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Abstract

Glassy polymer melts such as the plastics used in pipes, structural materials, and medical devices are ubiqui-
tous in daily life. They accumulate damage over time due to their use, which limits their functionalities and
demands periodic replacement. The resulting economic and social burden could be mitigated by the design
of self-healing mechanisms that expand the lifespan of materials. However, the characteristic low molecu-
lar mobility in glassy polymer melts intrinsically limits the design of self-healing behavior. We demonstrate
through numerical simulations that controlled oscillatory deformations enhance the local molecular mobility
of glassy polymers without compromising their structural or mechanical stability. We apply this principle
to increase the molecular mobility around the surface of a crack, inducing fracture repair and recovering
the mechanical properties of the pristine material. Our findings establish a general physical mechanism of
self-healing in glasses that may inspire the design and processing of new glassy materials.
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Self-healing refers to the ability of a material to restore functionality after undergoing physical damage. This
characteristic is prominent in living materials such as plants [1], mammalian cells [2], and human skin [3].
In contrast, synthetic materials lack self-healing mechanisms and the accumulated damage over time leads
to macroscopic fractures and mechanical failure. In recent decades, the search for self-healing mechanisms
in synthetic materials has become increasingly important for a sustainable environment [4, 5], promising to
lower waste production and energy costs by diminishing the need for manufacturing replacements. Chemical
modifications introducing dynamic covalent [6, 7] and physical bonds [8, 9], that break and reform reversibly
can add self-healing abilities to synthetic materials. However, these mechanisms strongly rely on a sufficiently
high molecular mobility within the material which facilitates mass transport, favoring the reconnection of crack
surfaces and subsequent healing [10, 11].

Molecular mobility typically shows a dramatic decrease once a material is cooled below its glass-transition
temperature Tg. Below Tg, materials exhibit rigidity because molecules are kinetically arrested. Above Tg,
materials become flexible and viscous. Although soft materials such as elastomers and hydrogels maintain a solid
shape due to covalent bonds, molecular segments have high local mobility at room temperature, i.e. Tg < Tr,
which enables the use of intrinsic mechanisms to induce self-healing in soft materials [12–16]. In contrast, glassy
polymer melts evidence an extremely low local mobility, since Tg ≫ Tr. The kinetically arrested nature of glassy
systems gives rise to mechanical stability and a high elastic modulus, but disables potential intrinsic mechanisms
that induce self-healing in soft materials. To overcome this low mobility, alternative approaches rely on the
synthesis of polymers with complex architectures or functionalization [8, 17, 18] that are not suited for large-
scale production since the synthesis becomes complex, expensive and may give rise to mechanical properties
different from those required [19–22]. Therefore, these strategies apply only to very specific materials and create
a critical bottleneck for the development of general self-healing glassy polymer melts such as everyday plastics.

Here we demonstrate by numerical simulations a general alternative approach that involves applying
controlled oscillatory deformations on damaged glassy polymer melts to heal micro-cracks. Traditionally, defor-
mations are associated with damage and fracture propagation. Large deformations in glassy materials trigger
mechanical rejuvenation, restoring the system to an unaged state, similar to the thermodynamic effect of tem-
perature increase. However, experimental studies on glassy polymers undergoing uniaxial deformation have
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shown enhanced molecular mobility before altering the underlying physical aging [23, 24]. Metallic polycrys-
talline alloys can undergo healing under well-controlled tensile high-cycle fatigue [25] by merging the crack
propagation front at the surface of grain boundaries. The orientation of the grain boundary planes arrests the
crack propagation, promoting the healing via cold welding [26, 27]. Likewise, numerical simulations of nanocrys-
talline metals reported that tensile and oscillatory shear deformations [28] induce stress-driven grain boundary
migration. We expect that similar mechanisms would also be observed in damaged amorphous glasses, which
we prove numerically for model glassy polymer melts.

1 Results

Our framework involves glassy polymer melts with short chains to avoid entanglement effects. Beads belonging
to the same chain interact via harmonic covalent bonds. Non-consecutive beads and beads from different chains
interact attractively, corresponding to non-covalent interactions [29]. The bead size is d, setting our length units
(see the Methods section for a detailed model description). We explore a range of temperatures T from a fluid
(T > Tg) to a glassy (T < Tg) state. We quantify the molecular mobility from the α-relaxation time τα extracted
from the decay of intermediate self-scattering function Fs (q

∗, t), with q∗ corresponding to the length scale of
the glassy cage, see Fig. S1.

Before showing that oscillatory deformations can heal fractures in glassy melts, we characterize the bulk α-
relaxation dynamics under shear. The oscillatory deformation depends on the strain amplitude γA and frequency
ω, as γ (t) = γAsin (ωt). The combination of possible values within the set {γA, ω} is vast, even restraining
our simulations to a regime where the system temperature remains stable in the canonical NV T ensemble.
To restrict and rationalize our design space, we first study the rheological behavior of glassy polymer melts
under steady shear deformations. The stress-strain evolution picture is well established in amorphous solid
materials [30]: there is an initial linear response corresponding to solid elastic behavior at small deformations
dominated by sterical cages, while plastic deformations at large strains eventually trigger a viscous fluid behavior
due to cage breaking. This transition is marked by a stress overshoot, placed at the yielding point γy,2. This
picture is true for particle suspensions interacting sterically. However, in the present system, we consider linear
chains interacting through attractive non-covalent bonds. As illustrated in Fig. 1(a), a first yielding point
γy,1 emerges at small strain values as transient bonds break, allowing monomers to escape from interparticle
attraction and partially dissipate energy [31–33]. In addition, Fig. S2 shows that γy,1 is shear rate dependent.
The existence of two yielding points allows us to identify three different regimes of γA, with ω remaining a
free parameter. Focusing on systems at T/Tg ≥ 1.0, for which the polymer melt reaches equilibrium, we observe
from Fig. 1(b) that γA defined in each regime induces different molecular mobility. Both axes are rescaled by
the relaxation time at equilibrium τ0α, so that relaxation times are reported in comparison to their equilibrium
value, and deformation rates are reported as dimensionless Deborah numbers. This number defines the ratio of
the material’s characteristic relaxation time, in our case τ0α, to the characteristic flow time, that for oscillatory
deformation is defined as γAω. The molecular mobility is extracted from Fs (q

∗, t) under oscillatory deformation,
see Fig. S3.

Linear regime (γA < γy,1): oscillatory deformations have no effect on the α-relaxation, as indicated by the

flat behavior of τα/τ
0
α ≃ 1. However, the potential energy per particle E/N as a function of the accumulated

strain γacc = 4NcycγA, shown in Fig. 1(c) and where Ncyc represents the deformation cycles, is slightly smaller
than the corresponding energy for the system immediately before applying oscillatory deformations. Previous
numerical simulations of oscillatory athermal quasistatic shear (AQS) deformations of dense amorphous sam-
ples [34–36] established the limit at small strain deformations, i.e., γA ≪ γy,2, as a way to obtain better-annealed
glasses. In particular, AQS assumes that the relaxation after deformation occurs on shorter timescales than ω−1.
Thus, deformations in the AQS approach depend on the deformation length scale encoded in the amplitude
deformation. In our case, the deformation frequency ω introduces a time scale dependence that plays a key role
in annealing glasses by accessing deeper energy states at small amplitude deformations [37, 38]. Although the
study of this regime is beyond the scope of this investigation, we could anticipate that in the limit of poorly
annealed glasses [37, 38], and with decreasing ω (indicating that the deformation time scale is so large that it
allows the system to relax the accumulated stress) our findings would align with the observations discussed in
AQS simulations [39].

Non-linear regime (γA > γy,2): oscillatory deformations promote melting similarly to steady shear
flow [29]. In this regime, each oscillatory cycle induces a strain larger than the characteristic deformation that
triggers the viscous-fluid transition. As a result, τα decreases below τ0α as γAω increases through ω. Actually,
we find that that the slope of τα/τ

0
α tends to an asymptotic behavior as x−0.8 by decreasing T and increasing

the deformation. The exponent is related to the shear thinning behavior, which is characterized by an appar-
ent viscosity that decreases with increasing shear rate [29, 40]. Additionally, E/N monotonically increases with
γAω, shown in Fig. 1(c), whereas the characteristic plateau observed in Fs (q

∗, t) shortened, see Fig. S3.
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Fig. 1 Quantifying bulk mobility. (a) Shear stress tensor σxy as a function of the strain γ for a shear rate γ̇ = 0.01 applied in
the xy−plane. The arrow points to the decrease in temperature T . The first yielding point corresponding to physical bond breaking
is referred to as γy,1, whereas γy,2 ≃ 2.6 indicates the yielding point corresponding to the transition from elastic solid to viscous-
fluid behavior. The existence of these two yielding points delineates three regimes where all beads are frozen (linear regime, blue
beads), partially relaxing (intermediate regime), or fully relaxing (nonlinear regime, red beads). (b) Normalized relaxation time
τα/τ0α as a function of the Deborah number γAωτ0α, for systems at different T subjected to oscillatory deformations. (c) Energy
per particle E/N as a function of accumulated strain γacc and γAω for a system at T/Tg = 1.00. (d) General representation of
the local mobility under oscillatory shear deformation, τα (γA, ω, T ). Black arrows emphasize how the structural relaxation time
changes with increasing γA and T of the system. (e) Snapshots at different accumulated strain γacc for a polymer melt system at
T/Tg = 1.00, subjected to an oscillatory deformation in the intermediate regime with γA = 0.4 and γAω = 0.01. We also represent
the displacement of the center of mass for the polymer chains. In this case, chains whose center of mass displaces equal to or more
than the radius of gyration Rg are not found.

Intermediate regime (γy,1 < γA < γy,2): intermediate strain amplitudes can speed up the molecular
mobility without changing the underlying structure of the system. When the characteristic deformation time
exceeds the structural relaxation time of the system, identified by Deborah numbers larger than 1, the dynamics
accelerates until it reaches a plateau. Maintaining a constant strain amplitude, we detect that the plateau length
increases as we approach Tg. On the other hand, τα falls to a plateau of lower height as γA approaches γy,2, see
Fig. S4. As γAω increases by increasing ω, the system approaches a critical value after which τα resembles that
of a polymer fluid. This striking behavior is in agreement with the enhanced molecular mobility observed for
polymer glasses under tensile deformations prior to flow [23, 24]. Similarly, regions of high local mobility have
been detected for amorphous materials under oscillatory shear deformations [37, 39, 41, 42]. These regions of
high local mobility forming shear bands were identified at γA > γy,2, and we investigate if a similar mechanism
is observed in our systems.

One way to detect shear bands is by monitoring the particle energy E/N as a function of γacc. As discussed
in Ref. [39], E/N would exhibit a sharp upward shift because of the spontaneous onset of shear banding. In the
intermediate and nonlinear regime, depicted in Fig. 1(c) and Fig. S5, we see that E/N evolves smoothly without
showing abrupt changes. Alternatively, we examine the mean-squared displacement

〈
r2
〉
for single beads and
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Fig. 2 Healing crack in oscillating glasses. (a) A cylindrical crack of diameter D/d = 1.0 in a glassy polymer melt is repaired
after several cycles of oscillatory deformations at γA = 1.0 and γAω = 0.1. Beads are colored according to their depth within the
material. Dotted circles highlight the initial position of the cylindrical crack. (b) γA − γAω phase diagram for healed glasses at
different D values of cylindrical cracks and varying strain amplitude and shear rate. (c) Structural relaxation time τα as a function
of amplitude γA and frequency ω deformation. (d) T −D phase diagram indicating the percentage of closed samples by increasing
the overall system temperature. The dashed box highlights the range of cylindrical crack diameters we explore under the action of
an oscillatory deformation.

for the center of mass of each chain as a function of γacc (see Methods for more details). In Fig. 1(e) we identify
beads that undergo a displacement

〈
r2
〉
≥ d2, and chains whose center of mass undergo a displacement equal to

or larger than the radius of gyration Rg, for a glassy system subjected to γA = 0.4 and γAω = 10−1. Contrary
to what has been observed in Refs. [37, 39, 43], particles with high displacement do not develop a shear band.
Furthermore, Fig. S6 shows that higher γA promotes the formation of a branched percolating cluster of particles
with a high displacement, resembling the scenario observed under steady shear [44]. Therefore, the enhanced
molecular mobility we observe does not involve shear banding. Instead, the existence of these plateaus suggests
that in the intermediate amplitudes regime the oscillatory deformation breaks the microscopic cages responsible
for the material vitrification. This mechanism, inducing local yielding, allows the system to remain globally
arrested, but to relax locally. Fig. 1(d) schematizes molecular dynamics behavior under oscillatory deformation,
expressed as τα (γA, ω, T ).

The accelerated dynamics observed in Fig. 1 can be leveraged to heal a crack in a glassy system via oscillatory
deformations, as shown in Fig 2. As explained in theMethods section, glassy polymer melt systems at T/Tg = 0.5
are prepared with a cylindrical crack of diameter D along the y−axis, with walls preventing particles from
entering the crack region. Once the glassy state is reached, we remove the cylinder and allow the system to evolve
freely. The first snapshot in Fig. 2(a) shows a glassy polymer melt system with a cylindrical crack of diameter
D/d = 1.0. The evolution of the crack surface area is monitored over time, shown in Fig. S8 and Supplementary
Video 1 and 2, respectively. For cylindrical cracks of diameter half the particle size, i.e. D/d = 0.5, the attractive
interaction between different chains promotes inward flow. However, crack closure for D/d ≥ 1.0 requires higher
temperatures, see Fig. 2(b).

Keeping T/Tg = 0.5 (glass regime), we focus on the highlighted range shown in Fig. 2(b) and apply oscillatory
deformations. Firstly, we repeat the previous study discussed in Fig. 1(b) by computing the evolution of τα
as a function of oscillatory deformations, see Fig. 2(c). While we cannot estimate τ0α because the system is
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Fig. 3 Local mobility and restoration of mechanical properties. Local mobility
〈
u2

〉
for particles on the crack surface

and bulk as a function of time t for glassy polymer melts subjected to oscillatory deformations of γA = 1.0 and γAω = 0.1, with a
cylindrical crack of diameter (a) D/d = 1.0 and (b) D/d = 2.0. Horizontal lines represent the bulk local mobility as a function of
T at mechanical rest. Circles highlight the times at which the snapshots were taken, represented on the right. The crack region is
represented in light grey, whereas dark grey beads correspond to beads on the crack surface. (c) The healed system at ω = 0.1 and
different γA values is subjected to steady shear flow at shear rate γ̇ = 0.01. The resulting stress tensor is compared with the stress
curve of the glass at rest, showing that mechanical properties are recovered.

out-of-equilibrium (see Fig. S1), we observe qualitatively the same behavior as we approach Tg. Oscillations
with γA > γy,2 lead to the melting of the glass material, whereas for γy,1 < γA < γy,2, the dynamics can be
locally accelerated by breaking microscopic cages. However, we also note that τα develops a stark maximum
by increasing ω. This trend is already observed for T ≥ Tg (see intermediate regime in Fig. S4). The presence
of this maximum following a sharp decrease in τα could indicate non-trivial annealing behavior of the glasses,
similar to that observed near the yielding point in Kob-Anderson binary mixtures [39]. However, in Fig. S7 we
have attempted to establish a connection between τα and the degree of molecular mobility by computing the
distribution of per-particle Debye-Waller factor, but we do not see signs of any annealing. Instead, we observe
that this peak marks the transition from a well-defined unimodal distribution to a distribution with a long
tail. Returning to the mechanical self-healing, Fig. 2(a) displays the closure of a crack of D/d = 1.0 after
Ncyc = 72 deformation cycles. Fig. 2(d) displays a set of γA − γAω phase diagrams as a function of the initial
D. These diagrams illustrate the percentage of samples in which oscillatory deformations in the intermediate
regime successfully closed the crack. While for D/d = 1.0 we consistently achieve crack closure, as D increases
the efficiency of oscillatory deformation decreases. However, we note that this decline begins at high values of
ω for D/d = 1.5, and becomes more pronounced for D/d = 2.0. This trend is rationalized by the fact that the
oscillation rate of the deformation imposed by ω overcomes the characteristic particle diffusion rate. This, along
with the fact that the crack diameter is large enough to suppress particle interactions across the crack, favors
particles following the same trajectory in each deformation cycle. Thus, an increase in γA is required to bring
particles in contact across the crack.

One may wonder if we genuinely induce self-healing by accelerating the local dynamics exclusively around the
crack. This is a legitimate doubt because deformations are often associated with the breakdown of the material’s
structure inducing mechanical rejuvenation. In addition to showing that this amplitude regime precedes the
material’s yielding point γy,2, Fig. 3 shows that indeed cracks can heal purely by accelerated local dynamics,
while the bulk remains globally glassy and the final mechanical properties of the healed glass are comparable
to those of the pristine equilibrium glass. We identify particles on the surface of the crack and in the bulk,
i.e. far away from the crack, and compute their mobility during deformation through the Debye-Waller factor〈
u2

〉
, which corresponds to the value of the mean square displacement at local minima of its logarithmic

derivative [45, 46], as shown in Fig. S1(e). Fig. 3(a) displays results corresponding to a glassy polymer melt with
a crack of diameter D/d = 1.0, subjected to {γA, ω} = {1.0, 0.1}, equivalent to γAω = 0.1. The crack surface
and particles on the surface are represented in the snapshots in light grey and dark grey colors, respectively,
while particles in the bulk are omitted to enhance the clarity of the snapshots. Furthermore, we depict the
evolution of

〈
u2

〉
as a function of the time t alongside the corresponding mobility at different T in the absence
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of deformation, indicated by a horizontal line. While
〈
u2

〉
slightly increases for particles in the bulk, we note

that the dynamics for surface particles aligns with that observed for a bulk equilibrium system at T/Tg = 1.0.
As the crack closes, the surface dynamics converges to the bulk dynamics, at a value slightly higher than the
equilibrium dynamics at T/Tg = 0.50 because of the oscillatory deformations. It is important to note how the
particles initially located on the surface remain localized around the region where the crack was. This indicates
that local melting induces an inward flow of material, filling the damaged space. In the case where the crack
does not close, as depicted in Fig. 3(b), the surface and bulk dynamics do not match.

Finally, we assess the mechanical properties of the material immediately after closing the crack. In Fig. 3(c),
we compare the mechanical response under steady shear of the healing glass material with those obtained from
a glassy polymer melt in which no crack is present. At low-strain deformations, the first yielding point γy,1,
associated with physical bond breaking, is less apparent in the stress curves of the healed material. This issue is
attributed to the slightly accelerated bulk dynamics, see Fig. 3(a) and Fig. S9. However, the position of γy,2 and
the stress overshoot σxy (γy,2), indicating the opposing resistance of the material to break and flow, perfectly
match. Thus, our findings suggest that the application of small oscillatory deformations has the potential to
induce complete self-healing in glassy polymer materials.

2 Discussion

In recent decades, oscillatory deformations have emerged as an avenue for exploring new frontiers in the funda-
mental physics of amorphous materials. This includes enhancing annealing [36, 37] and inducing memory [47, 48]
in amorphous glasses. Here, we used oscillatory deformations, to induce self-healing in glassy polymer materials
by overcoming their intrinsically low local mobility. The enhanced mobility would enable the use of intrinsic
healing mechanisms such as dynamic covalent bonds or supramolecular bonds that strongly depend on the local
dynamics [9].

First, we have studied the local mobility in bulk model glasses without damage. We have identified a range
of oscillatory deformations where the molecular mobility can be meticulously accelerated without globally
modifying the underlying structure or mechanical properties of the system. Then we have demonstrated that in
this range, oscillatory deformations can stimulate crack closure and damage repair by accelerating the dynamics
of particles around the crack surface, while the bulk dynamics is only slightly perturbed. Finally, we have also
shown that the stress curves of the healed samples closely match the pristine material.

Since glassy polymers are out-of-equilibrium materials, their rheological response depends on the aging
history and preparation protocol. In the past, it has been studied that more stable glasses are more brittle,
making the yielding point a spinodal instability characterized by a sharp discontinuous stress jump [43]. It
would be relevant in the future to understand if local mobility controlled by oscillatory deformations depends on
the glass stability. Likewise, crack geometry in fractured material can acquire erratic shapes and orientations.
Exploring local mobility on erratic crack surfaces would also be another relevant point. Nevertheless, our results
on glassy polymer melts, along with previous observations of healing in metal alloys [25] and nanocrystalline
metals [28] under mechanical deformations, point to the fact that oscillatory deformations represent a general
strategy to induce mechanical self-healing in materials with extremely low local mobility.

3 Methods

Modelling. We perform Molecular Dynamics simulations of fully flexible linear chains of beads linked by
harmonic springs. Nonbonded monomers belonging to the same or different chains interact with a truncated LJ
potential defined as

ULJ (r) =

{
4ϵ

[(
d
r

)12 − (
d
r

)6]
+ Ucut if r ≤ 2.5d

0 if r > 2.5d
, (1)

where d is the particle diameter, which sets the unit of length, ϵ controls the energy scale, and Ucut ensures that
ULJ (r = 2.5d) = 0. Defining m as the mass of the particles, the time units are defined as t =

√
md2/ϵ. On the

other hand, chemical bonds between connected monomers are modeled by

Ub (r) = kb (r − r0)
2
, (2)

where kb = 555.5ϵ/d2 is the spring constant and r0 = 0.97d is the equilibrium bond length. Henceforth, all
quantities are expressed in terms of reduced LJ units, i.e., ϵ = 1 and d = 1, with unit monomer mass m and
Boltzmann constant. The reduced units can be mapped onto physical units relevant to generic nonequilibrium
fluids, by taking molecular dynamics (MD) time, length, and energy units as corresponding roughly to about 2
ps, 0.5 nm, and 3.7 kJ/mol, respectively.
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We consider systems of Nc = 500 chains of M = 20 monomers, avoiding thus the entanglement, and doing a
total ofN = 104 monomers. All simulations were performed using LAMMPS simulation package [49], considering
a simulation time step δt = 0.002. Results are averaged over 5 independent simulations.
Sample preparation. Initially, an equilibration process was performed by considering polymer chains enclosed
in an orthogonal cubic box of size L with periodic boundary conditions. First, 107 simulation steps were per-
formed in the NPT ensemble by employing a Nosé-Hoover thermostat and barostat with T = 1.0 and ⟨P ⟩ = 0
to allow full correlation loss of the end-to-end vector of the polymer chains. Next, a quenching was made in
the range of temperatures from T = 0.20 to T = 0.55, maintaining ⟨P ⟩ = 0 during 107 simulation steps. In
both equilibration procedures, the simulation box was allowed to fluctuate in an isotropic fashion in all three
directions of space.
Static and dynamics characterization. Once the system was equilibrated to the required temperature,
the volume was fixed by performing simulations in the NVT ensemble by using a Nosé-Hoover thermo-
stat at the required temperature, and static and dynamic properties were computed to characterize the
polymer system as a function of T . In particular, the static structure factor was computed as S (q) =〈

1
N

∑
ij e

−iq·(ri−rj)
〉

, where q is the wave vector, ri indicates the position of the i−th particle, and ⟨· · · ⟩
denotes an ensemble average. Likewise, the dynamic of the system was quantified through the mean-squared

displacement
〈
∆r2 (t)

〉
=

〈
1
N

∑N
i=1 [ri (t)− ri (0)]

2
〉
and the self-intermediate scattering function Fs (q

∗, t) =〈
1
N

∑N
i eiq

∗·[ri(t+t′)−ri(t′)]
〉
, computed on the wavevector q∗ = 2π/l corresponding to the main peak of the

static structure factor. In those cases where the system recovered ergodicity, i.e. Fs (q
∗, t) = 0 in the simulated

time window, the relaxation time τα was extracted by imposing Fs (q
∗, τα) = 1/e.

Shear deformation. After equilibration, we perform two kinds of simulations: (i) steady shear deformations
at a fixed shear rate γ̇; (ii) oscillatory shear deformations by applying a sinusoidal deformation in the xy plane
defined as γ (t) = γAsin (ωt), where γA is the strain amplitude and ω is the frequency. In both cases, deformations
are performed at constant volume and temperature, and hence, the SLLOD equations of motion were used
along with the thermostat, in combination with Lees-Edwards boundary conditions. During the steady shear

deformation, we monitor the stress tensor component σαβ =
〈

1
A

∑
ij f

α
ijr

β
ij

〉
, where fα

ij is the α−component of

the force with respect to interaction defined in eq. (1) and eq. (2), rβij corresponds the β−component of the
distance vector between the particles i and j. In this case, the steady shear deformation was applied in all
three directions of space and subsequently averaged. On the other hand, during the oscillatory deformation, we
first apply an accumulated strain γ = 4NcycγA = 100%, where Ncyc corresponds to the number of deformation
cycles. Then, we compute the self-intermediate scattering function on the wave vector q∗ corresponding to
the main peak of the static structure factor before applying any deformation. Since oscillatory deformations
were applied on the xy plane, Fs (q

∗, t) was computed excluding qx components, see Fig. S3. Furthermore, we
computed the mean-squared squared displacement per particle, defined as ∆r2 (t)i = [ri (t)− ri (0)]

2
, excluding

the x−component.
Inducing self-healing. To study self-healing, we create a crack on glassy polymer melts with T/Tg = 0.50 and
N monomers. The equilibration previously described above is performed in the presence of a cylinder placed
at the center of the simulation box of length Ly and diameter D. Monomers interacted with the cylinder wall
through the Weeks-Chandler Andersen potential:

UWCA (r) =

{
4ϵ

[(
d
r

)12 − (
d
r

)6]
+ ϵ if r ≤ 21/6d

0 if r > 21/6d
. (3)

Then, the cylinder is removed, and NVT simulations and oscillatory deformation simulations are independently
performed during 107 up to 3 × 107 simulation steps. In both cases, the volume of the crack is monitored
by employing the surface area algorithm [50]. During both simulations, we compute the mobility

〈
u2

〉
of the

monomers as a function of the distance from the center of the simulation box, as well as the function of time.
Since the mobility is statistically very noisy, we apply a Savitzky-Golay filter on windows of 21 points and
equations of 2 order.
Mechanical properties after the self-healing. Glassy polymer systems, on which the crack was closed, are
subjected to steady shear flow at γ̇ = 0.01, and the evolution of σxy as a function of γ = γ̇t is compared with
the corresponding σxy for the glass at rest.
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1 Static and dynamics properties in equilibrium
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Fig. S1 Static and dynamic properties as a function of temperature T . (a) Static structure factor S (q) shifted in the y-axis
by an arbitrary factor to improve the visualization. The vertical dashed line highlights the position of the peak q∗. (b) Mean-
squared displacement

〈
∆r2 (t)

〉
. (c) Incoherent intermediate scattering function Fs (q∗, t). The horizontal dashed line corresponds

to Fs (q∗, τα) = e−1, τα being the structural relaxation time. (d) Logarithmic derivative of the mean-squared displacement
∂
[
lnr2 (t)

]
/∂ln t as a function of t. (e) Relaxation time τα (on the right) and mobility

〈
u2

〉
(on the left) as a function of Tg/T .

Fig. S1 collects the static and dynamic properties of the glassy polymer melts as a function of temperature
T . In particular, Fig. S1(a) shows the static structure factor S (q), where the position of the main peak is at
q∗ ∼ 7.14, independently of T . Fig. S1(b) and (c) display the mean-squared displacement (MSD)

〈
∆r2 (t)

〉
and

self-intermediate scattering function Fs (q
∗, t), respectively. While at short times we observe ballistic dynamics,

the MSD develops a plateau with decreasing T , revealing the onset of the caging dynamics. This plateau extends
for longer times with decreasing T , corresponding to an increased caging of the particles, until T ∼ Tg, at
which point the relaxation time becomes comparable to the time window of observation. Likewise, the onset
of the glassy state is observed through the Fs (q

∗, t), which exhibits a double decay with decreasing T . The
first decay, observed at short times, is a consequence of the interactions of the particles with their neighbors
that form cages (β-relaxation). The second decay, taking place at longer times, indicates the α−relaxation of
the system at a time τα which we define as Fs (q

∗, τα) = 1/e. The particles’ degree of mobility can be also
characterized by the Debye-Waller factor

〈
u2

〉
, initially associated with the mean-square amplitude of atoms in

the solid state around their equilibrium positions, and later, extrapolated to glassy states to quantify the size
of cages. We compute the quantity ∂ln

[
r2 (t)

]
/∂ln t, shown in Fig. S1(d). The minimum corresponding to the

inflection point in the log-log plot of MSD estimates a characteristic time of β-relaxations tβ [45, 46]. Knowing
this time, the Debye-Waller factor is defined as

〈
u2

〉
=

〈
∆r2 (tβ)

〉
. Finally, in Fig. S1(e), we report the mobility

and relaxation time as a function of Tg/T . The increase in τα with decreasing T is attributed to the particles
becoming more localized within microscopic cages, as indicated by

〈
u2

〉
.
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2 Rheological behavior under steady shear flow
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Fig. S2 Shear stress tensor σxyd3/kBT versus strain γ as a function of the shear rate γ̇ at (a) T/Tg = 1.18 and (b) T/Tg = 0.50
as a function of T at shear rate γ̇ = 0.01. Vertical black lines highlight the bond-breaking point γy,1 and the yielding point γy,2
corresponding to the transition from solid-like to fluid-like behavior.

We apply a steady shear deformation, following the protocol explained in Methods section, to study the
rheological behavior of our glassy polymer melts. As explained in Fig. 1(a) from the main, polymer melts
exhibit a transition from a solid-like behavior at small strains to a liquid-like behavior at large strains. This
transition is highlighted by the stress overshot at the yielding point γy,2. This point indicates the maximum
stress that the system can accumulate before the solid-to-liquid transition. The height of the yielding point
increases with decreasing T , corresponding to the presence of a stronger inherent structure able to support
more stress. Likewise, the position of the yielding point is not temperature-dependent. Thus, the viscoelastic
transition is determined by the breakdown of geometric frustration emerging from the confinement of particles
within cages. However, we also see in Fig. S2(a) and (b) that with the decrease of T , a first yielding point
emerges at small strains. This yielding point γy,1 was previously reported in attractive colloidal glasses [31–33],
and related to the breaking of physical bonds. Since we are considering attractive interactions between non-
bonded monomers, we assert that γy,1 corresponds to the same bond-breaking mechanisms. Furthermore, we
observe that the σxy (γb,1) depends on γ̇.
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3 Oscillatory deformations for glassy polymer melts

3.1 Self-intermediate scattering function under oscillatory shear
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Fig. S3 Incoherent intermediate scattering function Fs (q∗, t) under oscillatory shear flow as a function of the strain amplitude γA
and for (a) γAω = 10−3, (b) γAω = 10−2, and (c) γAω = 10−1 for polymer melts at T/Tg = 1.08, T/Tg = 1.00, and T/Tg = 0.50.
The horizontal dashed line corresponds to Fs (q∗, τα) = e−1, where τα is the structural relaxation time.

Fig. S3 shows Fs (q
∗, t) under oscillatory deformations at different T , strain amplitudes, and deformation

rate, computed at length scale distance q∗ = 2π/l = 7.14. Since oscillatory deformations are applied in the
xy−plane, with the x−axis representing the velocity direction, the intermediate scattering function is computed
by excluding the x component of the wave vector q∗. In each panel, Fs (q

∗, t) is represented as a function of the
strain amplitude γA. Results reveal that by increasing the strain amplitude γA and frequency ω, the structural
relaxation time τα shifts to shorter times.
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3.2 Relaxation time of polymer melts at T > Tg
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γA < γy,1, the intermediate regime encompasses the range γy,1 < γA < γy,2, and the nonlinear regime is found at γA > γy,2. The
horizontal dashed line emphasizes the changes in the system’s dynamics originated from the deformation. Additional arrows are
represented in the last panel to highlight the plateau height and peak position ωc, respectively. (b) Plateau value of τα/τ0α and (c)
position of the peak as a function of γA and T/Tg .

In Fig. S4(a) we show the normalized relaxation time τα/τ
0
α as a function of Deborah number γAωτ

0
α, in the

intermediate regime γy,1 < γA < γy,2. As discussed in the main, when Deborah numbers are larger than 1 the
dynamics accelerates until reaching a plateau. The plateau length increases as we approach Tg. On the other
hand, τα falls to a plateau of lower height as γA approaches γy,2, see Fig. S4(b). Furthermore, as γAω increases
with increasing ω, the system approaches a critical value ωc after which τα sharply decreases. In Fig. S4(c)
we report that ωc decays exponentially with increasing γA. Consistently, the peak disappears in the nonlinear
regime. The presence of this maximum following a sharp decrease in τα suggests a non-trivial annealing behavior
of the glasses near the yielding point [39]. However, as discussed below in Fig. S7, evidence of this is not observed
in the distribution of per-particle mobility.
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3.3 Energy per particle as a function of oscillatory deformations
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Fig. S5 Energy per particle E/N as a function of accumulated strain γacc and γAω for a system at T/Tg = 1.00 under oscillatory
deformations in the intermediate regime. The horizontal blue line corresponds to the energy value immediately before applying any
deformation.

We represent in Fig. S5 the evolution of the energy per particle E/N , in the range γy,1 < γA < γy,2, as
a function of the accumulated strain γacc. While E/N changes smoothly for all γA values, without exhibiting
sharp fluctuations associated with the formation of a shear banding, we observe significantly larger variations
in energy for γA = 0.2 and γAω = 0.5. Given the proximity of γA to the linear regime, the applied deformation
could result in the system oscillating as a whole.

3.4 Particle displacement
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A

Fig. S6 Snapshots for a glassy polymer melt at T/Tg = 1.00 with accumulated strain γacc = 100, as a function of strain amplitude
γA. Here, red beads highlight particles that are displaced equal to or more than a distance equivalent to the particle size d due to
the accumulated deformation.

In Fig. S6, red beads highlight particles that are displaced by a distance equal to or greater than the particle
size d after having withstood γacc = 100%. This analysis was carried out as a function of γA. This finding,
along with the smooth variation of E/N , indicates that the acceleration of the local dynamics in our study is
not attributed to the presence of shear banding.
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3.5 Molecular mobility for polymer melts at T < Tg
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Fig. S7 (a) Structural relaxation time τα as a function of amplitude γA and frequency ω deformation for a glassy polymer
melt. (b) Distribution of per-particle molecular mobility P

(〈
u2
p

〉)
, computed for the state points corresponding to the τα values

highlighted in panel (a). The arrow refers to the increase in frequency.

As discussed in the main text, Fig. S7(a) shows that oscillatory deformations in the range γy,1 < γA <
γy,2 can locally accelerate the system dynamics by breaking microscopic cages responsible for the material
vitrification. To support this statement, we represent in Fig. S7(b) the distribution of per-particle Debye-Waller
factor < u2

p >. Fixing γA and tuning ω, P
(〈
u2
p

〉)
shifts slightly to higher mobility. However, the increase in τα

at the critical ωc does not correspond to a larger number of slow particles. In contrast, it results in a distribution
with a long tail, indicating the formation of a wide spectrum of molecular mobility. The manifestation of this
peak could be related to some type of anomalous diffusion in the system, which cannot be captured by molecular
mobility. Further studies in this direction are needed. Finally, we see from Fig. S7(b) that the position and
width of P

(〈
u2
p

〉)
increases with γA, in agreement with the trend exhibited by τα.

4 Mechanical self-healing

4.1 Crack evolution in equilibrium and under oscillatory deformations
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Fig. S8 Crack surface area as a function of time t for a cylindrical crack with initial diameter D/d = 1.5. (a) Self-healing induced
by increasing temperature T . A(b) Mechanical self-healing induced by applying oscillatory deformations with amplitude γA = 1.0.

Fig. S8 displays a specific sample with an initial diameter D/d = 1.5, subjected to a general increase in T
while in mechanical equilibrium, see Fig. S8(a), or to oscillatory deformations of amplitude γA = 1.0 at fixed
temperature, see Fig. S8(b). Crack closure is reached when the crack surface is zero. Supplementary Video
1 shows the crack closure showing the displacement of the beads, while Supplementary Video 2 displays the
evolution of the crack during the oscillatory deformation for γA = 1.0 and γAω = 0.3.

From Fig. S8(b), we observe that increasing ω leads to longer times for mechanical self-healing. This obser-
vation is summarized in phase diagrams discussed in Fig. 2(d) in the main text, where we observe mechanical
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self-healing begins to fail at high values of ω. This is attributed to the fact that the oscillation rate of the defor-
mation imposed by ω becomes faster than the characteristic particle diffusion rate. As a consequence, particles
will follow the same trajectory in each deformation cycle, leading to a delay in the closure of the crack.

4.2 Local mobility

0 1000 2000 3000
0.00

0.05

0.10

<
u

2 >

Surface particles
Bulk particles

0 1000 2000 0 1000 2000

0 2500 5000 7500
0.00

0.05

0.10

0 1000 2000
Time t

0 1000 2000

= 1.0γ
A

γ
A

= 1.6
Strain amplitude 

γ
A= 1.3

ω = 10 -1γ
A

ω = 5x10 -1γ
AL
o
ca

l 
m

o
b
il

it
y
 

Fig. S9 Temporal evolution of the local mobility
〈
u2

〉
for particles on the surface of a crack with diameter D/d = 1.0 and in the

bulk of a glassy polymer melt as a function of the amplitude oscillations γA and the shear peak γAω. Curves were filtered with
the Savitzky-Golay filter on windows of 21 points and equations of 2 order. Horizontal dark blue, light blue, and dark red lines
correspond to the local mobility for T/Tg = 0.50, 1.00, and 1.38, respectively.

Figure S9 illustrates the evolution of particle mobility
〈
u2

〉
for particles on the crack surface with a diameter

of D/d = 1.0, compared to those within the bulk of a glassy polymer melt. These results confirm that the
application of oscillatory deformations accurately accelerates the local mobility of the crack surface, only slightly
modifying bulk mobility. Indeed, the crack surface can fully melt, exhibiting faster dynamics than bulk particles
of the system at rest at T >> Tg. These findings, along with the discussion of Fig. 3 in the main text, prove
the significant utility of oscillatory deformations in inducing self-healing.
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