCA problem; moreover, it allows us to formulate the CCA problem in terms of the
population quantities of interest, the canonical vectors, rather than the canonical variables (Theorem
A.2). Theorem A.2 can be viewed as a generalization of Theorem 1 of Krzyśko and Waszak (2013).
They assume that χ1 has a finite-dimensional representation, whereas here we make the weaker As-
sumption A.1.
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Theorem A.2. Reorder the complete orthonormal system {ej}∞j=1 for H1 in Assumption A.1 so that
I = {1, . . . d}. Then, under Assumption A.1, the solution to the population canonical correlation
problem in Theorem A.1 is found for a U ∈ Ud = {∑di=1 ai⟨χ1, ei⟩ ∶ ai ∈ R}.
Moreover, when H2 = Rp and χ2 = X, the problem is equivalent to the following multivariate (finite-
dimensional) canonical correlation problem, where Y is the d-dimensional random vector such that
Yj = ⟨χ1, ej⟩, the jth score associated with ej, for j = 1, . . . d:

(a1, b1) = arg max
a∈Rd,b∈Rp,Var(a⊺Y )=Var(b⊺X)=1

Corr2 (a⊺Y, b⊺X) , (23)

(ak, bk) = arg max
a∈Rd,b∈Rp,Var(a⊺Y )=Var(b⊺X)=1

Cov(a⊺Y,a⊺i Y )=0,i=1,...,k
Cov(b⊺X,b⊺iX)=0,i=1,...,k

Corr2 (a⊺Y, b⊺X) , k = 2, . . .min(p, d). (24)

We call the pair (∑dj=1 akjej , bk) the kth canonical pair, since a⊺Y = ⟨∑dj=1 akjej , χ1⟩, and b⊺X = ⟨b, χ2⟩,
where akj is the jth entry of ak, for k = 1, . . .min(p, d).

This result is central to the proof of Theorem 2.1.

A.4 Proofs

Proof of Lemma A.1:
The first item is part 3 of Theorem 7.2.5. of Hsing and Eubank (2015). The second and third items
are Theorem 7.2.6. and Theorem 7.2.7. of Hsing and Eubank (2015), respectively. For the fourth
item, orthonormality is clear from item 3 and the fact that they form a CONS for U follows from
equation (7.42) of Hsing and Eubank (2015). The last equality follows from the first part of item 4
and because we can calculate Var (∑∞j=1 aj⟨χ1, ej⟩) = ∑∞j=1 ωja2j by the continuity of the inner product.

Proof of Lemma A.2:
We begin by employing the fourth item of Lemma A.1, which states that {⟨χ1, ej⟩/ω1/2

j } is a CONS

for U , where the ej are the eigenvectors of K1, and ωj are the corresponding eigenvalues. Therefore,

given an arbitrary CONS for Im (K1), {fj}j=1,...∞, to complete the proof it suffices to show that

span{⟨fj , χ1⟩} = span{⟨ej , χ1⟩}.
To show the ⊆ direction, it suffices to show that ⟨fk, χ1⟩ ∈ span{⟨ej , χ1⟩}, for every k, by the

definitions of closure and span of a set of vectors. Since the functions {ej} form a CONS for Im (K1),
there exists a sequence (aj)∞j=1 of scalars such that fk = ∑∞j=1 ajej . Therefore, ⟨fk, χ1⟩ = ∑∞j=1 aj⟨χ1, ej⟩
by continuity of the inner product on H1, and we have ⟨fk, χ1⟩ ∈ span{⟨ej , χ1⟩}.

To show the ⊇ direction, we must show that ⟨ek, χ1⟩ ∈ span{⟨fj , χ1⟩} for every k, which follows by
similar arguments.

Proof of Theorem A.2:
We prove the statement for the first canonical pair; the proof for the remaining canonical pairs follows
from a similar argument. Let (U,V ) be the first canonical pair of the population canonical correlation
problem in Theorem A.1. We consider the CONS {ej}∞j=1 for H1 from Assumption A.1, and reorder

its elements so that I = {1, . . . d}. By Lemma A.2, we write U ∈ U as U = ∑∞j=1 aj⟨χ1, ej⟩. We will show

that under Assumption A.1, we can find a Q = ∑∞j=1 qj⟨χ1, ej⟩ ∈ U , with qj = 0 for j > d, that attains

the same maximum value as U . Thus we will have Q ∈ Ud ≡ {∑di=1 ai⟨χ1, ei⟩ ∶ ai ∈ R}, completing the
proof of the first statement of the Theorem. For random variables with variance 1, such as U and V ,
we have that Cov(U,V ) = Corr(U,V ). We use these interchangeably throughout the proof.
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If the optimum value of Corr2(U,V ) is 0, then we can select any Q with qj = 0 for j > d and
Var(Q) = 1. Therefore, from now on, we focus on the case where Corr2(U,V ) ≠ 0. Let

U =
d

∑
j=1

aj⟨χ1, ej⟩ +
∞
∑
j=d+1

aj⟨χ1, ej⟩ ≡W +Z. (25)

Then, from continuity of the inner product and Assumption A.1, it follows that Cov(Z,V ) = 0 and
Cov(W,Z) = 0, from conditions (20) and (21) respectively. Before constructing Q, we note that the
variance of W must be less than or equal to 1. To see this, we use

1 = Var(U) = Var(W +Z) = Var(W ) + 2 Cov(W,Z) +Var(Z) = Var(W ) +Var(Z), (26)

since Cov(W,Z) = 0. Then, Var(W ) ≤ 1 since both Var(W ) and Var(Z) are positive and sum to 1.
Now, we construct a canonical variable Q with the desired property. The optimal value of the

CCA population problem in Theorem A.1 under assumption A.1 is

Corr2(U,V ) = Cov2(W +Z,V ) (27)

= (Cov(W,V ) +Cov(Z,V ))2 (28)

= Cov2(W,V ) (29)

= Corr2(W,V )Var(W ). (30)

Having established Var(W ) ≤ 1, there are three cases, either Var(W ) = 0, 0 < Var(W ) < 1, or
Var(W ) = 1. In the case Var(W ) = 1, we take Q = W , and using equation (30), we see that the pair
(W,V ) attains the same maximum correlation as (U,V ). This completes the proof as W is of the
desired form. Now, we will show that the other two cases, Var(W ) = 0, 0 < Var(W ) < 1, are not
possible. Var(W ) = 0 cannot hold since, by equation (30), we would have Cov(U,V ) = 0, which we
have already ruled out. Assume towards a contradiction that 0 < Var(W ) < 1, let c = 1

Var(W )1/2 > 1,

and define Q = cW . Then, we have that Var(Q) = c2 Var(W ) = 1, and

Corr2(U,V ) = Corr2 (W,V )Var(W ) < Corr2 (Q,V ) , (31)

by equation (30), Corr2 (W,V ) = Corr2 (Q,V ), and Var(W ) < 1. However, this is a contradiction as it
would imply that the pair (Q,V ) attains a larger value of the objective than (U,V ). This completes
the proof of the first statement.

Having established the existence of a solution of the stated form for Q, that we are able to refor-
mulate the CCA problem in terms of the finite-dimensional vectors {ak}k rather than U ∈ U follows
from the definition of Ud and the bilinearity of the inner product ⟨⋅, ⋅⟩ on H1. In the case that H2 = Rp
and χ2 = X, that we are able to reformulate the problem in terms of the finite-dimensional vec-
tors {bk}k rather than V ∈ V is due to the following argument. We have V ≡ {⟨χ2, g⟩ ∶ g ∈ H2} =
span{⟨χ2, ej⟩, j = 1, . . . p} (where the ej here are the standard unit vectors for Rp) is isomorphic to Rp,
which is complete. Thus, {⟨χ2, g⟩ ∶ g ∈ H2} is complete, so its completion in L2 (Ω,F ,P) is itself, i.e.
V = V. Therefore, V = span{⟨χ2, ej⟩, j = 1, . . . p} = {g⊺X ∶ g ∈ Rp}, i.e. the set of linear combinations of
X1, . . .Xp.

The number of nontrivial canonical variables has changed from p in Theorem A.1 to min(p, d).
This is because, in a finite-dimensional CCA problem concerning random vectors of dimensions p and
d, the smaller of the two dimensions is the upper limit for the number of nontrivial canonical variables
(Uurtio et al. 2018). This completes the proof.

A.5 Proof of Theorem 2.1

Given that Assumption 2.1 is a special case of Assumption A.1, by applying Theorem A.2, we readily
derive the first part of the theorem. This establishes that there are at most d nontrivial canonical
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variable pairs (Uk, Vk). Moreover, each pair (Uk, Vk) can be written in terms of the canonical directions
Uk = ⟪Logµ y,ψk⟫µ and Vk = X⊺θk, for some ψk ∈ L2(Tµ) and θk ∈ Rp. Additionally, (ψk, θk) =
(∑dj=1 akjϕj , bk), where the pairs (ak, bk) are defined in Theorem A.2 as the solution to a multivariate

CCA problem, and the functions {ϕj} form the CONS for L2(Tµ), defined in Assumption 2.1.
It remains to be shown that the solutions (ak, bk) to the multivariate CCA problem can be char-

acterized by the equations (4)-(7). We focus on the infinite-dimensional optimization problem, in
equation (23), that defines the first canonical pair. This is equivalent to

sup
a⊺1ΣXa1=1=b⊺1ΣY b1

a⊺1ΣXY b1.

Now using the assumption that ΣX and ΣY are invertible, we make a change of variables ã1 = Σ
1/2
X a1,

b̃1 = Σ
1/2
Y b1 and obtain the equivalent problem

sup
ã⊺1 ã1=1=b̃

⊺

1 b̃1

ã⊺1Σ
−1/2
X ΣXY Σ

−1/2
Y b̃1

Let UΓV ⊺ = Σ
−1/2
X ΣXY Σ

−1/2
Y be a singular value decomposition of Σ

−1/2
X ΣXY Σ

−1/2
Y , where U ∈ Rp×d,

Γ ∈ Rd×d, V ∈ Rd×d, U⊺U = Id = V ⊺V , and where Γ is a diagonal matrix with the diagonal elements
γ1, . . . γd, in descending order. Note that p ≥ d. Then it follows from standard properties of the SVD
that the first columns of U and V , denoted as u1 and v1 respectively, are the solutions to the above
problem, i.e. (ã1, b̃1) = (u1, v1). Similarly, it can be shown that the kth columns of U and V , uk and vk
respectively, are such that (ãk, b̃k) = (uk, vk), and that the optimal correlations are the singular values
γ1, . . . γd. Undoing the change of variables, it can be seen that the solutions to the original problems

in equation (23) are the pairs formed by the kth columns of the matrices Σ
−1/2
X U and Σ

−1/2
Y V . The

associated correlations are the diagonal entries of Γ2.
Now let B be the solution to the optimization problem

minimize
B∈Rp×d

E [∥Σ−1/2Y Y −B⊺X∥2F ] . (32)

It is straightforward to show that B = Σ−1X ΣXY Σ
−1/2
Y . Therefore, we have

Σ
1/2
X B = UΓV ⊺, (33)

B⊺ΣXB = V Γ2V ⊺ (34)

and
BV Γ−1 = Σ

−1/2
X U. (35)

Identifying H̃, H, and T in equations (4)-(7) with V , Σ
−1/2
Y V , and Σ

−1/2
X U , respectively, completes the

proof.

B Asymmetric Sparse CCA: Proof of Theorem 4.1

B.1 Notation

For a vector x ∈ Rp with entries {xj} we define its infinity norm ∥x∥∞ =maxj(∣xj ∣), its Euclidean norm

∥x∥2 =
√
∑pj=1 x2j , and its ℓ1 norm ∥x∥1 = ∑

p
j=1 ∣xj ∣. For a matrix A ∈ Rp×d with singular values σ1, . . . σd,

its operator norm is ∥A∥2 =maxi(∣σi∣). To denote the ith row of the matrix A, we use Ai, and for the

entry in the ith row and jth column, we use aij . We define the matrix norms ∥A∥F = (∑
p
i=1∑

d
j=1 a

2
ij)

1/2
,

∥A∥ℓ1,ℓ2 = ∑
p
i=1 ∥Ai∥2, and ∥A∥max =max(i,j) ∣ai,j ∣.
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Given the normed spaces (Rd, ∥⋅∥α) and (Rp, ∥⋅∥β), and a matrix A ∈ Rp×d, we define the matrix
norm induced by ∥⋅∥α and ∥⋅∥β as

∥A∥α,β= sup
∥x∥α=1

∥Ax∥β. (36)

For additional properties of the matrix norms used throughout the paper, we refer to Section D. We
use the notation x ≲ y for x, y ∈ R to indicate that x ≤ Cy, with C some positive absolute constant.

B.2 Sub-Gaussian random vectors

Now we briefly define sub-Gaussian random vectors and state basic properties that we use in the
proofs. We refer the reader to Vershynin (2018) for a more comprehensive introduction to sub-Gaussian
random variables and vectors.

A random variable X is sub-Gaussian if, for some constant C > 0, it satisfies

P{∣X ∣ ≥ t} ≤ 2 exp (−t2/C) for all t ≥ 0. (37)

The sub-Gaussian norm of X is defined as

∥X∥ψ2 = inf {t > 0 ∶ E exp (X2/t2) ≤ 2} . (38)

A random vector X ∈ Rp is called sub-Gaussian if ⟨X,x⟩ is sub-Gaussian for all x ∈ Rp. The sub-
Gaussian norm of X is defined as

∥X∥ψ2 = sup
x∈Rp∶∥x∥2=1

∥⟨X,x⟩∥ψ2 . (39)

From its definition, it is clear that ∥Xi∥ψ2
≤ ∥X∥ψ2

, where Xi is the ith element of X. To simplify our
analysis, we will also assume that sub-Gaussian vectors X satisfy the variance-proxy condition defined
below.

Definition B.1. A sub-Gaussian random vector X satisfies the variance-proxy condition if there exists
a constant KX such that for any x ∈ Rp, ∥⟨X,x⟩∥ψ2

≤KX Var (⟨X,x⟩)1/2.

Intuitively, this condition implies that the sub-Gaussian norms of the one-dimensional marginals of
X can be used as proxies for their standard deviations. Note that the reverse inequality Var (⟨X,x⟩)1/2 ≤
K ∥⟨X,x⟩∥ψ2

for K =
√

2 is always satisfied when X has mean 0 (Proposition 2.5.2. (ii) of Vershynin
(2018). Moreover, for a Gaussian random vector X, this proxy assumption holds with KX = 1. If
X is a zero-mean sub-Gaussian random vector that satisfies the variance-proxy condition and has

covariance matrix ΣX , it follows from the definition above that ∥X∥ψ2
≤ KX ∥ΣX∥1/22 . Additionally,

it is straightforward to show that maxi(∥Xi∥ψ2
) ≤ KX ∥ΣX∥1/22,∞, where Xi is the ith entry of X. The

proxy assumption allows us to compare sub-Gaussian norms of vectors to one another through their
variances.

Throughout our proofs, we assume that the variance-proxy condition applies to the random vectors

X, B⊺X, Y , Σ
−1/2
Y Y , and Σ−1Y Y . To simplify our assumptions, for the main theorems in this section,

we conveniently assume that X and Y are strict sub-Gaussians, as defined in (Kereta and Klock 2021):

Definition B.2. A sub-Gaussian random vector X is called strict sub-Gaussian if there exists a
constant KX such that for any matrix U ∈ Rk×p, the following inequality is satisfied:

∥UX∥ψ2
≤KX ∥ΣUX∥1/22 . (40)
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B.3 Proof of Theorem 4.1

Recall that the matrices X ∈ RN×p and Y ∈ RN×d consist of N samples of the random vectors X ∈ Rp
and Y ∈ Rd, respectively. We assume that ΣX and ΣY are invertible, and without loss of generality,
we assume that X and Y have mean 0.

To estimate ΣX and ΣY , we use their respective sample covariance estimates Σ̂Y = Y⊺Y/N and

Σ̂X = X⊺X/N . Define B = Σ−1X ΣXY Σ
−1/2
Y , let B̂ be the solution to the sample group lasso problem (8),

and let λ be the associated penalization constant. In the setting of Theorem 2.1, if we define H̃ by
the eigendecomposition B⊺ΣXB ≡ H̃D2H̃⊺, then by letting

T = BH̃D−1 ∈ Rp×d, (41)

H = Σ
−1/2
Y H̃ ∈ Rd×d, (42)

it follows that the kth column of H, ηk, is the kth canonical vector associated with Y , and the kth
column of T , θk, is the kth canonical vector associated with X. Moreover, the diagonal entries of
D2 are the squared population canonical correlations γ1 > . . . > γd, which we assume are distinct.
This allows us to focus on estimating individual canonical vectors rather than subspaces spanned by
canonical vectors sharing identical correlations.

We denote the columns of H̃ as η̃k and denote by {θ̂k} and {η̂k} the estimates of the canonical
vectors, and by {γ̂k} the estimated canonical correlations, that is, the diagonal entries of D̂. Note
that by definition, the squared population correlations γ21 . . . γ

2
d are the eigenvalues of B⊺ΣXB and

the estimated squared correlations γ̂21 , . . . γ̂
2
d are the eigenvalues of B̂T Σ̂XB̂. In the remainder of this

section, we derive bounds on the estimation error for the canonical correlations, quantified by ∣γ2k − γ̂2k ∣,
and the canonical vectors, quantified by ∥ηk − η̂k∥22 and ∥θk − θ̂k∥

2

2
.

B.3.1 Deterministic bounds

We begin by presenting our deterministic results. To establish fast-rate bounds, we use the Group
restricted eigenvalue condition, analogously to the lasso regression problem (Hastie et al. 2015) and
similar to Gaynanova (2020) in the context of penalized optimal scoring.

Definition B.3 (Group restricted eigenvalue condition). A matrix Q ∈ Rq×p satisfies the Group re-
stricted eigenvalue condition RE(s, c, d) with parameter κ if for all sets S ⊂ {1, . . . p} with ∣S∣ ≤ s, we
have that, for all A ∈ Rp×d such that ∥AS̄∥ℓ1,ℓ2 ≤ c ∥AS∥ℓ1,ℓ2,

∥QA∥F≥
∥AS∥2F
κ

. (43)

Here, ∣S∣ denotes the cardinality of S, and S̄ = {1, . . . p}/S.

The following lemma establishes a deterministic bound for the 2-norm of the difference between
the linear operators B⊺ΣXB and B̂T Σ̂XB̂. In turn, this quantity will be used to bound the errors

∣γ2k − γ̂2k ∣, ∥ηk − η̂k∥
2
2 and ∥θk − θ̂k∥

2

2
.

Lemma B.1. The following inequality holds:

∥B̂T Σ̂XB̂ −B⊺ΣXB∥2 ≤
1√
N
∥XB∥2

1√
N
∥X(B̂ −B)∥

F
+ ∥B⊺(ΣX − Σ̂X)B∥2 + γ1 ∥(B̂ −B)

⊺Σ1/2
X ∥2

+ 1

N
∥X(B̂ −B)∥2

F
+ ∥B̂ −B∥

ℓ1,ℓ2
∥(ΣX − Σ̂X)B∥2,∞ .

In the equation above, the first-order terms appear on the first line while the second-order terms
appear on the second line of the equation. In this section, wherever possible, we will keep the conven-
tion.

Let E = YΣ̂
−1/2
Y −XB. Next, we derive ‘slow’- and ‘fast’-rate deterministic bounds.
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Lemma B.2. If λ ≥ 2
N ∥X

⊺E∥2,∞, then the following slow-rate bound holds:

∥B̂T Σ̂XB̂ −B⊺ΣXB∥2 ≲
1√
N
∥XB∥2

√
λ ∥B∥1/2ℓ1,ℓ2 + ∥B

⊺(ΣX − Σ̂X)B∥2 + γ1 ∥B∥
1/2
ℓ1,ℓ2
(λ ∥B∥ℓ1,ℓ2 + ∥Σ̂X −ΣX∥max

)1/2

+ λ ∥B∥ℓ1,ℓ2 + ∥B∥ℓ1,ℓ2 ∥(ΣX − Σ̂X)B∥2,∞ .

If, additionally, B has at most s non-zero rows, and 1√
N
X satisfies the Group restricted eigenvalue

condition RE(s,3, d) with parameter κX , then the following fast-rate bound holds:

∥B̂T Σ̂XB̂ −B⊺ΣXB∥2 ≲
1√
N
∥XB∥2 κ

1/2
X s1/2λ + ∥B⊺(ΣX − Σ̂X)B∥2 + γ1 ∥ΣX∥1/22 κXs

1/2λ

+ κXsλ2 + ∥(ΣX − Σ̂X)B∥2,∞ κXsλ.

Note that in the fast-rate bound
√
λ and ∥B∥ℓ1,ℓ2 are replaced with λ and κXs, respectively. Next,

we derive a bound for 1
N ∥X

⊺E∥2,∞.

Lemma B.3. The following inequality holds:

1

N
∥X⊺E∥

2,∞ ≤ ∥(Σ̂XY −ΣXY )Σ
−1/2
Y ∥

2,∞
+ ∥ΣXY (Σ̂−1/2Y −Σ

−1/2
Y )∥

2,∞
+ ∥(ΣX − Σ̂X)B∥2,∞

+ ∥(Σ̂XY −ΣXY ) (Σ̂−1/2Y −Σ
−1/2
Y )∥

2,∞
.

Denote the right-hand side of the equation in Lemma B.3 as λ0. Given that 2
N ∥X

⊺E∥2,∞ ≤ 2λ0,

choosing λ ≥ 2λ0 ensures that λ ≥ 2
N ∥X

⊺E∥2,∞. Thus, we can replace the assumption λ ≥ 2
N ∥X

⊺E∥2,∞
with the assumption λ ≥ 2λ0. Later, we will establish a high-probability bound for λ0.

Due to the fact that ∥(ΣX − Σ̂X)B∥2,∞ ≤ λ0, we obtain the following simplification of Lemma B.2,

where the fourth and fifth terms are combined.

Lemma B.4. If λ ≥ 2λ0, then the following slow-rate bound holds:

∥B̂T Σ̂XB̂ −B⊺ΣXB∥2 ≲
1√
N
∥XB∥2

√
λ ∥B∥1/2ℓ1,ℓ2 + ∥B

⊺(ΣX − Σ̂X)B∥2 + γ1 ∥B∥
1/2
ℓ1,ℓ2
(λ ∥B∥ℓ1,ℓ2 + ∥Σ̂X −ΣX∥max

)1/2

+ λ ∥B∥ℓ1,ℓ2 .

If, additionally, B has at most s non-zero rows, and 1√
N
X satisfies the Group restricted eigenvalue

condition RE(s,3, d) with parameter κX , then the following fast-rate bound holds:

∥B̂T Σ̂XB̂ −B⊺ΣXB∥2 ≲
1√
N
∥XB∥2 κ

1/2
X s1/2λ + ∥B⊺(ΣX − Σ̂X)B∥2 + γ1κ

1/2
X s1/2 (1 + κXs ∥Σ̂X −ΣX∥max

)1/2 λ

+ κXsλ2.

Lemma B.4 shows that the rate of convergence will ultimately be determined by λ0, ∥B⊺(ΣX − Σ̂X)B∥2,
and ∥Σ̂X −ΣX∥max

.

B.3.2 Probabilistic bounds

From now on, we assume that X and Y are sub-Gaussian random vectors and that the variance-

proxy condition in Definition B.1 holds for the random vectors X, B⊺X, Y , Σ
−1/2
Y Y , and Σ−1Y Y . We

will repeatedly use the union bound and omit for simplicity the absolute constants arising from its
applications.

First, we present an intermediary result that will be used to derive a probabilistic upper bound
for λ0.
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Lemma B.5. Let X ∈ Rp and Z ∈ Rd be zero-mean random vectors with covariance matrices ΣX

and ΣZ and cross-covariance matrix ΣXZ . Assume the entries of X and Z are sub-Gaussian random
variables with norms ∥Xi∥ψ2

= gi and ∥Zj∥ψ2
= hi, for i = 1, . . . p and j = 1, . . . d. Let g = max(gi) and

h = max(hj). Let X ∈ RN×p and Z ∈ RN×d be data matrices such that the pairs of rows {(X⊺i ,Z⊺i )} are
independent samples from the joint distribution (X,Z). If d ≤ p and log(p) = o(N), then for any fixed
η ∈ (0,1), with probability at least 1 − η,

∥ΣXZ −
1

N
X⊺Z∥

2,∞
≲ gh
√

d

N
log(pη−1). (44)

Remark 6. In Lemma B.5, it is stated that for a fixed η, if lim (log(p)/N) = 0 as p and N go to
infinity, then, eventually, the stated bound holds.

Next, we derive probabilistic upper bounds for λ0, bounding the terms in Lemma B.3.

Lemma B.6. If d ≤ p and log(p) = o(N), then for any fixed η ∈ (0,1), with probability 1 − η,

∥(Σ̂XY −ΣXY )Σ
−1/2
Y ∥

2,∞
≲maxi(∥Xi∥ψ2

)
√

d

N
log(pη−1) (45)

and

∥(ΣX − Σ̂X)B∥2,∞ ≲maxi(∥Xi∥ψ2
)γ1
√

d

N
log(pη−1). (46)

Moreover, if d = o(N), then

∥ΣXY (Σ̂−1/2Y −Σ
−1/2
Y )∥

2,∞
≲ ∥ΣX∥1/22,∞ γ1

√
d + log(η−1)

N
(47)

and
∥(Σ̂XY −ΣXY ) (Σ̂−1/2Y −Σ

−1/2
Y )∥

2,∞
≲ ∥(Σ̂XY −ΣXY )Σ

−1/2
Y ∥

2,∞
. (48)

Remark 7. As noted in Section B.1, maxi(∥Xi∥ψ2
) ≲ ∥ΣX∥1/22,∞.

Using Lemmas B.3 and B.6, and Remark 7, it straightforward to derive the following result.

Lemma B.7. If d ≤ p, log(p) = o(N), and d = o(N), then for any fixed η ∈ (0,1), with probability
1 − η,

λ0 ≲ ∥ΣX∥1/22,∞

√
d

N
log(pη−1). (49)

Next, we establish bounds on the other terms appearing in B.4.

Lemma B.8. If log(p) = o(N), then for any fixed η ∈ (0,1), with probability 1 − η,

∥ΣX − Σ̂X∥max
≲max(∥Xi∥2ψ2

)
√

log (pη−1)
N

. (50)

If d = o(N), then for any fixed η ∈ (0,1), with probability 1 − η,

∥B⊺(ΣX − Σ̂X)B∥2 ≲ γ
2
1

√
d + log (η−1)

N
, (51)

and
1√
N
∥XB∥2 ≲ γ1. (52)
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Before presenting our final bounds, we establish that the group-restricted eigenvalue condition
holds for the design matrix 1√

N
X, with high probability, assuming that the same condition holds for

Σ
1/2
X .

Lemma B.9. Suppose Σ
1/2
X satisfies the group restricted eigenvalue condition RE(s,3, d) with param-

eter κ = κ(s, d,Σ1/2
X ). If maxi=1,...p(∥Xi∥4ψ2

)κ2s2 log (p) = o(N) and s2 log(p) = o(N), then for any

fixed η, with probability 1− η, 1√
N
X satisfies the group restricted eigenvalue condition RE(s,3, d) with

parameter κX , where
0 < κX ≤ 2κ. (53)

Next, we state our probabilistic bound for ∥B̂T Σ̂XB̂ −B⊺ΣXB∥2. The proof of the slow-rate bound
follows straightforwardly from Lemmas B.4, B.7 and B.8. The proof of the fast-rate bound follows
similarly from Lemmas B.4, B.7 and B.8, with the addition of Lemma B.9.

Theorem B.1. Assume X and Y are sub-Gaussian random vectors and that X, B⊺X, Σ
−1/2
Y Y satisfy

the variance-proxy condition B.1. Moreover, assume that d ≤ p, log(p) = o(N), and d = o(N). Fix

η ∈ (0,1), and for some absolute constant C > 0, let λ = C ∥ΣX∥1/22,∞

√
d
N log(pη−1). Then, with

probability 1 − η, the following slow-rate bound holds:

∥B̂T Σ̂XB̂ −B⊺ΣXB∥2 ≲

( d
N

log(pη−1))
1/4
[γ21 + ∥ΣX∥1/22,∞ ∥B∥ℓ1,ℓ2 + γ1 ∥ΣX∥1/42,∞ ∥B∥

1/2
ℓ1,ℓ2
(1 + ∥B∥1/2ℓ1,ℓ2 + ∥ΣX∥1/42,∞)] .

Under the additional assumption that B ∈ Rp×d has at most s nonzero rows, Σ
1/2
X satisfies the group

restricted eigenvalue condition RE(s,3, d) with parameter κ = κ(s, d,Σ1/2
X ), s2 log(p) = o(N), and

∥ΣX∥22,∞ κ2s2 log(p) = o(N), then the following slow-rate bound holds:

∥B̂T Σ̂XB̂ −B⊺ΣXB∥2 ≲ (
d

N
log (pη−1))

1/2
[γ1 (γ1 + κ1/2s1/2 ∥ΣX∥1/22,∞)] . (54)

Corollary B.1. In the setting of Theorem B.1, under the additional assumption that ∥ΣX∥2,∞ , ∥B∥ℓ1,ℓ2 ≥
1, then the expression of the slow-rate bound simplifies as follows:

∥B̂T Σ̂XB̂ −B⊺ΣXB∥2 ≲ (
d

N
log (pη−1))

1/4
[γ1 ∥ΣX∥1/22,∞ ∥B∥ℓ1,ℓ2] . (55)

Under the additional assumption that ∥ΣX∥2,∞ , κ ≥ 1, then the expression of the fast-rate bound sim-
plifies as follows:

∥B̂T Σ̂XB̂ −B⊺ΣXB∥2 ≲ (
d

N
log (pη−1))

1/2
[γ1 ∥ΣX∥1/22,∞ s

1/2κ1/2] . (56)

Remark 8. The eigenvalues of the matrices B̂T Σ̂XB̂ and B⊺ΣXB are {γ̂2k} and {γ2k} respectively.
Then by Weyl’s inequality (Bhatia (2013) Corollary III.2.6.), because we have bounded the operator
norm of the difference between these two matrices, we immediately obtain bounds on the estimation
error of γ2k by γ̂2k in Algorithm 2.

To establish bounds for ∥θk − θ̂k∥2 and ∥ηk − η̂k∥2, we first introduce a few supporting lemmas.

Lemma B.10. Under the slow-rate bound assumptions stated in Corollary B.1, for any fixed η ∈ (0,1),
with probability at least 1 − η, we have

∥B − B̂∥
2
≲ ( d

N
log (pη−1))

1/4
∥Σ−1/2X ∥

2
∥B∥ℓ1,ℓ2 ∥ΣX∥1/22,∞ . (57)

29



Under the fast-rate bound assumptions stated in Corollary B.1, for any fixed η ∈ (0,1), with probability
at least 1 − η, we have

∥B − B̂∥
2
≲ ( d

N
log (pη−1))

1/2
κs1/2 ∥ΣX∥1/22,∞ . (58)

Lemma B.11. Suppose that Y ∈ Rd is a sub-Gaussian vector, d = o(N) and that Y satisfies the
variance-proxy condition. Then, for any fixed η ∈ (0,1), with probability 1 − η, we have

∥ΣY − Σ̂Y ∥2 ≲ ∥ΣY ∥2

√
d log (η−1)

N
. (59)

Additionally, suppose that Σ−1Y Y satisfies the variance-proxy condition, and ∥ΣY ∥22 d = o(N). Then for
fixed η ∈ (0,1), with probability 1 − η, we have

∥Σ−1/2Y − Σ̂
−1/2
Y ∥

2
≲ ∥Σ1/2

Y ∥2 ∥Σ
−1/2
Y ∥

2

2

√
d log (η−1)

N
. (60)

Studying the theoretical properties of CCA through the lens of regression, using the matrix B, has

been convenient thus far. However, for our final results, we bound B = Σ
−1/2
X T̃DH̃ = TDH̃ in terms of

quantities that are more directly related to the CCA problem. Using identity 12 in Section D, along
with the standard properties of the 2-norm, and noting that T̃ , H̃ are orthogonal matrices and D is
a diagonal matrix with diagonal values no greater than 1, we observe that

∥B∥ℓ1,ℓ2 ≤∥T ∥ℓ1,ℓ2 ≤ ∥Σ
−1/2
X ∥

ℓ1,ℓ2
, (61)

∥B∥2 ≤∥T ∥2 ≤ ∥Σ
−1/2
X ∥

2
. (62)

Hence, in Corollary B.1, we can replace the assumption that ∥B∥ℓ1,ℓ2 ≥ 1 with the assumption that
∥T ∥ℓ1,ℓ2 ≥ 1.

Next, we state our probabilistic bounds on the estimated canonical vectors. We denote with
K = max{i ∈ {1, . . . d} ∶ γi > 0} the number of nontrivial canonical vectors. Moreover, to simplify the
notation, we use the conventions γ2K+1 = −∞ and γ20 = ∞.

Theorem B.2. Under the slow-rate bound assumptions stated in Corollary B.1 and assuming that
the canonical correlations γ1, . . . γK are bounded from below, Y and Σ−1Y Y satisfy the variance-proxy

condition, and η̂⊺Σ̂1/2
Y Σ

1/2
Y η ≥ 0, for k = 1, . . .K.

If d log (p) ∥ΣX∥22,∞ ∥T ∥
4
ℓ1,ℓ2
= o(N), then, for any fixed η ∈ (0,1), with probability 1 − η,

∥θk − θ̂k∥2 ≲ (
d

N
log (pη−1))

1/4 γ1 ∥ΣX∥1/22,∞ ∥T ∥ℓ1,ℓ2 ∥Σ
−1/2
X ∥

2

γk min (γ2k−1 − γ2k , γ2k − γ2k+1)
, k = 1, . . .K. (63)

If ∥ΣY ∥22 d = o(N) and ∥ΣY ∥22 ∥Σ−1Y ∥
2

2
d = o(N), then, for any fixed η ∈ (0,1), with probability 1 − η,

∥ηk − η̂k∥2 ≲ (
d

N
log (pη−1))

1/4 γ1 ∥ΣX∥1/22,∞ ∥T ∥ℓ1,ℓ2 ∥Σ
−1/2
Y ∥

2

min (γ2k−1 − γ2k , γ2k − γ2k+1)
, k = 1, . . .K. (64)

Theorem B.3. Under the fast-rate bound assumptions stated in Corollary B.1 and assuming that
the canonical correlations γ1, . . . γK are bounded from below, Y and Σ−1Y Y satisfy the variance-proxy

condition, and η̂⊺k Σ̂
1/2
Y Σ

1/2
Y ηk ≥ 0, for k = 1, . . .K.

If d log (p) ∥ΣX∥2,∞ sκ = o(N), then for any fixed η ∈ (0,1), with probability 1 − η,

∥θk − θ̂k∥2 ≲ (
d

N
log (pη−1))

1/2 γ1

γk min (γ2k−1 − γ2k , γ2k − γ2k+1)
∥ΣX∥1/22,∞ s

1/2κ ∥T ∥2 , (65)
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with k = 1, . . .K.
If ∥ΣY ∥22 d = o(N), then for any fixed η ∈ (0,1), with probability 1 − η,

∥ηk − η̂k∥2 ≲ (
d

N
log (pη−1))

1/2
∥Σ−1/2Y ∥

2
max

⎧⎪⎪⎨⎪⎪⎩

γ1 ∥ΣX∥1/22,∞ s
1/2κ1/2

min (γ2k−1 − γ2k , γ2k − γ2k+1)
, ∥ΣY ∥1/22 ∥Σ

−1
Y ∥

1/2
2

⎫⎪⎪⎬⎪⎪⎭
(66)

with k = 1, . . .K.

B.4 Proofs for the deterministic bounds in Section B.3.1 and for the probabilistic
bounds in Section B.3.2

Proof of Lemma B.1:
The triangle inequality is used repeatedly without comment. By adding and subtracting B̂⊺ΣXB, we
have

∥B̂T Σ̂XB̂ −B⊺ΣXB∥2 ≤ ∥B̂
T (Σ̂XB̂ −ΣXB)∥2 + ∥(B̂ −B)

⊺ΣXB∥2 . (67)

Since
Σ̂XB̂ −ΣXB = Σ̂X(B̂ −B) + (Σ̂X −ΣX)B (68)

by adding and subtracting Σ̂XB, we deduce that

∥B̂T Σ̂XB̂ −B⊺ΣXB∥2 ≤ ∥B̂
⊺Σ̂X(B̂ −B)∥2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term I

+∥B̂⊺(Σ̂X −ΣX)B∥2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term II

+∥(B̂ −B)⊺ΣXB∥2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term III

. (69)

We bound each term individually. Recall that Σ̂X = 1
NX⊺X.

Term I: We have

∥B̂⊺Σ̂X(B̂ −B)∥2 ≤
1√
N
∥XB̂∥

2
∥X(B̂ −B)∥

F

1√
N

(70)

using ∥AB∥2 ≤ ∥A∥2 ∥B∥2 ≤ ∥A∥2 ∥B∥F . Since

∥XB̂∥
2
≤ ∥XB∥2 + ∥X(B̂ −B)∥2 , (71)

we have

∥B̂⊺Σ̂X(B̂ −B)∥2 ≤
1√
N
∥XB∥2 ∥X(B̂ −B)∥F

1√
N
+ 1

N
∥X(B̂ −B)∥2

F
. (72)

Term II: We have

∥B̂⊺(Σ̂X −ΣX)B∥2 ≤ ∥B
⊺(Σ̂X −ΣX)B∥2 + ∥(B̂ −B)

⊺(Σ̂X −ΣX)B∥2 (73)

≤ ∥B⊺(Σ̂X −ΣX)B∥2 + ∥B̂ −B∥ℓ1,ℓ2 ∥(Σ̂X −ΣX)B∥2,∞ (74)

using ∥A⊺B∥2 ≤ ∥A∥ℓ1,ℓ2 ∥B∥2,∞.
Term 3: We have

∥(B̂ −B)⊺ΣXB∥2 ≤ ∥(B̂ −B)
⊺Σ1/2

X ∥2 ∥Σ
1/2
X B∥

2
≤ γ1 ∥(B̂ −B)⊺Σ1/2

X ∥2 (75)

since Σ
1/2
X B = T̃DH̃ where T̃ and H̃ are orthogonal and D is diagonal.

Combining these results we obtain the statement of the lemma.
Proof of Lemma B.2:
For reference, Lemma B.1 gives the bound

∥B̂T Σ̂XB̂ −B⊺ΣXB∥2 ≲
1√
N
∥XB∥2

√
λ ∥B∥1/2ℓ1,ℓ2 + ∥B

⊺(ΣX − Σ̂X)B∥2 + γ1 ∥B∥
1/2
ℓ1,ℓ2
(λ ∥B∥ℓ1,ℓ2 + ∥Σ̂X −ΣX∥max

)1/2

(76)

+ λ ∥B∥ℓ1,ℓ2 + ∥B∥ℓ1,ℓ2 ∥(ΣX − Σ̂X)B∥2,∞ . (77)
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Proof of slow-rate bound :
Assuming that λ ≥ 2

N ∥X
⊺E∥2,∞, then by Theorem 1 and Corollary 1 of Gaynanova (2020) we have

1

N
∥X(B̂ −B)∥2

F
≲ λ ∥B∥ℓ1,ℓ2 , (78)

∥(B̂ −B)⊺Σ1/2
X ∥

2

F
≲ ∥B∥ℓ1,ℓ2 (λ + ∥B∥ℓ1,ℓ2 ∥Σ̂X −ΣX∥max

) , (79)

and
∥B̂∥

ℓ1,ℓ2
≲ ∥B∥ℓ1,ℓ2 . (80)

This last equation implies that ∥B̂ −B∥
ℓ1,ℓ2

≲ ∥B∥ℓ1,ℓ2 by the triangle inequality. Applying these

bounds to the terms in Lemma B.1 establishes the slow-rate bound.
Proof of fast-rate bound :
Assuming that λ ≥ 2

N ∥X
⊺E∥2,∞, that B has at most s nonzero rows, and assuming the group restricted

eigenvalue condition on 1√
N
X, then by Theorem 2 and Corollary 2 of Gaynanova (2020) we have

1

N
∥X(B̂ −B)∥2

F
≲ κXsλ2 (81)

∥(B̂ −B)⊺Σ1/2
X ∥

2

F
≲ κXs (1 + κXs ∥Σ̂X −ΣX∥max

)λ2 (82)

and
∥B̂ −B∥

ℓ1,ℓ2
≲ κXsλ. (83)

Applying these bounds to the terms in Lemma B.1 establishes the fast-rate bound.
Proof of Lemma B.3:
From the definition of E, E = YΣ̂

−1/2
Y −XB, we have

1

N
X⊺E = 1

N
X⊺YΣ̂

−1/2
Y − 1

N
X⊺XB (84)

= Σ̂XY Σ̂
−1/2
Y − Σ̂XB (85)

= (Σ̂XY Σ̂
−1/2
Y −ΣXY Σ

−1/2
Y ) + (ΣXY Σ

−1/2
Y − Σ̂XB) . (86)

Now considering the first term in equation (86), by adding and subtracting ΣXY Σ̂
−1/2
Y , and subse-

quently adding and subtracting Σ
−1/2
Y to Σ̂

−1/2
Y , we have

Σ̂XY Σ̂
−1/2
Y −ΣXY Σ

−1/2
Y = (Σ̂XY −ΣXY ) Σ̂

−1/2
Y +ΣXY (Σ̂−1/2Y −Σ

−1/2
Y ) (87)

= (Σ̂XY −ΣXY ) (Σ̂−1/2Y −Σ
−1/2
Y ) + (Σ̂XY −ΣXY )Σ

−1/2
Y +ΣXY (Σ̂−1/2Y −Σ

−1/2
Y ) .

(88)

For the second term, we have

ΣXY Σ
−1/2
Y − Σ̂XB = ΣXΣ−1X ΣXY Σ

−1/2
Y − Σ̂XB (89)

= (ΣX − Σ̂X)B. (90)

Combining these equalities and using the triangle inequality completes the proof.
Proof of Lemma B.5:
The proof is adapted from Lemma 7 of Gaynanova (2020) but considers cross-covariance matrices
rather than the covariance matrices. Let Xij denote entry (i, j) of X and Zij denote entry (i, j) of Z.
Then

1

N
(X⊺Z)

kl
= 1

N

N

∑
i=1
XikZil, k = 1, . . . p, l = 1, . . . d. (91)

32



Let ΣXZ be the cross-covariance matrix of X and Z with (k, l) entry equal to σkl = E [XikZil]. Then,
XikZil − σkl are each mean 0 subexponential random variables, since

∥XikZil∥ψ1
≤ ∥Xik∥ψ2

∥Zil∥ψ2
= gkhl ≤ gh

by Lemma 2.7.7. of Vershynin (2018), and because

∥XikZil − σkl∥ψ1
≲ ∥XikZil∥ψ1

by Exercise 2.7.10. of Vershynin (2018). Thus, (ΣXZ − 1
NX⊺Z)

kl
is a sum of independently and identi-

cally distributed (i.i.d.) subexponential random variables, since each for fixed k and l, the XikZil −σkl
are mean 0 subexponential i.i.d. random variables over i = 1, . . .N .

By Corollary 2.8.3. of Vershynin (2018), (Berstein’s inequality), for each k and l, and for every
t > 0,

P (∣(ΣXZ −
1

N
X⊺Z)

kl
∣ ≥ t) ≤ 2 exp [−cN min( t

2

K2
,
t

K
)] , (92)

where K = Cgh, for absolute constants c and C. Applying a union bound, we have

P (∥ΣXZ −
1

N
X⊺Z∥

max
≥ t) ≤ 2dp exp [−cN min( t

2

K2
,
t

K
)] . (93)

When t ≤K, we have

P (∥ΣXZ −
1

N
X⊺Z∥

max
≥ t) ≤ 2dp exp [−cN min

t2

K2
] . (94)

since t2/K2 ≤ t/K if and only if t ≤ K. Letting the right hand side of equation (94) be denoted as η,
we solve for t in terms of η to obtain

t =
√

log (2dpη−1) K
2

cN
, (95)

and so that, for η ∈ (0,1), if
√

log (2dpη−1) K2

cN ≤ Cgh, then with probability at least 1 − η we have

∥ΣXZ −
1

N
X⊺Z∥

max
≲ gh
√

log (2dpη−1) 1

N
. (96)

log (2dpη−1) ≤ log(2) + 2 log (pη−1) since d ≤ p, and because we suppose log(p) = o(N), it follows that
for fixed η ∈ (0,1), with probability 1 − η,

∥ΣXZ −
1

N
X⊺Z∥

max
≲ gh
√

log (pη−1) 1

N
. (97)

Using ∥A∥2,∞ ≤
√
d ∥A∥max for any A ∈ Rp×d completes the proof.

Proof of Lemma B.6:
To establish

∥(Σ̂XY −ΣXY )Σ
−1/2
Y ∥

2,∞
≲maxi(∥Xi∥ψ2

)
√

d

N
log(pη−1), (98)

we can use Lemma B.5 where X = X and Z = Σ
−1/2
Y Y , since ΣXY Σ

−1/2
Y = Σ

X,Σ
−1/2
Y Y

. Then, the

sub-Gaussian norms are g =maxi(∥Xi∥ψ2
) and h =maxi (∥(Σ−1/2Y Y )

i
∥
ψ2

), where (Σ−1/2Y Y )
i

is the ith

entry of Σ
−1/2
Y Y ∈ Rd. Using Definition B.1 for Σ

−1/2
Y Y , we have

h ≤K
Σ
−1/2
Y Y

∥Σ−1/2Y ΣY Σ
−1/2
Y ∥

1/2

2
=K

Σ
−1/2
Y Y

. (99)
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Treating K
Σ
−1/2
Y Y

as an absolute constant establishes equation (98).

Establishing

∥(ΣX − Σ̂X)B∥2,∞ ≲maxi(∥Xi∥ψ2
)γ1
√

d

N
log(pη−1) (100)

follows an identical argument except that we let Z = B⊺X, so

h ≤KB⊺X ∥B⊺ΣXB∥
1/2
2

in the final step. The identity ∥B⊺ΣXB∥2 = γ21 establishes equation (100).
To deduce that

∥ΣXY (Σ̂−1/2Y −Σ
−1/2
Y )∥

2,∞
≲ ∥ΣX∥1/22,∞ γ1

√
d + log(η−1)

N
, (101)

we begin by using ∥AB∥2,∞ ≤ ∥A∥2,∞ ∥B∥2 and Σ
−1/2
Y Σ

1/2
Y = Id to obtain

∥ΣXY (Σ̂−1/2Y −Σ
−1/2
Y )∥

2,∞
≤ ∥ΣXY Σ

−1/2
Y ∥

2,∞
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term I

∥Σ1/2
Y (Σ̂

−1/2
Y −Σ

−1/2
Y )∥

2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term II

. (102)

Considering Term I, we have

∥ΣXY Σ
−1/2
Y ∥

2,∞
= ∥Σ1/2

X Σ
−1/2
X ΣXY Σ

−1/2
Y ∥

2,∞
(103)

≤ ∥Σ1/2
X ∥2,∞ ∥Σ

1/2
X B∥

2
(104)

= ∥Σ1/2
X ∥2,∞ γ1. (105)

In the below, we are able to bound Term II without incurring unnecessary factors of ∥Σ−1/2Y ∥
2

using

the results of Kereta and Klock (2021) which pertain to precision matrix estimation along subspaces.

The main idea is to bound ∥Σ1/2
Y (Σ̂

−1/2
Y −Σ

−1/2
Y )∥

2
in terms of ∥Σ1/2

Y (Σ̂−1Y −Σ−1Y )Σ
1/2
Y ∥2, to which the

results of Kereta and Klock (2021) can be applied. That ∥Σ1/2
Y (Σ̂

−1/2
Y −Σ

−1/2
Y )∥

2
is not simply equal

to ∥Σ1/2
Y (Σ̂−1Y −Σ−1Y )Σ

1/2
Y ∥2 is due to ΣY and Σ̂Y not necessarily commuting with one another. We

begin with

∥Σ1/2
Y (Σ̂

−1/2
Y −Σ

−1/2
Y )∥

2
= ∥Σ1/2

Y Σ̂
−1/2
Y − I∥

2
. (106)

Using identity 15 in Section D and that both Σ
1/2
Y and Σ̂

1/2
Y are positive definite along with their

inverses,

Term II = ∥(Σ1/2
Y Σ̂−1Y Σ

1/2
Y )

1/2
− I∥

2
= ∥(Σ1/2

Y Σ̂−1Y Σ
1/2
Y )

1/2
− (Σ1/2

Y Σ−1Y Σ
1/2
Y )

1/2
∥
2
. (107)

Using ∥A1/2 −B1/2∥
2
≤ 1

2 max (∥A−1∥
2
, ∥B−1∥

2
)1/2 ∥A −B∥2 for positive definite matrices A and B, we

deduce that

Term II ≤ 1

2
max(∥(Σ1/2

Y Σ̂−1Y Σ
1/2
Y )

−1
∥
2
, ∥I−1d ∥2)

1/2
∥Σ1/2

Y Σ̂−1Y Σ
1/2
Y −Σ

1/2
Y Σ−1Y Σ

1/2
Y ∥2 (108)

= 1

2
max (∥Σ−1Y Σ̂Y ∥2 ,1)

1/2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term II.I

∥Σ1/2
Y (Σ̂

−1
Y −Σ−1Y )Σ

1/2
Y ∥2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term II.I

. (109)
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We bound ∥Σ−1Y Σ̂Y ∥2 in Term II.I with

∥Σ−1Y Σ̂Y ∥2 ≤ ∥Σ
−1
Y (Σ̂Y −ΣY )∥2 + ∥Σ

−1
Y ΣY ∥2 (110)

= ∥Σ−1/2Y (Σ̂Y −ΣY )Σ
−1/2
Y ∥

2
+ 1. (111)

We apply a result concerning covariance estimation along subspaces, Lemma 2 of Kereta and Klock
(2021), to deduce that for fixed η ∈ (0,1) with probability 1 − η,

∥Σ−1/2Y (Σ̂Y −ΣY )Σ
−1/2
Y ∥

2
≲ ∥Σ−1/2Y Y ∥

2

ψ2

max
⎛
⎝

√
2d + log(η−1)

N
,
2d + log(η−1)

N

⎞
⎠
. (112)

From Definition B.1 for Σ
−1/2
Y Y combined with the assumption that d = o(N), we have that in the

limit this term is bounded by 1. Therefore, for fixed η ∈ (0,1), with probability 1 − η, ∥Σ−1Y Σ̂Y ∥2 ≲ 1.
From this, Term II.I ≲ 1 as well.

Having bounded ∥Σ1/2
Y (Σ̂

−1/2
Y −Σ

−1/2
Y )∥

2
in terms of Term II.II = ∥Σ1/2

Y (Σ̂−1Y −Σ−1Y )Σ
1/2
Y ∥2, we will

bound the latter term. We use Theorem 10 of Kereta and Klock (2021) directly, implying that for

fixed η ∈ (0,1), if N ≳ (d + log(η−1) ∥Σ−1/2Y Y ∥
4

ψ2

, then with probability 1 − η,

∥Σ1/2
Y (Σ̂

−1
Y −Σ−1Y )Σ

1/2
Y ∥2 ≲ ∥Σ

−1/2
Y Y ∥

2

ψ2

√
rank (ΣY ) + log(η−1)

N
. (113)

By Definition B.1 for Σ
−1/2
Y Y , ∥Σ−1/2Y Y ∥

ψ2

≲ 1, so that the assumption d = o(N) ensures that for fixed

η, N ≳ (d + log(η−1)) ∥Σ−1/2Y Y ∥
4

ψ2

eventually.

With our bounds for both Term II.I and Term II.II, we deduce that for fixed η ∈ (0,1), with
probability 1 − η,

Term II = ∥Σ1/2
Y (Σ̂

−1/2
Y −Σ

−1/2
Y )∥

2
≲
√

d + log(η−1)
N

. (114)

Now having bounded both Term I and Term II, we finally establish that for fixed η ∈ (0,1), if d = o(N),
with probability 1 − η,

∥ΣXY (Σ̂−1/2Y −Σ
−1/2
Y )∥

2,∞
≲ ∥ΣX∥1/22,∞ γ1

√
d + log(η−1)

N
, (115)

completing the proof of (101).

To show
∥(Σ̂XY −ΣXY ) (Σ̂−1/2Y −Σ

−1/2
Y )∥

2,∞
≲ ∥(Σ̂XY −ΣXY )Σ

−1/2
Y ∥

2,∞
, (116)

we begin with

∥(Σ̂XY −ΣXY ) (Σ̂−1/2Y −Σ
−1/2
Y )∥

2,∞
≤ ∥(Σ̂XY −ΣXY )Σ

−1/2
Y ∥

2,∞
∥Σ1/2

Y (Σ̂
−1/2
Y −Σ

−1/2
Y )∥

2
, (117)

using Σ
−1/2
Y Σ

1/2
Y = Id and ∥AB∥2,∞ ≤ ∥A∥2,∞ ∥B∥2. From equation (114) we obtain that with probability

1−η, the second factor in (117) is bounded by an absolute constant as d = o(N), completing the proof.

Proof of Lemma B.8:
That for fixed η ∈ (0,1), if log(p) = o(N), then with probability 1 − η,

∥ΣX − Σ̂X∥max
≲max(∥Xi∥2ψ2

)
√

log (pη−1)
N

(118)
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follows from Lemma 7 of Gaynanova (2020).
That for fixed η ∈ (0,1), if d = o(N), then with probability 1 − η,

∥B⊺(ΣX − Σ̂X)B∥2 ≲ γ
2
1

√
rank (B⊺ΣX) + log (η−1)

N
(119)

follows from Lemma 2 of Kereta and Klock (2021) in addition to Definition B.1 applied to B⊺X, which

implies that ∥B⊺X∥ψ2
≤KB⊺X ∥B⊺ΣXB∥1/22 . Using rank (AB) ≤min (rank (A) , rank (B)), we have

rank (B⊺ΣX) = rank (ΣXB) = rank (ΣXY Σ
−1/2
Y ) ≤ d, (120)

which establishes the desired result.
To show that for fixed η ∈ (0,1), if d = o(N), then with probability 1 − η,

1√
N
∥XB∥2 ≲ γ1, (121)

we begin with
1√
N
∥XB∥2 =

1√
N
∥B⊺X⊺XB∥1/2

2
= ∥B⊺Σ̂XB∥

1/2
2
, (122)

which holds since ∥A∥2 = ∥A⊺A∥
1/2
2 . Adding and subtracting B⊺ΣXB and using the triangle inequality,

we obtain that for fixed η ∈ (0,1), with probability 1 − η,

∥B⊺Σ̂XB∥2 ≤ ∥B
⊺ΣXB∥2 + ∥B

⊺ (Σ̂X −ΣX)B∥2 ≲ γ
2
1 . (123)

In the last inequality, we have used d = o(N) and equation (119) to deduce that ∥B⊺ (Σ̂X −ΣX)B∥2
becomes smaller that γ21 eventually. This completes the proof.

Proof of Lemma B.9:
By Lemma 6 of Gaynanova (2020), if suffices to show that under the condition s2 log(p) = o(N), that
for fixed η, with probability 1 − η, we have s ∥ΣX − Σ̂X∥max

≤ (32κ)−1. By the first item of Lemma
B.8, we then have that for fixed η with probability 1 − η,

κs ∥ΣX − Σ̂X∥max
≲ κsmaxi(∥Xi∥2ψ2

)
√

log (pη−1)
N

. (124)

It therefore suffices that maxi(∥Xi∥4ψ2
)κ2s2 log (p) = o(N), since then with probability 1−η, κs ∥ΣX − Σ̂X∥max

is arbitrarily small. But this is the assumed condition, so the proof is complete.

Proof of Lemma B.10:
Proof of slow-rate bound :
Under the slow-rate assumptions of Corollary B.1 and by Corollary 1 in Gaynanova (2020), for fixed
η, with probability 1 − η, we have

∥B − B̂∥2
2
≲ ∥Σ−1X ∥2 ∥B∥ℓ1,ℓ2 (λ + ∥B∥ℓ1,ℓ2 ∥Σ̂X −ΣX∥max

) . (125)

Then

λ ≲ ∥ΣX∥1/22,∞ (
d

N
log (pη−1))

1/2
, (126)

and by Lemma B.8,

∥ΣX − Σ̂X∥max
≲ ∥ΣX∥2,∞ (

d

N
log (pη−1))

1/2
. (127)

36



The last two equations bound ∥B − B̂∥
2
, and since ∥ΣX∥2,∞ , ∥B∥ℓ1,ℓ2 ≥ 1, the proof of the slow-rate

bound is complete.
Proof of fast-rate bound :
Under the slow-rate assumptions of Corollary B.1 and by Theorem 2 in Gaynanova (2020), for fixed
η, with probability 1 − η, we have

∥B − B̂∥
2
≲ κs1/2λ. (128)

Again using λ ≲ ∥ΣX∥1/22,∞ ( dN log (pη−1))1/2, the result is shown.

Proof of Lemma B.11:
The proof of the first statement follows from Lemma 2 of Kereta and Klock (2021) and Definition B.1
applied to Y .

To show the bound on ∥Σ−1/2Y − Σ̂
−1/2
Y ∥

2
, we begin by using identity 13 in Section D applied to Σ−1Y

and Σ̂−1Y . We have

∥Σ−1/2Y − Σ̂
−1/2
Y ∥

2
≤ 1

2
max (∥ΣY ∥2 , ∥Σ̂Y ∥2)

1/2 ∥Σ−1Y − Σ̂−1Y ∥2 . (129)

To bound ∥Σ−1Y − Σ̂−1Y ∥2, we use Corollary 11 of Kereta and Klock (2021): if

(rank (ΣY ) + log (η−1)) ∥Σ1/2
Y Y ∥

4

ψ2

≲ N

eventually, then with probability 1 − η,

∥Σ−1Y − Σ̂−1Y ∥2 ≲ ∥Σ
−1
Y Y ∥

2

ψ2

√
rank (ΣY ) + log (η−1)

N
. (130)

The variance proxy condition on Σ
1/2
Y Y (Definition B.1) implies that ∥Σ−1/2Y Y ∥

ψ2

is bounded by an

absolute constant. The condition d = o(N) then ensures (rank (ΣY ) + log (η−1)) ∥Σ1/2
Y Y ∥

4

ψ2

≲ N even-

tually. The variance proxy condition on Σ−1Y Y implies ∥Σ−1Y Y ∥ψ2
≲ ∥Σ−1/2Y ∥

2
.

To bound ∥Σ̂Y ∥2, we use the triangle inequality to obtain ∥Σ̂Y ∥2 ≤ ∥Σ̂Y −ΣY ∥2 + ∥ΣY ∥2. Then,

using the first statement of the lemma and with the additional assumption that ∥ΣY ∥22 d = o(N), we
have with probability 1 − η,

∥Σ̂Y ∥2 ≲ ∥ΣY ∥2 . (131)

Combining these results together establishes the statement of the lemma and the proof is complete.

Proof of Theorems B.2 and B.3:
Proof of bounds for θ:
By definition, we have that

θk = Bη̃kγ−1k (132)

θ̂k = B̂ ˆ̃ηkγ̂
−1
k . (133)

We bound ∥θk − θ̂k∥2 by bounding all three of ∥B − B̂∥
2
, ∥η̃k − ˆ̃ηk∥2, and ∣γ−1k − γ̂−1k ∣. For ease of

notation, we denote η̃k by v. We begin with

∥θk − θ̂k∥2 ≤ ∥Bvγ
−1
k −Bvγ̂−1k ∥2 + ∥Bvγ̂

−1
k − B̂v̂γ̂−1k ∥2 (134)

≤ ∣γ−1k − γ̂−1k ∣ ∥Bv∥2 + ∣γ̂−1k ∣ ∥Bv − B̂v̂∥2 . (135)
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Examining ∥Bv − B̂v̂∥
2

on the right-hand side of (135):

∥Bv − B̂v̂∥
2
≤ ∥Bv −Bv̂∥2 + ∥Bv̂ − B̂v̂∥2 (136)

≤ ∥B∥2 ∥v − v̂∥2 + ∥B − B̂∥2 ∥v̂∥2 . (137)

Using (135) and since ∥v̂∥2 = 1, we have

∥θk − θ̂k∥2 ≤ ∣γ
−1
k − γ̂−1k ∣ ∥Bv∥2 + ∣γ̂−1k ∣ (∥B∥2 ∥v − v̂∥2 + ∥B − B̂∥2) . (138)

where we note that we now have bounded ∥θk − θ̂k∥2 in terms of ∥B − B̂∥
2
, ∥η̃k − ˆ̃ηk∥2, and ∣γ−1k − γ̂−1k ∣.

To bound ∣γ−1k − γ̂−1k ∣, we can use identity 16 from Section D, giving us that

∣γ−1k − γ̂−1k ∣ ≤min (γk, γ̂k)−3 ∣γ2k − γ̂2k ∣ . (139)

Bounding the two factors in equation (139) amounts to establishing that γk is close to γ̂k. For this,
we apply Weyl’s inequality (Bhatia (2013) Corollary III.2.6.) to obtain

∣γ2k − γ̂2k ∣ ≤ ∥B⊺ΣXB − B̂⊺Σ̂XB̂∥2 . (140)

since γ2k is the kth eigenvalue of B⊺ΣXB, and γ̂2k is the kth eigenvalue of B̂⊺Σ̂XB̂. We then deduce
that

γ2k − ∥B⊺ΣXB − B̂⊺Σ̂XB̂∥2 ≤ γ̂
2
k . (141)

From equation (141) we establish that 1
2γ

2
k ≤ γ̂2k by using

∥B⊺ΣXB − B̂⊺Σ̂XB̂∥2 ≲
1

2
γ2k , (142)

which holds asymptotically in both the fast and slow rate cases under our assumption that the γk are
bounded from below and from Corollary B.1. From 1

2γ
2
k ≤ γ̂2k we also deduce

min (γk, γ̂k)−2 ≲
1

γ2k
, (143)

and additionally that
1

γ̂k
≲ 1

γk
. (144)

We now use our results thus far regarding γk and γ̂k to obtain a simplified equation (138):

∥θk − θ̂k∥2 ≲
1

γ3k
∥B⊺ΣXB − B̂⊺Σ̂XB̂∥2 ∥Bv∥2 +

1

γk
(∥B∥2 ∥v − v̂∥2 + ∥B − B̂∥2) (145)

To bound ∥v − v̂∥2, we can use the Davis-Kahan theorem (Corollary 3 of Yu et al. (2015)). Assuming
that η̃k

⊺ ˆ̃ηk ≥ 0, then

∥η̃k − ˆ̃ηk∥2 ≤
23/2 ∥B⊺ΣXB − B̂⊺Σ̂XB̂∥2
min (γ2k−1 − γ2k , γ2k − γ2k+1)

, (146)

because η̃k is the kth eigenvector of B⊺ΣXB, and ˆ̃ηk is the kth eigenvector of B̂⊺Σ̂XB̂. From this and
equation (145), we obtain

∥θk − θ̂k∥2 ≲
1

γ2k
∥B⊺ΣXB − B̂⊺Σ̂XB̂∥2 ∥θk∥2 +

1

γk

⎛
⎝
∥B∥2

∥B⊺ΣXB − B̂⊺Σ̂XB̂∥2
min (γ2k−1 − γ2k , γ2k − γ2k+1)

+ ∥B − B̂∥
2

⎞
⎠
, (147)

where we have also used the definition of θk, θk = Bvγ−1k . Rearranging this expression, we have

∥θk − θ̂k∥2 ≲
⎛
⎝
∥θk∥2
γ2k
+ ∥B∥2
γk min (γ2k−1 − γ2k , γ2k − γ2k+1)

⎞
⎠
∥B⊺ΣXB − B̂⊺Σ̂XB̂∥2 +

∥B − B̂∥
2

γk
. (148)
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Now we use our bounds for ∥B⊺ΣXB − B̂⊺Σ̂XB̂∥2 and ∥B − B̂∥
2

depending on if we are in the slow
or fast rate case. In the slow rate case, we also use

∥θk∥2 = ∥Σ
−1/2
X θ̃k∥

2
≤ ∥Σ−1/2X ∥

2
∥θ̃k∥2 = ∥Σ

−1/2
X ∥

2
, (149)

where we have used the standard result of classical CCA that θk = Σ
−1/2
X θ̃k for some unit vector θ̃k

Uurtio et al. 2018.
The proofs for both the fast and slow rate then follow directly from Lemma B.10, Theorem B.1,

and rearranging of terms. This completes the proof of the bounds on ∥θk − θ̂k∥2.
Proof of bounds for η:
By definition, we have

ηk = Σ
−1/2
Y η̃k, (150)

η̂k = Σ̂
−1/2
Y

ˆ̃ηk. (151)

We bound ∥ηk − η̂k∥2 with the triangle inequality:

∥ηk − η̂k∥2 ≤ ∥Σ
−1/2
Y η̃k −Σ

−1/2
Y

ˆ̃ηk∥
2
+ ∥Σ−1/2Y

ˆ̃ηk − Σ̂
−1/2
Y

ˆ̃ηk∥
2

(152)

≤ ∥Σ−1/2Y ∥
2
∥η̃k − ˆ̃ηk∥2 + ∥Σ

−1/2
Y − Σ̂

−1/2
Y ∥

2
∥ ˆ̃ηk∥2 . (153)

To simplify this expression, we can use ∥ ˆ̃ηk∥2 = 1, the Davis-Kahan Theorem for ∥η̃k − ˆ̃ηk∥2 as in the
proof for the θ bounds, and the second statement of Lemma B.11. For clarity, we state the assumptions
required for these results: d = o(N), ∥ΣY ∥22 d = o(N), the variance proxy condition (Definition B.1) for
Y and Σ−1Y Y , and η̃k

⊺ ˆ̃ηk ≥ 0 for k = 1, . . .K. Then, for η ∈ (0,1), we have

∥ηk − η̂k∥2 ≲ ∥Σ
−1/2
Y ∥

2

⎡⎢⎢⎢⎢⎣

∥B̂T Σ̂XB̂ −B⊺ΣXB∥2
min (γ2k−1 − γ2k , γ2k − γ2k+1)

+ ∥ΣY ∥1/22 ∥Σ
−1/2
Y ∥

2

√
d log (η−1)

N

⎤⎥⎥⎥⎥⎦
. (154)

Now we apply Corollary B.1 to equation (154) under the fast and slow rate assumptions. In the slow
rate case, we have

∥ηk − η̂k∥2 ≲ ∥Σ
−1/2
Y ∥

2

⎡⎢⎢⎢⎢⎢⎣

γ1 ∥ΣX∥1/22,∞ ∥B∥ℓ1,ℓ2
min (γ2k−1 − γ2k , γ2k − γ2k+1)

( d
N

log (pη−1))
1/4
+ ∥ΣY ∥1/22 ∥Σ

−1/2
Y ∥

2

⎛
⎝
d log (η−1)

N

⎞
⎠

1/2⎤⎥⎥⎥⎥⎥⎦
.

(155)

Factoring out ( dN )
1/4

we obtain

∥ηk − η̂k∥2 ≲ ∥Σ
−1/2
Y ∥

2
( d
N
)
1/4 ⎡⎢⎢⎢⎢⎣

γ1 ∥ΣX∥1/22,∞ ∥B∥ℓ1,ℓ2
min (γ2k−1 − γ2k , γ2k − γ2k+1)

log (pη−1)1/4 + ∥ΣY ∥1/22 ∥Σ
−1/2
Y ∥

2
log (η−1)1/2 ( d

N
)
1/4⎤⎥⎥⎥⎥⎦

.

(156)
In the bracketed expression we are able to combine the first and second terms, since we assume γ1 is

bounded from below, using the additional assumption that ∥ΣY ∥22 ∥Σ−1Y ∥
2

2
d = o(N), and because the

other terms in the first term are greater than or equal to 1. Then, with probability 1 − η,

∥ηk − η̂k∥2 ≲
γ1 ∥ΣX∥1/22,∞ ∥B∥ℓ1,ℓ2 ∥Σ

−1/2
Y ∥

2

min (γ2k−1 − γ2k , γ2k − γ2k+1)
⎛
⎝
d log (pη−1)

N

⎞
⎠

1/4

, (157)

completing the proof of the slow-rate bound for η.

39



In the fast-rate case, under the fast-rate bound assumptions of Corollary B.1 and applying Corollary
B.1 to equation (154), we establish

∥ηk − η̂k∥2 ≲ ∥Σ
−1/2
Y ∥

2
max

⎛
⎜
⎝

γ1 ∥ΣX∥1/22,∞ s
1/2κ1/2

min (γ2k−1 − γ2k , γ2k − γ2k+1)
, ∥ΣY ∥1/22 ∥Σ

−1
Y ∥

1/2
2

⎞
⎟
⎠
⎛
⎝
d log (pη−1)

N

⎞
⎠

1/2

, (158)

completing the proof of the fast-rate bound for η.

C Asymmetric Sparse-Functional CCA: Proof of Theorem 4.2

In this section, we prove Theorem 4.2. Recall that we assume condition 2.1 holds, that is, the functional
data admit a finite d-dimensional expansion Logµ y = ∑dj=1 Yjϕj , where ϕj are the PC functions of
Logµ y and Yj = ⟪Logµ y, ϕj⟫µ. Let Y = (Y1, . . . , Yn)⊺. Then, the canonical pairs {(ψk, θk)} can be
computed by solving the multivariate CCA problem

maximize
Var(η⊺1Y )=Var(θ

⊺

1X)=1
Corr2 (η⊺1Y, θ⊺1X) , (159)

with subsequent canonical pairs defined analogously. They are given by the pair (ψk = ∑dj=1 ϕjηkj , θk).
Recall that C ≡ E [Logµ y ⊗ Logµ y] admits the expansion C = ∑∞j=1 ωjϕj ⊗ ϕj , where {ϕj} are the

eigenfunctions of C with associated eigenvalues {ωj}. We let γ21 . . . γ
2
d denote the squared canonical

correlations attained by the pairs (ψ1, θ1) , . . . (ψd, θd).
We denote by ψ̂k and θ̂k the canonical vectors estimated using our proposed Algorithm 1. In

practice, we are given a sample of N independent pairs

(yi, xi), i = 1, . . . ,N, (160)

where each pair (yi, xi) is an independent observation of the pair (y,X). Here, the functions {yi} are
assumed to be fully observed on T . We denote τ ≡ ∣T ∣, the length of the time interval of the functional
data. We store the observations {xi} in a matrix X ∈ RN×p.

In Algorithm 1, we estimate µ using the sample Fréchet mean, denoted as µ̂, and estimate the
eigenfunctions {ϕj} using ϕ̂j , which are the eigenfunctions of the sample covariance function Ĉ ≡
1
N ∑

N
i=1 Logµ̂ yi ⊗ Logµ̂ yi.

Hence the functional data can be represented using the vector Z ∈ Rd, where its jth element is
Zj ≡ ⟪Logµ̂ y1, ϕ̂j⟫µ̂. We note that in the definition of Z, both µ̂ and ϕ̂j depend on y1 since their
estimation depends on the full sample y1, . . . yN . We also note that the distribution of Z depends on
the sample size N . In practice, we solve the following problem for the first pair of canonical variables:

maximize
Var(a⊺1Z)=Var(b

⊺

1X)=1
Corr2 (a⊺1Z, b⊺1X) . (161)

The subsequent canonical pairs can be defined analogously. We denote the solutions to these problems
as (a1, b1) , . . . (ad, bd). We let γ̃21 . . . γ̃

2
d denote the squared canonical correlations attained by the

pairs (a1, b1) , . . . (ad, bd). We expect that, under appropriate assumptions, ak and bk will closely
approximate ηk and θk, respectively, provided that µ̂ and {ϕ̂j} closely approximates µ and {ϕj},
respectively.

We assume that the canonical vectors {θk} are group s-sparse, and that the associated vectors
{bk} are also group s-sparse. Let the support S ⊆ {1, . . . p} represent the indices of non-zero elements
of θk or bk, with cardinality ∣S∣ ≤ 2s. This sparsity condition allows us to simplify equations (159) and
(161) by replacing X with XS ∈ R∣S∣, the random vector consisting of only the entries {Xj ∶ j ∈ S}.
Moreover, θk and bk can be replaced with θk,S and bk,S , respectively.

We begin by deriving an error bound for the estimation of ψk using ψ̂k. Since the population
quantity ψk belongs to L2(Tµ) and our estimate ψ̂k belongs to L2(T µ̂), we use the parallel transport
operator Γµ,µ̂ to define estimation error, as proposed in Lin and Yao (2019). For ease of notation, we
denote Γf,gU − V as UδΓV ∈ L2 (Tg), for any vector fields U ∈ L2 (Tf) and V ∈ L2 (Tg).
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C.1 Bounding the canonical function error

Next, we derive a bound for ψ̂kδΓψk ∈ L2(Tµ). Recall that, by definition, ψk = ∑dj=1 ϕjηkj and

ψ̂k = ∑dj=1 ϕ̂j η̂kj .

Lemma C.1. The following inequality holds:

∥ψ̂kδΓψk∥2µ≲ ∥η̂k − ak∥
2
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term I

+∥ak − ηk∥22
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term II

+
⎛
⎝
∥ηk∥∞

d

∑
j=1
∥ϕ̂jδΓϕj∥µ

⎞
⎠

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term III

. (162)

Remark 9. Term II, that is ∥ak − ηk∥22, captures differences between the population CCA problem
described in equations (159) and that in (161). The non-random nature of this term complicates the
analysis, as it requires deriving bounds for the expectation rather than establishing probability bounds.

The first term, ∥η̂k − ak∥2, will be bounded using our multivariate CCA arguments. The second
and third terms will be bounded in the following section.

C.1.1 Bounding Terms II and III of Lemma C.1

Assuming that ΣY and ΣZ are invertible, and from the definitions of ak and ηk as the solutions to the
problems in equations (161) and (159) respectively, we have that

ak = Σ
−1/2
Z ãk, (163)

ηk = Σ
−1/2
Y η̃k, (164)

where ãk is the kth eigenvector (unit vector) of A⊺A and η̃ is the kth eigenvector (unit vector) of C⊺C,
where we have

A = Σ
−1/2
XS

ΣXSZΣ
−1/2
Z , (165)

C = Σ
−1/2
XS

ΣXSY Σ
−1/2
Y . (166)

Applying inequality 17 in Section D, we have that

∥ak − ηk∥22 ≲ ∥Σ
−1/2
Z −Σ

−1/2
Y ∥

2

2
+ ∥Σ−1Y ∥2 ∥ãk − η̃k∥

2
2 . (167)

Noting that A⊺A has the same eigenvectors as ∣A∣, where ∣A∣ ≡ (A⊺A)1/2, we can apply the Davis-Kahan
theorem (Corollary 3 of Yu et al. (2015)) and obtain

∥ãk − η̃k∥2 ≲
∥∣A∣ − ∣C ∣∥2

min (γk−1 − γk, γk − γk+1)
, k = 1, . . . d, (168)

where we assume ã⊺kη̃k ≥ 0 and we use the conventions γd+1 = −∞, and γ0 = ∞. Next, note that

∥∣A∣ − ∣C ∣∥2 ≤ ∥∣A∣ − ∣C ∣∥F ≤
√

2 ∥A −C∥F , (169)

where the second inequality is identity 19 from Section D. We can then bound ∥A −C∥2F in terms of

∥Σ−1/2Z −Σ
−1/2
Y ∥

2

2
and E [∥Y −Z∥22] using the following lemma.

Lemma C.2. Under the group s-sparsity assumptions on bk and θk, we have that

∥A −C∥2F ≤ 2s [E [∥Z∥22] ∥Σ
−1/2
Z −Σ

−1/2
Y ∥

2

2
+ ∥Σ−1Y ∥2E [∥Y −Z∥

2
2]] . (170)
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Next, we bound ∥Σ−1/2Z −Σ
−1/2
Y ∥

2

2
in terms of E [∥Y −Z∥22] using the following lemma.

Lemma C.3. It can be shown that

∥Σ−1/2Z −Σ
−1/2
Y ∥

2

2
≲ E [∥Z − Y ∥22]max (∥Σ−1Y ∥2 , ∥Σ

−1
Z ∥2)

3
max (E [∥Z∥22] ,E [∥Y ∥

2
2]) . (171)

Additionally, we have that

∥ΣY −ΣZ∥22 ≲max (E [∥Z∥22] ,E [∥Y ∥
2
2])E [∥Z − Y ∥

2
2] . (172)

Combining the results of this section we obtain the following bound on ∥ak − ηk∥22 in terms of

E [∥Z − Y ∥22].

Lemma C.4. Under the group s-sparsity assumptions on bk and θk, we have

∥ak − ηk∥22 ≲ E [∥Z − Y ∥
2
2]

×
⎡⎢⎢⎢⎢⎣

⎛
⎝

1 +
s ∥Σ−1Y ∥2E [∥Z∥

2
2]

min (γk−1 − γk, γk − γk+1)2
⎞
⎠

max (∥Σ−1Y ∥2 , ∥Σ
−1
Z ∥2)

3
max (E [∥Z∥22] ,E [∥Y ∥

2
2]) +

s ∥Σ−1Y ∥
2

2

min (γk−1 − γk, γk − γk+1)2
⎤⎥⎥⎥⎥⎦

Additionally, if we assume that ∥Σ−1Z ∥2 ≲ ∥Σ
−1
Y ∥2, E [∥Z∥

2
2] ≲ E [∥Y ∥

2
2], and ∥Σ−1Y ∥2 ,E [∥Y ∥

2
2] ≥ 1, then

the statement simplifies as follows:

∥ak − ηk∥22 ≲ E [∥Z − Y ∥
2
2]

s ∥Σ−1Y ∥
4

2
E [∥Y ∥22]

2

min (γk−1 − γk, γk − γk+1)2
. (173)

Remark 10. In subsequent discussions, we will detail the conditions necessary for the additional
assumptions stated here to hold.

Having established a bound for ∥ak − ηk∥22 in terms of E [∥Z − Y ∥22], we now turn our attention

to bounding E [∥Z − Y ∥22] using ’known’ quantities. In the process, we will derive a bound for

E [∥ϕ̂jδΓϕj∥µ], which will enable us to derive a probabilistic bound. This, in turn, will be used

to bound Term III in Lemma C.1.
To establish a bound for E [∥Z − Y ∥22], we first begin by introducing a lemma to bound ∥Z − Y ∥22.

Lemma C.5. It can be shown that

∥Z − Y ∥22 ≤ 2d ∥Logµ̂ yiδΓ Logµ yi∥
2

µ
+ 2

d

∑
j=1
∥Logµ yi∥

2

µ
∥ϕ̂jδΓϕj∥

2

µ
. (174)

Next, we aim to establish a bound for ∥ϕ̂jδΓϕj∥
2

µ
. Consider an operator Ĉ on L2(T µ̂). We use

parallel transport to define ΦĈ as the operator on L2(Tµ) such that ΦĈ (V ) = Γµ̂,µ (Ĉ (Γµ,µ̂V )) ∈
L2(Tµ), for every V ∈ L2(Tµ). We also define the operator Ĉµ ≡ 1

N ∑
N
i=1 Logµ yi ⊗ Logµ yi on L2(Tµ).

Moreover, we use ∥⋅∥op to denote the operator norm on L2(Tµ).

Lemma C.6. For any j ≥ 1, we have that

∥ϕ̂jδΓϕj∥
2

µ
≲
∥C − Ĉ∥2op+∥Ĉµ −ΦĈ∥2op

min (ωj−1 − ωj , ωj − ωj+1)2
. (175)

We introduce the following lemma to bound the expectation of the terms in the previous lemma.

42



Lemma C.7. If E [∥Logµ y1∥
4

µ
] < ∞, then

E [∥C − Ĉ∥2op] ≤
1

N
E [∥Logµ y1∥

4

µ
] . (176)

Additionally, under the assumption that E [∥Logµ̂ yiδΓ Logµ yi∥
4

µ
]
1/2
≲ E [∥Logµ̂ yiδΓ Logµ yi∥

2

µ
], we have

E [∥Ĉµ −ΦĈ∥2op] ≲ (E [∥Logµ yi∥
4

µ
]
1/2
+E [∥Logµ̂ yiδΓ Logµ yi∥

2

µ
])E [∥Logµ̂ yiδΓ Logµ yi∥

2

µ
] . (177)

The lemma above shows that, in order to bound E [∥ϕ̂jδΓϕj∥
2

µ
], it is first necessary to bound

E [∥Logµ̂ yiδΓ Logµ yi∥
2

µ
]. To do this, we need the following more technical results. But first, we

state some preliminary definitions. Let TM denote the tangent bundle of M, and let ∇ denote
the Riemannian connection on M. The next result, which is a mean value theorem for the parallel
transport operation, is used in the proof of Lemma C.9.

Lemma C.8. For a smooth vector field U ∶ M → TM, x, y ∈ M, with minimizing geodesic γ(t)
between x and y (so that γ(0) = x and γ(d(x, y)) = y), we have that

∥Py,xU(y) −U(x)∥x≤ d(y, x) sup
c∈[0,d(x,y)]

∥∇γ′(c)U(γ(c))∥γ(c). (178)

Remark 11. When the vector field U has bounded Hessian H, defined below, we can use this result to
bound the parallel transport error by the geodesic distance d(x, y) between the base points of the vector
field.

For x ∈ M and t ∈ T , define ft(x) ≡ 1
2d

2 (x, y1(t)). Let Ht be the Riemannian Hessian of ft, i.e.
Ht(x) ∶ TxM → TxM such that for all x ∈ M, t ∈ T , and v ∈ TxM, Ht(x)(v) = ∇v grad ft(x). For a
mapping A(x), which for each x is an operator A(x) ∶ TxM→ TxM, we define the operator norm at
x of A: ∥A∥op,x≡ sup

v∈TxM,∥v∥x=1
∥A(x)(v)∥x. Recall that τ = ∣T ∣ is the length of the time interval of the

functional data.

Lemma C.9. Assume that

1. M is a complete, simply-connected Riemannian manifold with nonpositive sectional curvature.

2. sup
t∈T

E [d (y1(t), y2(t))3] < ∞.

3. sup
t∈T ,x∈M

∥Ht(x)∥2op,x≲ 1 with probability 1.

Then,

E [∥Logµ̂ yiδΓ Logµ yi∥
2

µ
] ≲ τ

N
. (179)

The next lemma combines the results of Lemmas C.6, C.7, and C.9.

Lemma C.10. Under the assumptions of Lemma C.9, and additionally assuming that

E [∥Logµ̂ yiδΓ Logµ yi∥
4

µ
]
1/2
≲ E [∥Logµ̂ yiδΓ Logµ yi∥

2

µ
], and E [∥Logµ y1∥

4

µ
] ≥ 1, we have

E [∥ϕ̂jδΓϕj∥
2

µ
] ≲ 1

N

τE [∥Logµ y1∥
4

µ
]

min (ωj−1 − ωj , ωj − ωj+1)2
. (180)

From Lemma C.10 and Markov’s inequality, we obtain the following inequality, which we can use
to bound Term III in Lemma C.1.
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Corollary C.1. Under the assumptions of Lemma C.10, we have that

∥ϕ̂jδΓϕj∥
2

µ
= OP

⎛
⎜
⎝

1

N

τE [∥Logµ y1∥
4

µ
]

min (ωj−1 − ωj , ωj − ωj+1)2
⎞
⎟
⎠
. (181)

Now we can combine the results of Lemmas C.5, C.9 and C.10 to obtain a bound on E [∥Z − Y ∥2].

Lemma C.11. Under the assumptions of Lemma C.10 and additionally assuming that

E [∥ϕ̂jδΓϕj∥
4

µ
]
1/2
≲ E [∥ϕ̂jδΓϕj∥

2

µ
], we have that

E [∥Z − Y ∥22] ≲
τd

N
E [∥Logµ y1∥

4

µ
]
3/2

max
j=1,...d

( 1

ωj − ωj+1
)
2

. (182)

The proof follows from applying the Cauchy-Schwarz inequality and collecting similar terms.
Now we can state the conditions under which the additional assumptions of Lemma C.4 will hold.

From now on, we keep tracking the terms τ and E [∥Logµ y1∥
4

µ
] in the error bounds, but we assume

they are constant.

Lemma C.12. We have that ∥Σ−1Y ∥2 = ω
−1
d , ∥ΣY ∥2 = ω1, and E [∥Y ∥22] = ∑dj=1 ωj. Additionally, if

E [∥Y ∥22] , ∥Σ−1Y ∥2 ≥ 1, and

d

N

∑dj=1 ωj
ω2
d

max
j=1,...d

( 1

ωj − ωj+1
)
2

= o(1), (183)

then E [∥Z − Y ∥22] = o(1), ∥Σ−1Z ∥2 ≲ ∥Σ
−1
Y ∥2, ∥ΣZ∥2 ≲ ∥ΣY ∥2 and E [∥Z∥22] ≲ E [∥Y ∥

2
2].

Now we can combine Lemmas C.4, C.11, and C.12 to obtain a final bound on ∥ak − ηk∥22.
Theorem C.1. Under the assumptions of Lemmas C.11 and C.12, we have that

∥ak − ηk∥22 ≲
τsd

N
max
j=1,...d

( 1

ωj − ωj+1
)
2 ⎛
⎝
∑dj=1 ωj
ω2
d

⎞
⎠

2 E [∥Logµ y1∥
4

µ
]
3/2

min (γk−1 − γk, γk − γk+1)2
. (184)

Before we combine the bounds for the three components detailed in Lemma C.1, we show that γ̃k
and γk are asymptotically equivalent, which allows us to simplify the expression of our final bounds.
Recall that the correlations {γ̃k} are defined using equation (161) as the canonical correlations between
X and Z, while the correlations {γk} are the canonical correlations between X and Y . To this end,
we first state the following bound, which follows directly from Lemmas C.2 and C.3. This will also be
used later to derive a bound for ∥θk − θ̂k∥2.
Lemma C.13. Under the assumptions of Lemma C.12, we have that

∥A −C∥2F ≲ s ∥Σ−1Y ∥
3

2
E [∥Y ∥22]

2
E [∥Z − Y ∥22] . (185)

We can prove the next lemma by using Lemmas C.11, C.12, and C.13.

Lemma C.14. Under the assumptions of Lemmas C.11 and C.12, and further assuming that τ and

E [∥Logµ y1∥
4

µ
] are absolute constants, that the canonical correlations {γk} and {γ̃k} are bounded from

below and that

ds

N

(∑dj=1 ωj)
2

ω3
d

max
j=1,...d

( 1

ωj − ωj+1
)
2

= o(1), (186)

then γk and γ̃k are asymptotically equivalent, i.e., γk ≲ γ̃k and γ̃k ≲ γk. Additionally, γ2k ≲ γ̃2k and
γ̃2k ≲ γ2k.

Now we are now in a position to establish bounds for all three terms in Lemma C.1, using Theorem
B.3 (applied to X and Z and using the bound for η), Theorem C.1, and Corollary C.1 for Term I, II,
and III, respectively. This will yield our final bound for the canonical functions ∥ψ̂kδΓψk∥2µ, which is
presented in Section C.3.
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C.2 Bounding high-dimensional canonical vector error

In this section, we derive a bound for the estimation error of the high-dimensional canonical vectors,
∥θk − θ̂k∥2. Having already derived a bound for the canonical functions, the proof is straightforward.
We start with an application of the triangle inequality. For k = 1, . . . d,

∥θk − θ̂k∥
2

2
≲ ∥θk − bk∥22 + ∥bk − θ̂k∥

2

2
, (187)

where bk is the high dimensional canonical vector given by the solution to problem (161). Assuming s-
group sparsity for θk and bk, we represent the associated vectors with non-zero entries as θk,S and bk,S .
Recall that these are at most 2s-dimensional. By definition, we then have ∥θk − bk∥2 = ∥θk,S − bk,S∥2,
hence

∥θk − θ̂k∥
2

2
≲ ∥θk,S − bk,S∥

2

2
+ ∥bk − θ̂k∥

2

2
. (188)

To bound the second term, we can use Theorem B.3, applied to the random vectors X and Z. To
bound the second term, we can make the following argument which is similar to the one made to
bound ∥ηk − ak∥2. Let

A = Σ
−1/2
XS

ΣXSZΣ
−1/2
Z , (189)

C = Σ
−1/2
XS

ΣXSY Σ
−1/2
Y . (190)

Then, from classical CCA (Uurtio et al. 2018), we have that θk,S = Σ
−1/2
XS

θ̃k,S , where θ̃k,S is the kth

eigenvector of CC⊺, and bk = Σ
−1/2
XS

b̃k,S , where bk,S is the kth eigenvector of AA⊺. Therefore,

∥θk,S − bk,S∥2 = ∥Σ
−1/2
XS

θ̃k,S −Σ
−1/2
XS

b̃k,S∥
2

(191)

= ∥Σ−1/2XS
(θ̃k,S − b̃k,S)∥

2
(192)

≤ ∥Σ−1/2XS
∥
2
∥θ̃k,S − b̃k,S∥2 . (193)

Since A⊺A has the same eigenvectors as ∣A∣ = (AA⊺)1/2, we can then use the Davis-Kahan theorem
(Yu et al. 2015) to derive the following bound. If θ̃⊺k,S b̃k,S ≥ 0, then

∥θ̃k,S − b̃k,S∥2 ≲
∥∣A⊺∣ − ∣C⊺∣∥2

min (γk−1 − γk, γk − γk+1)
. (194)

The term ∥∣A⊺∣ − ∣C⊺∣∥2 can be bounded as follows:

∥∣A⊺∣ − ∣C⊺∣∥
2
≤ ∥∣A⊺∣ − ∣C⊺∣∥

F
≤
√

2 ∥A⊺ −C⊺∥
F
=
√

2 ∥A −C∥F , (195)

where the second inequality is identity 19 from Section D.Having established a bound for ∥θ̃k,S − b̃k,S∥2
in terms of ∥A −C∥F , we can apply similar arguments to those used to bound ∥ak − ηk∥2 in order to

derive a bound for ∥θ̃k,S − b̃k,S∥2 in terms of E [∥Z − Y ∥22]. Combining the results of this section, using
Lemmas C.11 and C.13, we establish the following result.

Lemma C.15. Under the assumptions of Lemmas C.11 and C.12, and if θ̃⊺k,S b̃k,S ≥ 0, we have that

∥θk,S − bk,S∥
2

2
≲
∥Σ−1/2XS

∥
2

2
s ∥Σ−1Y ∥

3

2
E [∥Y ∥22]

2

min (γk−1 − γk, γk − γk+1)2
τd

N
E [∥Logµ y1∥

4

µ
]
3/2

max
j=1,...d

( 1

ωj − ωj+1
)
2

. (196)

Next, by applying Theorem B.3, Lemma C.15, and equation (188), we can establish the final bound

for the high-dimensional canonical vector error ∥θk − θ̂k∥
2

2
, which is presented in Section C.3.
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C.3 Final rates

In this section, we presented our final results. Recall that we denote as K =max{i ∈ {1, . . . d} ∶ γi > 0}
the number of nontrivial canonical vectors and we use the conventions γ2d+1 = −∞, γ̃2d+1 = −∞, γ20 = +∞
and γ̃20 = +∞.

For clarity, we first provide a comprehensive list of our assumptions. For the definitions of the
quantities that appear below, please see the beginning of Section C.

Assumption C.1 (Manifold Properties).

1. The manifoldM is a complete simply-connected Riemannian manifold with nonpositive sectional
curvature.

2. The curvature sup
t∈T ,x∈M

∥Ht(x)∥2op,x is bounded with probability 1.

Assumption C.2 (Distributional Assumptions).

1. The random vectors X and Z are strict subguassian random vectors (Definition B.2).

2. The covariance matrices ΣX , ΣY , and ΣZ are invertible.

3. The group s-sparsity assumption holds for {bk} and {θk}.

4. The matrix Σ
1/2
X satisfies the group restricted eigenvalue condition RE(s,3, d) (Definition B.3)

with parameter κ = κ(s, d,Σ1/2
X ) .

5. The functional data are such that sup
t∈T

E [d (y1(t), y2(t))3] < ∞.

Assumption C.3 (Rate Assumptions).

1. d ≤ p;

2. cond (ΣY )2 d = o(N);

3. κ2s2d log(p) = o(N);

4. ds
(∑d

j=1 ωj)
2

ω3
d

max
j=1,...d

( 1
ωj−ωj+1

)
2
= o(N);

5. The correlations γ1, . . . γK are bounded from below and distinct from one another, as well as
γ̃1, . . . γ̃K .

6. E [∥ϕ̂jδΓϕj∥
4

µ
]
1/2
≲ E [∥ϕ̂jδΓϕj∥

2

µ
];

7. E [∥Logµ̂ yiδΓ Logµ yi∥
4

µ
]
1/2
≲ E [∥Logµ̂ yiδΓ Logµ yi∥

2

µ
].

Assumption C.4 (Minor Assumptions).

1. The quantities ∥ΣX∥2,∞ , ∥T ∥ℓ1,ℓ2 are bounded from above and are ≥ 1.

2. The variables τ and E [∥Logµ y1∥
4

µ
] are constants.

3. The following quanitites are larger than 1: κ,ω1, ω
−1
d , ∥η∥∞ , ∥Σ−1X ∥2 , ∥Σ

−1
Z ∥2.

4. a⊺kΣ
1/2
Z Σ

1/2
Y ηk ≥ 0 and η̂⊺k Σ̂Z

1/2
Σ
1/2
Z ak ≥ 0 for k = 1, . . .K.

Next, we present our main results.
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Theorem C.2 (Canonical Function Error Bound). Under Assumptions C.1-C.4, we have

∥ψ̂kδΓψk∥2µ = OP (
d2s log(p)

N
τκ ∥ΣX∥2,∞ ∥η∥

2
∞E [∥Logµ y∥

4

µ
]
3/2
) (197)

⋅
⎛
⎝
∑dj=1 ωj
ω2
d

⎞
⎠

2

max
j=1,...d

( 1

ωj − ωj+1
)
2

1

min (γ2k−1 − γ2k , γ2k − γ2k+1, γk−1 − γk, γk − γk+1)
2
, (198)

with k = 1, . . .K.

Theorem C.3 (Canonical Vector Error Bound). Under Assumptions C.1-C.4, and additionally as-
suming that θ⊺k,SΣXS

bk,S ≥ 0, we have

∥θk − θ̂k∥
2

2
= OP (

dτs log(p)
N

) 1

min (γ2k−1 − γ2k , γ2k − γ2k+1, γk−1 − γk, γk − γk+1)
2

(199)

⋅
⎡⎢⎢⎢⎢⎣
∥Σ−1/2XS

∥
2

(∑dj=1 ωj)
2

ω3
d

max
j=1,...d

( 1

ωj − ωj+1
)
2

E [∥Logµ y∥
4

µ
]
3/2
+ (γ1

γk
)
2

∥ΣX∥2,∞ κ2 ∥Σ−1X ∥2
⎤⎥⎥⎥⎥⎦
,

(200)

with k = 1, . . .K.

Here we make a few remarks on the assumptions of Theorems C.2 and C.3. Some of the more
technical assumptions arise from avoiding overly simplifying assumptions. For instance, with the ex-
ception of the curvature-related quantity Ht(x), we do not assume that the random variables/functions
are bounded. Furthermore, we avoid assuming Gaussianity of the random variables of interest and
instead assume these are sub-Gaussians. As in Lin and Yao (2019), we do not assume that the Frechét
mean µ is known and instead estimate it using its sample version µ̂; this choice introduces significant
complexity, making it necessary to use the parallel transport operator to compare estimates and esti-
mands, which are defined in different tangent spaces. These challenges are further compounded by the
dimensionality reduction step that takes place before CCA, which requires that we derive bounds in
expectation rather than in probability. Specifically, this requires showing that E [d (µ̂(t), µ(t))2] ≲ 1

N ,
i.e., equation (251), using the results of Schötz (2019) as opposed to those of Lin and Yao (2019). See
also Remark 9.
Remarks on Assumption C.1:
Assumption C.1 is required to bound the term E [d (µ̂(t), µ(t))2]. See also Lemma C.9. Here, Ht(x)
is the Riemannian Hessian of the random function d2(x, y(t)), and is related to curvature on the
manifold (Pennec 2017). Assuming this quantity is bounded allows us to bound the parallel transport
distance in terms of the geodesic distance, as shown in Lemma C.8.
Remarks on Assumption C.2:
Items 1-4 of Assumption C.2 are used to facilitate the application of our multivariate CCA results
in Section 4.1 to the sparse-functional setting considered here. Specifically, Items 3-4 are used in
particular to get fast-rate bounds, which match the root-n estimation rate of the functional quantities.
We note that in item 3, we do not require that θk and bk have the same sparsity structure, but only
that they are both s-sparse. Item 4 is a generalization of the standard restricted-eigenvalue condition
in Lasso theory (Hastie et al. 2015) and is equivalent to the one proposed in Gaynanova (2020). Item
5 is a weak assumption about the boundedness of the variance of y(t) on the manifold and along with
Assumption C.1 is necessary to show that E [d (µ̂(t), µ(t))2] is root-n consistent.
Remarks on Assumption C.3:
Item 1 of Assumption C.3 formalizes our asymmetrical treatment of the data, where we assume
that the rank of the functional data is smaller than the dimension of the high-dimensional data.
Items 2 - 5 are mainly used to simplify the theorem statements by allowing us to bound norms of
estimated quantities using the corresponding population quantities. In particular, item 2 is used in
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conjunction with Lemma C.12 to show that ∥Σ̂Z∥2 ≲ ∥ΣY ∥2. Item 3 allows us to only make a group

restricted eigenvalue assumption on Σ
1/2
X rather than the data matrix 1√

N
X (see Lemma B.9). Item

4 states that the variances ωj of the principal scores Yj should not shrink too quickly as N and
d grow. Note that if d is assumed constant, the condition reduces to s = o(N). This is used to
establish the simplifying bounds given in Lemmas C.12 and C.14. Item 5 is used to replace γ̂k and
γ̃k with the population canonical correlations γk (see Lemma C.14 and the discussion in the proof
of Theorem B.2). Items 6 and 7 are technical conditions. These mainly arise from the complexity

of the setting considered here. The assumption E [∥ϕ̂jδΓϕj∥
4

µ
]
1/2
≲ E [∥ϕ̂jδΓϕj∥

2

µ
] could be replaced

with a boundness assumption on ∥Logµ yi∥µ, or alternatively, by adopting a sample splitting strategy

to estimate µ̂, the principal components {ϕ̂j}, and to carry out CCA. This can be seen from the
second term of equation (174), where the absence of one of these assumptions requires that we use the
Cauchy-Schwarz inequality, introducing fourth moments. Note that if we were to assume that µ̂ = µ,

then E [∥Logµ̂ yiδΓ Logµ yi∥
4

µ
]
1/2
= 0, immediately satisfying the condition in item 7.

Remarks on Assumption C.4:
Items 1-3 are not critical and only serve the purpose of simplifying the theorem statements. Item 4 is
introduced to account for the sign ambiguity of the CCA solutions.

C.4 Proofs for results in Section C

Proof of Lemma C.1:
We define ψ̃k = ∑dj=1 ϕ̂jakj . For ease of notation, we drop the k in writing ψ̂k, ψk and ψ̃k, ηk, etc. We
have

∥ψ̂δΓψ∥2µ= ∥Γµ̂,µψ̂ − ψ∥
2

µ
≤ 2 ∥Γµ̂,µψ̂ − Γµ̂,µψ̃∥

2

µ
+ 2 ∥Γµ̂,µψ̃ − ψ∥

2

µ
. (201)

The first term in equation (201) is

2 ∥Γµ̂,µ (ψ̂ − ψ̃)∥
2

µ
= ∥Γµ,µ̂ (Γµ̂,µ (ψ̂ − ψ̃))∥

2

µ̂
= 2 ∥ψ̂ − ψ̃∥2

µ̂
.

Define ψ̄ as ∑dj=1 ϕ̂jηj . Then the second term in equation (201) is

≤ 4 ∥Γµ̂,µψ̃ − Γµ̂,µψ̄∥
2

µ
+ 4 ∥Γµ̂,µψ̄ − ψ∥

2

µ
.

Therefore,

∥ψ̂δΓψ∥2µ≲ ∥ψ̂ − ψ̃∥
2

µ̂
+ ∥ψ̃ − ψ̄∥2

µ̂
+ ∥ψ̄δΓψ∥

2

µ
. (202)

The first term in equation (202) is

∥ψ̂ − ψ̃∥2
µ̂
=
XXXXXXXXXXX

d

∑
j=1

ϕ̂j η̂j −
d

∑
j=1

ajϕ̂j

XXXXXXXXXXX

2

µ̂

=
XXXXXXXXXXX

d

∑
j=1

ϕ̂j (η̂j − aj)
XXXXXXXXXXX

2

µ̂

= ∥η̂ − a∥22 , (203)

where in the third equality we have used that the ϕ̂j are orthonormal in L2(T µ̂). Similarly, the second
term is

∥ψ̃ − ψ̄∥2
µ̂
= ∥a − η∥22 . (204)

By the triangle inequality, the third term is

∥ψ̄δΓψ∥
2

µ
≤
⎛
⎝
∥η∥∞

d

∑
j=1
∥ϕ̂jδΓϕj∥µ

⎞
⎠

2

, (205)

completing the proof.
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Proof of Lemma C.2:
For ease of notation, we write XS as X throughout the proof of the lemma. From the definition of A
and C, we have

∥A −C∥F = ∥Σ
−1/2
X ΣXZΣ

−1/2
Z −Σ

−1/2
X ΣXY Σ

−1/2
Y ∥

F
= ∥Σ−1/2X (E [XZ⊺]Σ−1/2Z −E [XY ⊺]Σ−1/2Y )∥

F
.

(206)
From the linearity of expectation, this is

= ∥E [Σ−1/2X X (Z⊺Σ−1/2Z − Y ⊺Σ−1/2Y )]∥
F
= ∥E [Σ−1/2X X (Σ−1/2Z Z −Σ

−1/2
Y Y )

⊺
]∥
F
. (207)

By Theorem 2.6.7 of Hsing and Eubank (2015), using the Frobenious norm of an outer product, and
the Cauchy-Schwarz inequality, we have

∥A −C∥F ≤ E [∥Σ
−1/2
X X (Σ−1/2Z Z −Σ

−1/2
Y Y )

⊺
∥
F
] (208)

= E [∥Σ−1/2X X∥
2
∥Σ−1/2Z Z −Σ

−1/2
Y Y ∥

2
] (209)

≤ E [∥Σ−1/2X X∥
2

2
]
1/2

E [∥Σ−1/2Z Z −Σ
−1/2
Y Y ∥

2

2
]
1/2
. (210)

We have that E [∥Σ−1/2X X∥
2

2
] = E [tr (Σ−1X XX⊺)] = tr (Is) = s. Using this along with identity 17 from

Section D to upper bound E [∥Σ−1/2Z Z −Σ
−1/2
Y Y ∥

2

2
]
1/2

completes the proof.

Proof of Lemma C.3:
The first statement follows from the second statement, by identity 14 from Section D and Lemma C.3.
To show the second statement, we begin with

∥ΣY −ΣZ∥2 = ∥E [Y Y ⊺] −E [ZZ⊺]∥2 = ∥E [Y Y
⊺ −ZZ⊺]∥

2
, (211)

and using Theorem 2.6.7 of Hsing and Eubank (2015), this is

≤ E [∥Y Y ⊺ −ZZ⊺∥
2
] = E [∥Y Y ⊺ −ZY ⊺ +ZY ⊺ −ZZ⊺∥

2
] = E [∥Z (Z − Y )⊺ + (Z − Y )Y ⊺∥

2
] . (212)

From this, the triangle inequality, and using the two-norm of an outer product, we have

∥ΣY −ΣZ∥2 ≤ E [∥Z (Z − Y )
⊺∥

2
] +E [∥(Z − Y )Y ⊺∥

2
] = E [∥Z∥2 ∥Z − Y ∥2] +E [∥Z − Y ∥2 ∥Y ∥2] (213)

By the Cauchy-Schwarz inequality, the right hand side is

= E [(∥Z∥2 + ∥Y ∥2) ∥Z − Y ∥2] ≤ E [(∥Z∥2 + ∥Y ∥2)
2]1/2E [∥Z − Y ∥22]

1/2
(214)

The second statement of the lemma follows, and the proof is complete.

Proof of Lemma C.5:
Define W ∈ Rd as the random vector with Wj ≡ ⟪Logµ y1,Γµ̂,µϕ̂j⟫µ for j = 1, . . . d. Then

∥Z − Y ∥22 ≤ 2 ∥Z −W ∥22 + 2 ∥W − Y ∥22 . (215)

We have

Zj −Wj = ⟪Logµ̂ y1, ϕ̂j⟫µ̂ − ⟪Logµ y1,Γµ̂,µϕ̂j⟫µ (216)

= ⟪Logµ̂ y1, ϕ̂j⟫µ̂ − ⟪Γµ,µ̂ Logµ y1, ϕ̂j⟫µ̂ (217)

= ⟪Logµ̂ y1 − Γµ,µ̂ Logµ y1, ϕ̂j⟫µ̂, (218)
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and therefore, by the Cauchy-Schwarz inequality, and because the ϕ̂j are orthonormal along µ̂,

∣Zj −Wj ∣ ≤ ∥Logµ̂ y1 − Γµ,µ̂ Logµ y1∥µ̂∥ϕ̂j∥µ̂ (219)

= ∥Logµ y1δΓ Logµ̂ y1∥µ̂ (220)

= ∥Logµ̂ y1δΓ Logµ y1∥µ , (221)

where in the last equality we have used that ∥UδΓV ∥µ= ∥V δΓU∥µ̂ for U ∈ L2(T µ̂) and V ∈ L2(Tµ).
We also have

Wj − Yj = ⟪Logµ y1,Γµ̂,µϕ̂j⟫µ − ⟪Logµ y1, ϕj⟫µ (222)

= ⟪Logµ y1, ϕ̂jδΓϕj⟫µ, (223)

so that again by the Cauchy-Schwarz inequality,

∣Wj − Yj ∣ ≤ ∥Logµ y1∥µ ∥ϕ̂jδΓϕj∥µ . (224)

Thus,

∥Z − Y ∥22 ≤ 2
d

∑
j=1
∣Zj −Wj ∣2 + ∣Wj − Yj ∣2 (225)

≤ 2
d

∑
j=1
∥Logµ̂ y1δΓ Logµ y1∥

2

µ
+ ∥Logµ y1∥

2

µ
∥ϕ̂jδΓϕj∥

2

µ
, (226)

from which the statement of the lemma follows, and the proof is complete.

Proof of Lemma C.6:
From Lin and Yao (2019) (page 3551), Γµ̂,µϕ̂j are the eigenvectors of ΦĈ. By definition, the ϕj are
the eigenvectors of C. Thus, we can use the Davis-Kahan Theorem for Hilbert spaces (Jirak and Wahl
2020) to obtain that

Γµ̂,µϕ̂j − ϕj ≤ 2
√

2 max ((ωj−1 − ωj)−1 , (ωj − ωj+1)−1) ∥C −ΦĈ∥op, (227)

where ω0 ≡ ∞ and ∥C∥op≡ sup
U∈L2(Tµ),∥U∥µ=1

∥CU∥µ. Adding and subtracting Ĉµ in ∥C −ΦĈ∥op and using

identity 18 from Section D, the proof is complete.

Proof of Lemma C.7:
The first statement is equivalent to Lemma 5.2 of Cardot et al. (1999). To show the second statement,
we begin with the definition of Ĉ and Proposition 2 item 5 of Lin and Yao (2019), from which we
deduce that

ΦĈ = 1

N

N

∑
i=1
(Γµ̂,µ Logµ̂ yi) ⊗ (Γµ̂,µ Logµ̂ yi) . (228)

This implies

Ĉµ −ΦĈ = 1

N

N

∑
i=1
ai ⊗ ai − bi ⊗ bi, (229)

where we denote ai ≡ Logµ yi and bi ≡ Γµ̂,µ Logµ̂ yi. It is straightforward to show that a ⊗ a − b ⊗ b =
a ⊗ (a − b) + (a − b) ⊗ (b − a) + (a − b) ⊗ a, where a, b ∈ L2(Tµ). From Theorem 3.4.7. of Hsing and
Eubank (2015), ∥a⊗ b∥op= ∥a∥µ∥b∥µ, and therefore,

∥a⊗ a − b⊗ b∥op≤ 2 ∥a∥µ ∥a − b∥µ + ∥a − b∥
2
µ . (230)
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Then,

∥Ĉµ −ΦĈop∥≤
1

N

N

∑
i=1

2 ∥Logµ yi∥µ ∥Logµ̂ yiδΓ Logµ yi∥µ + ∥Logµ̂ yiδΓ Logµ yi∥
2

µ
, (231)

so that

∥Ĉµ −ΦĈop∥2≲ (
1

N

N

∑
i=1

2 ∥Logµ yi∥µ ∥Logµ̂ yiδΓ Logµ yi∥µ)
2

+ ( 1

N

N

∑
i=1
∥Logµ̂ yiδΓ Logµ yi∥

2

µ
)
2

. (232)

It is straightforward to show that, for any i.i.d. random variables Wi with finite variance we have

E
⎡⎢⎢⎢⎢⎣
( 1

N

N

∑
i=1
Wi)

2⎤⎥⎥⎥⎥⎦
≤ E [W 2

1 ] , (233)

where the Wi are not required to have mean 0. Taking the expectation in equation (232), applying this
last result on each term, using the Cauchy-Schwarz inequality, and subsequently using the assumption
stated in the Lemma concerning ∥Logµ̂ yiδΓ Logµ yi∥µ, the proof is complete.

Proof of Lemma C.8:
We start with a mean value theorem result for smooth functions f from [0, t1] into a normed vector
space V , where t1 ∈ R. By Theorem 1.1.1. of Hörmander (2015), we have

∥f(t1) − f(0)∥= ∣b − a∣ sup
c∈[0,t1]

f ′(c). (234)

We set
f(t) = Γγ(t),γ(0)U (γ(t)) −U (γ(0)) , (235)

where U is a smooth vector field on M, U ∶ M → TM, and γ(t) is the minimizing geodesic between
two points x, y ∈ M (γ(0) = x, γ ((x, y)) = y. Letting t1 = d(x, y), then γ ∶ [0, t1] →M, and f ∶ [0, t1] →
TxM. Letting ∥W ∥x denote the norm of W ∈ TxM, and using f(t) in equation (234), we have

∥Γy,xU(y) −U(x)∥≤ d(x, y) sup
c∈[0,d(x,y)]

∥f ′(c)∥. (236)

We can determine f ′(c):

f ′(c) = lim
t→0+

f(c + t) − f(c)
t

(237)

= lim
t→0+

Γγ(c+t),xU (γ(c + t)) −U(x) − Γγ(c),xU (γ(c)) +U(x)
t

(238)

= lim
t→0+

Γγ(c+t),xU (γ(c + t)) − Γγ(c),xU (γ(c))
t

. (239)

Using that Γz,xU(z) = Γy,x (Γz,yU(z)), where x = x, y = γ(c), and z = γ(c + t), we have

f ′(c) = lim
t→0+

Γγ(c),x [Γγ(c+t),γ(c)U (γ(c + t)) −U (γ(c))]
t

(240)

= Γγ(c),x [ lim
t→0+

Γγ(c+t),γ(c)U (γ(c + t)) −U (γ(c))
t

] (241)

= Γγ(c),x [∇γ′(c)U] . (242)

Since for any smooth vector field W , ∥Γy,x (W ) ∥x= ∥W ∥y, the proof is complete.
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Proof of Lemma C.9:
We apply Lemma C.8 to the vector Vt(p) ≡ Logp y1(t) for fixed t. We have that (equation (25) of
Kendall and Le (2011))

Vt(p) = grad(−1

2
d (p, y1(t))2) = grad (ft) (p). (243)

Then, by the definition of the Riemannian Hessian Ht of ft, for a smooth curve γ on M at time c,

∥∇γ′(c)Vt (γ(c)) ∥γ(c)= ∥∇γ′(c) grad (ft) (p)∥γ(c)= ∥Ht (γ(c)) (γ′(c)) ∥γ(c). (244)

Using Lemma C.8, we choose x = µ(t) and y = µ̂(t), and we denote γt(s) as the minimizing geodesic
between µ(t) and µ̂(t):

∥Γµ̂(t),µ(t) Log ˆµ(t) y1(t) − Logµ(t) y1(t)∥ ≤ d (µ̂(t), µ(t)) sup
c∈[0,d(µ̂(t),µ(t))]

∥Ht (γt(c)) (γ′t(c)) ∥γt(c) (245)

≲ d (µ̂(t), µ(t)) (246)

for all t ∈ T with probability one, where in the last inequality we have used Assumption 3 in the
Lemma statement along with the fact that, since γt(s) is a minimizing geodesic, ∥γ′(s)∥γ(s)= 1 for all
s. Then,

E [∥Logµ̂ y1δΓ Logµ y1∥2µ] = E [∫T ∥Γµ̂(t),µ(t) Log ˆµ(t) y1(t) − Logµ(t) y1(t)∥2dt] (247)

≲ E [∫T d (µ̂(t), µ(t))
2 dt] . (248)

By Tonelli’s theorem,

E [∫T d (µ̂(t), µ(t))
2 dt] = ∫T E [d (µ̂(t), µ(t))2]dt. (249)

Next, we will apply Corollary 4 of Schötz (2019) to bound E [d (µ̂(t), µ(t))2]. To do so, we need the fol-
lowing definitions related to the metric entropy of geodesic balls inM. LetBδ(a) ≡ {x ∈ M ∶ d(x, a) ≤ δ}
be the ball of radius r centered at a onM, and N(B, r) ≡min (k ∈ N∣∃q1, . . . qk ∈ M ∶ B ⊆ ⋃kj=1Br(qj))
be the covering number of a set B using radius r. Then, the entropy assumption in the statement of
Corollary 4 of Schötz (2019), that there exists 0 < β < 1 such that, for all δ, r > 0, log (N (Bδ (µ(t)) , r))1/2 ≲
( δ
r
)β, is satisfied (Ahidar-Coutrix et al. (2020) Example 2.3).
Now additionally using Assumption 1 made in the statement of the Lemma, we can apply Corollary

4 of Schötz (2019) with ε = 1 to obtain

E [d (µ̂(t), µ(t))2] ≲ E [d (y1(t), y2(t))3]
2/3 1

N
(250)

for all t ∈ T .
Using Assumption 2 made in the statement of the Lemma, we have

E [d (µ̂(t), µ(t))2] ≲ 1

N
, (251)

which we can combine with equation (248) to establish

E [∥Logµ̂ y1δΓ Logµ y1∥2µ] ≲ ∫T
1

N
dt = τ

N
, (252)

completing the proof.

Proof of Lemma C.12:
Note that E [∥Y ∥22] = E [Y ⊺Y ] = E [tr (Y Y ⊺)] = tr (E [Y Y ⊺]) = tr (ΣY ). Then, the first two statements
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of the Lemma follow from observing that ΣY is diagonal with entries ωj , the eigenvalues of the
covariance operator of Logµ y, by the results of Lemma A.1.

To show E [∥Z∥22] ≲ E [∥Y ∥
2
2], we begin with the triangle inequality:

E [∥Z∥22] ≲ E [∥Z − Y ∥
2
2] +E [∥Y ∥

2
2] . (253)

Using Lemma C.11 and E [∥Y ∥22] = ∑dj=1 ωj , we observe for E [∥Z∥22] ≲ E [∥Y ∥
2
2] to hold, it is necessary

that d
N max
j=1,...d

( 1
ωj−ωj+1

)
2
(∑dj=1)

−1 ≲ 1. This follows from assumption (183) provided in the Lemma,

because under the other assumptions provided in the Lemma, both (∑dj=1 ωj) /ω2
d and ∑dj=1 ωj are

greater than or equal to 1. From this, we also deduce that E [∥Z − Y ∥22] = o(1).
To show that ∥Σ−1Z ∥2 ≲ ∥Σ

−1
Y ∥2, a more involved argument is required. We again begin with the

triangle inequality:

∥Σ−1Z ∥
2

2
≲ ∥Σ−1Z −Σ−1Y ∥

2

2
+ ∥Σ−1Y ∥

2

2
(254)

≤ ∥Σ−1Z ∥
2

2
∥ΣZ −ΣY ∥22 ∥Σ−1Y ∥

2

2
+ ∥Σ−1Y ∥

2

2
. (255)

This implies

∥Σ−1Z ∥
2

2
− ∥Σ−1Z ∥

2

2
∥ΣZ −ΣY ∥22 ∥Σ−1Y ∥

2

2
≲ ∥Σ−1Y ∥

2

2
, (256)

so that

∥Σ−1Z ∥
2

2
(1 − ∥ΣZ −ΣY ∥22 ∥Σ−1Y ∥

2

2
) ≤ ∥Σ−1Y ∥

2

2
, (257)

and therefore, if ∥ΣZ −ΣY ∥22 ∥Σ−1Y ∥
2

2
= o(1) held, then we would have ∥Σ−1Z ∥2 ≲ ∥Σ

−1
Y ∥2 and the proof

would be complete. Thus, to show ∥Σ−1Z ∥2 ≲ ∥Σ
−1
Y ∥2, it suffices to show that d

N

∑d
j=1 ωj

ω2
d

max
j=1,...d

( 1
ωj−ωj+1

)
2
=

o(1) implies ∥ΣZ −ΣY ∥22 ∥Σ−1Y ∥
2

2
= o(1). From the second item of Lemma C.3 and from E [∥Z∥22] ≲

E [∥Y ∥22] which has already been shown, we have

∥ΣZ −ΣY ∥22 ≤max (E [∥Z∥22] ,E [∥Y ∥
2
2])E [∥Z − Y ∥

2
2] (258)

≲ E [∥Z − Y ∥22]
d

∑
j=1

ωj . (259)

Thus, for ∥ΣZ −ΣY ∥22 ∥Σ−1Y ∥
2

2
= o(1) to hold, it suffices to show that 1

ω2
d

E [∥Z − Y ∥22]∑dj=1 ωj = o(1).
From Lemma C.11, we have made exactly the assumption so that 1

ω2
d

E [∥Z − Y ∥22]∑dj=1 ωj = o(1) holds,

completing the proof that ∥Σ−1Z ∥2 ≲ ∥Σ
−1
Y ∥2.

To show the final statement of the Lemma, that ∥ΣZ∥2 ≲ ∥ΣY ∥2, we can make an argument similar

to the one used to show ∥Σ−1Z ∥2 ≲ ∥Σ
−1
Y ∥2. From this, it suffices to show that d

N

∑d
j=1 ωj

ω2
1

max
j=1,...d

( 1
ωj−ωj+1

)
2
=

o(1). Since ωd ≤ ω1,
d
N

∑d
j=1 ωj

ω2
1

max
j=1,...d

( 1
ωj−ωj+1

)
2
= o(1) holds under our assumptions and the proof is

complete.

Proof of Lemma C.14:
To bound ∣γk − γ̃k∣, we can use Weyl’s inequality (Bhatia (2013) Corollary III.2.6.), because γk and γ̃k
are the k eigenvalues of the matrices ∣C ∣ and ∣A∣ respectively (Uurtio et al. 2018):

∣γk − γ̃k∣ ≤ ∥∣A∣ − ∣C ∣∥2 ≤ ∥∣A∣ − ∣C ∣∥F ≲ ∥A −C∥F , (260)
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where in the second inequality we have used identity 19 from Section D. Combining Lemmas C.11,
C.12, and C.13, we observe that the stated assumption in the Lemma implies ∣γk − γ̃k∣ ≲ min{γk, γ̃k},
establishing the stated conclusion using the assumption that γk and γ̃k are bounded from below. That
γ2k and γ̃2k are asymptotically equivalent follows from the same argument, in addition to the function
f(x) = x2 being Lipschitz continuous on the interval [0,1].

D Additional identities and inequalities

In the proofs, we use several identities and inequalities involving matrices. For definitions of the various
matrix operations used below we refer to Section B.1. In the following, A and B denote matrices for
which the specified matrix multiplications are valid.

1. For x ∈ Rp, ∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1.

2. ∥x∥2 ≤
√
p ∥x∥∞, ∥x∥1 ≤

√
p ∥x∥2, and ∥x∥1 ≤ p ∥x∥∞.

3. ∥A∥max ≤ ∥A∥2,∞ ≤ ∥A∥2 ≤ ∥A∥F ≤ ∥A∥ℓ1,ℓ2
4. For induced norms, ∥AB∥β,α≤ ∥A∥γ,α∥B∥β,γ (Trefethen and Bau (2022) equation (3.14)). In

particular, ∥AB∥2= ∥AB∥2,2≤ ∥A∥∞,2∥B∥2,∞.

5. For any matrix A, ∥A∥2 = ∥A⊺A∥
1/2
2 .

6. In addition to its definition as the largest singular value, ∥A∥2 is the norm induced by ∥⋅∥2 and
∥⋅∥2.

7. In addition to its definition as the norm induced by the ∥⋅∥2 and ∥⋅∥∞ norms, ∥A∥2,∞ =maxi(∥Ai∥2),
where Ai is the ith row of A. (Cape et al. (2019) Proposition 6.1.)

8. ∥AB∥2,∞ ≤ ∥A∥2,∞ ∥B∥2. (Cape et al. (2019) Proposition 6.5.)

9. For B ∈ Rp×d, ∥B∥2,∞ ≤
√
d ∥B∥max.

10. For the induced norm ∥⋅∥∞,2, ∥B⊺∥∞,2≤ ∥B∥ℓ1,ℓ2 .

11. IfA ∈ Rd×p, andB ∈ Rp×d, then ∥AB∥2 ≤ ∥A⊺∥2,∞ ∥B∥ℓ1,ℓ2 . Additionally, ∥AB∥2 ≤ ∥A⊺∥ℓ1,ℓ2 ∥B∥2,∞.

12. ∥AB∥ℓ1,ℓ2 ≤ ∥A∥ℓ1,ℓ2 ∥B∥2.

13. If A,B ∈ Rd×d are positive definite, then ∥A1/2 −B1/2∥
2
≤ 1

2 max (∥A−1∥
2
, ∥B−1∥

2
)1/2 ∥A −B∥2.

14. If A,B ∈ Rd×d are positive definite, then ∥A−1/2 −B−1/2∥
2
≤ 1

2 max (∥A−1∥
2
, ∥B−1∥

2
)3/2 ∥A −B∥2.

15. For any positive definite matrices A,B of the same size, the product AB is diagonalizable with
positive eigenvalues. Additionally, AB has the same eigenvalues as (AB2A)1/2. In particular,
∥AB − I∥2 = ∥(AB2A)1/2 − I∥

2
. Note that AB may not be symmetric, and therefore is not

necessarily positive definite.

16. For positive real numbers x and y, ∣x−1 − y−1∣ ≤min(x, y)−3 ∣x2 − y2∣.

17. For A,B ∈ Rd×d, a, b ∈ Rd, ∥Aa −Bb∥22 ≲ ∥A −B∥
2
2 ∥a∥

2
2 + ∥B∥

2
2 ∥a − b∥

2
2

18. For any norm ∥⋅∥, ∥a + b∥2≤ 3 (∥a∥2+∥b∥2).

19. For matrices A,B of the same dimensions, ∥∣A∣ − ∣B∣∥F ≤
√

2 ∥A −B∥F , where ∣A∣ ≡ (A⊺A)1/2.
(Bhatia (2013) equation VII.39)
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Proof. We prove the non-standard or non-straightforward results.
Proof of 10:
To show ∥B⊺∥∞,2≤ ∥B∥ℓ1,ℓ2 , we use the definition:

∥B⊺∥∞,2≡ sup
∥x∥

∞
=1
∥B⊺x∥

2
. (261)

Without loss of generality, let B be an element of Rp×d. ∥B⊺x∥2 = ∥∑
p
i=1 bixi∥2 where bi is the ith row

of B, and xi is the ith entry of x ∈ Rp. For x ∈ Rp with ∥x∥∞ = 1, we have

∥
p

∑
i=1
bixi∥

2

≤
p

∑
i=1
∣xi∣ ∥bi∥2 ≤

p

∑
i=1
∥bi∥2 = ∥B∥ℓ1,ℓ2 , (262)

using the triangle inequality and because ∥x∥∞ = 1. This completes the proof.
Proof of 11:
To show ∥AB∥2 ≤ ∥A⊺∥2,∞ ∥B∥ℓ1,ℓ2 , we begin by using item 4 to obtain

∥AB∥2 = ∥B⊺A⊺∥2 ≤ ∥B
⊺∥∞,2∥A⊺∥2,∞. (263)

Using item 10 we have
∥B⊺∥∞,2∥A⊺∥2,∞≤ ∥B∥ℓ1,ℓ2 ∥A

⊺∥2,∞, (264)

completing the proof of the first statement. To show the second statement, we proceed similarly but
apply item 4 to ∥AB∥2 instead of ∥B⊺A⊺∥2.
Proof of 12:
To show ∥AB∥ℓ1,ℓ2 ≤ ∥A∥ℓ1,ℓ2 ∥B∥2, we begin with the definition. Without loss of generality, A ∈ Rp×q
and B ∈ Rp×r. We have

∥AB∥ℓ1,ℓ2 =
p

∑
i=1
∥(AB)i∥2 =

p

∑
i=1
∥A⊺iB∥2 ≤

p

∑
i=1
∥ai∥2 ∥B∥2 = ∥A∥ℓ1,ℓ2 ∥B∥2 , (265)

where (C)i denotes the ith row of a matrix C and we have used item 6.
Proof of 13:
The statement follows from equation X.46 of Bhatia (2013) by choosing r = 1/2 and since the 2-norm
is unitarily invariant.
Proof of 14:
We begin with the equality A−1−B−1 = A−1 (B −A)B−1, which holds for any square invertible matrices
A and B of the same size. This implies

∥A−1 −B−1∥
2
≤ ∥A−1∥

2
∥A −B∥2 ∥B−1∥2 . (266)

We apply this to the matrices A1/2 and B1/2 to obtain

∥A−1/2 −B−1/2∥
2
≤ ∥A−1/2∥

2
∥A1/2 −B1/2∥

2
∥B−1/2∥

2
. (267)

Using item 13 on ∥A1/2 −B1/2∥
2

in the last inequality, we deduce that

∥A−1/2 −B−1/2∥
2
≤ 1

2
max (∥A−1∥

2
, ∥B−1∥

2
)1/2 ∥A −B∥2 ∥A−1/2∥2 ∥B

−1/2∥
2

(268)

= 1

2
∥A−1/2∥

2
∥B−1/2∥

2
max (∥A−1/2∥

2
, ∥B−1/2∥

2
) ∥A −B∥2 (269)

One of ∥A−1/2∥
2

and ∥B−1/2∥
2

is larger, and in either case, the statement to be proven holds.
Proof of 15:
The first claim, that AB is diagonalizable with positive eigenvalues, follows from Proposition 6.1
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of Serre (2010). To show that AB has the same eigenvalues as (AB2A)1/2, let C = AB, so that

(AB2A)1/2 = (CC⊺)1/2. Letting UΣV ⊺ = C be a singular value decomposition of C, we have

(CC⊺)1/2 = (UΣV ⊺V ΣU⊺)1/2 = (UΣ2U⊺)1/2 = UΣU⊺, (270)

where in the last line we have used that C has positive singular values from the first claim.
The last claim follows from the previous claim, since for diagonalizable matrix C where C =WDW−1

with D diagonal, we have

C − I =WDW−1 −WIW −1 =W (D − I)W −1, (271)

so that C − I has eigenvalues equal to those of C minus 1.
Proof of 16:
Letting f(x) = x−1/2, the mean value theorem implies

∣f(x) − f(y)∣ ≤min (x, y)−3/2 ∣x − y∣ . (272)

Plugging in x2 for x and y2 for y, we obtain the result.
Proof of 17:
The statement follows from adding and subtracting Ba and the inequality∥a + b∥22 ≤ 2 ∥a∥22 + 2 ∥b∥22.
Proof of 18:
From the triangle inequality, we have

∥a + b∥22 ≤ (∥a∥2 + ∥b∥2)
2 = ∥a∥22 + 2 ∥a∥2 ∥b∥2 + ∥b∥

2
2 (273)

One of ∥a∥2 or ∥b∥2 is larger than the other, and in either case, we deduce that ∥a∥22+2 ∥a∥2 ∥b∥2+∥b∥2 ≤
3 (∥a∥22 + ∥b∥

2
2), completing the proof.

E Intrinsic RFPCA algorithm

For completeness, in this section, we outline the main steps of the Intrinsic RFPCA algorithm. Recall
that M is the dimension ofM, d is the number of principal components to compute, N is the number
of observations, and L is the number of time-steps.

1. Estimate µ ∶ T → M, the functional Frechét mean of y, by computing the Frechét mean of
{yi(tl)}i separately for each point in {tl}l=1,...,L where the functional data are observed.

2. Compute the linear representations Logµ̂ yi ∈ L2(T µ̂), for i = 1, . . .N . In practice, this can be
done by computing Logµ̂(tl) yi(tl) ∈ Tµ̂(tl)M for every tl by using the Log map on M.

3. Let E(x) be an orthonormal frame for the tangent space centered at x ∈ M (see Section E.1 for
an example). An orthonormal frame is a collection of tangent bases E(x) = {E1(x), . . .EM(x)}
for TxM, with x ∈ M, which varies smoothly with x, i.e. for each k = 1, . . .M , Ek(x) is a smooth
map fromM to TM. For any fixed x ∈ M, the functions {Ek(x)} are orthonormal with respect
to the inner product on TxM, that is, ⟨⋅, ⋅⟩x.

Compute the functional ‘coefficients’ Ẑi ∶ T → RM of the expansion of Logµ̂ yi ∶ T → TM relative

to E, for each i = 1, . . .N . In practice, Ẑi(tl) ∈ RM is computed separately for every l = 1, . . . L.
The kth entry of Ẑi(tl) ∈ RM is computed as ⟨Logµ̂(tl) yi(tl),Ek(µ̂(tl)⟩µ̂(tl) for k = 1, . . .M .

The resulting {Ẑi} are estimates of the realizations of a real vector-valued random process
Z ∶ T → RM , with kth component Zk ∶ T → R given by Zk(t) = ⟨Logµ(t) y(t),Ek(µ(t)⟩µ(t).
The process Z is a real vector-valued process with the same principal scores as the process Logµ y,

and the jth principal component of Z, πj ∶ T → RM , is related to the jth principal component of
Logµ y, ϕj ∈ L2(Tµ), via ϕj = ∑Mk=1 πjkEk. Here, πjk denotes the kth entry of πj for k = 1, . . .M .
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4. Apply Multivariate Functional Principal Component Analysis (MFPCA) (Happ and Greven
2018) to the functions {Ẑi} to estimate d principal component functions π̂j of the functional
coefficients.

Estimate the principal component functions {ϕj} of the Log representations of the functional

data as ϕ̂j = ∑Mk=1 π̂jkEk(µ̂), for j = 1, . . . d. Then, estimate the associated scores as Ŷij =
1
L ∑

L
l=1Zi(tl)⊺π̂j(tl), for j = 1, . . . d and i = 1, . . .N . The score estimates do not depend on the

choice of the orthonormal frame E (Proposition 5, item 2 of Lin and Yao (2019)). Compute
variance estimates λ̂j = Var(Ŷij).

5. Return the estimated scores {Ŷij}, variances {λ̂j} and principal component functions {ϕ̂j}.

E.1 An orthonormal frame for a manifold of SPD matrices

Here we provide an explicit construction of an orthonormal frame in the setting whereM is the man-
ifold of Rm×m symmetric positive matrices equipped with the affine invariant metric, as in our applica-
tion setting. Recall that the maps Log and Exp maps are defined as LogF (G) = F 1/2 log (F−1/2GF −1/2)F 1/2

and ExpF (W ) = F 1/2 exp (F−1/2WF−1/2)F 1/2. Moreover, the inner product at F ∈ M between

W,Z ∈ TFM is defined as ⟨W,Z⟩M = tr (F−1WF−1Z). In this setting, we can use the result from
Section 3.3.3.3. of Pennec et al. (2019), which provides an explicit construction of an orthonormal
frame E(F ) for the tangent bundle, evaluated at an arbitrary F ∈ M. This can be defined as:

Eij (F ) =
⎧⎪⎪⎨⎪⎪⎩

(F 1/2ei) (F 1/2ei)
⊺ (1 ≤ i = j ≤m)

1√
2
((F 1/2ei) (F 1/2ej)

⊺ + (F 1/2ej) (F 1/2ei)
⊺) (1 ≤ i < j ≤m),

(274)

where ei denotes the ith standard unit vector in Rm, and F ∈ Rm×m. For a fixed F ∈ M, there are
M = m(m + 1)/2 unique Eij (F ), where M is the dimension of M. We also note that the iterative
algorithm proposed in Cheng et al. (2016) can be used to estimate the Fréchet mean µ is detailed in
equations (13) and (14) of Cheng et al. (2016).
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