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A semiclassical investigation of the electromagnetic radiation emitted by a charged particle in a
radially freely falling motion in Schwarzschild spacetime is carried out. We use quantum field theory
at tree level to obtain the one-particle-emission amplitudes. We analyze and compare the energy
spectrum and total energy released, which are calculated from these amplitudes, for particles with
varying initial positions and for particles originating from infinity with varying kinetic energy. We
also compare the results with those due to a falling charged “string” extended in the radial direction.

I. INTRODUCTION

The radio and gravitational wave astronomy has ush-
ered in a new era in black hole (BH) physics [1–4], giving
complementary experimental data to best test general
relativity and alternative theories of gravity in a strong
field regime [5–7], which is the regime where we are more
likely to find deviations, if there are any, from the predic-
tions of these theories. Moreover, the study of fundamen-
tal fields associated with dynamical processes near BHs,
e.g., the radiation emitted by spiraling matter, plays a
crucial role in high-energy astrophysics [8–11]. For ex-
ample, the energetic events near the center of a Seyfert
galaxy are widely believed to be due to its central super-
massive BH intensely interacting with surrounding ma-
terial [12, 13]. In particular, the radiation emitted to
infinity by dynamical processes carries “fingerprints” of
the BH and its vicinity [14–16].

For a full description of physics near BHs, the quan-
tum nature of gravity must be taken into account [17, 18].
General relativity predicts the development of singulari-
ties in which the concepts of spacetime and matter break
down, signaling the need for new physics at the Planck
scale (∼ 10−33 cm) where quantum gravity is expected
to take over. Although finding the full quantum theory
of gravity describing nature remains an open problem
in theoretical physics [19], important results have been
achieved with quantum field theory (QFT) in curved
spacetime [20, 21].

Quantum field theory in curved spacetime emerged
from an investigation of particle creation in expanding
universes [22]. This theory deals with quantum fields
in fixed background spacetimes and is a generalization
of QFT in (flat) Minkowski spacetime. Quantum field
theory in curved spacetime gained impetus from the re-
markable discovery using this theory that BHs radiate
as black bodies (Hawking radiation), raising the possibil-
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ity of their dramatic disappearance through this thermal
radiation [23, 24]. Soon after Hawking’s discovery, Un-
ruh published another remarkable result examining as-
pects of BH evaporation. His result reveals the observer-
dependent nature of the particle content in field theory
(Unruh effect) [25–27]. The semiclassical approach of
QFT in fixed background spacetime, although it is only
an effective theory, reveals aspects that a complete the-
ory of quantum gravity must exhibit. The semiclassical
results thus play a key role in any approach to quantum
gravity [28].

Black holes are believed to be surrounded by spiral-
ing matter that forms accretion disks. The accretion
of matter results in the release of gravitational poten-
tial energy, which is the main source of power in the
center of galaxies [29]. When matter falls into BHs, it
emits radiation in various channels. This process was in-
vestigated in the 1970s. Using the formalism given by
Regge and Wheeler [30] and by Mathews [31], Zerilli
computed the gravitational radiation of a particle falling
into a Schwarzschild BH [32]. Motivation to study ra-
diative processes near BHs increased when Weber re-
ported (now discredited) evidence for discovery of grav-
itational radiation [33] (see, e.g., Refs. [34–37] and the
references therein). Further analyses of the gravitational
radiation using classical field theory can be found in
Refs. [38–43]. For such analyses in Kerr BH spacetime,
see Refs. [44, 45]. On the other hand the study of the
electromagnetic radiation emitted in the vicinity of BHs
may be used to test, e.g., the Kerr BH hypothesis [46]. As
for the electromagnetic radiation emitted by a charged
particle in radial free fall, Ruffini et al. computed the
amount of energy and the spectral distribution [47, 48]
(see also Ref. [49]). More recently, Cardoso et al. have
investigated the electromagnetic radiation emitted by an
ultrarelativistic infalling charged particle [50]. Folacci
and Ould El Hadj studied the electromagnetic radiation
generated using the complex angular momentum descrip-
tion [51].

In this paper, we investigate the radiation emission
phenomena considering QFT instead of classical field the-
ory, i.e., by using QFT in curved spacetime at tree level,
in the vicinity of a nonrotating BH. In this approach,
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the classical charge is coupled to the quantum field, giv-
ing rise to a nonvanishing one-particle-emission proba-
bility. The quantization of the electromagnetic field in
a curved background was performed, e.g., in Refs. [52–
55]. The scalar radiation emitted by a radially infalling
source was investigated using QFT by Oliveira and some
of the present authors [56]. Although QFT at tree level
yields the same results as classical field theory, it will give
a different perspective and serve as a starting point for
finding quantum corrections. Here, we investigate the
electromagnetic radiation emitted by charged particles
freely falling radially into a Schwarzschild BH from some
initial radial position from rest. We also consider nonzero
initial velocity for the case where the charged particle
falls from infinity. We use the test-particle approxima-
tion, which is valid if the mass of the charged particle is
much smaller than the BH mass. It is interesting that
there is good agreement between this approximation and
the numerical computation in the fully nonlinear regime
of general relativity, e.g., for BH collisions [57–59].

The rest of this paper is organized as follows. In
Sec. II, we review some general features of the electro-
magnetic field quantization in Schwarzschild spacetime.
In Sec. III, we calculate the one-particle-emission am-
plitude and study the radiation emitted by the infalling
charged particle. In Sec. IV, we find the zero-frequency
limit of some electromagnetic energy spectra analytically
and compare them with the corresponding numerical re-
sults. In Sec. V, we plot some selected numerical results
and give our final remarks in Sec. VI. In the Appendix,
we provide an explanation for the origin of a divergent
result encountered in some numerical results. We adopt
natural units such that c = G = ℏ = 1 and the metric
signature (+,−,−,−).

II. ELECTROMAGNETIC FIELD IN
SCHWARZSCHILD SPACETIME

We work with the standard Schwarzschild coordinate
system with the line element given by

dτ2 = f(r)dt2 − dr2

f(r)
− r2(dθ2 + sin2 θ dϕ2), (1)

where the Schwarzschild radial function is

f(r) = 1− rh
r
, (2)

with rh ≡ 2M being the radial coordinate of the event
horizon. The dynamics of the electromagnetic field in a
modified Feynman gauge can be derived from the follow-
ing action:

S =

∫
LFGd

4x, (3)

with the Lagrangian density given by

LFG =
√
−g

(
−1

4
FµνFµν − 1

2
G2

)
, (4)

where

Fµν = ∇µAν −∇νAµ, (5)

and

G ≡ ∇σAσ +KσAσ. (6)

The vector Kσ points in the r-direction with Kr = f ′(r).
This choice of Kσ will prove advantageous as it results
in the decoupling of the equation for At from the other
equations of motion.
The Euler–Lagrange equations are given by

∇µF
µν + gµν∇µG−KνG = 0, (7)

with (positive-frequency) mode solutions, associated
with the timelike Killing vector field ∂t, given in the fol-
lowing form:

Aξn;ωℓm
µ = ηξn;ωℓm

µ (r, θ, ϕ)e−iωt (ω > 0). (8)

In this equation, the indices ℓ and m are the angular
quantum numbers; the label n distinguishes between the
two kinds of modes, namely, the modes purely incoming
from the past null infinity I − (n = in) and the modes
purely incoming from the past (white hole) horizon H−

(n = up); and the index ξ stands for the mode polariza-
tion.
The possible polarizations are summarized as follows:

ξ ≡


G → pure gauge,

I

II

}
→ physical,

NP → nonphysical.

(9)

The pure-gauge polarization gives rise to nonphysical
states in the Fock space, which are removed by a Gupta–
Bleuler-type physical state condition. The nonphysical
polarization gives rise to states with zero norm. (See
Ref. [54] for technical details.) Thus, the photon modes
other than the physical ones do not influence the ob-
servable part of the theory, so that the representative
Fock space elements are associated only with the physical
modes. Although photon polarizations in curved space-
time have no direct relationship with those in Minkowski
spacetime, it is interesting that in the latter case, the so-
called scalar and longitudinal polarizations play a key
role in intermediate states (as opposed to asymptotic
states). For example, the Coulomb interaction is envi-
sioned to occur by the exchange of those “pseudopho-
tons” [60]. For a more detailed discussion about each
kind of polarization given by Eq. (9), see Refs. [54, 55, 61].
From now on, we restrict ourselves to the physical

modes ξ = I, II, which satisfy the gauge condition G = 0
for ℓ ⩾ 1 and give rise to physical states in the Fock
space. (The modes with ℓ = 0 are pure gauge or nonphys-
ical.) These modes are explicitly given, in the notation



3

Aµ = (At, Ar, Aθ, Aϕ), by [53, 55]

AIn;ωℓm
µ =

(
0,

φIn
ωℓ

r2
Yℓm,

f(r)

ℓ(ℓ+ 1)

dφIn
ωℓ

dr
∂θYℓm,

f(r)

ℓ(ℓ+ 1)

dφIn
ωℓ

dr
∂ϕYℓm

)
e−iωt, (10)

AIIn;ωℓm
µ =

(
0, 0, φIIn

ωℓ Y
ℓm
θ , φIIn

ωℓ Y
ℓm
ϕ

)
e−iωt, (11)

where the functions φξn
ωℓ(r) obey the following differential

equation:

f(r)
d

dr

(
f(r)

d

dr
φξn
ωℓ(r)

)
+
(
ω2 − Veff(r)

)
φξn
ωℓ(r) = 0,

(12)
with

Veff(r) ≡ f(r)
ℓ(ℓ+ 1)

r2
. (13)

The functions Yℓm = Yℓm(θ, ϕ) and Y ℓm
Ω = Y ℓm

Ω (θ, ϕ),
Ω = θ, ϕ, are the scalar and vector spherical harmonics,
respectively [62, 63]. The complex conjugation of the

radial modes φξn
ωℓ(r) in Eqs. (10) and (11), denoted by

an overline, converts the in-modes and up-modes to the
modes purely outgoing to the future null infinity I + and
those purely ingoing into the future event horizon H+,
respectively, which are the relevant modes in analyzing
the radiation emission rather than the original in- and
up-modes. We use the same labels, “in” and “up”, to
indicate these modes and associated quantities. We note
that only the physical modes labeled by I have a nonzero
component in the radial direction. This means that only
these modes contribute to the radiation from the radially
infalling charge, as we will see.

The effective potential (13) vanishes asymptotically at
the horizon and spatial infinity. Hence, there are analytic
solutions satisfying Eq. (12) such that

φξin
ωℓ = Bξin

ωℓ

{
g(r) +Rξin

ωℓ g(r), x → +∞,

T ξin
ωℓ h(r), x → −∞,

(14)

φξup
ωℓ = Bξup

ωℓ

{
h(r) +Rξup

ωℓ h(r), x → −∞,

T ξup
ωℓ g(r), x → +∞,

(15)

where Bξn
ωℓ are overall normalization constants, and T ξn

ωℓ

and Rξn
ωℓ are the transmission and reflection amplitudes,

respectively. The tortoise coordinate x is defined by x ≡
r + 2M ln (r/2M − 1). The complex functions g(r) =
eiωx[1 + O(1/r)] and h(r) = e−iωx[1 + O(r − rh)] are
expanded as follows:

g(r) = eiωx

jmax∑
j=0

gj
rj

, (16)

h(r) = e−iωx

jmax∑
j=0

hj(r − rh)
j , (17)

where hj and gj are complex coefficients obtained by solv-
ing Eq. (12) order by order near the horizon and infinity
(see, e.g., Ref. [64]) starting from g0 = h0 = 1. The order
of the expansion is associated with the choice of jmax. We
choose jmax = 20 in our numerical computation.

The solutions φξn
ωℓ to Eq. (12) satisfy the boundary

conditions specified in Eqs. (14) and (15). By matching

the numerical solution for φξn
ωℓ with the boundary condi-

tions, we determine the coefficients T ξn
ωℓ and Rξn

ωℓ. As is
well known, these coefficients are not independent. By
using the properties of the Wronskian of the asymptotic
solutions, given by Eqs. (14) and (15), we obtain the con-
servation relation,∣∣∣T ξn

ωℓ

∣∣∣2 + ∣∣∣Rξn
ωℓ

∣∣∣2 = 1. (18)

The conserved current Wµ associated to two solutions
A

(i)
µ and A

(j)
µ is defined as

Wµ[A(i), A(j)] = i
[
A

(i)
σ Πµσ

(j) −Πµσ
(i)A

(j)
σ

]
, (19)

where the canonical conjugate momentum current Πµν
(i),

associated with the solution A
(i)
ν , is defined by

Πµν
(i) ≡ 1√

−g

∂L
∂[∇µAν ]

∣∣∣
Aµ=A

(i)
µ

= [−Fµν − gµνG]
∣∣
Aµ=A

(i)
µ
. (20)

The generalized Klein–Gordon inner product, given by(
A(i), A(j)

)
=

∫
Σ

dΣnµW
µ[A(i), A(j)], (21)

is used to normalize the modes, where Σ is a Cauchy
hypersurface for the exterior region of the Schwarzschild
spacetime, with nµ being the future-pointing unit normal
to Σ. For the physical modes with ξ = I, II, we impose
the orthogonality relation,(

Aξn;ωℓm, Aξ′n′;ω′ℓ′m′
)
= δξξ′δnn′δℓℓ′δmm′δ(ω − ω′),

(22)
where (i) and (j) in Eqs. (19)–(21) represent the set of
labels ξn;ωℓm. From Eqs. (14), (15), (21), and (22), the
overall normalization constants for ξ = I, II are readily
obtained as

∣∣BIn
ωℓ

∣∣ =√ℓ(ℓ+ 1)

4πω3
,

∣∣BIIn
ωℓ

∣∣ = 1√
4πω

. (23)

The quantum field operator Âµ corresponding to the
classical field Aµ is expanded in terms of positive and
negative frequency modes,

Âµ =
∑

ξ,n,ℓ,m

∫ ∞

0

dω
[
â(i)A

(i)
µ + â†(i)A

(i)
µ

]
. (24)



4

After imposing the standard equal-time commutation re-
lations on the quantum field operators Âµ and Π̂tν cor-
responding to the fields Aµ and Πtν , respectively, one
finds that the annihilation and creation operators, â(i)
and â†(i), have the following nonvanishing commutation

relations for physical modes:[
âξn;ωℓm, â†ξ′n′;ω′ℓ′m′

]
= δξξ′δnn′δℓℓ′δmm′δ(ω − ω′), (25)

where ξ, ξ′ = I, II.
We follow the Gupta–Bleuler quantization prescription

and find that the physically relevant states are repre-
sented in the Fock space by those obtained applying the
creation operators associated with the physical modes
ξ = I, II to the Boulware vacuum state |0⟩, defined
by âξn;ωℓm |0⟩ = 0 [65], in the sense that any physi-
cally relevant state differs from one of these states by a
zero-norm state. In particular, the (representative) one-
particle states are given by

|ξn;ωℓm⟩ = â†ξn;ωℓm |0⟩ . (26)

In the next section, we analyze the interaction between
a classical charged particle falling into the Schwarzschild
BH and the quantum electromagnetic field Âµ. In par-
ticular, we find the probability of the charged particle
emitting one photon, which corresponds to the emission
of radiation in classical electrodynamics.

III. RADIATION EMISSION

A. Infalling charged particle

The electrically charged point particle is described by
the following current density:

jµ(x) =
q vµ√
−gvt

δ(r − rs)δ(θ − θs)δ(ϕ− ϕs), (27)

where rs, θs, and ϕs are the spatial coordinates of the
particle and where vµ is its 4-velocity,

vµ =
dxµ

dτ
=

(
E

f(r)
,−
√
E2 − f(r), 0, 0

)
, (28)

with τ being the proper time of the particle. In Eq. (28),
the quantity E is the specific energy, i.e., the energy per
unit rest mass of the particle, as inferred by the inertial
observer O far away from the BH, and it can be given in
terms of the initial radial position and velocity, r0 and
v0, as

E =

√
f(r0)

1− v20/f(r0)
2
. (29)

The radial velocity of the particle, as seen by the observer
O, is given by

vs ≡ −drs
dt

=
f(rs)

√
E2 − f(rs)

E
. (30)

According to the observer O, the particle experiences ac-
celeration and/or deceleration, depending on the initial
conditions. For sufficiently small v0, the velocity vs in-
creases from v0, reaches a maximum at rs = 6M/(3 −
2E2) (at rs = 6M for v0 = 0 with r0 = ∞), and then
decreases to zero at the horizon. However, if the condi-
tion v0 >

√
(16M3 − 12M2r0 + r30)/3r

3
0 (v0 > 1/

√
3 for

r0 = ∞) holds, vs has no maximum, and the particle only
decelerates when projected from rs = r0. We also observe
that, for v0 = 0, the maximum acquired radial velocity
decreases with decreasing r0. For r0 → ∞ and v0 = 0,
the maximum acquired radial velocity is 2/(3

√
3) ≈ 0.38.

For a static observer very close to the horizon, the charge
always passes by them with the radial velocity close to 1.
In the next subsection, we use QFT at tree level to

obtain the one-particle-emission amplitude.

B. One-particle-emission amplitude

The coupling of the classical charge to the quantum
field is given by the interaction action,

Ŝint =

∫ √
−gjµÂµ d

4x. (31)

The current density 4-vector jµ given by Eq. (27) is con-
served, i.e., ∇µj

µ = 0. For any Cauchy hypersurface Σ,
we have

∫
Σ
dΣnµj

µ = q.
The interaction action given by Eq. (31) gives rise to

a nonvanishing probability amplitude at first order. For
the emission of a physical photon with polarization ξ,
energy ω, and angular quantum numbers ℓ and m, it is
given by

Aξn;ωℓm = ⟨ξn;ωℓm| iŜint |0⟩ (32)

= i

∫ √
−gjµAξn;ωℓm

µ d4x. (33)

As mentioned earlier, since the charged particle is falling
radially, the current density jµ only couples to the
modes with Aξn;ωℓm

r ̸= 0, among the physical modes [see
Eqs. (27) and (28)]. Therefore, the modes with ξ = II
are not excited by the falling charge.1 From now on, we
omit the index ξ with the understanding that ξ = I.
Two alternative initial states to the Boulware vacuum

state used in Eq. (32) are the Unruh vacuum state [27],
characterized by an outward thermal flux at future null
infinity and no incoming flux at past null infinity, and
the Hartle–Hawking vacuum state [66], characterized by
thermal fluxes across both past and future null infinities.

1 The coupling to the modes depends on the motion of the charged
particle. For example, a charge orbiting the BH along a circular
geodesic [55] or plunging into the BH due to a perturbation in
its unstable circular orbit are examples in which both the modes
with ξ = I and ξ = II are excited.
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In these cases, we would have to take into account ab-
sorption and stimulated emission of photons induced by
the thermal fluxes. This would lead to additional tran-
sition amplitudes to be calculated, where Bose–Einstein
thermal factors play a part. However, one can show that
the absorption and stimulated emission amplitudes ex-
actly cancel, and the resulting net radiation is the same
as that calculated using the Boulware vacuum state.

Substituting Eqs. (10) and (27) into Eq. (33), we ob-
tain

An;ωℓm = iqYℓm

∫ +∞

−∞
dts

vr

vt
φn
ωℓ

r2s
eiωts , (34)

with rs = r(ts) denoting the position of the charged par-
ticle at t = ts. It is not possible to find a closed-form
expression for An;ωℓm in Eq. (34), for an arbitrary value
of ω, but it is possible to find an analytic expression for
it in the ω → 0 limit, as we will see.
We consider the charged particle static at r = r0,

for −∞ < t < 0, and projected toward the BH at
t = 0. (Note that the function r(ts) is one-to-one for
ts ∈ [0,∞).) By integrating by parts and changing the
integration variable from ts to rs, we find

An;ωℓm =
qYℓm

ω

∫ r0

2M

d

dr

(
vr

vt
φn
ωℓ

r2

)∣∣∣∣
r=rs

eiωt(rs)drs.

(35)
Note that the spatial components of the current, corre-
sponding to the charge at rest, vanish, and hence, this
charge does not couple to the physical modes given by
Eqs. (10) and (11). Using the delta function identity [62],

δ(r(t)− r(ts)) =
vt

|vr|
δ(t− ts), (36)

and Eq. (30), we can rewrite the radial component of the
current density given by Eq. (27) as

jr(x) = − q√
−g

δ(t− ts)δ(θ − θs)δ(ϕ− ϕs). (37)

Substituting Eq. (37) into Eq. (33) [or changing the in-
tegration variable from ts to rs in Eq. (34)], we obtain

An;ωℓm = −iqYℓm

∫ r0

2M

φn
ωℓ(rs)

r2s
eiωt(rs)drs. (38)

It would appear that the two expressions of the emission
amplitude, Eqs. (35) and (38), differ by the following
boundary term:

An;ωℓm
boundary = −qYℓm vs

φn
ωℓ(rs)

ωr2s

∣∣∣∣
rs=r0

. (39)

This boundary term is proportional to v0 and r−2
0 , im-

plying that the two expressions of the emission amplitude
coincide, if v0 = 0 or r0 → ∞.2 Although one can argue

2 The factor vr in the boundary term, given by Eq. (39), does
not appear in the scalar field case (see Eq. (36) of Ref. [56] and
note that vs = −vr/vt). In the scalar case, the boundary term
corresponding to Eq. (39) vanishes only for r0 → ∞.

that the boundary term (39) should be absent and that
Eq. (35) should be adopted even if v0 ̸= 0 and r0 < ∞,
this case represents a point charge with infinite acceler-
ation at t = 0, which is unphysical. Therefore, we spe-
cialize to the cases with v0 = 0 or r0 → ∞, for which
Eqs. (35) and (38) coincide.
Using the one-particle-emission amplitude, we can de-

rive the partial energy spectrum, which refers to the en-
ergy spectrum for each multipole ℓ,

En;ωℓ =

ℓ∑
m=−ℓ

ω
∣∣An;ωℓm

∣∣2. (40)

We sum over m by using the formula

ℓ∑
m=−ℓ

Yℓm(θs, ϕs)Yℓm(θs, ϕs) =
2ℓ+ 1

4π
, (41)

and find

En;ωℓ =
(2ℓ+ 1)q2ω

4π

∣∣∣∣∫ r0

2M

φn
ωℓ(rs)

r2s
eiωt(rs)drs

∣∣∣∣2. (42)

Integrating Eq. (42) over ω > 0, we obtain the partial
emitted energy, i.e., the emitted energy associated with
each multipole ℓ,

En;ℓ =

∫ ∞

0

dω En;ωℓ. (43)

We also calculate the total energy spectrum En;ω by
summing the contributions of all multipoles in Eq. (42):
dipole (ℓ = 1), quadrupole (ℓ = 2), octupole (ℓ = 3),
hexadecapole (ℓ = 4), and so on. Thus,

En;ω =
∑
ℓ⩾1

En;ωℓ. (44)

The total emitted energy, obtained from Eq. (42), is given
by

En =
∑
ℓ⩾1

∫ ∞

0

dω En;ωℓ. (45)

The energy emitted to infinity is associated with the
time-reversed in-modes, while the energy absorbed by the
BH is associated with the time-reversed up-modes. The
in-modes are purely incoming from the past null infinity
I −. Hence, the time-reversed in-modes are purely out-
going to the future null infinity I +, and the up-modes
are purely incoming from the past event horizon H−.
Hence, the time-reversed up-modes are purely outgoing
into the future event horizon H+ (see, e.g., Ref. [67]).
The time reversal is achieved by the complex conjuga-
tion in Eqs. (10) and (11), as we stated before.
The amplitude An;ωℓm is determined by carrying out

the integral in Eq. (38) numerically, where φn
ωℓ is ob-

tained by numerically solving the differential Eq. (12),
with boundary conditions given by Eqs. (14) and (15).
Before presenting our numerical results in Sec. V, we
compute analytically the emission amplitude and the cor-
responding partial energy spectra in the zero-frequency
limit [53, 56, 68] in the next section.
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IV. ZERO-FREQUENCY LIMIT

In this section, we find analytically the zero-frequency
limit of some quantities we defined in the previous sec-
tion. Comparison of these quantities with the corre-
sponding numerical results serves as a consistency check
for the numerical method. We verify that the numerical
method and these analytical quantities are in very good
agreement with each other.

A. In-modes for r0 → ∞

In this subsection, we study the in-mode solutions in
the zero-frequency limit for r0 → ∞ and arbitrary v0.
Adapting the method used in Ref. [56], we can obtain the
emission amplitude associated with the radiation emitted
to infinity in the low-frequency regime. In this regime,
one has Mω ≪ 1, which is equivalent to letting f(r) ≈
1, and hence, t(rs) = −v−1

0 rs. (The time coordinate t,
when the charged particle is released, is not 0, but this
does not affect the result.) Thus, the zero-frequency limit
of the in-modes coincides with the flat-spacetime limit.
Therefore, we have in this limit,

φin
ωℓ = Cω

√
2ω

π
rjℓ(rω), (46)

where Cω is a normalization constant, and jℓ(y) is the
spherical Bessel function of order ℓ. Comparing Eq. (46)

with Eq. (14), we obtain Cω =
√
2πωBIin

ωℓ (up to a phase
factor). Using Eqs. (46) and (38), we obtain

Ain;0ℓm = 2iq

√
ℓ(ℓ+ 1)

4πω
Yℓm

∫ ∞

0

jℓ(rsω)

rs
e−iωrs/v0drs.

(47)
Notice that the integral is ω independent. The associated
partial energy spectrum for ℓ ⩾ 1 is given, after evalu-
ating the integral in this equation [69, Eqs. 6.699.1,2],
by

E in;0ℓ = q2
(2ℓ+ 1)ℓ(ℓ+ 1)Γ(ℓ)2

16π · 4ℓΓ(ℓ+ 3
2 )

2
v2ℓ0

×
∣∣∣∣2F1

(
ℓ

2
,
ℓ+ 1

2
; ℓ+

3

2
; v20

)∣∣∣∣2, (48)

where 2F1 is the Gauss hypergeometric function. We
note that in the limit v0 → 0 the energy given by Eq. (48)
vanishes like v2ℓ0 ; i.e., for small values of v0, we have

E in;0ℓ ≈ q2
(2ℓ+ 1)ℓ(ℓ+ 1)Γ(ℓ)2

16π · 4ℓΓ(ℓ+ 3
2 )

2
v2ℓ0 . (49)

On the other hand, in the limit v0 → 1, we find the follow-
ing expression from Eq. (48), using Ref. [69, Eq. 9.122.1]:

lim
v0→1

E in;0ℓ ≡ E in;ωℓ
class =

q2

4π2

2ℓ+ 1

ℓ(ℓ+ 1)
. (50)

This is exactly the ω-independent classical result ob-
tained in electromagnetism in flat spacetime when
a charged particle is suddenly decelerated (see, e.g.,
Ref. [50]).3

Let us digress here and discuss the energy spectra for
the case v0 → 1 as a whole, including features not nec-
essarily related to the low-frequency limit. The ℓ-sum
of Eq. (50) gives a divergent result for the total emitted

energy spectrum E in;ω
class for flat spacetime. This indicates

that the total energy spectrum E in;ω for the BH is also
divergent for v0 → 1 [50].
The flat-spacetime counterpart of the partial energy

E in;ℓ, emitted by the particle, diverges in the limit v0 →
1, because the partial spectrum E in;ωℓ

class is ω independent.

For the BH, however, the partial energy E in;ℓ can be es-
timated by introducing a cutoff frequency in Eq. (50),
which we choose to be the associated fundamental quasi-

normal frequency ωqnf
ℓ . (This choice is motivated by our

numerical results, which reveal that E in;ωℓ decays expo-

nentially for ω > ωqnf
ℓ , as shown in Fig. 6.) We can ap-

proximate the frequencies ωqnf
ℓ as ωqnf

ℓ ≈
√

ℓ(ℓ+ 1)/bc,

where bc = 3
√
3M is the critical impact parameter of null

geodesics [71]. With this approximation, we find

E in;ℓ ≈ E in;ωℓ
class ω

qnf
ℓ ≈ q2

4π2

2

bc
for v0 ≈ 1. (51)

For a given value of v0 very close to 1, the first approx-
imate equality in Eq. (51) becomes more accurate if we
use Eq. (48) instead of Eq. (50): the spectrum found nu-

merically is nearly ω independent up to ω ≈ ωqnf
ℓ , for

charges in ultrarelativistic motion. Thus,

E in;ℓ ≈ E in;0ℓωqnf
ℓ for v0 ≈ 1, (52)

where E in;0ℓ is given by Eq. (48). (See Refs. [43, 72] for a
similar discussion within the framework of gravitational
radiation.)
Table I shows a comparison of the zero-frequency limit

of the partial energy spectrum obtained through Eq. (48)
and this quantity obtained by solving Eq. (12) and car-
rying out the integral in Eq. (38) numerically. We see
that our numerical computations and the analytical zero-
frequency limit are in very good agreement.

B. In-modes for finite r0

In this subsection, we study the cases in which r0 is
finite. For finite r0, the emission amplitude vanishes for
all ℓ ⩾ 1 in the zero-frequency limit. This is verified by
noting that the ω = 0 solutions to φin

ωℓ, given in Ref. [55],

3 Note that we are using rationalized units (see, e.g., the Appendix
in Ref [70]).
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ℓ v0 q−2E in;0ℓ Numerical

1
0.25 0.0010827 0.0010828
0.75 0.0126318 0.0126317
0.99 0.0347517 0.0347628

2
0.25 0.0000139 0.0000139
0.75 0.0019812 0.0019813
0.99 0.0170247 0.0170315

3
0.25 0.0000002 0.0000002
0.75 0.0003610 0.0003611
0.99 0.0102605 0.0102606

TABLE I. Comparison between the analytical results for
E in;0ℓ, given by Eq. (48), and the numerically obtained par-
tial energy spectrum with ω → 0, for the first three multipoles
and representative choices of v0.

are expressed as

φin
ωℓ ≈ Cin

ωℓr

[
Pℓ (r/M − 1)− (r − 2M)

ℓ(ℓ+ 1)

d

dr
Pℓ(r/M − 1)

]
,

(53)
for ω ≈ 0, where Pℓ are Legendre functions of the first
kind and∣∣Cin

ωℓ

∣∣ = 1√
πℓ(ℓ+ 1)

2ℓ((ℓ+ 1)!)2M ℓ

(2ℓ)!(2ℓ+ 1)!!
ωℓ−1/2. (54)

We see from Eqs. (53) and (54) that φin
ωℓ ∝ ωℓ−1/2 for

ω ≈ 0 and the quantity E in;ωℓ vanishes like ω2ℓ as ω → 0.

C. Up-modes

In this subsection, we study the up-mode solutions in
the zero-frequency limit. Low-frequency solutions for φup

ωℓ
are [55]

φup
ωℓ ≈ Cup

ωℓr

[
Qℓ(r/M − 1)− (r − 2M)

ℓ(ℓ+ 1)

d

dr
Qℓ(r/M − 1)

]
,

(55)
where Qℓ are Legendre functions of the second kind and

|Cup
ωℓ | = 2

√
ℓ(ℓ+ 1)

π
ω−1/2. (56)

Therefore, we have φup
ωℓ = O(ω−1/2) for small ω. Writing

the exponential in the integrand of Eq. (38) as an infi-
nite power series in ω, we see that only the first term of√
ωAup;0ℓm in this series will be nonzero [and is indepen-

dent of v0 because the v0 dependence enters only into the
function t(rs)]. Using Eq. (55), one can easily obtain the
absorbed partial energy spectrum in the zero-frequency
limit, Eup;0ℓ.

Table II shows a comparison of the zero-frequency limit
of the energy spectrum, Eup;0ℓ, and the corresponding nu-
merical result. Figure 1 shows the partial energy spec-
trum Eup;0ℓ as a function of r0. As ℓ increases, the spec-
trum at the zero-frequency limit converges to a value

2 4 6 8 10
0

1

2

3

4

5

6

FIG. 1. The zero-frequency limit of the partial energy spec-
trum, Eup;0ℓ, as a function of r0 for some choices of ℓ.

almost independent of r0. This is because the function
φup
ωℓ(r) tends to zero like r−ℓ for large r at low frequen-

cies [see Eq. (55)] in the integral (38) for the amplitude.

ℓ r0 (M/q)2Eup;0ℓ Numerical

1
3M 0.02225212 0.02225193
6M 0.03466686 0.03466683

100M 0.03798520 0.03798522
∞ 0.03799544 0.03799548

2
3M 0.01806131 0.01806121
6M 0.02088009 0.02088010

100M 0.02110854 0.02110856
∞ 0.02110858 0.02110862

3
3M 0.01410750 0.01410746
6M 0.01475750 0.01475751

100M 0.01477600 0.01477604
∞ 0.01477601 0.01477605

TABLE II. Comparison between the analytical results of the
partial energy spectrum Eup;ωℓ and the corresponding numer-
ical results in the ω → 0 limit, for the first three multipoles
and some choices of r0.

V. NUMERICAL RESULTS

In this section, we show some results for nonzero fre-
quencies ω, obtained by numerically solving Eq. (12) from
r = 2M(1 + ϵ) (with ϵ ≡ 10−5) to the numerical infinity
r∞, which we choose to be [73]

r∞ ≡ 250

√
ℓ(ℓ+ 1)

ω
. (57)

With these choices, we achieve good precision, evidenced
in the previous section from the very good agreement
between the numerical and analytical results in the zero-
frequency limit.
In this section, the vertical gray lines in the plots corre-

spond to the fundamental quasinormal frequencies ωqnf
ℓ

of the BH, and the horizontal gray lines mark the values
of the associated zero-frequency limit, unless otherwise
stated.
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FIG. 2. The partial and total energy spectra, given by
Eqs. (42) and (44), respectively, with r0 = 3M and v0 = 0,
as a function of Mω. We consider the first 60 multipoles.

In the next subsection, we analyze the numerical re-
sults associated with the radiation emitted to infinity.

A. Radiation emitted to infinity

The spectrum of the radiation emitted to infinity is as-
trophysically relevant. It carries information about the
BH and its vicinity. Figure 2 shows the partial and to-
tal energy spectra, given by Eqs. (42) and (44), with
r0 = 3M and v0 = 0, in a log plot. For these values of
r0 and v0, we observe that the partial energy spectrum
features a maximum approximately at the fundamental

frequency of the BH quasinormal modes, ωqnf
ℓ . The to-

tal energy released by the charged particle, as given by
Eq. (45), is E in ≈ 0.0010q2/M. The partial emitted en-
ergy, given by Eq. (43), for the multipole number ℓ = 1
(ℓ = 20) corresponds approximately to 55.25% (0.114%)
of E in, the total energy emitted to infinity. Thus, the
majority of the emitted energy comes from the dipole
contribution. (The contribution of ℓ = 1 decreases for
smaller r0 and increases for larger r0, up to about 83.23%
for r0 → ∞.) The dimensionless quantity (M/q2)E in cor-
responds approximately to 0.175% of the specific energy
E of the charged particle given by Eq. (29).

The behavior of the partial energy spectrum E in;ωℓ for
r0 finite and v0 = 0, shown in Fig. 2, is just for a rep-
resentative value r0 = 3M . For general values of r0, the
maximum of the spectrum shifts around the quasinor-
mal frequency. In general, as r0 increases from around

3M, the peak shifts to ω < ωqnf
ℓ ; while as r0 decreases,

the peak shifts to ω > ωqnf
ℓ . However, for intermediate

values of r0, i.e., for 4M ≲ r0 ≲ 20M, the behavior is
more complicated because the partial energy spectrum
has multiple local maxima and minima (see Fig. 3).

Figure 3 illustrates the partial energy spectrum for two
representative values of ℓ (ℓ = 1, 5), depicted as a func-

tion of r0/M and Mω (around Mωqnf
ℓ ). We observe that

as the multipole number ℓ increases, the corresponding
value of r0 associated with the maximum (partial) energy
emission decreases, while the value of ω at the peak of the
(partial) energy spectrum increases. The global maxima
of the energy spectra for ℓ = 2, 3, 4 are located at r0/M ≈
3.6062, 3.0647, 2.8487 and Mω ≈ 0.4203, 0.6402, 0.8531,
respectively. (These cases are not plotted in Fig. 3.)
Next we discuss the emitted radiation for r0 → ∞.

Figure 4 shows the partial and total energy spectra for
the charged particle released from rest at infinity, i.e.,
for v0 = 0 and r0 → ∞. We see that the spectrum
falls rapidly with increasing ℓ, and the total energy spec-

trum shows an exponential decay for ω > ωqnf
ℓ=1, where

ωqnf
ℓ=1 ≈ 0.2482M. For Mω → 0, we have E in;ωℓ → 0,

confirming an observation in Sec. IVA. The total energy
released to infinity from the charged particle, as given
by Eq. (45), is E in ≈ 0.0017q2/M. The partial emitted
energy, given by Eq. (43), for ℓ = 2 (ℓ = 5), corresponds
approximately to 14.04% (0.058%) of E in. The dimen-
sionless quantity (M/q2)E in corresponds approximately
to 0.170% of the specific energy E of the charged parti-
cle given by Eq. (29). Examining Fig. 4 in comparison to
Fig. 2, we observe a clear suppression of higher multipoles
in the case r0 → ∞.
The percentage of the initial energy released to infinity

depends on r0, as shown in Fig. 5. We see that the per-
centage of the initial energy released has a global max-
imum at r0 ≈ 4M . If the particle is released near the
horizon, only a small portion of the initial energy is ra-
diated to infinity.

Next, we discuss the influence of the nonzero initial
velocity v0 on the emitted energy spectrum for charges
projected from infinity. Figure 6 shows the partial and
total energy spectra associated with an ultrarelativistic
charged particle (v0 = 0.99 and r0 → ∞). By comparing
it with Fig. 4, we see that the total spectrum decays more
slowly for large ω for an ultrarelativistic particle. The
ω → 0 limit of the partial energy spectrum E in;ωℓ shown
in Fig. 6 agrees well with the analytic result, Eq. (48),
for each ℓ, as we saw before. The partial emitted energy
can be approximated using Eq. (52), which deviates from
the numerical results by less than 3%. The total energy
released to infinity, as given by Eq. (45), for the first
30 multipoles, is E in ≈ 0.0546q2/M . This value is also
in good agreement with the one obtained via Eq. (52),
E in ≈ 0.0540q2/M . We note, in particular, that the par-
tial energy emitted for ℓ = 1 (ℓ = 10) represents ap-
proximately 16.25% (3.198%) of E in. That is, the dipole
contribution is not dominant in this case. The dimen-
sionless quantity (M/q2)E in corresponds approximately
to 0.771% of the specific initial energy E of the charged
particle given by Eq. (29).

As we observed before, from Eq. (48), we see that the
zero-frequency limit of E in;ωℓ is nonzero, provided that
v0 ̸= 0. As the initial velocity v0 increases, the total
energy spectrum decreases less and less rapidly for large
ω. Figure 7 illustrates the total energy spectrum E in;ω,
for some choices of v0 ranging from 0 to values close to
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FIG. 3. The partial energy spectrum E(ℓ) ≡ 10
3ℓ

|ℓ−2| (M/q)2E in;ωℓ depicted as a function of r0/M and Mω, with v0 = 0, for

ℓ = 1 (left) and ℓ = 5 (right). The (gray) facegrids mark the positions of Mωqnf
ℓ . The (purple) disks mark the points of the

global maximum of each function in the given range, at r0/M ≈ 5.4504, 2.7598 and Mω ≈ 0.1924, 1.0619, respectively.
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FIG. 4. The partial and total energy spectra, given by
Eqs. (42) and (44), respectively, with r0 = ∞ and v0 = 0, as
a function of Mω. We consider the first 9 multipoles.

1. We see that the total emitted spectrum increases with
v0. This is due to the excitation of higher multipoles, as
Fig. 6 indicates.

In the next subsection, we analyze the electromagnetic
energy absorbed by the BH.

B. Electromagnetic energy absorbed by the black
hole

Figure 8 shows the partial energy spectrum absorbed
by the BH for the first 10 multipoles, plotted as a func-
tion of Mω, and also some higher multipoles, plotted as a
function of Mω/ℓ. The charge is released from rest at in-
finity. The contribution from each multipole ℓ is roughly
constant: Eup;ℓ ≈ 0.02q2/M, for higher multipoles. We
also observe this behavior for finite values of r0, but the

◆

◆

◆

◆
◆
◆◆ ◆

◆
◆ ◆ ◆ ◆ ◆

5 10 50 100

0.00
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FIG. 5. The log-linear-scaled plot of the percentage of initial
energy of the particle radiated to infinity, depicted as a func-
tion of r0/M, with v0 = 0. The vertical (gray) line marks the
BH horizon, and the horizontal (gray) line marks the value of
the quantity in the limit r0 → ∞.

numerical value decreases like
√
f(r0) as r0 decreases.

Hence, the constant partial contribution is approximately
written as Eup;ℓ ≈

√
f(r0)× 0.02q2/M for higher multi-

poles. For r0 = 4M we have Eup;ℓ ≈ 0.014q2/M.
The approximate ℓ independence of the partial energy

Eup;ℓ for large ℓ implies that the total electromagnetic en-
ergy absorbed by the BH is infinite. This infinity suggests
that the partial energies Eup;ℓ for large ℓ represent the
infinite Coulomb energy around the point charge, which
flows across the horizon when the charge falls into the
BH. As shown in the Appendix, this hypothesis leads
to the estimate Eup;ℓ ≈ Eq2/16πM for large ℓ, where the
specific energy E of the point charge is given by Eq. (29).
This formula agrees with our numerical results quite well.
(Note that E =

√
f(r0) if v0 = 0.) We note that the

Coulomb energy should be regarded as part of the mass
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FIG. 6. The partial and total energy spectra, given by
Eqs. (42) and (44), respectively, with r0 = ∞ and v0 = 0.99,
as a function of Mω.
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FIG. 7. The total energy spectrum, given by Eq. (44), for
r0 → ∞, with some choices of v0, as indicated.

energy of the point charge by a “classical renormaliza-
tion”. Thus, the partial energies Eup;ℓ do not represent
the true radiation for large ℓ.
Figure 9 shows the partial energy spectrum with v0 =

0, for two representative values of ℓ and different choices
of r0. As ℓ increases, the spectrum at the zero-frequency
limit converges to a value almost independent of r0, as
we saw in Sec. IVC.

Figure 10 shows the partial energy spectrum for two
choices of ℓ. The charge is projected from infinity with
v0 > 0. The partial spectra are found to be independent
of v0 in the low-frequency regime, as indicated by the
overlapping curves in the left panel of Fig. 10. This agrees
with an observation made in Sec. IVC, which is also valid
for r0 = ∞.

C. Radiation due to an extended charge

In the previous subsection, the emitted energy going
into the horizon was analyzed using the point particle
approximation, which is an idealization. We showed that
this idealization leads to the result that infinite electro-
magnetic energy is absorbed by the BH. We show in the

Appendix that this infinite energy can be explained as
the energy due to the Coulomb field around the point
charge, which should be regarded as part of the mass en-
ergy of the point charge rather than the true radiation.
The infinity of the Coulomb energy is milder for an

extended charged body than for a point charge. There-
fore, we expect that the partial energy Eup;ℓ absorbed by
the BH will decrease as a function of ℓ for an extended
charged body. In this subsection, we study a charged one-
dimensional object extended in the radial direction (see,
e.g., Refs. [48, 49, 74–76] and the references therein). An
extended object that is easy to implement numerically is
a system of N noninteracting particles, each with charge
q/N, distributed along the radial direction, such that all
the charges (each labeled by j) follow the same radial
geodesic [the one characterized by the specific energy E
given by Eq. (29)] and that the charge labeled by j is
released from the same point, but later in time by the
amount j∆t/(N − 1), where ∆t is a constant. In our
semiclassical approach, this time shifting in the trajec-
tory results in a different phase factor in the transition
amplitude associated with each charge. This gives rise to
interference between the radiation amplitudes due to in-
dividual charges.4 One can readily see that the transition

amplitude An;ωℓm
N associated with the N -charge system

is given by

An;ωℓm
N =

N−1∑
j=0

eiω
j∆t
N−1

N

An;ωℓm. (58)

Note that when the charge with label j = N − 1 is re-
leased, the charge with label j = 0 (released at t = 0) is
already located at r(∆t) with inward velocity given by
Eq. (30). This process is illustrated in the limit N → ∞
in Fig. 11.
The partial energy spectrum associated with the N -

charge system can be written as

En;ωℓ
N = ζN (ω)En;ωℓ, (59)

where

ζN (ω) =

∣∣∣∣∣∣
N−1∑
j=0

eiω
j∆t
N−1

N

∣∣∣∣∣∣
2

. (60)

This is an oscillatory factor ranging between 0 and 1 and
satisfying ζN(ω + 2π(N − 1)/∆t) = ζN (ω). Note that
the point particle limit is obtained by letting ∆t → 0. If
we let N → ∞, the sum in Eq. (60) becomes an integral.
Thus, we find

ζ∞(ω) =

(
2 sin ω∆t

2

ω∆t

)2

. (61)

4 See Ref. [77] for an interesting investigation of radiation interfer-
ence from scalar sources in circular orbits.
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FIG. 8. The partial energy spectrum Eup;ωℓ is shown as a function of Mω (left) and Mω/ℓ (right), with r0 = ∞ and v0 = 0.
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FIG. 9. The partial energy spectrum Eup;ωℓ for ℓ = 1 (top)
and ℓ = 10 (bottom), with finite r0 and v0 = 0.
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FIG. 10. The partial energy spectrum Eup;ωℓ with ℓ = 1 and
ℓ = 3, as a function of Mω, for r0 = ∞ and some choices of
v0 > 0.

The factor ζ∞(ω) completely governs the overall behavior
of the energy spectra in the high-frequency region. It
decays as 4/(ω∆t)2 for large ω, as illustrated in Fig. 12.
The factor ζN (ω) is a periodic function of ω for any finite
N , and only in the limit N → ∞ does it decrease as a
function of ω for all values of ω. Figure 8 shows that the
energy spectrum Eup;ωℓ for the point charge extends to
higher and higher frequencies as the multipole number
ℓ increases. Thus, to have Eup;ℓ tend to 0, instead of a
nonzero constant, as ℓ → ∞ in the multicharge model it
is crucial to take the limit N → ∞, because only then the
high-frequency contribution to Eup;ℓ is suppressed. Note
that there will be no radiation with the frequencies at the
zeros of ζ∞(ω). This observation applies to the radiation
emitted to infinity, as well as the electromagnetic energy
absorbed by the BH. Thus, there will be no radiation
with the wavelengths ∆t/n, n = 1, 2, 3, . . .. For instance,
one could eliminate from the emitted spectrum the ℓth
fundamental quasinormal frequency of the BH by setting

∆t = 2πn/ωqnf
ℓ .

As was stated earlier, the contribution of each multi-
pole to the total energy absorbed by the BH is roughly
constant for large ℓ in the point particle model. This
is no longer true for the string model, though the total
energy absorbed remains infinite because the charge is
still concentrated on a line. When we increase the length
∆t from zero (point particle model), the relative contri-
bution of the lower multipoles increases, whereas that
of the higher multipoles decreases. This can be seen in
Fig. 13, where the partial energy is plotted against the
multipole number ℓ for different choices of ∆t. This fig-
ure shows the contribution of each ℓ to Eup, defined as the
sum of the absorbed partial energies Eup;ℓ up to ℓ = 27,
i.e., Eup;ℓ/Eup, where Eup =

∑27
ℓ=1 Eup;ℓ, in percentage.

In Fig. 14, we show the quantity Eup =
∑ℓmax

ℓ=1 Eup;ℓ as a
function of ∆t for some values of ℓmax. Since the higher-
multipole contribution becomes smaller relatively to the
lower-multipole contribution as ∆t increases, the values
of Eup as defined above for different ℓmax converge as ∆t
increases, as seen in this figure.
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FIG. 11. Top: the radial positions of the inner and outer ends
of the string as a function of the time t. The difference r(t−
∆t) − r(t) is also plotted. Bottom: the process of the string
falling radially into the BH is represented for four different
values of the parameter t, with r0 = 15M and v0 = 0.

The total energy spectrum for representative values of
r0 and ∆t, for the radiation emitted to infinity, is shown
in Fig. 15. This figure can be compared with Fig. 2.
We see that the spectrum is governed by ζ∞(ω) at high
frequencies. In the limit ∆t → ∞, we have ζ∞(ω) → 0,
and therefore, no radiation is emitted.

VI. FINAL REMARKS

In this paper, we analyzed the radiation emitted by
a charge projected radially toward a Schwarzschild BH
using quantum field theory in curved spacetime at tree
level. We confirm the results in Refs. [48–51], which use
classical field theory, with additional insights and results.
In particular, we obtained analytical results in the zero-
frequency limit and were able to use a result in this limit
to find an approximate formula for the energy emitted to
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FIG. 12. The function ζN (ω), given in Eq. (60), for some
choices of N and ∆t = 2M.
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FIG. 13. The relative multipole contribution to the absorbed
energy for a charged string released from r0 = ∞, as the
percentage in the sum up to ℓ = 27, denoted here by Eup, as
a function of the multipole number ℓ. The vertical gridlines
indicate the values of ℓ.

infinity by ultrarelativistic charges falling into the BH.
We also presented a detailed analysis of the energy emit-
ted by charges released from rest at a finite distance from
the BH. We also provided a possible explanation for the
recurring issue related to the divergence observed in the
energy absorbed by the BH.

We verified that the radiation emitted to infinity is
mostly of dipole origin for a charge falling from rest at
r0 ≳ 3M, with increasing dipole contribution for increas-
ing r0. The energy radiated is only a tiny fraction of the

0.5 1 5 10 50 100

100

10-1

10-2

10-3

FIG. 14. The absorbed energy for a charged string released
from r0 = ∞, as a function of ∆t. The ℓ sum in Eq. (45) is
truncated at ℓmax. Different choices of ℓmax are considered.



13

0 2 4 6 8 10

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

FIG. 15. The total energy spectrum for a charged string pro-
jected toward the BH from r0 = 3M with v0 = 0 and some
choices of ∆t, as indicated.

initial specific energy of the charge. When the charge
is projected with some initial velocity, higher multipoles
are excited, and the total spectra become flatter. In this
case, the emitted energy corresponds to a larger fraction
of the specific initial energy of the charge. In particu-
lar, we confirmed for the ultrarelativistic case that the
partial spectra are approximately the flat spectra with
a cutoff at the associated quasinormal frequency. Thus,
we showed that the analytic zero-frequency limit of the
spectrum we derived in Sec. IVA multiplied by the quasi-
normal frequency of the Schwarzschild BH gives a good
approximation to each partial energy, and hence the to-
tal energy, emitted to infinity by the falling charge in
ultrarelativistic motion.

We also studied radiation from a radially extended
charged “string” projected toward the BH. This “string”
is formed by N noninteracting pointlike charges follow-
ing the same radial geodesic, but they are released at
different points in time, sequentially one after another.
In the framework of quantum field theory, the sequential
release of these charges introduces different phase factors
for the probability emission amplitudes associated with
each charge, thus producing interference. As a result, in
the N → ∞ limit, we have an additional multiplier factor
decaying like ω−2 in the energy spectrum. This factor is
present in the energy spectrum emitted to infinity and to
the horizon. This factor cuts off high-frequency contri-
bution to the energy spectrum, thus reducing the total
energy radiated to infinity. This analysis is analogous
to the classical analysis addressed in, e.g., Refs. [74–76],
for the case of gravitational radiation and yields similar
results.

We also confirmed that the electromagnetic energy ab-
sorbed by the BH, for a pointlike charge released from
rest, has approximately the same contribution from each
multipole number ℓ for large ℓ and that the total ab-
sorbed energy diverges [49], analogously to the gravita-
tional case [38]. We found that this is also true for a
charge released from a finite distance from the BH. Such

divergence is a consequence of the point particle approxi-
mation. We showed that this divergence can be explained
as coming from the infinite Coulomb energy around the
point charge. (There is a similar divergence in the grav-
itational energy absorbed by the BH for a point mass
falling into a Schwarzschild BH [38]. This divergence
can be shown to have the same explanation.) The same
explanation must also hold for any particle trajectory
that reaches the horizon. We also showed that the di-
vergence is milder if the point charge is replaced by a
one-dimensional extended charged body.
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APPENDIX: MULTIPOLE DECOMPOSITION OF
THE COULOMB ENERGY GOING INTO THE

HORIZON

The near constancy of the contribution from each mul-
tipole number ℓ to the electromagnetic energy absorbed
by the BH for large ℓ implies that the total electromag-
netic energy absorbed by the BH is infinite. We show in
this appendix that this behavior of the energy absorbed
found numerically can be explained by the energy of the
Coulomb field surrounding the charge about to fall into
the BH. The energy of the electric field around a point
charge is infinite, and this infinity is due to the contribu-
tion from the electric field arbitrarily close to the charge.
Thus, we only need to analyze the electric field near the
charge on the BH horizon.
We first write down the Coulomb potential close to

a charge q on the horizon in the in-going Eddington–
Finkelstein coordinate system, in which the metric is
given by

dτ2 =

(
1− 2M

r

)
dv2 − 2drdv − r2(dθ2 + sin2 θ dϕ2),

(A.1)

where v is constant on each in-going radial null geodesic.
The coordinate v is related to the time coordinate t in
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Schwarzschild coordinates by

v = t+ r + 2M ln
r − 2M

2M
. (A.2)

The vector ∂v is a Killing vector, and the corresponding
conserved quantity, the specific energy of a point particle
falling in the radial direction, is given by

E =

(
1− 2M

r

)
dv

dτ
− dr

dτ
, (A.3)

where τ is the proper time of the charge. The specific
energy E in terms of the initial position and velocity is
given by Eq. (29). The world line of the charge satisfies

dv

dτ
=

1

E +
√
E2 − 1 + 2M/r

, (A.4)

dr

dτ
= −

√
E2 − 1 + 2M/r. (A.5)

At the instant when the charge is on the horizon r = 2M,
we have (dv/dτ, dr/dτ) = (1/2E,−E). The radial line
perpendicular to the world line of the charge with respect
to the metric (A.1) satisfies (dv/ds, dr/ds) = (1/2E,E),
where s is the proper distance.
Now we define the local time and space coordinates,

η and ρ, near the charge on the horizon such that
(dη/dτ, dρ/dτ) = (1, 0) on the world line of the charge,
and (dη/ds, dρ/ds) = (0, 1) on the radial line perpendic-
ular to this world line. Choosing η = ρ = v = 0 at the
horizon on the world line of the charge, we find approxi-
mately

η = Ev − 1

2E
(r − 2M), (A.6)

ρ = Ev +
1

2E
(r − 2M). (A.7)

We note that the Killing vector Kµ = (∂v)
µ has compo-

nents Kη = Kρ = E in the local η-ρ coordinate system
(with Kθ = Kϕ = 0) at the position of the charge on the
horizon.

The vector potential Aµ near the charge on the horizon
(r = 2M) is approximately the η-independent Coulomb
field,

Aη =
q

4πR
, (A.8)

where

R =
√
ρ2 + (2M)2θ2, (A.9)

with all other components vanishing. (We are using the
equality sign rather imprecisely here.) Near the charge,
i.e., for ρ ≪ 2M and θ ≪ 1, we may replace this expres-
sion with

R =
√
a2 − 2ab cos θ + b2, (A.10)

where

a =
1

2
(
√
ρ2 + 4(2M)2 + |ρ|), (A.11)

b =
1

2
(
√
ρ2 + 4(2M)2 − |ρ|). (A.12)

The expression for R in Eq. (A.10) vanishes only for
(ρ, θ) = (0, 0) and reduces to that given in Eq. (A.9) for
θ ≪ 1. Therefore, we may use Eq. (A.10) in Eq. (A.8)
for estimating the contribution to the Coulomb energy
from large ℓ, since the infinite energy arises exclusively
from the electric field near the charge.
Then, with the definition

|ρ| = 4M sinh s, (A.13)

we find, using the standard generating function for the
Legendre polynomials [69, Eq. 8.921],

Aη =
q

4πa

∞∑
ℓ=0

(
b

a

)ℓ

Pℓ(cos θ)

=
q

8πM

∞∑
ℓ=0

e−(2ℓ+1)sPℓ(cos θ), (A.14)

where Pℓ(x) is the Legendre polynomial of order ℓ. The
nonvanishing components of the field-strength tensor
Fµν = ∇µAν −∇νAµ are

Fηρ = ± q

16πM2

∞∑
ℓ=0

(ℓ+ 1/2)e−(2ℓ+1)sPℓ(cos θ), (A.15)

Fηθ = − q

8πM

∞∑
ℓ=0

e−(2ℓ+1)s d

dθ
Pℓ(cos θ), (A.16)

where the plus sign is for ρ > 0, and the minus sign is
for ρ < 0. We have let ∂/∂|ρ| ≈ (4M)−1∂/∂s, since
we only need to estimate the singular behavior of the
electromagnetic energy density near ρ = 0 (s = 0).
The stress-energy tensor is

Tµν = −FµαFν
α +

1

4
gµνF

αβFαβ . (A.17)

The conserved energy-momentum current is TµνKν . The
η-component of this covector is

TηνKν =
Eq2

2(16πM2)2


[ ∞∑
ℓ=0

(ℓ+ 1/2)e−(2ℓ+1)sPℓ(cos θ)

]2

+

[ ∞∑
ℓ=0

e−(2ℓ+1)s d

dθ
Pℓ(cos θ)

]2 . (A.18)

We integrate this quantity over the hypersurface Ση of
constant η, with the volume element

dρ r2 sin θdθdϕ ≈ 16M3 sin θdsdθdϕ, (A.19)
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where we have made the approximations r2 ≈ 4M2 and
cosh s ≈ 1. The integral over ρ near ρ = 0 is replaced by
twice the integral over s from 0 to ∞. (Again, we are in-
terested only in the contribution from small |ρ| with large
ℓ, and hence, the upper limit of the s-integral is not im-
portant.) Then, we find, using the standard orthogonal-
ity relations satisfied by the Legendre polynomials, that
the infinite Coulomb energy can formally be expanded as

ECoulomb =

∫
Ση

TηνKνdρ r2 sin θdθdϕ

=

∞∑
ℓ=0

ECoulomb
ℓ , (A.20)

where

ECoulomb
ℓ ≈ Eq2

16πM
for ℓ ≫ 1. (A.21)
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