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SYMPLECTIC WEISS CALCULI

MATTHEW CARR AND NIALL TAGGART

Abstract. We provide two candidates for symplectic Weiss calculus based on two different,
but closely related, collections of groups. In the case of the non-compact symplectic groups,
i.e., automorphism groups of vector spaces with symplectic forms, we show that the calculus
deformation retracts onto unitary calculus as a corollary of the fact that Weiss calculus only
depends on the homotopy type of the groupoid core of the diagram category. In the case of the
compact symplectic groups, i.e., automorphism groups of quaternion vector spaces, we provide
a comparison with the other known versions of Weiss calculus analogous to the comparisons of
calculi of the second named author, and classify certain stably trivial quaternion vector bundles
over finite cell complexes in a range, using elementary results on convergence of Weiss calculi.
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1. Introduction

Weiss calculi are a family of homotopy theoretic tools designed to study geometric problems
arising from differential topology. The original example of such a calculus was orthogonal cal-
culus [Wei95], which provides a calculus for functors from real inner product spaces to spaces.
Other variants now include unitary calculus [Tag22b] which studies the corresponding com-
plex geometry, unitary calculus with Reality [Tag22c] which takes into account the symmetry
in complex geometry given by complex conjugation, and �� -calculus [Arr23] which considers
functors from finite sets to any stable ∞-category, and is closely related to representation sta-
bility.

Applications of various versions of Weiss calculus abound geometry and homotopy theory. For
instance, on the geometric side, Krannich and Randal-Williams [KRW21] compute the (rational)
second orthogonal derivative of BTop(R3 ), the classifying space of topological rank 3-bundles,
and use this to compute the rational homotopy type of the group of diffeomorphisms of a closed
3-dimensional disc fixing the boundary in a specified range, and determine the optimal rational
concordance stable range for high-dimensional discs. On the more homotopy-theoretic side,
versions of Weiss calculus open up the possibility of encoding certain levels of functoriality,
which are not present on the level of spaces. For instance, this kind of functoriality has been
utlised by Arone [Aro98] in their construction of finite type = spectra, by Behrens [Beh12] in
relating the EHP sequence to Goodwillie calculus, and by Kuhn [Kuh15] when studying the
Whitehead Conjecture.

With applications like these inmind, the question ofwhen a category of functors admit a version
of Weiss calculus is an interesting one, which has received much attention. For example, Anel,
Biedermann, Finster and Joyal [ABFJ23] claim to recover orthogonal calculus from their topos-
theoertic approach to generalised Goodwillie calculus. In this article, we consider two natural
extensions of Weiss calculus to symplectic geometry. The first is to consider the potential of
a version of Weiss calculus for functors from vector spaces with a symplectic form to spaces,
i.e., a version of Weiss calculus based on non-compact symplectic groups. We call this version
symplectic Weiss calculus. The second is to consider a version of Weiss calculus built on the
quaternions rather than Euclidean spaces, i.e., a version of Weiss calculus based on compact
symplectic groups. We call this version quaternion Weiss calculus.

Symplectic Weiss calculus. In this version of Weiss calculus we consider functors from the
category of vector spaces with symplectic forms to spaces. Part 1 can be summarised in the
following result.

Theorem A. A version of Weiss calculus exists for functors from vector spaces with a sym-
plectic form to spaces, and this Weiss calculus is equivalent to unitary calculus.

The intricacies of linear algebra in the absence of an inner product lead one to require a new
method for constructing the symplectic calculus. Taking motivation from homological stability,
see for example, [RWW17], we show thatWeiss calculus only depends on the homotopy type of
the groupoid core of the ‘indexing category’ by exploiting Quillen’s bracket construction (also
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sometimes called Quillen’s (−1( construction). The following table describes the relationship
between known versions of Weiss calculus and the groupoid cores of the indexing categories.

Weiss calculus Groupoid core Quillen’s bracket construction

Orthogonal [Wei95] Finite-dimensional real inner
product spaces with linear
isometric isomorphisms

Finite-dimensional real inner prod-
uct spaceswith linear isometric em-
beddings

Unitary [Tag22b] Finite-dimensional Hermit-
ian inner product spaces
with linear isometric isomor-
phisms

Finite-dimensional Hermitian in-
ner product spaces with linear iso-
metric embeddings

FI [Arr23] Finite sets and bijections Finite sets and injections
Symplectic (Part 1) Finite-dimensional symplec-

tic vector spaces with sym-
plectic isomorphisms

Finite-dimensional symplectic vec-
tor spaces with symplectic linear
maps

Quaternion (Part 2) Finite-dimensional quater-
nion inner product spaces
with linear isometric isomor-
phisms

Finite-dimensional quaternion in-
ner product spaces with linear iso-
metric embeddings

Denote by GS the groupoid of symplectic vector spaces and symplectic isomorphisms and de-
note by JS Qullien’s bracket construction on GS, as above. Similarly denote byGU the groupoid
of Hermitian inner product spaces and linear isometric isomorphisms, and by JU the corre-
sponding bracket construction. There is a functor ℑ : GU → GS which sends a Hermitian
inner product space to its underlying real vector space with symplectic structure given by the
imaginary part of the Hermitian inner product. On morphism spaces this functor is little more
than the inclusion of the unitary group* (=) into the non-compact symplectic group Sp(2=,R).
A routine linear algebra exercise exhibits* (=) as the maximal compact subgroup of Sp(2=,R),
and hence the inclusion * (=) ⊆ Sp(2=, R) is a homotopy equivalence, or said differently, the
non-compact symplectic group deformation retracts onto the unitary group. From this, it fol-
lows that the functor ℑ : GU → GS is an equivalence of ∞-groupoids, and hence induces
an equivalence ℑ : JU → JS of ∞-categories by Lemma 2.3.4. This equivalence allows us to
sidestep any linear algebra in the construction of symplectic calculus, producing a Weiss tower

�

· · · )=� · · · )1� )0�

for any symplectic functor � : JS → S. For any choice of category of vector spaces, the Weiss
tower may be packaged as a functor

Tow : Fun(J, S) −→ Fun(Z
op
≥0, Fun(J, S)),

and the equivalence between the symplectic and unitary indexing categories implies that the
symplectic Weiss tower may be identified with the unitary Weiss tower in the following sense.
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Theorem B. For any symplectic functor � , there is an equivalence

TowS(� ) ≃ ℑ!Tow
U(ℑ∗� ),

where ℑ! is the (∞-categorical) inverse of pullback along ℑ : JU → JS.

1.1. Quaternion Weiss calculus. For the version of Weiss calculus built from linear algebra
over the quaternions, the key insight is that although the quaternions are not a field, quater-
nionic vector spaces support just enough linear algebra to make all the standard constructions
of Weiss [Wei95] go through. We obtain the following summary of the results in Part 2.

Theorem C. A version of Weiss calculus exists for functors from quaternion inner product
spaces to (pointed) spaces.

The layers of the Weiss tower are homogeneous of degree =, and we can classify such functors
in terms of spectra with an action of Sp(=) = Aut(H=) completely analogously to how homo-
geneous functors of degree = in orthogonal calculus are classified by spectra with an action of
$ (=).

Through this classification we can compare quaternion calculus with both unitary and orthog-
onal calculus. In particular, we can construct a functor from unitary calculus to compact sym-
plectic calculus which preserves Weiss towers: there is a functor ℎ : JH → JU, right adjoint to
the extension-of-scalars functor H ⊗C (−), which by precomposition induces a functor

ℎ∗ : Fun(JU, S∗) −→ Fun(JH, S∗),

through which we compare quaternion calculus and unitary calculus.

Theorem D. Let � be a unitary functor. There is a levelwise equivalence

ℎ∗TowU(� ) ≃ TowH(ℎ∗� ) .

1.2. Classification of quaternion vector bundles. As an application of the theory of quater-
nion calculus we classify certain quaternion vector bundles over finite-dimensional cell com-
plexes in a specified range. This extends work of Hu [Hu23] from complex bundles to quater-
nion bundles, although or methods and ranges vary slightly. Our methods use concrete ana-
lyticity bounds for the functor BSp(−) which sends a quaternion vector space to the classify-
ing space of the compact symplectic group Sp(+ ) = Aut(+ ), and the observation that rank A
quaternion bundles over a finite-dimensional cell complex - are classified by [-,BSp(A )] =

c0Map∗(-,BSp(A )).

Theorem E. Let- be a 3-dimensional cell complex. The set of stably trivial rank A quaternion

vector bundles over - where 3+1
4 ≤ A is given by {-, Σ3H%∞A }, the set of stable maps from - to

the three-fold suspension of stunted quaternion projective space.

The use of ∞-categories. In this paper we will work with multiple models for ∞-categories
and functors between them. Typically by an ∞-category we will mean a quasicategory, and
we aim to make clear when we are using another model (for example, complete Segal spaces).
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For brevity, we will often refer to homotopy (co)limits in any chosen model for ∞-categories
simply as (co)limits, unless confusion is likely to occur. In particular all (co)fiber sequences are
homotopy (co)fiber sequences.

Many of our ∞-categories will come to us from model categories: let M be a simplicial model
category. The underlying ∞-category M∞ = #ℎ (M◦) presented by M is obtained by taking
the homotopy coherent nerve of its full simplicial subcategory of bifibrant objects. The same is
true at the level of adjunctions: a simplicial Quillen adjunction

� : M //

N : �oo ,

induces an adjunction of ∞-categories

� : M∞
//

N∞ : �oo ,

which is an equivalence if the Quillen adjunction is a Quillen equivalence. For more details and
for slight generalizations see for example, [MG16]. Note that one can replace “simplicial” with
“topological” above by virtue of [Ili15, Corollary 2.7], and an analogous procedure will send a
topological model category to an∞-category. Unless confusion is likely to occur, we will drop
the subscript∞ from our notation.

We will denote by S the ∞-category of spaces, and we will denote by Top the category of Δ-
generated spaces1 equipped with the Quillen model structure, so that one model for S is Top∞.
Given a small topological category J, we denote by Fun(J, S) the∞-category of functors from
J to spaces. There are many models for this ∞-category, including the underlying ∞-category
of the projective model structure on the category of topologically enriched functors from J to
Top. This model categorical presentation is (simplicially) Quillen equivalent to the projective
model structure on the category of simplicially enriched functors from Sing(J) to simplicial sets,
where Sing(J) is the simplicially enriched category with objects the objects of J and morphism
simplicial set given by applying the singular simplicial set functor to the morphism topological
spaces of J. In [Lur09, §5.1.1], Lurie provides other models for this ∞-category, including as
the mapping space Fun(#ℎ (J), S) from the homotopy coherent nerve of J to the∞-category S,
and the homotopy coherent nerve of the category of left fibrations over #ℎ (J).

We will often need to talk about homotopy (co)limits of internal presheaves, i.e., functors from
a topologically (resp. simplicially) internal category to the category of topological spaces (resp.
simplicial sets). This is where complete Segal spaces, either topological or simplicial, enter the
picture as the topologically (resp. simplicially) internal nerve of a topologically (resp. simpli-
cially) internal category is a (non-Reedy fibrant) complete Segal space. The complete Segal
model structures on simplicial topological spaces and bisimplicial sets are (simplicially) Quillen
equivalent and hence we will drop the distinction between topological and simplicial, for more
on this see [CT24].

We will model functors out of a Segal space � by using the left fibration model structure on the
category of Segal spaces over �. In the simplicial setting this is worked out in detail by Boavida
de Brito [BdB18], and we provide the analogous considerations in the topological setttings

1The category of Δ-generated spaces is a convenient model for spaces, for details see for example, [Dug03].
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in [CT24]. Note that if � is non-Reedy fibrant, then the left fibration model structure over �
is Quillen equivalent to the left fibration model structure over a Reedy fibrant replacement of
�. By [BdB18, Theorem 1.22] there is an equivalence between left fibrations of complete Segal
spaces over � and left fibrations of quasicategories over the underlying quasicategory of �. For
geometric applications like ours it is often more convenient to work on the complete Segal side
of this equivalence.

Acknowledgements. This work had greatly benefited from numerous conversations with
Kaya Arro, and from helpful discussions with Michael Weiss. MC gratefully acknowledges
partial support from NSF-DMS #1547357. NT was supported by the European Research coun-
cil (ERC) through the grant “Chromatic homotopy theory of spaces”, grant no. 950048. This
material is based upon work supported by the Swedish Research Council under grant no.2016-
06596 while NT was in residence at Institut Mittag-Leffler in Djursholm, Sweden as part of the
program “Higher algebraic structures in algebra, topology and geometry” in 2022.

Part 1. Symplectic Weiss calculus

In the first part of this paper we concentrate on the symplectic Weiss calculus, i.e., Weiss cal-
culus built on the category of symplectic vector spaces and symplectic linear maps. We show
through a general discussion on the relationship between Weiss calculus and Quillen’s bracket
construction, that symplectic calculus deformation retracts onto unitary calculus.

2. Weiss calculus and groupoid cores

Given a monoidal groupoid, Quillen’s bracket construction provides a small category, for de-
tails see for example, [Gra76] or [RWW17, §1]. In this section we observe that the indexing
categories (i.e., the categories of vector spaces) which govern the many variants of Weiss calcu-
lus are naturally of this form. From this observation we show that Weiss calculus is completely
determined by the homotopy type of the groupoid core of the indexing category.

2.1. Quillen’s bracket construction. Let (G, ⊕, 0) be a topologically enrichedmonoidal groupoid,
i.e., the tensor product lifts to map

⊕ : HomG(�, �) × HomG(�, �) → HomG(� ⊕ �, � ⊕ �),

and, in particular, it is an enriched functor. Define 〈G,G〉 to be the category with the same
objects as G and a morphism [-, 5 ] : � → � in 〈G,G〉 is an equivalence class of a pair (-, 5 )
where - ∈ G and 5 : - ⊕ � → �, under the equivalence relation (-, 5 ) ∼ (- ′, 5 ′) if and only
if there exists and isomorphism 6 : - → - ′ in G such that the diagram

- ⊕ � �

- ′ ⊕ �

5

6⊕�
5 ′
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commutes. The composite

�
[-,5 ]
−−−−→ �

[.,6]
−−−−→ �

is the map

�
[.⊕-, 6◦(.⊕5 )]
−−−−−−−−−−−−→ �.

The category 〈G,G〉 is enriched in spaces having mapping spaces defined by

Hom〈G,G〉 (�, �) = colim
-∈G

HomG(- ⊕ �, �) .

Remark 2.1.1. For our examples of interest, the groupoidGwith always be symmetricmonoidal.
In particular, in our examples, we will not have to take care over which side we let the groupoid
act on itself in order to form the bracket category. In [RWW17], Randal-Williams and Wahl
make no symmetric assumption and always have the groupoid acting on the left, or impose
what they call pre-braiding.

Examples 2.1.2.

(1) If G = Σ the groupoid of finite sets and bijections (with the discrete topology), then
〈G,G〉 � FI is the category of finite sets and injections. A version of orthogonal calculus
based on FI was studied by Arro [Arr23].

(2) If G = GO the groupoid of finite-dimensional real inner product spaces and linear iso-
metric isomorphisms, then 〈G,G〉 � JO is the category of finite-dimensional real inner
product spaces and linear isometric embeddings. Calculus built on JO is the orthogonal
calculus of Weiss [Wei95].

(3) If G = GU the groupoid of finite-dimensional complex inner product spaces and linear
isometric isomorphisms, then 〈G,G〉 � JU is the category of finite-dimensional complex
inner product spaces and linear isometric embeddings. Unitary calculus in the sense of
the second named author [Tag22b] is the Weiss calculus based on JU.

(4) If G = GS the groupoid of finite-dimensional symplectic vector spaces and symplectic
isomorphisms, then 〈G,G〉 � JS is the category of finite-dimensional symplectic vector
spaces and symplectic linear maps. In this first part of the paper, we will construct a
Weiss calculus on this category

(5) if G = GH is the groupoid of finite-dimensional quaternion inner product spaces and
isometric isomorphisms, then 〈G,G〉 � JH is the category of finite-dimensional quater-
nion inner product spaces with linear isometric embeddings. In Part 2 we will construct
a version of Weiss calculus based on JH.

Proof. In all cases, the proof is analogous to that provided by Randal-Williams andWahl [RWW17,
§5.1] in the case of symmetric groups. �

2.2. Groupoid cores. Under somemild hypotheses themonoidal groupoidG is the (∞-)groupoid
core of the category 〈G,G〉. We first recall the notion of a Dwyer-Kan equivalence of topologi-
cally enriched categories.
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Definition 2.2.1. A functor � : C → D of topologically enriched categories is a Dwyer-Kan
equivalence if the following two conditions hold.

(1) � is fully faithful—that is, the morphism

C(-,. ) −→ D(� (- ), � (. )),

is a weak homotopy equivalence;
(2) � is homotopically essentially surjective—that is, the induced functor

c0� : c0C −→ c0D,

on homotopy categories is essentially surjective.

To identify the (∞-)groupoid core with the groupoidGwewill say amonoidal category (C, ⊕, 0)
is cancellative if whenever - ⊕ � � . ⊕ �, then - � . , and has no zero divisors if whenever
� ⊕ �′

� 0, then � � 0 � �′. These are properties that will be satisfied by all of the groupoids
we consider.

Lemma 2.2.2. Let� be a topologically enriched monoidal groupoid. There is an enriched functor

I : G −→ 〈G,G〉core, (5 : � → �) ↦−→ [0, 5 ],

which

(1) is faithful if AutG(0) = {Id},
(2) is full if G has no zero divisors,
(3) exhibits G as the groupoid core of 〈G,G〉—that is, is an equivalence—whenever AutG(0) =

{Id} and G has no zero divisors,
(4) induces an equivalence on homotopy categories whenever G is cancellative with no zero

divisors and AutG(0) = Id. In particular, the isomorphisms in c0〈G,G〉 are isomorphisms
in 〈G,G〉 and hence (c0〈G,G〉)

core
� c0(〈G,G〉

core), and
(5) is a Dwyer-Kan equivalencewheneverG is cancellativewith no zero divisors andAutG(0) =

Id.

Proof. Continuity of I follows as it is given on arrows as the composite

HomG(�, �) � HomG(0 ⊕ �, �) → Hom〈G,G〉 (�, �),

using the colimit structuremap and the unit isomorphism. Statements (1)–(3) follow from [RWW17,
Proposition 1.7]. For (4), we first show the isomorphisms in the homotopy category are rep-
resented by isomorphisms of 〈G,G〉. By (3), all such isomorphisms take the form [0, 5 ] under
the equivalence I.

If [-, 5 ] : � → � is an isomorphism in c0〈G,G〉, then there exists [.,6] : � → � for which there
are paths [. ⊕ -,6 ◦ (. ⊕ 5 )] ≃ [0, Id�] and [- ⊕ ., 5 ◦ (- ⊕ 6)] ≃ [0, Id�] in Hom〈G,G〉 (�,�)
and Hom〈G,G〉 (�, �), respectively. Since both composites [-, 5 ] ◦ [.,6] and [.,6] ◦ [-, 5 ] are
self-maps in 〈G,G〉, the cancellative property implies - ⊕ . � . ⊕ - � 0 and since there are
no zero divisors, we must have- � . � 0. But this means that [-, 5 ] and [.,6] are equivalent
to maps of the form [0, � ] and [0,�], respectively, as desired. Hence, all isomorphisms in
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c0〈G,G〉 are represented by isomorphisms of 〈G,G〉 and thus G. In particular, this implies that
(c0〈G,G〉)

core
� c0(〈G,G〉

core). (5) follows from (4) and the additional observation that, under
our hypotheses, I also induces equivalences between mapping spaces. �

The modest assertions of the preceding lemma belie its more far-reaching implications, as sug-
gested by following illustrative examples.

Example 2.2.3. In the examples of Example 2.1.2 the groupoidG is the groupoid core of 〈G,G〉.

Remark 2.2.4. WhenG is a topologically enriched cancellativemonoidal groupoid, Lemma2.2.2(4)
implies that a topologically enriched functor � : C → 〈G,G〉 is homotopically essentially sur-
jective if and only if � essentially surjective.

2.3. Functors on groupoid cores. In the original incarnation of Weiss calculus, one studies
functors from JO to spaces, which by Example 2.1.2 is precisely studying functors from 〈GO,GO〉
to spaces. Our goal of rephrasingWeiss calculus in terms of these homogeneous categories is to
invert a functor of topological groupoids and hence a functor on the associated homogeneous
categories.

Lemma 2.3.1. Let J1 and J2 be small categories. If there is a Dwyer-Kan equivalence U : J1 → J2,
then there is an adjunction

U! : Fun(J1, S)
//

Fun(J2, S) : U
∗

oo ,

which is an equivalence of∞-categories.

Proof. The Dwyer-Kan equivalence U : J1 → J2 induces a Dwyer-Kan equivalence of simpli-
cially enriched categories Sing(U) : Sing(J1) → Sing(J2), where for 8 ∈ {1, 2}, Sing(J8) is the
simplicially enriched category formed by applying Sing to the morphism spaces of J8 . This in
turn induced a categorical equivalence

#ℎ (U) : #ℎ (J1) −→ #ℎ (J2),

on homotopy coherent nerves (wherewe have suppressed Sing from the notation) and the result
follows from [Lur09, Proposition 1.2.7.3(3)], see also [Lur23, Tag 01E7]. �

Remark 2.3.2. We could also have chosen to model the ∞-category of functors Fun(J, S) as
the ∞-categorical localization of the projective model structure on the category of continuous
functors Fun(J, Top), i.e., as the homotopy coherent nerve of the topological category of bi-
fibrant objects. In this case, a Dwyer-Kan equivalence of topological categories corresponds
to a weak equivalence of topological categories in the sense of Gepner and Henriques [GH07,
Definition A.5], and hence [GH07, Lemma A.6] provides a Quillen equivalence

U! : Fun(J1, Top)
//

Fun(J2, Top) : U
∗

oo ,

between projective model structures and the statement of the above lemma becomes the ∞-
categorical localization of this Quillen equivalence.

https://kerodon.net/tag/01E7
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To reduce to groupoid cores, we will need to impose some modest hypotheses—which hold
in all of the cases we will be interested in—to ensure good homotopical behavior. Note that
in conjunction with G having no zero divisors, the following hypothesis makes 〈G,G〉 into a
homogeneous category in the sense of Randal-Williams andWahl [RWW17, Definition 1.3], see
also [RWW17, Theorem 1.10].

Hypothesis 2.3.3. LetG be a topologically enriched monoidal groupoid which is cancellative and
be such that Aut(�) → Aut(� ⊕ �) is injective for all objects�, � ∈ G.

Under these assumptions, we have the following lemma.

Lemma 2.3.4. Let G1 and G2 satisfy Hypothesis 2.3.3. If there is a monoidal Dwyer-Kan equiva-
lence U : G1 → G2, then the induced functor

〈U〉 : 〈G1,G1〉 −→ 〈G2,G2〉,

is a Dwyer-Kan equivalence.

Proof. The functor 〈U〉 is defined on objects as U is and inherits its enrichment from U . Note
that the colimit defining Hom〈G8 ,G8 〉 (�8 , �8 ) is equivalent, by the cancellative property, to the
colimit taken over the full subgroupoid of G8 spanned by objects having the isomorphism type
of -8 ∈ G8 where -8 is such that -8 ⊕ �8 � �8—all other mapping spaces are necessarily empty
and do not affect the colimit. Call this subcategory G8 (- ) and let �Aut(- ) denote the full
subcategory of G8 (- ) spanned by - . Since the inclusion �Aut(- ) → G8 (- ) is an equivalence,
it is final, and we conclude that

Hom〈G8 ,G8〉 (�8 , �8) � colim
�Aut(-8)

HomG8
(-8 ⊕ �8 , �8) .

Note that Aut(-8) acts freely onHomG8
(-8⊕�8 , �8): eitherHomG8

(-8 ⊕�8 , �8 ) = ∅, in which this
is vacuous, or there is an isomorphism -8 ⊕ �8 � �8 and, in this latter case, if 5 ∈ HomG8

(-8 ⊕
�8 , �8) and 5 (6 × Id) = 5 . Then applying inverses, we must conclude that 6 × Id = Id, and it
must be that 6 = Id. It follows that the functor

HomG8
(− ⊕ �8 , �8) : �Aut(-8) −→ Top,

is projective cofibrant—that is, a cofibrant Aut(-8)-space—and, hence, this colimit is a homotopy
colimit.

Now, the functor U defines for each �, � ∈ G1 an equivalence

U : HomG1
(�, �) −→ HomG2

(U (�), U (�)),

and it follows that U induces a Dwyer-Kan equivalence �Aut(- ) → �Aut(U (- )). This shows
that 〈U〉 is fully faithful. In other words, the induced map

colim
�Aut(- )

HomG1
(- ⊕ �, �)

≃
−−→ colim

�Aut(U (- ))
HomG2

(U (- ) ⊕ U (�), U (�)),

is an equivalence. As for essential surjectivity of 〈U〉, this follows since U is necessarily es-
sentially surjective in the ordinary sense, the objects of G8 coincide with those of 〈G8,G8〉 for
8 ∈ {1, 2}, and 〈U〉(- ) = U (- ) for every - ∈ G1. �
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Remark 2.3.5. Let G be a topologically enriched monoidal groupoid satisfying the hypotheses
of the situation considered above. While HomG(− ⊕ �, �) need not be projective cofibrant, if
. is such that Hom(. ⊕ �, �) ≠ ∅, then, with the notation as above, it turns out that there are
isomorphisms in the homotopy category of spaces

hocolim-∈GHomG(- ⊕�, �) � hocolim-∈G(. ) HomG(- ⊕�, �) � colim�Aut(. ) HomG(. ⊕�, �) .

The first isomorphism appearing occurs since for - ∉ G(. ), HomG(- ⊕ �, �) = ∅—in terms of
the classifying fibration, the total space is empty over the components ofG(/ ) with / � . . The
second isomorphism follows since the inclusion �Aut(. ) → G(. ) is a Dwyer-Kan equivalence
and the colimit appearing is the homotopy colimit, as we argued previously.

Corollary 2.3.6. LetG1 and G2 satisfy Hypothesis 2.3.3. If there is a monoidal Dwyer-Kan equiv-
alence U : G1 → G2, then the induced adjunction

〈U〉! : Fun(〈G1,G1〉, S)
//

Fun(〈G2,G2〉, S) : 〈U〉
∗

oo ,

is an equivalence of∞-categories.

Proof. The map 〈U〉 : 〈G1,G1〉 → 〈G2,G2〉 is a Dwyer-Kan equivalence by Lemma 2.3.4. The
result follows immediately from Lemma 2.3.1. �

2.4. Generalized polynomial functors. We introduce a slight generalization of polynomial
functors. This generalization recovers the standard definition in the cases we are interested in,
but allows for a slick comparison between polynomial functors in different calculi. Observe as
in [Gra76, p.3] or [RWW17, Definition 1.3] that the monoidal unit 0 in an initial object in 〈G,G〉
and hence for any - ∈ 〈G,G〉, the unique map 0 → - is initial in (〈G,G〉)/- .

Definition 2.4.1. Let G be a topologically enriched monoidal groupoid and let - ∈ G. A
functor � : 〈G,G〉 → S is - -polynomial if for each+ ∈ J, the canonical map

� (+ ) −→ holim
* ∈(〈G,G〉/- )0

� (+ ⊕ * ),

is an equivalence, where (〈G,G〉/- )0 is the slice category (〈G,G〉/- ) with initial object removed.

Remark 2.4.2. The above (homotopy) limit is the ∞-categorical limit taken over the space
〈G,G〉/- . We will model the∞-categorical limit as a homotopy limit in the following way. The
category 〈G,G〉 is topologically enriched and hence the category 〈G,G〉/- is a topologically
internal category i.e., consists of a space of objects and a space of morphisms which satisfy the
standard category axioms through continuous maps of spaces. A functor from a topologically
internal category to spaces is the data of a space over the space of objects togetherwith an action
(over the space of objects) of the space of morphisms. In particular every functor � : 〈G,G〉 →
Top has a canonical restriction to a functor � : 〈G,G〉/- → Top. The topologically internal nerve
# (〈G,G〉/- ) of 〈G,G〉/- is a (non-Reedy fibrant) complete Segal space and the topologically
internal Grothendieck construction allows us to model the functor � (+ ⊕ −) : 〈G,G〉/- → Top
as a left fibration of complete Segal spacesF+ → # (〈G,G〉/- ). The homotopy limit of � (+ ⊕−)
(when restricted to exclude the initial object) may then be modelled as the (derived) space of
sections of this left fibration (suitably restricted to exlcude the initial object).
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This has been considered in the simplicial setting by Boavida de Brito [BdB18] in which they
make precise the statement that this models the ∞-categorical limit and that (up to Reedy fi-
brant replacement) the projective model structure on diagrams indexed by internal categories
provides a model for the relevant ∞-category of functors. We make these ideas precise in the
topological setting in [CT24].

We believe that the model here is equivalent to the model used by Weiss in the original con-
structions of orthogonal calculus [Wei95, Wei98], and also note that this should be equiva-
lent to the∞-categorical limit based on quasicategories over the quasicategory (#ℎ (〈G,G〉/- )0,

where #ℎ (−) denotes the homotopy coherent nerve. We do not pursue these equivalent de-
scriptions here but note that our model has the correct universal property of a homotopy limit
as equivalent to the derived space of maps from the constant functor to � (+ ⊕ −), see for ex-
ample, [BdB18, CT24].

Remark 2.4.3. The condition that a functor � is - -polynomial is equivalent to the statement
that for each+ , the canonical map

� (+ ) −→ Mapℎ# ((〈G,G〉/- )0)
(# (〈G,G〉/- )0),F+ ),

is an equivalence, where the right-hand side denotes the derived space of sections of the left
fibration F+ → # ((〈G,G〉/- )0) of complete Segal spaces. My adjunction this map is equiva-
lently described as the map

� (+ ) × # (〈G,G〉/- )0) −→ F+ ,

over # (〈G,G〉/- )0) given by

(G,* ) ↦−→ 8* (G)

where (G,* ) ∈ � (+ ) × # ((〈G,G〉/- )0), and 8* : � (+ ) → � (+ ⊕ * ) is the map induced by the
canonical inclusion + ↩→ + ⊕* .

Remark 2.4.4. For orthogonal calculus, i.e., G = GO (compare Example 2.1.2), the choice - =

R
=+1 recovers the notion of =-polynomial. Note also that this is invariant under isomorphism in

G. For instance, if+ is any (=+1)-dimensional real inner product space then � is+ -polynomial
if and only if � is =-polynomial.

Let C be a topologically internal category with space of objects ob(C) and space of morphisms
mor(C). The @-simplicies of the topological nerve of C are given by

#@C = mor(C) ×ob(C) · · · ×ob(C) mor(C),

with mor(C) appearing @-times. This defines a functor

# : Cat(Top) −→ TopΔ
op

,

from the category of topologically internal categories to the category of simplicial spaces. Under
mild hypothesis on the internal categories, satisfied in all our examples, the internal nerve is a
complete Segal space and hence may be viewed as an ∞-category.
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Lemma 2.4.5. Let J1 and J2 be small topologically enriched categories. If there is a Dwyer-Kan
equivalence U : J1 → J2, then for every � ∈ J1, the induced functor

# (U) : # ((J1)/�) −→ # ((J2)/U (�)),

is an equivalence of simplicial spaces.

Proof. The slice category (J1)/� is an internal category with space of objects consisting of maps
with target �, and space of morphisms given by flags of length two in J1 with target �, i.e.,
a point in the space of morphisms of (J1)/� is a sequence of maps (+0 → +1 → �) where
+0,+1 ∈ J1. In general a point in a @-simplex of the internal nerve # ((J1)/�) is a flag of length
@ + 1 in J1, i.e., a sequence

(+0 → +1 → · · · → +@ → �),

of morphisms in J1. For 0-simplicies of the nerve, the induced map is an equivalence since U is
a Dwyer-Kan equivalence, i.e., since U is fully faithful. A similar argument on higher simplicies,
using the right properness of Top implies that the induced map

# (U) : # ((J1)/�) −→ # ((J2)/U (�)),

is a levelwise equivalence, hence, an equivalence of simplicial spaces. �

Proposition 2.4.6. Let G1 and G2 satisfy Hypothesis 2.3.3. If U : G1 → G2 a monoidal Dwyer-
Kan equivalence. and - ∈ 〈G1,G1〉, then a functor � : 〈G2,G2〉 → S is U (- )-polynomial if and
only if U∗� : 〈G1,G1〉 → S is - -polynomial.

Proof. Assume that � is U (- )-polynomial. We want to show that for every + ∈ 〈G1,G1〉, the
functor

(# 〈U〉∗� )(+ ⊕ −) : # ((〈G1,G1〉/- )0) −→ S,

is a limit diagram. Transporting the problem to left fibrations, the left fibration associated to
(# 〈U〉∗� )(+ ⊕ −) is naturally equivalent to the pullback along

# 〈U〉 : # ((〈G1,G1〉/- )0) −→ # ((〈G2,G2〉/- )0),

of the left fibration FU (+ ) which corresponds to to the functor

� (U (+ ) ⊕ −) : # ((〈G2,G2〉/- )0) → S .

By Lemma 2.4.5 the map U is an equivalence, and hence the fibration # 〈U〉∗FU (+ ) is equivalent
to the fibration FU (+ ) . It follows that the spaces of sections of these fibrations are equivalent,
and hence the canonical map

� (U (+ )) −→ Map# ((〈G2,G2〉/U (- ) )0)
(# ((〈G2,G2〉/U (- ))0),FU (+ )),

being an equivalence implies that the canonical map

(# 〈U〉∗� )(+ ) = � (U (+ )) −→ Map# ((〈G1,G1〉/- )0)
(# ((〈G1,G1〉/- )0), # 〈U〉∗FU (+ )),

is an equivalence, and hence � is - -polynomial. The converse follows by carefully reading this
argument in reverse. �

For ease of notation we will no longer distinguish between # 〈U〉 and U .
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Corollary 2.4.7. Let G1 and G2 satisfy Hypothesis 2.3.3. If U : G1 → G2 is a monoidal Dwyer-
Kan equivalence, and - ∈ J1, then a functor � : 〈G1,G1〉 → S is - -polynomial if and only if
U!� : 〈G2,G2〉 → S is U (- )-polynomial.

Proof. Since the adjunction

U! : Fun(〈G1,G1〉, S)
//

Fun(〈G2,G2〉, S) : U
∗

oo ,

is an equivalence of ∞-categories, both the unit and counit are equivalences. It follows that a
functor � is - -polynomial if and only if U∗U!(� ) is - -polynomial. By Proposition 2.4.6, U∗U!(� )
is - -polynomial if and only if U! (� ) is U (- )-polynomial. �

Denote byPoly- (〈G,G〉, S) the full sub-∞-category of Fun(〈�,�〉, S) spanned by the- -polynomial
functors. Proposition 2.4.6 implies the following.

Corollary 2.4.8. LetG1 andG2 satisfy Hypothesis 2.3.3. If U : G1 → G2 is amonoidal Dwyer-Kan
equivalence, and - ∈ J1, then the adjoint pair

U! : Poly
- (〈G1,G1〉, S)

//

PolyU (- ) (〈G2,G2〉, S) : U
∗

oo ,

is an equivalence of∞-categories.

Proof. By Corollary 2.3.6, the adjunction

U! : Fun(〈G1,G1〉, S)
//

Fun(〈G2,G2〉, S) : U
∗

oo ,

is an equivalence of ∞-categories. Since Poly- (〈G1,G1〉, S) is defined as a full sub-∞-category,
the functor U∗ is fully faithful, hence it is left to show that U∗ is essentially surjective, but
this follows from essential surjectivity on the level of functors and Proposition 2.4.6 and Corol-
lary 2.4.7. �

Remark 2.4.9. For the reader with a preference for model categories, the above equivalence
of ∞-categories could also be proved by providing a Quillen equivalence of model categories.
The ∞-category of - -polynomial functors may be modeled as a left Bousfield localization of
the projective model structure on Fun(〈G1,G1〉, Top), and similarly for the∞-category of U (- )-
polynomial functors. The adjunction on the level of model categories is a Quillen adjunction
by Proposition 2.4.6 in conjunction with [Hir03, Proposition 3.3.18] and [Hir03, Theorem 3.1.6].
The Quillen equivalence follows from [Hov99, Corollary 1.3.16]: Lemma 2.3.1 shows that U∗

preserves weak equivalences, and Corollary 2.4.7 allows for the reduction on the condition of
the derived unit being an equivalence to a statement about the derived unit on the level of
functor categories and the result follows by Proposition 2.4.6.

3. Symplectic Weiss calculus and the deformation retraction

In this section, we provide a candidate for symplectic Weiss calculus and show that it deforma-
tion retracts onto unitary calculus. By utilising Section 2, the deformation retract becomes an
exercise in investigating the groupoid cores of the homogeneous categories used to construct
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unitary and symplectic calculus, and hence essentially a commentary on the unitary group
* (=) being the maximal compact subgroup of the symplectic group Sp(2=,R).

3.1. Theunitary and symplectic groupoids. Denote byGS the topologically enrichedgroupoid
of symplectic vector spaces and symplectic isomorphisms—with the operation on forms given
by direct sum—and denote by JS Qullien’s bracket construction on GS, as in Example 2.1.2.
There is a forgetful functor ℑ : JU → JS which sends a Hermitian inner product space+ to its
underlying real vector space A+ with symplectic structure given by the imaginary part of the
Hermitian inner product, lA+ = ℑ(〈− | −〉). A routine linear algebra exercise shows that this
gives a well-defined symplectic form on A+ .

Lemma 3.1.1. The functor ℑ : JU → JS is a Dwyer-Kan equivalence.

Proof. First note that ℑ : JU → JS is equivalently described as

〈ℑ〉 : 〈GU,GU〉 −→ 〈GS,GS〉.

By Lemma 2.3.4 it suffices to show that the functor

ℑ : GU −→ GS,

is a monoidal Dwyer-Kan equivalence. It is easy to see that ℑ is essentially surjective and
monoidal, so we only need to verify that ℑ is fully faithful. For this, consider C= ∈ GU. On
these objects, ℑ induces an embedding

* (=) → AutS(AC
=) � Sp(2=,R)

compatible with the group structures. Since * (=) is a maximal compact subgroup of the con-
nected Lie group AutS(AC

=) � Sp(2=,R), there is a deformation retract of AutS(AC
=) onto* (=)

and this inclusion is therefore a weak equivalence. This implies that ℑ is fully faithful and
therefore a Dwyer-Kan equivalence. �

Remark 3.1.2. The above result implies that complex Stiefel manifolds are homotopy equiva-
lent to symplectic Stiefel manifolds. Results of this nature have been known for some time, see
for example, [AB13] and the references therein. In fact, in the case of semisimple connected Lie
group results of this kind date back to Cartan, see also the book of Helgason [Hel78, Ch. VI,
Theorem 2.2].

3.2. Symplectic Functors and polynomial approximation. The equivalence of groupoids
between GU and GS allows one to leverage unitary calculus arguments to show that an =-
polynomial symplectic functor is (= + 1)-polynomial.

Proposition 3.2.1. If a symplectic functor � : JS → S is =-polynomial, then it is (= + 1)-
polynomial.

Proof. If � is =-polynomial, then by Proposition 2.4.6 the unitary functor ℑ∗� is =-polynomial,
hence (=+1)-polynomial by the corresponding result in unitary calculus, see for example, [Tag22b,
Proposition 3.10]. An application of Corollary 2.4.7 yields that the symplectic functor � ≃
ℑ!ℑ

∗� is (= + 1)-polynomial, whence the result. �
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Let J be one of the categories of vector spaces, and denote by k the underlying field. For any
functor � : J → S, define g=� : J → S to be the functor given by

g=� (+ ) := holim* ∈(J/k=+1 )0
� (+ ⊕ * ) .

This functor is in general not =-polynomial as it need not be idempotent but iterating to obtain
a functor,

)=� (+ ) := hocolim:≥0(g=)
:� (+ ),

typically yields an =-polynomial functor. In all known cases of Weiss calculus, this functor
is the universal =-polynomial functor under � . The proof that )=� is =-polynomial is one of
the most complex aspects of setting up a Weiss calculus, see for example, [Wei95, Wei98]. It
involves an intricate analysis of the (homotopy) (co)limits in the definition of)=� together with
the fact that the slice category (J/k=+1)0 is a topologically internal category, or rather, the nerve
of (J/k=+1)0 is a (non-Reedy fibrant) complete Segal space. We can utilise Proposition 2.4.6 to
avoid this analysis in the symplectic setting.

Proposition 3.2.2. For a symplectic functor � : JS → S, the functor )=� is =-polynomial.

Proof. By Proposition 2.4.6 it suffices to provide an equivalence between ℑ∗()=� ) and)
U
= (ℑ∗� )

where the latter denotes the universal =-polynomial approximation in unitary calculus. Since
the functor ℑ∗ commutes with all limits and colimits it suffices to provide an identification
between the relevant homotopy limits, but this is precisely the content of the proof of Proposi-
tion 2.4.6. �

Proposition 3.2.3. If � is a symplectic functor, then )=� is the universal =-polynomial functor
under � .

Proof. The proof follows [Wei95, Theorem 6.3], but noting that the errata [Wei98] only corrects
the proof that )=� is =-polynomial, see also [Hen23, Corollary 3.2.0.10.]. �

Remark 3.2.4. The classical proof that)=� is =-polynomial [Wei98] usesWeiss’s chosenmodel
for the homotopy limit of a functor � : (J/R=+1)0 → Top. In all other models of Weiss calculus,
the proof uses an analogous model for the homotopy limit. Examining the content of [Wei95,
Theorem 6.3] and [Wei98] one observes that having a model is key only in proving [Wei98,
Lemma e.3], i.e., the statement that if 5 : � → � is such that 5 (+ ) : �(+ ) → � (+ ) is approxi-
mately ((=+1) dim(+ ))-connected, then g= 5 (+ ) is more connected. Using the model for the ho-
motopy limit as the derived space of sections of a left fibration of complete Segal spaces together
with the formula for connectivity of natural transformation spaces, see for example, [Dot16,
Proposition A.1.1], one can readily prove the same connectivity bound as in [Wei98, Lemma
e.3] by writing the relevant (derived) section spaces as (homotopy) fibers.

3.3. The deformation retract of calculi. Precomposition with ℑ induces an adjunction

ℑ! : Fun(J
U, S)

//

Fun(JS, S) : ℑ∗
oo ,

which we will use to compare the calculi. An application of Lemma 2.3.1, yields the following
result.
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Lemma 3.3.1. The adjunction

ℑ! : Fun(J
U, S)

//

Fun(JS, S) : ℑ∗
oo ,

is an equivalence of∞-categories.

Consider the full subcategoryPoly≤= (JS, S) of=-polynomial functors. The adjunction of Lemma3.1.1
descends to an adjunction between the categories of =-polynomial functors

ℑ! : Poly
≤= (JU, S)

//

Poly≤= (JS, S) : ℑ∗
oo ,

which is an equivalence of ∞-categories by Corollary 2.4.8.

Lemma 3.3.2. The adjoint pair

ℑ! : Poly
≤= (JU, S)

//

Poly≤= (JS, S) : ℑ∗
oo ,

is an equivalence of∞-categories.

Proposition 3.2.1 and Proposition 3.2.3 imply that for each= ≥ 1, there is natural transformation

)=� −→ )=−1�

which assemble into a Weiss tower

�

· · · )=� · · · )1� )0�

under � . We may represent this Weiss tower as a functor

Tow(� ) : Z
op
≥0 −→ Fun(J, S), = ↦−→ )=�,

and hence globally as a functor

Tow : Fun(J, S) −→ Fun(Z
op
≥0, Fun(J, S)),

which sends � to Tow(� ).

Theorem 3.3.3. For any symplectic functor � : JS → S, there is an equivalence

TowS(� ) ≃ ℑ!Tow
U(ℑ∗� ) .

Proof. Since ℑ! is inverse to ℑ∗ at the level of ∞-categories, it suffices exhibit an equivalence

ℑ∗TowS(� ) ≃ TowU(ℑ∗� ) .

Recall that there is a map � → )=� initial among all =-polynomial functors. Since ℑ∗ is an
equivalence, it follows that for each = ≥ 0, ℑ∗(� ) → ℑ∗():� ) is likewise initial. Thus, for each
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= ≥ 1, in the following square

ℑ∗()=� ) ℑ∗()=−1� )

)U
= (ℑ∗� ) )U

=−1(ℑ
∗� )

all composites are maps under ℑ∗� , where the vertical maps are the equivalences of Proposi-
tion 3.2.2 and horizontal arrows arise from theWeiss tower. Hence, this square commutes up to
homotopy. This implies that there exists a natural equivalence ℑ∗TowS(� ) → TowU(ℑ∗� ). �

Remark 3.3.4. Here we have only considered functors to unpointed spaces. To obtain analo-
gous results for functors to pointed spaces requires little more than the observation that a func-
tor � : J → S∗ is =-polynomial if and only if the induced functor � : J → S is =-polynomial, i.e.,
that limits in pointed spaces are computed in spaces. For more on the interplay between pointed
and unpointed orthogonal calculus in the∞-categorical setup see for example, [Hen23].

Part 2. Quarternion Weiss calculus

In this part, we construct (in the now standard way) quaternion calculus, i.e., a version of Weiss
calculus built on the compact symplectic groups Sp(=) = Aut(H=), and provide comparisons
between this calculus and the other known versions of calculus. This construction is somewhat
standard as the quaternions support just enough linear algebra.

4. �aternion Steifel combinatorics

Much of orthogonal calculus is governed by understanding the geometry of Stiefel manifolds,
see for example, [Wei95, §1, §4]. For example, the existence of a universal=-polynomial approx-
imation, and the existence of the Weiss tower itself are reliant on understanding the geometry
of Stiefel manifolds. In fact, this ‘Stiefel combinatorics’ is still an essential input to construct-
ing orthogonal calculus using the topos-theoretic machine2 of Anel, Biedermann, Finster and
Joyal [ABFJ23], and similar analysis of Stiefel manifolds is required in the construction of uni-
tary calculus [Tag22b] and calculus with reality [Tag22c]. In this section, we introduce the
necessary combinatorics with Stiefel manifolds to construct a quaternion version of Weiss cal-
culus. For the reader interested less in the finer details of the constructions and more in the
properties of the calculus or those familiar with [Wei95, §1, §4], we invite you to skip this
section.

2The exact proof that their topos-theoretic construction recovers orthogonal calculus has not yet appeared in
the literature, but is claimed in [ABFJ23].
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4.1. Quaternion vector spaces. Denote by H the division algebra of the quaternions with
inner product given by

〈−,−〉 : H × H −→ H, (@1, @2) ↦−→ @1@2.

By a quaternion vector space we mean a right H-module. Denote by JH the category of finite-
dimensional quaternion inner product subspaces of H∞ and inner product preserving embed-
dings. The space of maps JH (+,, ) may be topologised as the Stiefel manifold of dimH(+ )-
frames in, , i.e., as the homogeneous space

Sp(, )/Sp(+⊥),

where Sp(+ ) is the compact Symplectic group, or equivalently the space JH (+,+ ). In other
words, the category JH, is Quillen’s bracket construction on the groupoid given by the disjoint
union of the topological groups Sp(+ ), compare with Example 2.1.2.

For each = ∈ N, sitting over the space of linear isometries JH(+ ,, ) is the =-fold orthogonal
complement vector bundle WH= (+ ,, ) with fiber over a linear isometry 5 given by H

= ⊗ 5 (+ )⊥.
To ease notation we write =+ for the tensor productH=⊗+ . Denote by JH= the category with the
same objects as JH and morphism space given by the Thom space of the total space of WH= (+,, ).

4.2. Stiefel Combinatorics over the quaternions. As is standard in all other forms of or-
thogonal calculus, see for example, [Wei95, Tag22b, Tag22c], the sphere bundle of the vector
bundle W= (+,, ) may be constructed (up to homeomorphism) as a certain homotopy colimit of
morphism spaces in JH. The proof is a rather involved interaction between homotopy theory
and linear algebra, the first account of which was provided by Weiss in [Wei95, Proposition
4.2].

Remark 4.2.1. The following proof involves heavy linear algebra. Due to the non-commutativity
of the quaternions caremust be takenwhen discussing eigenvalues and eigenvectors ofH-linear
endomorphisms. For instance, given an eigenvalue _ of a H-linear endomorphism on a quater-
nion vector space + the eigenspace �(_) need only be a real subspace of + . If the eigenvalue
_ is real then the eigenspace is a H-linear subspace of + . We will only need to consider real
eigenvalues since the eigenvalues of any self-adjoint linear isometry on a quaternion vector
space+ are necessarily real. A good review of linear algebra over the quaternions can be found
in [Sch22, Appendix B].

Proposition 4.2.2. For each = ∈ N, there is a homeomorphism

hocolim
0≠*⊆H=+1

JH(* ⊕ +,, ) −→ (WH=+1(+ ,, ),

which is natural in +,, ∈ JH.

Proof. The proof proceeds as in [Wei95, Theorem 4.1] and [Tag22b, Theorem 4.1] taking into
account the delicate nature of linear algebra over the quaternions as discussed in the preceding
remark, and choosing a suitable model for the colimit as a homotopy colimit. �
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Remark 4.2.3. The model for the homotopy colimit used by Weiss in [Wei95] is equivalent
to the model based on left fibrations of (complete) Segal spaces in the sense of Boavida de
Brito [BdB18]. By [BdB18, Theorem 1.22 and Proposition 4.1], it follows that the homotopy
colimit of a left fibration is the geometric realization of the total simplicial space, and thismodels
the quasicategorical homotopy colimit of the associated fibration of quasicategories, see also
for example, [Lur23, Corollary 02VF] and [RV22, Proposition 10.3.6(viii)], from which it follows
that the formula for such a geometric realization matches that used by Weiss. We discuss this
further in [CT24].

The final results in this section are homotopy cofiber sequences relating the morphism spaces
in the categories JH= and JH=+1. The proof of the following result may be taken from [Wei95,
Proposition 1.2] by appropriately replacing the real numbers by the quaternions.

Proposition 4.2.4. For each = ∈ N, and + ,, ∈ JH, there is a natural cofiber sequence

JH= (+ ⊕ H,, ) ∧ (4= −→ JH= (+ ,, ) −→ JH=+1(+,, ),

as functors (JH= )
op × JH= → S∗.

The morphism spaces in JH=+1 may also be described relative to the sphere bundle of the (= + 1)-
fold orthogonal complement bundle. Again, this is nothing special about the quaternion case,
and holds in other versions of orthogonal calculus, see for example, [Wei95, §5] and [BO13,
Lemma 5.5].

Lemma 4.2.5. For each = ∈ N, and + ,, ∈ JH, there is a natural cofiber sequence

(WH=+1(+ ,, )+ −→ JH0 (+,, ) −→ JH=+1 (+,, ),

as functors (JH0 )
op × JH0 → S∗.

5. Polynomial functors and the Weiss tower

Following Definition 2.4.1, a functor � : JH → S∗ is polynomial of degree less than or equal =
if for each+ ∈ JH, the canonical map

� (+ ) −→ holim* ∈(JH
/H=+1

)0
� (+ ⊕* ),

is an equivalence. The category (JH
/H=+1) is equivalent to the posetP(H

=+1) of subspaces ofH=+1,

hence a functor is =-polynomial if and only if the canonical map

� (+ ) −→ holim
* ∈P0 (H=+1)

� (+ ⊕ * ),

is an equivalence, matching the more familiar definition3 from orthogonal and unitary calcu-
lus [Wei95, Definition 5.1]. We denote by Poly≤= (JH, S∗) the full sub-∞-category of Fun(JH, S∗)
spanned by the =-polynomial functors.

3Weiss [Wei95] and the second named author [Tag22b, Tag22c] used homotopy limits indexed on topological
categories, but this is equivalent to the ∞-categorical notion by [CT24] and [BdB18].

https://kerodon.net/tag/02VF
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5.1. Polynomial approximation. As before we denote by )= the repeated iteration of the
functor g= : Fun(J

H, S∗) −→ Fun(JH, S∗), given by

g=� (+ ) = holim
* ∈(JH

/H=+1
)0

� (+ ⊕ * ) .

In other words,
)=� (+ ) = hocolim: (g=)

:� (+ ) .

In the case of quaternion Weiss calculus we can show that )= has the required universal prop-
erty: )=� is the universal =-polynomial functor under � . For the ∞-categorical version of the
following result in orthogonal calculus see for example, [Hen23, Theorem 3.2.0.8 and Corollary
3.2.0.10].

Proposition 5.1.1. For each = ≥ 0, the functor)= is the left exact left adjoint to the inclusion

Poly≤= (JH, S∗) ↩→ Fun(JH, S∗),

of the full sub-∞-category of =-polynomial functors.

Proof. This is equivalent to the statement that for each functor � ,)=� is the universal=-polynomial
functor under � . With the Stiefel combinatorics in place this follows readily from [Wei95, The-
orem 6.3] and [Wei98] making the appropriate alternations from real linear algebra to linear
algebra over the quaternions. �

5.2. The Weiss tower. We conclude this section by constructing the Weiss tower in quater-
nion calculus. We first record a fact on the relationship between =-polynomial functors and
(= + 1)-polynomial functors which ensures that the Weiss tower has the required properties.

Lemma 5.2.1. For each = ≥ 0, every =-polynomial functor is (= + 1)-polynomial.

Proof. The proof follows that of [Wei95, Proposition 5.4] replacing the real Stiefel combinatorics
with the relevant quaternion version, see Section 4. �

The inclusionH= ↩→ H
=+1 induces a natural transformation)=+1 → )=, and hence aWeiss tower

�

· · · )=� · · · )1� )0�

under � . To complete our discussion on quaternion Weiss calculus we classify the layers of the
tower, i.e., functors

�=� = fib()=� −→ )=−1� ) .

As with the other versions of Weiss calculus, the fact that (= − 1)-polynomial functors are
=-polynomial implies that �=� satisfies the following definition.

Definition 5.2.2. A functor � : JH → S∗, is homogeneous of degree = or equivalently, =-
homogeneous if � is =-polynomial and )=−1� is trivial. We denote by Homog= (JH, S∗) the full
sub-∞-category of Fun(JH, S∗) spanned by the =-homogeneous functors.
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6. Derivatives and the classification of homogeneous functors

To understand the homotopy type of a functor � from the associatedWeiss tower wewill classify
the layers of the Weiss tower in terms of spectra with an action of Sp(=) = Aut(H=), analogous
to the orthogonal calculus classification of the layers of the orthogonal Weiss tower in terms
spectra with an action of $ (=) = Aut(R=).

6.1. Derivatives. We now explain how to each functor � : JH → S∗ one may associate a spec-
trum with an action of Aut(H=) = Sp(=), called the =-th derivative of =-th coefficient spectrum
of � . We take a slightly different (but equivalent) approach than Weiss’ original approach.

Definition 6.1.1. Let � : JH → S∗. The =-th derivative of � , denoted � (=) is the functor defined
as

� (=) (+ ) := fib(� (+ ) −→ g=−1� (+ )) .

This defines a functor � (=) : JH → S∗, and we now show that the =-th derivative is naturally a
“spectrum of multiplicity 4=” by constructing structure maps.

Proposition 6.1.2. The =-th derivative of � : JH → S∗ has structure maps of the form

(4= ∧ � (=) (+ ) −→ � (=) (+ ⊕ H) .

Proof. This is essentially a rephrasing of [Wei95, Proposition 2.2]. By the quaternion version
of [Wei95, Proposition 5.3] we can write

� (=) (+ ) = nat(J= (+,−), � ),

using the quaternion Stiefel combinatorics of Section 4. In particular, the quaternion version
of [Wei95, Proposition 2.1] follows and hence � (=) is the (restriction to JH) of the right Kan
extension of � along the inclusion JH ↩→ JH= . From this, we obtain evaluation maps

J
H

= (+,+ ⊕ H) ∧ � (=) (+ ) −→ � (=) (+ ⊕ H),

and by identifying (4= as a subspace of JH= (+ ,+ ⊕ H), the structure maps follow. �

Corollary 6.1.3. If � is =-polynomial, then the adjoint structure maps are equivalences, i.e., the
maps

� (=) (+ ) −→ Ω
4=� (=) (+ ⊕ H),

are equivalences for each + .

Remark 6.1.4. Analysing this right Kan extension description for the =-th derivative of � , one
sees that � (=) is naturally a module over the commutative monoid

=S : + ↦−→ (=+ = (H
=⊗+ ,

in the category of Sp(=)-equivariant functors from JH to Sp(=)-equivariant pointed spaces. We
won’t make use of this perspective, but the arguments of Barnes andOman [BO13] or the second
named author [Tag22b, Tag22c] extend with little work to the quaternion situation.
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Straightforward stable homotopy manipulations can, from a spectrum of multiplicity 4=, pro-
duce a spectrum of multiplicity 1, i.e., an “honest” spectrum, by “inserting loops”. Details of
this construction can be found in [Wei95, §2, §3]. One way to view this is by viewing spectra
with an action of Sp(=) as modules over S = 1S and employ a “extension-of-scalars” adjunc-
tion. This latter is the approach used by Barnes and Oman [BO13, §8] and the second named
author [Tag22b, §6],[Tag22c, §6].

6.2. Classification ofhomogeneous functors. Wenow produce an equivalence of∞-categories
between the∞-category of =-homogeneous functors and the∞-category of spectra with an ac-
tion of Sp(=). For the orthogonal calculus version of the following statement using the language
of ∞-categories see for example, [Hen23, Theorem 3.3.0.6].

Theorem 6.2.1. There is an equivalence of∞-categories

Homog= (JH, S∗) ≃ Sp�Sp(=),

between the∞-category of =-homogeneous functors and the∞-category of spectra with an action
of the symplectic group Sp(=).

Proof. Define a functor

Sp�Sp(=) −→ Fun(JH, S∗), Θ ↦−→ Ω
∞ [((=+ ∧ Θ)ℎ$ (=)] .

The content of [Wei95, Theorem 7.3] apply to the quaternion case almost verbatim, allowing
for us to identify the essential image of this functor with Homog= (JH, S∗), and claim that the
restricted functor

Sp�Sp(=) −→ Homog= (JH, S∗), Θ ↦−→ Ω
∞ [((=+ ∧ Θ)ℎ$ (=)] .

is an equivalence of ∞-categories. �

Corollary 6.2.2. Denote by m= the composite of

Fun(JH, S∗)
�=

−−−→ Homog= (JH, S∗)
≃
−−→ Sp�Sp(=),

of �= with the inverse of the equivalence of Theorem 6.2.1. For each quaternion functor � , the
spectrum m=� is equivalent to the =-th derivative of � viewed as a spectrum with an action of
Sp(=) = Aut(H=) in the sense of Remark 6.1.4.

Remark 6.2.3. Following Barnes andOman [BO13] orwork of the secondnamedauthor [Tag22b,
Tag22c], one can produce models for the ∞-categories of =-homogeneous functors (as a right
Bousfield localization of a model structure representing =-polynomial functors) and spectra
with an action of Aut(H=) = Sp(=), and a zigzag of Quillen equivalences relating them. The
key observation that the =-homogeneous model structure is Quillen equivalent to an interme-
diate category of “spectra of multiplicity =” is an adaptation of the arguments of Weiss [Wei95,
Theorem 7.3] classifying =-homogeneous functors up to homotopy. Some of the beauty in the
∞-categorical arguments are they match almost verbatimwith the original arguments of Weiss.

Corollary 6.2.4. For each = ≥ 1 and each symplectic functor � : JS → S∗ there is an equivalence

�=� (+ ) ≃ Ω
∞ [((=+ ∧ m=� )ℎSp(=)] .
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7. Comparing qaternion calculus with orthogonal and unitary calculus

It is often useful to havemethods for transporting problems through various versions of functor
calculus. Observations of this kind were key to Arone’s [Aro98] work on finite type = spectra,
and to Behrens’ [Beh12] work on the relationship between the EHP sequence and Goodwillie
calculus. In the series of papers [Tag21, Tag23, Tag22a], the second named author proved that
calculus with reality is a “Galois extension" of orthogonal calculus. In this section we add
quaternion calculus to this list of comparision theorems by providing a comparsion between
quaternion calculus with unitary calculus, and hence also with orthogonal calculus.

There are adjunctions

JO JU JH,
C⊗R (−)

A

H⊗C (−)

ℎ

between the indexing categories for the various calculi. In [Tag21], the second named author
provided an account of the relationship between orthogonal and unitary calculus showing that
Weiss towers restrict along the realification functor A : JU → JO. In this section, we prove the
analogous statement for the functor

ℎ : JH −→ J
U,HA ↦−→ C

2A .

The corresponding statements for the composite Aℎ will follow by combining the work of the
second named author [Tag21] with the work contained in this section. We leave the formu-
lation of such statements to the interested reader. In fact, many of the arguments here are
essentially replications of arguments used by the second named author in [Tag21], with slight
modifications to improve some of the results.

7.1. Polynomial functors. The argument follows the now somewhat standard method for
comparing calculi [BE16, Tag21], by working along the Weiss tower. Indeed, many of the argu-
ments in this section are essentially lifted verbatim from [Tag21]. As such, we begin with the
=-homogeneous functors.

Lemma 7.1.1. The functor ℎ∗ preserves =-homogeneous functors, i.e., the functor ℎ∗ induces a
functor

ℎ∗ : Homog= (JU, S∗) −→ Homog= (JH, S∗) .

Proof. Argue with classifications, analogous to [Tag21, Lemma 4.1]. �

We now show that the functor ℎ∗ preserves polynomial functors. In [Tag21] a reduced assump-
tion was necessary, here we provide an extra argument which removes this assumption. Our
extra argument also applied in the context of [Tag21] implying that results there hold for all
functors, not just the reduced ones.

Lemma 7.1.2. The functorℎ∗ preserves=-polynomial functors, i.e., the functorℎ∗ induces a functor

ℎ∗ : Poly≤= (JU, S∗) −→ Poly≤= (JH, S∗),
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between the∞-categories of =-polynomial functors in unitary calculus and =-polynomial functors
in quaternion calculus.

Proof. First assume that the =-polynomial functor � is reduced, i.e., that )0� ≃ ∗. Induction,
analogous to [Tag21, Theorem 4.3] yields that the canonical map

ℎ∗()U

= � ) −→ )H

= (ℎ∗)U

= � ),

is an equivalence whenever � is reduced. Here the reduced assumption is essential for this
argument as it uses the existence of the fiber sequence

)=� −→ )=−1� −→ '=�,

see for example, [Wei95, Corollary 8.3, unravelled]. To remove the reduced assumption define
the reduced part Red(� ) of a functor � by the fiber sequence

Red(� ) −→ � −→ )0� .

Since)= preserves fiber sequences for all= ≥ 0, applying)0 tot his fiber sequence shows Red(� )
is a reduced functor. Since ℎ∗ preserves fiber sequences an argument with the long exact se-
quence of homotopy groups implies that it suffices to show that the canonical map

ℎ∗)U

0 � −→ )H

= (ℎ∗)U

0 � ),

is an equivalence. This follows since the functor ℎ∗)U

0 � is (homotopically) constant and hence
0-polynomial, and in particular, by Lemma 3.2.1 also =-polynomial for every = ≥ 0. �

The induction of Lemma 7.1.2 yields the following corollary.

Corollary 7.1.3. Let � be a functor in unitary calculus. The map

ℎ∗()U

= � ) −→ ) S

= (ℎ
∗)U

= � ),

is an equivalence.

7.2. Weiss towers. We conclude this section by demonstrating the action of the functor ℎ∗ on
Weiss towers. For this we must assume our functor � has convergent Weiss tower. We will use
the formalism of “weakly polynomial” functors from [Tag22b, §9], which is built on the notion
of “agreement”.

Definition 7.2.1 ([Tag22b, Definition 9.4]). Let = be a non-negative integer. A natural transfor-
mation ? : � −→ � of unitary functors is an order = unitary agreement if there is some d ∈ N

and 1 ∈ Z such that ?* : � (* ) −→ � (* ) is (2(= + 1) dim(* ) − 1)-connected for all * ∈ J,
satisfying dim(* ) ≥ d . We will say that � agrees with� to order = if there is an order = unitary
agreement ? : � −→ � between them.

Not that the above definition is phrased in terms of the complex dimension of* , hence the addi-
tional factor of two. The connectivity bound could just as well be written as (=+1) dimR (* ) −1.
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Definition 7.2.2 ([Tag22b, Definition 9.11]). Let = be a non-negative integer. A unitary functor
� is weakly (d, =)-polynomial if the map [ : � (* ) −→ )=� (* ) is an agreement of order =
whenever dim(* ) ≥ d . A functor is weakly polynomial if it is weakly (d, =)-polynomial for all
= ≥ 0.

Theorem 7.2.3. If � be a weakly polynomial functor, then there is a levelwise equivalence

ℎ∗()U

= � ) ≃ )
H

= (ℎ∗� ) .

Proof. The proof is all but identical to [Tag21, Theorem 5.5]. �

The functor ℎ∗ commutes with the inclusion J/H=−1 ↩→ J/H= hence Theorem 7.2.3 has the fol-
lowing corollary.

Corollary 7.2.4. If � is a weakly polynomial unitary functor, then there levelwise equivalence

ℎ∗TowU(� ) ≃ TowH(ℎ∗� ) .

8. Classification of qaternion vector bundles

As an application of the theory of quaternion calculus we classify certain quaternion vector
bundles over finite-dimensional cell complexes in a range in terms of stable homotopy classes
of maps. This is the quaternion version of [Hu23], which utilises unitary calculus to identity
stably trivial vector bundles over a 3-dimensional complex- with {-, ΣC%∞A } in the metastable

range, i.e., when a bundle has rank A with 3
4 ≤ A ≤ 3−1

2 . Here {-, ΣC%∞A } denotes the set of stable

maps between - and the suspension of stunted complex projective space C%A = C%∞/C%A−1.
Using a combination of the Adams and Atiyah-Hirzebruch spectral sequences Hu computes the
stable spaces of maps in a range for - = C% ℓ , allowing for enumerations of stably trivial vector
bundles. In this section we complete the quaternion version of Hu’s program on classifying
vector bundles by identifying stably trivial quaternion vector bundles over - with {-, Σ3H%∞A }
in a range, but we stop short of making any enumerations.

8.1. The Weiss tower of BSp(−). Denote by BSp(−) the functor which sends a quaternion
vector space+ to BSp(+ ), the classifying space of the compact symplectic group of + , i.e., the
classifying space of the group of automorphisms of + . Using Definition 6.1.1, we can readily
compute the first derivative of BSp(−) in compact symplectic calculus, and hence the first layer
of the associated Weiss tower.

Lemma 8.1.1. The first layer of the Weiss tower of BSp(−) evaluated at HA is equivalent to
Ω
∞
Σ
∞
Σ
3
H%∞A .

Proof. By the classification of homogeneous functors in Theorem 6.2.1, the first layer of the
Weiss tower of BSp(−) evaluated at HA is equivalent to

Ω
∞((4A ∧ m1(BSp(−)))ℎSp(1) .
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The fiber sequence

Σ
3(H

A

= (4A+3 −→ BSp(A ) −→ BSp(A + 1),

identifies m1(BSp(−)) with Σ
3
S with trivial Sp(1)-action, and the proof follows from observing

Ω
∞((4A ∧ m1 (BSp(−)))ℎSp(1) ≃ Ω

∞
Σ
∞+3 ((4A )ℎSp(1) ≃ Ω

∞
Σ
∞
Σ
3
H%∞A ),

where H%∞A is the stunted quaternion projective space defined as the cofiber of the canonical
inclusion H%A−1 ↩→ H%∞. �

We now show that the Weiss tower of BSp(−) converges, using the quaternion version of
weakly polynomial functors introduced by the second named author [Tag22b, §9].

Lemma 8.1.2. The Weiss tower of BSp(−) converges at HA to BSp(A ) for A ≥ 1.

Proof. By the quaternion version of [Tag22b, Corollary 9.15], it suffices to show that the functor

+ ↦−→ Σ
3(+ ,

is weakly polynomial in the sense of [Tag22b, Definition 9.11]. This follows from the quaternion
version of [Tag22b, Example 9.13]. �

Corollary 8.1.3. The =-th layer of the Weiss tower of BSp(−) evaluated atHA is at least (4=A −1)-
connected, i.e.,

Conn(�=BSp(A )) ≥ 4=A − 1.

Proof. For any weakly polynomial functor � with excess 2 , a standard argument with the Weiss
tower yields that�=� (+ ) is at least (=(dimR(+ ))−2)-connected, for some constant 2 . The proof
follows by identifying � = BSp(−) and+ = H

A , the the fact that the identity functor Id : S∗ → S∗
satisfies �= (=) in the sense of [Goo92, Definition 4.1] for all=, see for example, [Goo92, Example
4.3], and hence $= (=) in the sense of [Goo03, Definition 1.2], see also [Goo03, Proposition
1.5]. �

8.2. TheWeiss tower of BSp- (−). In this section - will be a finite-dimensional cell complex,
and we will study the Weiss tower of the functor

BSp- (−) : + ↦−→ Map∗(-,BSp(+ )) .

By applying c0 to this functor we get

c0(BSp
- (HA )) = c0Map∗(-,BSp(A )) = [-,BSp(A )],

which by the classification of quaternionic vector bundles over - , is equivalent to the set of
rank A bundles over - . The set of stably trivial vector bundles is the kernel of the canonical
map

[-,BSp(A )] −→ [-,BSp],

and the rest of this section is dedicated to identifying this with c0Map(-,�1BSp(A )), yielding
the result.

Remark 8.2.1. Much of what we say will be true when BSp(−) is replaced by an arbitrary
(analytic) functor.
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Lemma 8.2.2. Let - be a finite-dimensional cell complex. The =-polynomial approximation of
the functor

BSp- (−) : + ↦−→ Map∗(-,BSp(+ )) .

is equivalent to the functor

(%=BSp)
- (−) : + ↦−→ Map∗(-, %=BSp(+ )) .

In particular, the functor

+ ↦−→ Map∗(-,BSp(+ )) .

is weakly polynomial.

Proof. The first statement follows from the properties of maps from a finite cell complex to fil-
tered homotopy colimits and finite homotopy limits. The second statement follows immediately
from the properties of mapping from a finite cell complex to a finite homotopy limit. �

8.3. TheWeiss tower of BSp- (−) in a range. Hu [Hu23] provided a classification of certain

rank A complex bundles over a 3-dimensional complex whenever 3
4 ≤ A . In this section we

provide a similar classification result for certain rank A quaternion bundles over a3-dimensional

complex whenever 3+14 ≤ A .

Lemma 8.3.1. Let - be a 3-dimensional cell complex. On connected components, the Weiss tower

of BSp- (−) stabilises at the first stage, when evaluated at HA with 3+1
4 ≤ A , that is, for 3 and A as

stated, the Weiss tower of BSp- (−) on connected components is the exact sequence

0 −→ [-,&Σ3H%∞A ] −→ [-,BSp(A )] −→ [-,BSp],

where BSp =
⋃
A≥0 BSp(A ).

Proof. Since - is 3-dimensional and 3 and A are bounded as above, the =-th layer of the Weiss
tower of BSp- (HA ) is connected for all = ≥ 2. It follows that on c0,

c0 (BSp
- (HA )) � c0 (holim=)=BSp

- (HA )) � c0()1BSp
- (HA )),

and hence the fiber sequence

�1BSp
- (HA ) −→ )1BSp

- (HA ) −→ )0BSp
- (HA ),

on c0 is the exact sequence

0 −→ [-,&Σ3H%∞A ] −→ [-,BSp(A )] −→ [-,BSp] . �

Corollary 8.3.2. The set of stably trivial quaternion vector bundles of rank A over a3-dimensional

cell complex- with 3+1
4 ≤ A is in bijection with the set of stable maps from - to Σ3H%∞A , the three-

fold suspension of the stunted projective space.

Remark 8.3.3. In the complex case the bound we get is off-by-one from the bound obtained
by HU [Hu23]. A better understanding of the full tower and the connectivity of the layers will
likely improve the bound.
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