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Nakanishi covariant operator formalism for higher derivative systems:

Vector spin-0 dual model as a prelude to generalized QED4

G. B. de Gracia∗

Federal University of ABC, Center of Mathematics, Santo André, 09210-580, Brazil.
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In this work we extend the Kugo-Ojima-Nakanishi covariant operator formalism to quantize

two higher derivative systems, taking into account their extended phase space structures.

More specifically, the one describing spin-0 particles by a vector field and the generalized

electrodynamics. We investigate the commutator structure of these theories and present the

definition of their physical Hilbert subspaces. Remarkably, the establishment of a second-

class nature for the primary constraints of such models demands a higher derivative structure

for the auxiliary field Lagrangian following previous claims. Regarding the first model, it

presents a reducible gauge symmetry implying the necessity of two sets of auxiliary fields. We

also discuss its massless limit. For the case of the generalized QED4, we derive a set of suitable

definitions for the positive-definite Hilbert subspace in order to eliminate contributions from

spurious modes and also the problematic negative norm transverse excitation. We show that

the Hamiltonian operator taken within the domain of this subspace presents no instabilities.

Finally, a set of discussions on the interacting regime are developed to ensure that the

scattering processes restricted to the physical Hilbert subspace remain unitary even at this

context.

I. INTRODUCTION

Higher derivative field theories can hardly be overestimated if one considers the wide range of

their applications in different areas of physics. Regarding field theories, the inclusion of higher

derivative operators can also be understood as quantum corrections [1]. Accordingly, as in [2–9],

the Lee-Wick model, a higher derivative theory, can be regarded as a system obtained by elevat-

ing the status of the Pauli-Villars regulators to dynamical degrees of freedom. Another pertinent

model correlated to this context is the so-called Bopp-Podolsky Lagrangian [10–15]. It leads to a
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generalized electrodynamics whose associated static potential is well-behaved at the origin [16–18].

Moreover, as an ultraviolet improvement [19–26], it also leads to a finite self-energy for the electron.

This kind of features based on a higher derivative Lagrangian can occur in a set of alternative

contexts such as in one loop renormalized linearized quantum gravity, for example. The generation

of higher derivative quantum corrections can be directly verified from the functional renormal-

ization group analysis [27–29]. One can also cite the alternative framework of the string theory

in which a generalized gravitational theory including higher derivative terms, associated with the

product of curvatures, emerges in the low energy limit [30, 31]. Finally, although these aforemen-

tioned models may be associated with the presence of extra ghost particles with negative norms

[32, 33], it is possible to show that non-linear interactions provide a way to overcome these Os-

trogadskian instabilities. The quantum corrections imply an evanescent nature for these modes,

eliminating them from the asymptotic spectrum [34, 35]. We also mention the importance of the

Lee-Wick models in gravity [36–45] due to the mechanisms that conciliate renormalizability with

unitarity. Finally, it is worth mentioning the rich and longevous discussion on these ghosts [46–56],

in which its general properties are investigated.

The other fundamental issue of the paper is closely related to the issue of duality in field theories.

Namely, using the master action approach one can derive dual relations between theories describing

spinless particles using a scalar field and the ones associated with a vector field description [57, 58].

The latter model presents no particle content at the massless limit. Additionally, one can also

consider another alternative description based on an antisymmetric field, the so-called massless

Kalb-Ramond (KR) model [59–61]. Interestingly, the massive version of the latter describes spin-1

particles meaning that a degree of freedom discontinuity occurs at the zero mass limit. Regarding

spin-1 particles, there is also an alternative dual description in terms of a symmetric tensor field

[57]. The latter also presents the previously mentioned kind of degree of freedom jump in the mass-

less limit. This is a topic of current research, see the following papers addressing this discontinuity

for the (KR) model [62, 63] and also for the case of non-Abelian theories [64].

Regarding the higher derivative spin-0 model studied in this paper, it can be related to the

previously mentioned vector second-order derivative one through the master action technique [57].

Interestingly, this higher derivative (UV) completion also contributes to overcoming the massless

discontinuity presented by the parent model. This target model also has a reducible gauge symme-

try structure with direct implications in the definition of the path integral formulation. Here, we

intend to be the first ones to investigate these issues using a complementary Heisenberg operator

quantization in an indefinite metric Hilbert space.
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Here, we extend the Kugo-Ojima-Nakanishi (KON) covariant operator formalism [65, 66] to

quantize two Ostrogadskian systems, taking into account their generalized phase space structures

[67, 68]. More specifically, the one describing spin-0 particles by a vector field [57] and the Bopp-

Podolsky generalized electrodynamics [19]. We discuss a set of features related to the reducible

structure of the local freedom [69] and a well-defined massless limit [62] for the first, and topics

related to the correct definition of the positive norm subspace for the latter model, which is known

to present transverse modes with a negative norm.

The (KON) formalism is suitable to be applied for Lagrangian systems with a singular Hessian

matrix. A set of auxiliary fields is properly included in such a way to provide a covariant model

whose primary constraints are of second-class in the Dirac classification [70]. In this manner, the

Dirac brackets can be introduced to correctly project the model into the physical surface in which

the constraints are valid in their strong form, eliminating quantization ambiguities. Therefore,

considering the correspondence principle, the whole set of commutator’s initial conditions can be

obtained. From the operator equations of motion, the full commutator structure at unequal times

can be provided. The quantization formalism is based on the Heisenberg description of an indefi-

nite metric Hilbert space. This is a useful setting since the auxiliary fields as well as the negative

norm spurious gauge field modes can be excluded from the physical subspace by an appropriate

definition of the latter. This is achieved by a condition imposed by the auxiliary fields or even the

BRST charges acting on the states, depending on the specific model considered.

This formalism has a relevant variety of applications ranging from Abelian and non-Abelian

gauge theories to quantum gravity [65]. It is possible to cite a variety of research associated with

this formalism, such as the investigation of quantum gravity in tetrad formalism1 [71], the definition

of a complementary tool for BRST symmetry extensions [72], the discussion of mass generation

mechanisms [73], in QCD confinement research [74] and to unveil formal aspects of QED4 in the

so-called non-linear t’Hooft gauge [75, 76]. One can also mention the application in topological

condensed matter describing subtle aspects of the statistical interaction [77]. Interestingly, it can

directly provide the exact quantization of the two-dimensional non-Abelian BF model [78].

This formalism also has a perturbative counterpart. The general structure of the Wightman

functions can be inferred by a method that consists of extracting the truncated n point functions

from the n point commutators by requiring the positive energy condition. For a review including

applications in the perturbative quantization of QED4, a toy one-loop model, string theory, and

1 For which the standard approaches generally fail.
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the two-dimensional quantum gravity, see [79]. Here, we provide a set of straightforward extensions

of such formalism. Since both models investigated in this paper are of a higher derivative nature,

one must consider the extended phase space and new fundamental Poisson brackets that charac-

terize the Ostrogadskian systems. It has a direct impact on the set of initial conditions obtained

by the correspondence principle. Moreover, regarding the higher derivative description of the spin-

less vector model, issues related to the reducible spurious sector and the necessity of adding two

auxiliary fields are novelties introduced here. Then, in connection with the previously mentioned

recent correlated achievements, we show how the Hilbert space structure behaves in the massless

limit [62]. Regarding the generalized QED4, we explicitly show how the successful extension of

the formalism indeed demands a higher derivative gauge fixing Lagrangian, being a full quantum

completion to the previous efforts [80] implicated by semi-classical considerations. Moreover, we

show how to consistently define the positive-definite Hilbert subspace for the intricate case of the

Bopp-Podolsky model presenting transverse massive negative norm modes. The interacting regime

is also considered and a suitable definition of the physical subspace in this context is derived. We

demonstrate that the scattering processes of the interacting model can be established in a unitary

manner if the correct definition of the asymptotic physical Hilbert space is considered. This can

provide a suitable background to address the renormalized linearized gravity system in which neg-

ative norm modes that are not pure gauge arise.

The work is organized as follows. In Sec. II , the Lagrangian structure and the pertinent auxil-

iary fields for the higher derivative spin-0 model are provided. Later, at Sec. III, the complete set of

equations of motion for the system is derived. The Sec. IV is devoted to characterizing the phase

space of the system as well as obtaining the primary constraint structure which is second-class

due to the presence of the previously mentioned auxiliary fields. In Sec. V, the correspondence

principle and the complete set of commutators are derived. Moreover, the definition of the phys-

ical subspace and the massless limit are provided. The Sec. VI introduces the Lagrangian of the

higher derivative electrodynamics, its auxiliary fields, equations of motion, primary constraints,

and the Dirac Brackets. Then, in Sec. VII the full commutator structure is derived, as well as the

definition of a physical Hilbert space capable of avoiding spurious gauge projections and also the

massive transverse modes with negative norms. It is demonstrated that the Hamiltonian becomes

positive-definite in this subspace. The Sec. VIII discusses the theory in the presence of a fermionic

interaction. A prescription for obtaining the positive - definite subspace associated with unitary

scattering processes is provided. Finally, we conclude in Sec. IX.

The metric signature (+,−,−,−) is used throughout this work.
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II. ON THE LAGRANGIAN STRUCTURE AND AUXILIARY FIELDS FOR A DUAL

MODEL DESCRIBING SPIN-0 PARTICLES

The Lagrangian describing a spin-0 particle using a vector field embedded in a higher derivative

structure reads [57]

L =
1

2

[

∂β
(

∂µB
µ
)

∂β
(

∂µB
µ
)

−m2
(

∂µB
µ
)2
]

+ ǫµνρ∂νφρ
(

�+m2
)

Bµ + ∂µΩ
(

�+m2
)

φµ

(1)

in which the auxiliary fields are explicitly highlighted. To establish a scalar Lagrangian, both

auxiliary fields φµ(x) and Ω(x) must be pseudo vector and pseudo scalar fields, respectively. We

choose to work in D = 2 + 1 dimensions since, in this case, just two auxiliary fields are necessary

to provide a second-class system in compliance with the correspondence principle. Therefore, the

model has well-defined Dirac Brackets suitable for developing the quantization procedure. We will

explicitly prove it in the Sec. IV .

The auxiliary fields are responsible for providing a gauge condition valid in all Hilbert space.

This is a demand due to the singular nature of the theory composed just by the gauge vector field.

In this case, the gauge field presents the following local freedom

Bµ(x) → Bµ(x) + ǫµνσ∂
νΛσ(x) (2)

with Λσ(x) being a pseudo vector field representing the symmetry parameter. This transformation

has a reducible structure presenting the zero modes

Λα(x) = ∂αρ(x) (3)

in which ρ(x) is an arbitrary pseudo scalar field.

However, the presence of the whole set of auxiliary fields breaks the symmetry through the

condition 2 [67]

(

�+m2
)(

ǫµνβFB
µν(x)− 2∂βΩ

)

= 0 (4)

Due to the existence of the zero modes, this extra scalar auxiliary field is demanded to eliminate

the freedom associated with any kind of first-class quantities [65]. Although performed in

2 with the definition FB
µν(x) ≡ ∂µBν(x)− ∂νBµ(x)
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D = 2 + 1, this process can be carried out for any dimension. We focus on this particular

one since, in this case, just one extra auxiliary field is necessary, defining a straightforward

generalization of the well-known (KON) quantization. In the reference [81], an analogous

quantization process is generalized for D-dimensions for the case of a dual description of a

spin 1 model. Finally, beyond this point associated with the reducible nature, the system is

also of a higher derivative structure, implying the necessity of introducing an extended phase space.

III. ON THE EQUATIONS OF MOTION

The model’s equations of motion are given below

−∂µ
(

�+m2
)(

∂νB
ν(x)

)

+
(

�+m2
)

ǫµνρ∂νφρ(x) =0 ,

(

�+m2
)

∂µφ
µ =0 ,

−ǫµνρ∂ν
(

�+m2
)

Bµ(x) + ∂ρ
(

�+m2
)

Ω(x) =0 (5)

Taking the divergence of the first equation yields

�
(

�+m2
)

∂µB
µ(x) = 0 (6)

. This equation has a deep analogy with the two pole structure of the Bopp-Podolsky generalized

electrodynamics, despite the facts that there is no negative residue and the pole field is a scalar

combination ∂µB
µ(x).

From the divergence of the last equation of (5), it is possible to derive the pole structure for

the auxiliary field Ω(x)

�
(

�+m2
)

Ω(x) = 0 (7)

Applying the differential operator ǫµνα∂
ν on the first equation and using the auxiliary vector

field transverse nature, implies the equation

�
(

�+m2
)

φµ(x) = 0 (8)

defining the pole structure of the vector auxiliary field.
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IV. ON THE EXTENDED PHASE SPACE STRUCTURE

After this digression, we introduce the generalized canonical momenta structure which, for a

fourth derivative model, is defined below

pΦ(x) ≡
[ ∂L
∂(∂0Φ(x))

− 2∂i

( ∂L
∂(∂i∂0Φ(x))

)

− ∂0
∂L

∂(∂0∂0Φ(x))

]

πΦ(x) ≡
∂L

∂(∂0∂0Φ(x))

(9)

with Φ(x) being a general notation for all fields appearing in the Lagrangian.

Then, for this specific system, the generalized momenta definition is expressed below

πBµ (x) =
(

B̈0(x) + ∂iḂ
i(x)

)

δ0µ + ǫµνρ∂νφρ(x),

pBµ (x) = −m2
(

Ḃ0(x) + ∂iB
i(x)

)

δ0µ + 2∂k∂k
(

Ḃ0(x) + ∂iB
i(x)

)

δ0µ

− 2∂k
(

B̈0(x) + ∂iḂ
i(x)

)

δµk ,−
( ...
B0(x) + ∂iB̈

i(x)
)

δ0µ − ǫµνρ∂
ν φ̈ρ(x),

pφµ(x) = ǫk0µ
(

�+m2
)

Bk(x)− ∂µΩ̈(x) , πφµ(x) = ∂µΩ(x) ,

pΩ(x) =
(

�+m2
)

φ0(x) , π
Ω(x) = 0 (10)

In order to define the nature of the primary constraints, we first introduce the fundamental

Poisson brackets in this extended phase space
(

Φ(x), Φ̇(x), pΦ(x),πΦ(x)
)

{

Φ(x), pΦ(y)
}

= Iδ2(~x− ~y) ,
{

Φ̇(x),πΦ(y)
}

= Iδ2(~x− ~y) (11)

with I denoting the identity written in terms of the specific field tensor structure.

The primary constraints are the ones generating non-dynamical relations between the phase

space degrees of freedom. They are the following πBj (x) = ǫj0kφ̇k(x)+ ǫ
jl0∂lφ0(x), π

φ
µ(x) = ∂µΩ(x)

and πΩ(x) = 0. Then, it proves that the correct introduction of the complete set of auxiliary fields,

indeed leads to a second-class system from the beginning even in this higher derivative scenario.

The constraints can be suitably grouped as

C(1)
µ (x) ≡

(

− πjB(x)− ǫij φ̇j(x) + ǫij∂jφ0(x)
)

δµi + πΩ(x)δµ0 ≈ 0

C(2)
µ (x) ≡ πφµ(x)− ∂µΩ(x) ≈ 0 (12)
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being associated with the following inverse matrix of constraints

Gµν
IJ (x, y) = {CI

µ(x), CJ
ν (y)}(−1) =





0 −ǫijδiµδjν + δ0µδ
0
ν

ǫijδ
i
µδ

j
ν − δ0µδ

0
ν 0



 δ2(~x− ~y) (13)

enabling one to establish the Dirac brackets, the key object to provide the system’s quantization

{

F (x),G(y)
}

D
=

{

F (x),G(y)
}

−
∫

d3z d3w
{

F (x), CI
µ(z)

}

Gµν
IJ (z,w)

{

CJ
ν (w),G(y)

}

(14)

for which the constraints are valid in their strong form.

V. FROM THE COMMUTATOR INITIAL CONDITIONS TO ITS FINAL FORM AT

UNEQUAL TIMES

From the Dirac brackets, the correspondence principle can be performed yielding the following

set of non-vanishing commutators

[

Bµ(x), p
ν
B(y)

]

0
= iδνµδ

2(~x− ~y) ,
[

Ḃµ(x),π
ν
B(y)

]

0
= iδνµδ

2(~x− ~y)

[

Ω(x), pΩ(y)
]

0
= iδ2(~x− ~y) ,

[

φµ(x), p
ν
φ(y)

]

0
= iδνµδ

2(~x− ~y)

[

∂0φµ(x),π
ν
φ(y)

]

0
= iδνµδ

2(~x− ~y)

leading to a set of commutator’s initial conditions due to the momentum definition and the impo-

sition of the primary constraints

[

Ḃ0(x), B̈0(y)
]

0
= iδ2(~x− ~y) ,

[

Ḃj(x), ǫ
ikφ̇k(y)

]

0
= −iδijδ2(~x− ~y),

[

B0(x),
...
B0(y)

]

0
= −iδ2(~x− ~y) ,

[

φ0(x), Ω̈(y)
]

0
= −iδ2(~x− ~y),

[

φ̇0(x), Ω̇(y)
]

0
= iδ2(~x− ~y) ,

[

φi(x), ǫ
jkB̈k(x)

]

0
= iδji δ

2(~x− ~y) (15)

The first commutator to be addressed here is associated with the auxiliary scalar field. Since it

obey

�
(

�+m2
)x
[

Ω(x), Ω(y)
]

= 0 (16)

then, using the properties of the distributions below [65]

�∆(x− y; s) = −s∆(x− y; s), ∆(x− y; s)
∣

∣

∣

0
= 0, ∆̇(x− y; s)

∣

∣

∣

0
= δ2(~x− ~y),

(

�+ s
)

E(x− y; s) = ∆(x− y; s), E(x− y; s)
∣

∣

∣

0
= 0,

...
E(x− y; s)

∣

∣

∣

0
= δ2(~x− ~y). (17)
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representing their initial conditions, one proves that the general solution must be of the form

[

Ω(x), Ω(y)
]

= a∆(x− y,m) + b∆(x− y, 0) (18)

Owing to the canonical momenta definition (10), one can obtain Ω̇(x) in terms of πφ0 (x). Then,

considering the general Ostrogadskian phase space structure (11), it is possible to derive the initial

condition

[

Ω̇(x), Ω(y)
]

0
= 0 (19)

implying a+ b = 0. Since pφ0 (x) and π
φ
0 (x) are not phase space conjugate variables, we also have

[

Ω̇(x), Ω̈(y)
]

0
= 0 (20)

leading to a = 0 and, therefore, a vanishing commutator at unequal times

[

Ω(x), Ω(y)
]

= 0 (21)

Following similar reasoning, one obtains

[

Ω(x),Bν(y)
]

= 0 (22)

Now, we derive the commutator between the gauge and vector auxiliary field. As already

mentioned, this and the previous commutator are the key ones to understand how a consistent

definition of the positive Hilbert space can be established. The general form is given below

[

Bµ(x),φρ(y)
]

= iǫµρν∂
ν
(

a∆(x− y,m2) + b∆(x− y, 0)
)

(23)

taking into account the pseudo-vector nature of φµ(x) as well as its transverse condition implicated

by the operator equations of motion.

This commutator complies with the fact that φρ(x) lies in the kernel of the �
(

�+m2
)

operator

and obeys the gauge condition (�+m2)∂µφ
µ(x) = 0. From the initial conditions

[

Bj(x), φ̈m(y)
]

0
= iǫmjδ

2(~x− ~y) (24)

the relation a = −b with a = i
m2 is achieved.

The commutator at unequal times reads

[

Bµ(x),φρ(y)
]

=
i

m2
ǫµρν∂

ν
(

∆(x− y,m2)−∆(x− y, 0)
)

(25)
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It means that just the non-physical transverse part of Bµ(x) has a non-zero commutator with

φµ(x). It furnishes a background to further derive the subsidiary condition defining the positive-

definite Hilbert subspace.

In order to achieve this objective, the commutator between the different auxiliary fields must be

obtained. Owing to Lorentz covariance, the general form for the mentioned commutator is given

below

[

φρ(x), Ω(y)
]

= ∂ρ
(

a∆(x− y,m2) + b∆(x− y, 0)
)

(26)

since both field operators are in the kernel of �
(

� + m2
)

and the scalar one is coupled to the

longitudinal part of φµ(x). Then, the initial conditions

[

φ0(x), Ω̈(y)
]

0
= −iδ2(~x− ~y) (27)

and the distribution properties imply a = −b and a = − i
m2 , leading to

[

φρ(x), Ω(y)
]

= − i

m2
∂ρ
(

∆(x− y,m2)−∆(x− y, 0)
)

(28)

It is worth mentioning that the last two commutators present well-defined massless limits since

∆(x− y,m2) =
(

∆(x− y, 0)−m2E(x− y, 0) + ...
)

for m→ 0. This is an important distinguishing

feature since there are other dual models with reducible local symmetries presenting a kind of DVZ

discontinuity in their massless limit. Concretely, one can cite the Kalb-Ramond model describing

scalar particles or spin-1 ones in terms of anti-symmetric tensor fields in the massless/massive

phases, respectively.

The derivation of the commutator between the auxiliary vector fields is the final goal to achieve

a complete description of the auxiliary sector. Considering the gauge fixing equation and the initial

conditions, one obtains

[

φµ(x),φν(y)
]

= 0 (29)

defining the zero norm nature of such field operators.

The last step before defining the physical Hilbert space is the establishment of the vector

gauge field commutator. Considering its equation of motion, a compatible general form for the

commutator reads

[

Bµ(x),Bν(y)
]

=a∂µ∂ν∆(x− y,m2) + dηµν∆(x− y,m2) + c∂µ∂νE(x− y, 0)+

e∂µ∂ν∆(x− y, 0) + gηµν∆(x− y, 0) (30)
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in which a, c, d, e, g are undetermined constants. This is the most general commutator compatible

with the equation

�
(

�+m2
)

∂µB
µ(x) = 0 (31)

Since it must also be in accordance with the subsidiary condition imposed on the Bµ(x) field,

one should fix g = 0.

Considering the initial condition

[

Ḃ0(x), B̈0(y)
]

0
= iδ2(~x− ~y) (32)

and also another one associated with the extended phase space due to the Ostrogadskian structure

[

Bi(x), Ḃ
j(y)

]

0
= 0 (33)

reduces all the remaining freedom implying the following commutator structure

[

Bµ(x),Bν(y)
]

=
i

m4
∂µ∂ν

(

∆(x− y,m2)−∆(x− y, 0)
)

+
i

m2
∂µ∂νE(x− y, 0) (34)

It furnishes with the exact scalar commutator for the pole operators

[

∂µBµ(x), ∂
νBν(y)

]

= i∆(x− y,m2) (35)

It is worth mentioning that this structure defines a spin-0 particle even at the massless limit.

An alternative check to this conclusion is the fact that the inter-particle potential derived for this

model in [82] is well-defined at this limit. This theory is a higher derivative version of the second-

order vector spin-0 one [57]. Since the latter loses its particle content at m → 0, it indicates that

the use of a higher derivative structure may avoid these discontinuities. A full discussion on this

theme is provided in the appendix concerning the full Hamiltonian analysis of the model’s Ostro-

gadskian phase space.

Having established the commutator structure for all the fields, one can derive a suitable sub-

sidiary condition to avoid the emergence of the auxiliary fields in the positive Hilbert subspace.

Therefore, a good subsidiary condition to define the positive semi-definite Hilbert subspace is

φ+µ (x)|phys〉 = 0, ∀|phys〉 ∈ Vphys. (36)

in which φ+µ (x) = φ
+(m)
µ (x) + φ

+(0)
µ (x) denotes the sum of the positive frequency parts of the

massive and massless solutions of the φ(x) field equations of motion. According to the whole set
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of the previously derived commutators, this definition eliminates the spurious non-positive norm

gauge field projections as well as both the auxiliary fields from the positive-definite metric Hilbert

subspace

Hphys =
Vphys

V0
(37)

defined as the completion of the quotient space above. The zero norm states associated with the

action of the auxiliary fields on the vacuum, spanning the space V0, are suitably avoided by this

definition.

It is straightforward to show that the scalar operator ∂µB
µ(x) commutes with the vector

auxiliary field, fulfilling the subsidiary condition. It means that the negative frequency part of this

field creates a scalar particle with a positive norm when acting on the vacuum state, defining a

physical state. Therefore, the present developments provide an extension of the (KON) formalism

for systems with reducible gauge symmetry structure and of fourth order in derivatives.

VI. THE BOPP-PODOLSKY HIGHER DERIVATIVE ELECTRODYNAMICS

The Lagrangian for the higher order electrodynamics reads [19–21]

L = −1

4
FµνF

µν +
1

2m2
∂λF

αλ∂ρFαρ + ∂µB
( �

m2
+ 1

)

Aµ (38)

We consider a higher derivative structure for the gauge fixing sector due to two reasons. First,

as we are going to see, it is the most general condition compatible with a pole equation for the

vector field in the physical subspace [80]. The other is; considering the previously introduced

Ostrogadskian phase space structure, this higher-order term contributes to generating a set of non-

vanishing generalized momenta responsible for turning the system into a second-class one, enabling

the establishment of the correspondence principle by means of Dirac Brackets. This is one of the

fundamental underlying principles of the covariant operator formalism [65, 79].

The equations of motion are the following

(

�+m2
)

∂µAµ = 0 ,
(

�+m2
)(

∂νFνµ + ∂µB
)

= 0 , �
(

�+m2
)

B = 0 (39)

From the previous relations, the vector field equation can be properly decoupled

�
2
(

�+m2
)

Aµ(x) = 0 (40)
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According to (10), the phase space variables in this Ostrogadskian [67, 68] system reads

pα(x) = −F0α(x)−
1

m2

(

∂k∂λF
0λ(x)δkα − ∂0∂λF

λ
α − ∂α∂0B

)

,

πα(x) =
1

m2

(

∂λF
0λ(x)δ0α − ∂λF

λ
α (x)

)

+
1

m2
∂αB(x),

pB(x) = (
�

m2
+ 1)A0 , πB(x) = 0 (41)

The momenta definition furnishes two constraints which are of second-class [70], see [80]

C(1) ≡ π0(x)−
1

m2
Ḃ(x) ≈ 0 , C(2) ≡ πB(x) ≈ 0 (42)

implying that the gauge fixing sector has a suitable form to provide the quantization process. The

inverse of the constraint matrix reads

GIJ (x, y) = {CI(x), CJ (y)}(−1) =





0 +m2

−m2 0



 δ3(~x− ~y) (43)

which can be used to build the Dirac brackets, the fundamental object to define the quantization

process by the correspondence principle

{F (x),G(y)}D = {F (x),G(y)} −
∫

d3zd3w{F (x), CI (z)}GIJ (z,w){CJ (w),G(y)} (44)

Then, it is possible to obtain a well-defined bracket for which the constraints are valid in the strong

form.

VII. ON THE COMMUTATOR STRUCTURE

In order to define all the field commutators at unequal times, one must consider

the equations of motion and the initial conditions provided by the correspondence prin-

ciple. The extended phase space for a system of fourth order in derivatives is ǫµ ≡
(

Aµ(x), Ȧµ(x),B(x), Ḃ(x), pα(x),πα(x), pB(x),πB(x)
)

and the fundamental Poisson brackets struc-

ture is the one defined in (11). With this knowledge, the Dirac brackets (44) can be established.

Then, considering the correspondence principle, the following set of initial conditions can be derived

[

Ȧi(x), Ä
j(y)

]

0
= im2δji δ

3(~x− ~y) ,
[

A0(x), B̈(y)
]

0
= im2δ3(~x− ~y),

[

Aµ(x), Ȧ
ν(y)

]

0
= 0 ,

[

Ai(x),
...
Aj(y)

]

0
= −im2δji δ

3(~x− ~y) (45)
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In order to infer the general structure of the commutator involving the gauge and the auxiliary

field, we use the operator equations of motion to obtain an equation valid at unequal times

�
y
(

�+m2
)y
[

Aµ(x),B(y)
]

= 0 (46)

Then, owing to Lorentz covariance, we establish the most general commutator in the kernel of

the above equation

[

Aµ(x),B(y)
]

= a∂µ∆(x− y; 0) + b∂µ∆(x− y;m2) (47)

in which a and b are undetermined constants.

Then, considering the initial condition below

[

A0(x), B̈(y)
]

0
= im2δ3(~x− ~y) (48)

one concludes that that a = −b and a = i, leading to

[

Aµ(x),B(y)
]

= i
(

∂µ∆(x− y; 0)− ∂µ∆(x− y;m2)
)

(49)

Then, we conclude that the auxiliary field does not commute with the spurious longitudinal

projections of the gauge field, as it should be.

Following similar reasoning, one can also derive

[

B(x),B(y)
]

= 0 (50)

expressing the zero-norm character of the auxiliary field.

Considering the equation for the vector field Aµ(x),

�
2
(

�+m2
)

Aµ(x) = 0 (51)

it is possible to infer the most general commutator for the vector field

[

Aµ(x),Aν(y)
]

= a
(

ηµν∆(x− y; 0) − ∂µ∂νE(x− y; 0)
)

+ b
(

ηµν∆(x− y,m2)

+
1

m2
∂µ∂ν∆(x− y,m2)

)

+ d∂µ∂νE(x− y, 0) + e∂µ∂νE(x− y,m2)

+ rηµνE(x− y,m2) + nηµνE(x− y,m2) + f∂µ∂ν∆(x− y,m2) + c∂µ∂ν∆(x− y, 0) (52)

written in a specific convenient manner.

The gauge condition imposes a restriction on the commutator

(

�+m2
)

∂µ
[

Aµ(x),Aν(y)
]

= 0 (53)
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implying the following constraints d = e = n = r = 0.

From the initial condition

[

Ai(x), Ȧ
j(y)

]

0
= 0 (54)

the following relations are imposed a+ b = 0 and b
m2 + c+ f = 0.

The compatibility with the condition

[

Ȧi(x), Ä
j(y)

]

0
= im2δji δ

3(~x− ~y) (55)

eliminates the remaining freedom, revealing the structure of the vector field commutator

[

Aµ(x),Aν(y)
]

= −i
(

ηµν∆(x− y, 0)− ∂µ∂νE(x− y, 0)
)

+ i
(

ηµν∆(x− y,m2) +
1

m2
∂µ∂ν∆(x− y,m2)

)

− i
1

m2
∂µ∂ν∆(x− y, 0) (56)

Using the fact that the simple and double pole massive Pauli-Jordan distributions tend to zero

at m→ ∞, the Maxwellian form for the commutator is recovered at this limit [65]

[

Aµ(x),Aν(y)
]

= −i
(

ηµν∆(x− y; 0)− ∂µ∂νE(x− y; 0)
)

(57)

Now, considering the full commutator structure of (56), the subsidiary condition can be defined.

Let’s try to apply the same one used to characterize the positive semi-definite Hilbert subspace of

QED4

B+(x)|phys〉 = 0, ∀|phys〉 ∈ Vphys. (58)

with B+(x) = B+(0)(x)+B+(m)(x) being the sum of massive and massless positive frequency parts

of the auxiliary field operator.

Although this condition prevents spurious gauge field projections from appearing in the physical

subspace, it does not eliminate transverse massive negative norm states present in (56).

This feature is not a failure of the B field approach, this model indeed presents this kind of

ghost particle as well as, for example, some higher derivative gravity models [83]. However, we can

generalize this approach to correctly separate the positive semi-definite Hilbert subspace. Then,

we consider two conditions 3

B+(0)(x)|phys〉 = 0, �
2A+

µ (x)|phys〉 = 0 ∀|phys〉 ∈ Vphys. (59)

3 Here, B+(0)(x) ≡ (�+m2)B+(x), with the + label denoting the positive frequency part of the field.
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First of all, we notice that the two conditions are compatible. Moreover, the auxiliary field

B+(m)(x) and the whole massive pole contribution to Aµ(x) are necessarily outside of the physical

subspace due to commutations relations (49) and (56). The longitudinal spurious contribution from

the massless sector is also excluded due to the condition generated by the B-field. Therefore, we

can establish a well-defined positive-definite Hilbert subspace even for the Bopp-Podolsky model

as the Cauchy completion of

Hphys =
Vphys

V0
(60)

with V0 representing the zero norm subspace. This definition is Poincaré invariant.

A. On the positive-definite Hilbert subspace

The quantum vector field can be expressed in terms of creation and annihilation operators as 4

Aµ(x) =

∫

d3p

(2π)3/2

[

∑

λ

1
√

2|~p|
(

e−ipxaλ(~p)ǫ
λ
µ(~p) + eipxa†λ(~p)ǫ

∗λ
µ (~p)

)

+ (61)

∑

σ

1
√

2
√

|~p|2 +m2

(

e−ip̄xāσ(~̄p)χ
σ
µ(~̄p) + eip̄xā†σ(~̄p)χ

∗σ
µ (~̄p)

)

]

with pµ = (
√

~p2, ~p), p̄µ = (
√

~p2 +m2, ~p) and [aλ(~p), (aλ
′
)†(~q)] = [āλ(~p), (āλ

′
)†(~q)] = ηλλ

′
δ3(~p − ~q).

This field operator structure is in compliance with equation (56) if the following polarization

sums,

ηλλ′ǫλµ(~p)ǫ
∗λ′

ν (~p) = −θµν(p)−
pµpν
m2

(62)

ηλλ′χλ
µ(~̄p)χ

∗λ′

ν (~̄p) = gµν −
p̄µp̄ν
m2

(63)

with θµν = ηµν − pµpν
p2 , are considered.

Owing to the equation (56), for a given specific frame pµ = (p, 0, 0, p), the physical modes with

positive norm have the following commutator

[

ãi(p), ã
†
j(q)

]

= δij(2π)
3θ(p0)δ(p

2)δ4(p− q) (64)

4 In natural units.



17

with i = 1, 2 denoting spatial coordinates. They are associated with the alternative setting of the

positive and negative frequency parts of the vector field [65]

A(+)
µ (x) =

∫

d4p
(

ãµ(p)e
−ip.x + a′µ(p)e

−ip.x
)

; Aµ(x) = A(+)
µ (x) +A(−)

µ (x) (65)

The physical modes previously highlighted are associated with the annihilation operators as

ãµ(p) ≡
∑

λ a
λ(~p)ǫλµ(~p)θ(p0)δ(p

2)
√
2p0. The operator a′µ(p) is related to the massive sector.

It is worth mentioning that the generalized QED4 has a Hermitian Hamiltonian operator

H = H†, ensuring pseudo-unitarity [65]. However, it is not positive-definite as a consequence

of its Ostrogadskian structure. Despite this fact, considering the definition of the physical Hilbert

subspace (59), one can show that the matrix elements

〈physA| : H : |Bphys〉 = 〈physA|
2

∑

i=1

∫

d3k

(2π)3
E(k)aia

†
i |Bphys〉 (66)

are positive-definite with E(k) = |~k|. The labels A and B are used to identify a given pair of two

different physical states. Therefore, Ostragadskian instabilities are absent in the physical subspace.

We have defined ai(~p) ≡
∑

λ a
λ(~p)ǫλi (~p), with i = 1, 2 denoting the transverse spatial coordinates.

VIII. POSITIVE HILBERT SUBSPACE FOR AN INTERACTING THEORY

A natural question that arises is how to separate the physical Hilbert space in an interacting

theory. In order to address this point, let’s add to the free Bopp-Podolsky Lagrangian the following

source term Aµ(x)J
µ(x), written in terms of a fermionic current 5 Jµ(x) = ψ̄(x)γµψ(x), and also the

kinetic term for the matter field. Regarding the subsidiary condition, the commutation relations

between the gauge field and the B-field are kept since ∂µJ
µ(x) = 0.

It is possible to show that the asymptotic fields are still a combination of massive and massless

excitations since the vacuum-corrected Feynman propagator has the form 6 [25]

Pµν(p
2) =

im2 θµν
p2(p2 −m2 −m2πR(p2))

(67)

with πR(p2) denoting the scalar part of the complete polarization tensor structure. It can be

renormalized to fulfill the condition πR(0) = 0 ensuring a positive unitary norm for the massless

pole. On the other hand, the massive pole is renormalized by the self-energy correction.

Therefore, considering asymptotic completeness, the physical states can be written in terms of

5 ψ(x) is the spinor field representing the electrons and positrons.
6 We are highlighting just its transverse physical part.
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a series of states generated by a linear combination of a set of powers of the transverse sector of

the free asymptotic massless gauge field negative frequency part acting on the vacuum [65]. Then,

we propose the following subsidiary condition based on the field taken at the zero coupling limit

B+(0)(x)|phys〉 = 0, �
2
(

lim
e→0

A+
µ (x)

)

|phys〉 = 0 ∀|phys〉 ∈ Vphys. (68)

in terms of the asymptotic field present in the Yang-Feldman equation

Aµ(x) = Aas
µ (x) + e

∫

d4yP (0)R/A
µν (x− y)

(

ψ̄(y)γνψ(y)
)

(69)

with the R/A labels denoting the retarded and advanced versions of the free-propagator obtained

by (67) in the limit πR(p) → 0. Then, the positive-definite Hilbert space is again defined as the

completion of the quotient space eliminating the zero norm sector.

Since the Hamiltonian is Hermitian, the system enjoys pseudo-unitarity, meaning that the

projections in the whole Hilbert space are kept by the time evolution operator

S =: Tei
∫
Hdt : (70)

with H denoting the complete Hamiltonian in compliance with the Heisenberg description.

Regarding the optical theorem, the polarization sums (62) and (63) are responsible for its

fulfillment. It guarantees that projections are maintained in time evolution. The specific case

associated with the case of the one-loop electron self-energy in the diagrammatic approach is

suitable to verify this feature in a concrete example. However, the system is pseudo-unitary since,

for example, the emission of a massive photon by an electron has an associated negative probability

due to the previously mentioned polarization sums.

Then, if one considers transitions between physical states, the time evolution operator is unitary

in the associated Hilbert subspace. This is in accordance with the theorem A.2-2 of [65] ensuring

a unitary time evolution in the physical Hilbert subspace if the conditions previously highlighted

above hold.

This discussion becomes clearer in the interaction description in which all the field operators

obey the free field equations. The scattering processes are associated with the following kind of

amplitudes

〈physA| : T
∫

d4xψ̄(x)γµψ(x)A
µ(x)...

∫

d4yψ̄(y)γνψ(y)A
ν(y) : |Bphys〉 (71)

with A,B labeling a general pair of physical states. Here ... denotes the product of a given set of

vertex operators in the interaction description. Such amplitudes are of the type that appear at a
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given truncation of the S-matrix elements.

Due to the Wick theorem, as the physical asymptotic external states exclude massive photons,

their only contribution comes from contractions between vector field operators associated with

the Bopp-Podolsky propagator. Then, it contributes to improving renormalization aspects while

keeping the unitary nature of the scattering between physical states. Therefore, even if the gauge

field mass lies below the particle production threshold, avoiding the Merlin mode scenario [34, 35],

the physical processes can be still consistently separated enjoying a unitary nature.

Finally, since a Bopp-Podolsky like structure arises in the linearized renormalized one-loop

gravity [84] formulation, an interesting future perspective is defined by the possibility of applying

the same investigation outlined here to separate its specific ghost contribution.

IX. CONCLUSION

Throughout this article the covariant operator quantization of two higher derivative systems

was performed. The first is associated with a vector dual description of a spinless model. Issues

on duality, reducible structure of the local freedom, and its massless limit were investigated. The

analysis was restricted toD = 2+1 dimensions in order to incorporate just two auxiliary fields. The

(KON) quantization framework was successfully applied considering the generalized Ostrogadskian

phase space structure. The choice of the subsidiary condition was suitable to eliminate all auxiliary

fields from the physical Hilbert subspace. It was explicitly verified that the scalar degree of freedom

indeed fulfills the required conditions to define a physical mode. Moreover, the higher derivative

structure ensures a smooth massless limit.

Regarding the generalized higher derivative electrodynamics, the same processes were carried

out. In this case, just one auxiliary field was necessary to quantize the system. The full set of

commutators was obtained considering the correspondence principle and the operator equations of

motion. A careful discussion on a suitable new kind of subsidiary condition to define the physical

subspace was provided. This was necessary since, beyond the spurious gauge modes, the model

also presents negative norm excitations in the transverse sector. Therefore, a set of two compatible

conditions were considered to define the positive Hilbert subspace.

The next achievement was related to the explicit verification of Hamiltonian positivity. Namely,

although not positive-definite in the whole Hilbert space, it is indeed positive within the physical

subspace. Moreover, discussions on the interacting phase were also performed. A suitable definition

of the physical subspace was provided considering asymptotic completeness. In analyzing the
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renormalized system, we adopted the interaction description for a while to conclude that scattering

processes between the previously defined physical states are unitary. This is a consequence of the

Hermitian nature of the Hamiltonian as well as the fulfillment of the optical theorem ensuring

pseudo-unitarity in the whole Hilbert space. Therefore, as a future perspective, we proposed in

suitable points throughout the article the application of this whole program to address the problem

of negative norm ghosts appearing in higher derivative systems such as the one loop renormalized

linearized quantum gravity [85]. It allows a unitary definition of scattering processes even in

this non-trivial context. Interestingly, based on the previous work on infrared completed Bopp-

Podolsky model in the context of Debye screening [86], the introduction of a Fierz-Pauli mass term

in the renormalized gravity lagrangian seems to possibly lead to a promising structure to provide a

discussion on the possible emergence of a set of phases, depending on the magnitude of the model’s

parameters, displayed by the associated gravitational interaction.

X. APPENDIX

Here, we analyze the Hamiltonian formulation of the dual vector spin-0 model in order to rein-

force some conclusions achieved throughout the paper. We consider the Dirac-Bergman algorithm

to derive the Hamiltonian positivity, the correct degrees of freedom, and a continuous massless

limit. Let’s consider the theory without the auxiliary fields

L =
1

2

[

∂β
(

∂µB
µ
)

∂β
(

∂µB
µ
)

−m2
(

∂µB
µ
)2
]

(72)

Considering the momentum definition (10), the Hamiltonian density obtained through the Leg-

endre transform reads

H =

(

πB0
)2

2
− πB0 ∂iḂi + pBi Ḃi + pB0 Ḃ0 + ∂j

(

Ḃ0 + ∂iBi

)

∂j
(

Ḃ0 + ∂iBi

)

+
m2

2

(

Ḃ0 + ∂iBi

)2
(73)

with the primary constraint πBi ≈ 0. The Latin indices denote spatial coordinates. All sums

present in the Hamiltonian density are Euclidian ones.

The Dirac-Bergman consistency algorithm leads to the following extra set of constraints

−pBi + ∂iπ
B
0 ≈ 0 ; pB0 ≈ 0 (74)

Therefore, due to their first-class nature, they remove 14 degrees of freedom from the entire

sixteen-dimensional Ostrogadskian phase space, leading to one degree of freedom in the configura-

tion space characterizing a spin-0 particle. The quantity and the classification of the constraints
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remain the same at the massless limit. It implies the aforementioned continuous behavior at this

limit.

The Hamiltonian evaluated at the constraint surface is positive-definite

H =

(

πB0
)2

2
+ ∂j

(

Ḃ0 + ∂iBi

)

∂j
(

Ḃ0 + ∂iBi

)

+
m2

2

(

Ḃ0 + ∂iBi

)2
(75)
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[53] M. Raidal and H. Veermäe Nucl. Phys. B, 916 607 (2017).

[54] A. A. Nogueira, C. Palechor, A. F. Ferrari, Nucl. Phys. B 939, 372 (2019).

[55] D. S. Kaparulin, S. L. Lyakhovich, A. A. Sharapov, Eur. Phys. J. C 74 (10), 3072 (2014).

[56] Jialiang Dai, Eur. Phys. J. Plus (2020).

[57] D. Dalmazi and R.C. Santos, Phys. Rev. D 87, 085021 (2013).

[58] D. Dalmazi and R.C. Santos, Phys. Rev. D 84, 045027 (2011).

[59] A. Smailagic and E. Spallucci, J. Phys. A, 34, (2001).

[60] M.K. Dwivedi, Int. Journ. Mod. Phys. A, 56, (2017).



23

[61] M. Kalb and D. Ramond, Phys. Rev. D,9, (1974).

[62] A. Hell JCAP01 (2022) 056.

[63] G.B. de Gracia, Int. J. of Mod. Phys. A, 32, No. 06n07, 1750041 (2017).

[64] A. Hell, J. High Energ. Phys. 2022, 167 (2022).

[65] N. Nakanish and I. OjimaCovariant operator formalism of gauge theories and quantum gravity, Singa-

pore, World Scientific, (1990).

[66] M. Abe and N. Nakanish, Prog. of Theor. Phys. 88, (1992).

[67] M. Ostrogadski, Mem. Ac. St. Petersbourg VI, 4, (1850) 385.

[68] J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, Phys. Rev. Lett., 114, (2015) 211101.

[69] I.A. Batalin and E.S. Fradkin, Phys. Lett. 122B 157 (1983).

[70] P. A.M. Dirac, Lectures on quantum mechanics New York:Yeshiva University (1964).

[71] Y. Kurihara, Nakanishi-Kugo-Ojima quantization of general relativity in Heisenberg picture, Eur. Phys.

J. Plus, 136, 462 (2021).

[72] T.tripathi, B. Chauhan, A.K. Rao and R.P. Malik, AHEP, 2021, 2056629 (2021).

[73] C.A. Bonin and B.M. Pimentel, Phys. Rev. D 106, 016003, (2022).

[74] D. Dudal, S. P. Sorella, N. Vandersickel, and H. Verschelde, Phys. Rev. D 79, 121701 (2009).

[75] A. A. Nogueira and B. M. Pimentel, Phys. Rev. D 95, 065034 (2017).

[76] G.B. de Gracia, B.M. Pimentel, and L. Rabanal, Nucl. Phys. B 948 (2019) 114750.

[77] G. Gracia, B.M. Pimentel and R. da Rocha, Ann. of Phys. 459 (2023) 169545.

[78] M. Abe and N. Nakanish, Prog. of Theor. Phys. 89, (1993).

[79] N. Nakanishi, Prog. Theor. Phys. 111, (2004).

[80] C.A.P. Galvao and B.M. Pimentel, Can. Journ. Phys. 66, (1988) 460-466.

[81] G.B. de Gracia, Nucl. Phys. B, 1001, (2024), 116498.

[82] G.B. de Gracia and G.P. de Brito, IJMPA, 31, No. 12, 1650070 (2016).

[83] F.O.Salles and Ilya L. Shapiro, Univ. 4 (2018), 91.

[84] J.F.Donoghue, B.K.EL Menoufi, Phys. Rev. D 89, 104062 (2014).

[85] J. F. Donoghue and B. K. El-Menoufi, Phys. Rev. D 89, 104062 (2014).

[86] C.A. Bonin, G.B. de Gracia, A.A. Nogueira and B.M. Pimentel, IJMPA, 35, No. 28, 2050179 (2020).


	Introduction
	On the Lagrangian structure and auxiliary fields for a dual model describing spin-0 particles 
	On the equations of motion
	On the extended phase space structure
	From the commutator initial conditions to its final form at unequal times 
	The Bopp-Podolsky Higher Derivative Electrodynamics
	On the commutator structure
	On the positive-definite Hilbert subspace

	Positive Hilbert subspace for an interacting theory
	Conclusion
	Appendix
	Acknowledgments
	References

