
Y.-F. Hou, L. Zhang, Q. Zhang, F. Ge, P. O. Dral AL 17.04.2024 

Page 1 of 22 

 

Physics-informed active learning for accelerating 

quantum chemical simulations 
Yi-Fan Hou, Lina Zhang,† Quanhao Zhang,† Fuchun Ge, and Pavlo O. Dral* 

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and 

Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational 

Chemistry, and Innovation Laboratory for Sciences and Technologies of Energy Materials of 

Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China 

Email: dral@xmu.edu.cn  

†Equal contribution 

Abstract 

Quantum chemical simulations can be greatly accelerated by constructing machine learning 

potentials, which is often done using active learning (AL). The usefulness of the constructed 

potentials is often limited by the high effort required and their insufficient robustness in the 

simulations. Here we introduce the end-to-end AL for constructing robust data-efficient 

potentials with affordable investment of time and resources and minimum human 

interference. Our AL protocol is based on the physics-informed sampling of training points, 

automatic selection of initial data, and uncertainty quantification. The versatility of this 

protocol is shown in our implementation of quasi-classical molecular dynamics for 

simulating vibrational spectra, conformer search of a key biochemical molecule, and time-

resolved mechanism of the Diels–Alder reaction. These investigations took us days instead of 

weeks of pure quantum chemical calculations on a high-performance computing cluster. 
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Introduction 

The introduction of machine learning potentials (MLPs) pushed the boundaries of what 

was previously possible in molecular dynamics (MD).1,2 MLPs enable simulations of longer 

time scales and larger systems with higher accuracy.1,3-5 Their applications led to uncovering 

the underlying mechanisms in chemical reactions and accurate in silico prediction of 

physicochemical properties.2,4,6 The construction of MLPs for such applications is, however, 

not entirely a black box and requires special care when choosing and generating their training 

data as the quality of MLP is as good or bad as the quality of the data.7,8 

In general, the more data available, the more 

accurate MLP which leads to conflicting 

requirements for the amount of required data and the 

computational resources. In an attempt to resolve 

this conflict, many active learning (AL) procedures 

were developed to select as few data points as 

possible for building MLPs of sufficient accuracy7,9. 

These procedures mostly have the same underlying 

strategy that involves the selection of the data points 

via steps of training MLP, running molecular 

dynamics (MD) with it, selecting points from MD 

trajectories, labeling these points with the reference 

quantum mechanical (QM) method, adding them to 

the training data set and repeating the procedure 

(Figure 1).3 The variants of AL depend on the 

specifics in each step, e.g., instead of MD10-15, one 

can use meta-dynamics16-21 or uncertainty-biased 

MD22. 

The entire AL process hinges on how the 

points-to-label are selected from MD or its variant. 

The selection criteria are typically based on 

statistical or geometric considerations. In the case of 

statistical consideration, one of the most popular 

approaches is the query by committee,23,24 where 

Figure 1. Flowchart of active learning 
for sampling data from potential energy 
surface and constructing machine 
learning potentials (MLPs). 



Y.-F. Hou, L. Zhang, Q. Zhang, F. Ge, P. O. Dral AL 17.04.2024 

Page 3 of 22 

 

several MLPs are trained and the points are chosen when the predictions by MLPs deviate 

from each other more than a pre-defined threshold. Another statistically-based type of AL 

uses Bayesian formalism to select points with the highest variance, e.g., derived from MLPs 

based on the Gaussian process regression11,14,15 or Bayesian neural networks (NNs)25. In the 

case of the geometric criteria, points can be sampled, e.g., when a structural parameter goes 

beyond the minimum or maximum value in the previous training data set12,13. 

The approaches based on statistical criteria usually require lots of manual 

experimentation with the thresholds and sometimes strategies are employed when the AL is 

started with the large thresholds which are adaptively decreased.6,26 The approaches based on 

geometric criteria require the choice of structural representations12,13. 

One of the major problems with statistically-based criteria, e.g., based on the query by 

committee, is that there is no guarantee that the deviation between MLPs would be large from 

under-sampled regions because MLPs might provide similarly wrong predictions. There is 

also no single recommendation on how to generate the diverse models in the ensemble and, 

e.g., models can be trained using different initial weights or on different data splits. 

Geometric criteria, on the other hand, may miss key conformations that are between the 

minimum and maximum values. 

Here we introduce an end-to-end AL protocol for selecting points based on physical 

considerations, with automatic selection of the initial data pool and uncertainty quantification 

(UQ) criteria. We show that this protocol enables building data-efficient, robust MLPs for 

different applications, from vibrational spectra simulations to the exploration of the 

conformer space to analysis of the reaction mechanisms. Our implementation starts from the 

initial molecular structure and ends with the final simulation result by performing all required 

steps for sampling, labeling, and machine learning in a seamless workflow implemented in 

MLatom27,28. 

In these applications, we sample the geometries by performing quasi-classical MD (see 

Methods). This dynamics represents an additional challenge29 to MLPs as it account for zero-

point vibrational energy and the distribution of the kinetic energies corresponding to 

relatively high instantaneous temperatures of around thousand Kelvin, i.e., the MLPs have to 

learn highly distorted structures with a broader potential energy range than in the case of 

classical MD. The MDs are propagated with the ANI neural network potential which was 
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demonstrated to display a good cost/accuracy balance30 and was widely employed in related 

tasks (see Methods)31-33. 

Results and discussion 

We first overview the key components of the end-to-end AL protocol with specific 

details given in Methods. Then we show several applications of this protocol. 

Physics-informed sampling 

Our goal is to sample relevant points from the potential energy surface (PES) based on 

rigorous physical and statistical considerations. The key hypothesis is that, in theory, it is 

possible to build an MLP ideally representing the PES by sampling points fully recovering 

PES shape in the region relevant for simulations. This hypothesis is justified by a universal 

approximation theorem for NNs used in this study. In theory, PES shape can be fully 

recovered by brute force dense sampling from the grid but, in practice, for realistic multi-

dimensional systems, it is impossible due to the curse of dimensionality. Luckily, as research 

in AL and MLPs manifests, for many real chemical systems it is enough to sample an 

affordable, relatively small number of points on PES. Thus, the biggest question is how to 

find these affordable number of points. 

According to our hypothesis, the PES shape must be contained in the sampled points. 

Hence, we suggest probing whether the current sampled points sufficiently represent the 

required PES region by taking into account the physical information available in these points. 

For this, we check whether the curvature around the new point of PES visited during 

simulations is captured well by the sampled points. We compare the estimate of potential 

energy derived only from the energy information contained in sampled points to the estimate 

from additional information provided by the energy gradients. Both energy and energy 

gradient information can be obtained from the physics-based, QM models for the sampled 

points. If the estimates deviate too much, it means this region of PES is undersampled and we 

must sample more points to refine the PES shape representation. 

We implement a practical realization of the AL protocol based on these considerations. 

We train two MLPs models using different amounts of physical information: the main one is 

trained on energies and gradients while the auxiliary one is trained only on energies. The 

working principle of this implementation is illustrated in a 1D-PES example in Figure 2: our 

protocol ensures by construction that the main and auxiliary MLPs will start to deviate when 
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going away from two initial sampled points on the left and when the deviation is too large, 

we can sample it, retrain the models and refine our simulations in the next iteration (right). 

 

Figure 2. Physics-informed potential energy surface sampling illustrated on learning 1D-PES. Blue 
corresponds to the reference PES, orange – the MLP trained on both energies and gradients, and 
green – the MLP trained on energies only. Blue circles indicate training points and black arrows show 
the gradients at training points. In the left panel, the blue star point is sampled where two MLPs give 
very different predictions, which improves the MLPs as shown in the right panel. 

In our scheme, only the main model is used for simulations while the auxiliary model is 

merely employed to judge whether the main model strays away from the known region. This 

scheme has a further advantage in that the MD propagation with a single main model is much 

faster than in the case of AL based on the query by committee approach which needs to 

evaluate several MLPs and take their average at each time step. Similarly, the training time of 

the auxiliary MLP model is practically negligible compared to the time needed to train the 

main model. 

The practical implementation of the scheme still requires us to make several decisions on 

how to sample initial data to initialize the AL iterations and what deviation between the main 

and auxiliary models is too large. We make these decisions based on statistical considerations 

and automatically select both the initial data and determine the optimal threshold for 

uncertainty quantification (UQ) defined by the deviation between the main and auxiliary 

models. This threshold is calculated such that we sample the minimum required points to 

cover the key regions of the PES to build the near-best-quality MLP. In the following 

subsections we describe how we achieve it. 

Automatic construction of the initial data set 

To start active learning, we need to generate the initial data set, i.e., choose how we 

sample configurational space and how many points we include. Since in this work, we use 

quasi-classical MD, we sample configurational space using the same approach as for 
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generating initial conditions for trajectories, i.e., sampling based on Wigner distribution for a 

single starting conformer (see Methods). Other initial sampling methods can be used as well.  

Once the sampling scheme is chosen, we must determine the number of sampled 

conformations. For this, we introduce an assumption that the MLP performance for the initial 

data set will be comparable to the performance on the final data set to be collected by active 

learning. This allows us to choose the initial training points based on the known statistical 

behavior of MLP – the error of the potential drops according to the exponential law with an 

increasing number of training points.34 It means that past some point, increasing the training 

data will not be worth a small increase in accuracy. Here we choose such a training set that 

adding 𝑁 more points would improve the accuracy of the MLP by less than 10%. 𝑁 is a 

parameter defined by the user. We gradually increase the number of training points (e.g., add 

50 points at a time) and do a 5-fold cross-validation, where the validation error is selected as 

the measurement of the accuracy of MLP. We fit the learning curve using the equation 

below:34 

log(𝜀) = log(𝑎) − 𝑏 log𝑁!" , (1) 
where 𝜀 is the validation error, 𝑁!" is the number of training points, 𝑎 and 𝑏 are coefficients 

to fit. We stop adding initial points to the training set when the following criterion is met: 

𝜀(𝑁!") − 𝜀(𝑁!" + 𝑁)
𝜀(𝑁!")

< 10%. (2) 

Otherwise, 50 more points are included in the training set and the procedure repeats. The 

scheme is shown in Figure 3. This ensures that in subsequent AL steps, we sample the points 

with a not-too-bad model. 



Y.-F. Hou, L. Zhang, Q. Zhang, F. Ge, P. O. Dral AL 17.04.2024 

Page 7 of 22 

 

 

Figure 3. Flowchart of initial points sampling scheme. 

Automatic determination of the uncertainty quantification thresholds 

A good choice of the uncertainty quantification (UQ) thresholds is also important 

because we do not want to choose too many bad conformations that would never occur in the 

actual simulations with the reference method and, at the same time, we do not want to choose 

too many similar points as it would be wasteful. In our scheme, after we determined the good 

initial set using the above procedure, we introduce another assumption to choose the UQ 

threshold based on statistical considerations. We aim to choose such a UQ threshold that at 

least 99% of the initial data points would be considered confident and assume that this 

threshold will not be exceeded for the 99% of conformations in the simulation for which the 

main MLP provides a good description. Thus, we assume that only the points not described 

well are chosen. 
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We quantify the uncertainty U as the absolute deviation between the energies predicted 

by the main (𝐸main) and auxiliary (𝐸aux) models trained on 90% of the initial data: 

𝑈 = |𝐸aux − 𝐸main|. (3) 

We calculate the UQ threshold by evaluating the uncertainties for the validation set (the 

remaining 10% of the initial data) using the following expression: 

UQthreshold = 𝑀 + 3 ⋅ MAD, (4) 

where 𝑀 is the median and MAD is the median absolute deviation of uncertainties35: 

MAD = 1.4826 ⋅ median(|𝑈 −𝑀|). (5) 

The factor 1.4826 assumes that 𝑈 follows normal distribution, and 𝑀 + 3 ⋅ MAD ensures 

a confidence level of 99%. Using the median and MAD instead of the mean and the standard 

deviation is a more robust way of handling data with outliers. 

Molecular dynamics are performed using the main model to explore the potential energy 

surface. If the uncertainty of the molecule exceeds the UQ threshold, the MD is stopped and 

the geometry in the last step is sampled. 

AL for vibrational spectra simulations 

We first performed a well-controlled experiment to directly compare the performance of 

the MLP with the reference QM simulation of the vibrational (power) spectra obtained from 

long MD trajectories for the ethanol molecule where we can be sure to sufficiently sample the 

conformational space (see Methods). Active learning converged after AL sampling of only 

962 geometries and took ca. two days on relatively modest hardware (single GPU 

(RTX3080Ti) and 16 CPUs (AMD EPYC 7302@3.0GHz)). The procedure yielded the main 

MLP trained on the reference QM energies and gradients for these geometries. 

We used this MLP to simulate the vibrational spectrum by propagating the 200-ps-long 

dynamics in the NVE ensemble from the initial geometries and nuclear velocities not seen in 

AL to test the procedure’s transferability (Figure 4a). To make the test even tougher, we also 

apply MLP in a rather different regime of room-temperature classical dynamics in the NVT 

ensemble (Figure 4c). For comparison, we also simulated the reference spectrum from the 

100-ps-long dynamics started from the same test initial conditions but using the reference 

QM method for calculating gradients. The agreement between the MLP and QM spectra is 

very good. 
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Figure 4. Performance tests of the MLP for the ethanol molecule. a, c) Vibrational (power) spectra 
obtained from the MD in the NVE and NVT ensembles, respectively. MLP spectra are shown in 
orange and the reference QM in blue. b, d) Correlation between the MLP-estimated and reference QM 
energies evaluated on one NVE and NVT reference test trajectories, respectively; the root-mean-
squared error (RMSE) and the correlation coefficient are shown together with the histogram of energy 
errors. 

 

Even for this relatively simple system, the reduction in the required resources is 

impressive: it took us eight days to propagate the QM trajectory (on 32 CPUs (Intel(R) 

Xeon(R) Gold 6226R CPU @ 2.90GHz)) and required 200 thousand QM calculations; 

propagation with MLP took only one hour for a twice-longer trajectory (on RTX3080Ti 

GPU) after the aforementioned modest investment in resources during the active learning. 

The accuracy of the MLP in energies evaluated for all snapshots in the test reference 

trajectory is also quite impressive (Figure 4b). The root-mean-squared error (RMSE) in 

energy is just 0.1 kcal/mol – much better than reported in previous benchmarks on ANI-type 

networks for the ethanol PES30. Our procedure also yields robust MLP which can be used for 

long simulations without unphysically breaking down the molecule as is often observed in 

MD with MLPs.36-39 These tests show that the physics-informed AL samples important PES 

regions and ultimately yields data-efficient MLPs with high accuracy and robustness. 
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AL for conformational space search 

Our next experiment is designed to test whether the physics-informed AL can also 

properly sample the complex conformational space. Glycine is very suitable for this because 

it is well-studied and known to have quite a complex space with eight conformers.40 We 

performed active learning based on propagating one hundred 2-ps-long quasi-classical MD 

trajectories for glycine starting from a single random conformer and then at each active 

learning iteration, we located distinct conformers in trajectories and restarted dynamics from 

initial conditions collected from every conformer in the next iteration (see Methods). This 

procedure was able to identify all eight conformers (Figure 5 and Table S2 in Supplementary 

Information) after sampling 679 geometries in 6 iterations (6 hours). The AL converged after 

sampling 1737 geometries (4 days). The conformer search could have taken millions of QM 

single-point calculations, equivalent to 11 days on one CPU. The ML model gives a good 

representation of the PES as we can see from the internal coordinates scan in Figure 6. 

 

Figure 5. Conformers of glycine optimized with the MLP model obtained from AL. The conformer 
numbering is taken from Ref. 41. 
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Figure 6. Relaxed scan of glycine internal coordinates using B3LYP/6-31G* (orange) and MLP 
model (blue). Note that we did not make any effort to sample these points and it shows the quality of 
the MLP model taken from the AL ‘as is’. 

 

AL for time-resolved reaction mechanism investigation 

Our final validation of the procedure involved the test of how well it performs for the 

exploration of the PES near the transition state (TS) region. Quasi-classical dynamics started 

from the initial conditions sampled from the normal modes orthogonal to the direction of the 

mode with the imaginary frequency, is an informative method for exploration of the 

intricacies of the dynamic behavior of the reactive events.42 It is, however, very expensive, as 

it requires propagating hundreds (when affordable, thousands) trajectories and a recent state-

of-the-art study reported the need to extensively use high-performance computing (HPC) 

clusters as one trajectory required up to a week on 16 CPUs.43 We aim to drastically slash 

down these requirements while ensuring the high quality of the simulations. 

To calibrate our procedure, we take the textbook Diels–Alder reaction of 1,3-butadiene 

with ethene which was extensively studied experimentally and theoretically, also with the 
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quasi-classical dynamics.44 The previously reported TS is symmetric with interatomic 

distance for forming bonds at 2.272 Å (Figure 7a) and the earlier quasi-classical MD study 

with QM method UB3LYP/6-31G* also confirmed the concerted nature of the reaction at 

298 K.44 We used the same QM method for the physics-informed AL to be able to compare 

with the literature.  

 

Figure 7. Diels–Alder reaction of 1,3-butadiene with ethene. Quasi-classical molecular dynamics was 
run at 298 K. a) Reaction scheme of Diels-Alder reaction of 1,3-butadiene with ethene calculated 
using UB3LYP/6-31G* and superposition of reactants, TS, and product geometries from 944 reactive 
trajectories. b) Potential energy versus forming C–C bond length for 1000 trajectories. The median 
potential energy (blue) and kinetic energy (red) are also shown. c) Lengths of two forming C–C bonds 
in Diels–Alder reaction between 1,3-butadiene and ethene. The contour plot shows the relaxed scan of 
two C–C bonds. Blue points represent initial conditions. The potential energies in b) and c) are 
relative to the electronic energies of optimized reactants. 
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Only after 2 days on one single node, our AL procedure produced the MLP model which 

was used to propagate a thousand 150-fs forward and backward trajectories in under 30 

minutes. For comparison, we also ran 128 pure QM quasi-classical trajectories (same as in 

the previous study44) on many computing nodes, where each trajectory took roughly 30 

minutes on a single node. We perform the same analysis on these trajectories as reported 

previously.44 The key quantitative results are the same between MLP and QM: both predict 

similar average time to traverse the transition zone with the average time gap between 

forming the first bond and the second bond of ca. 3.6 fs (Table 1). These results are also very 

similar to the reported numbers in the independent study44 but were obtained only at a 

fraction of the cost with MLP without the need for HPC. 

The big advantage of our procedure is that we could afford to substantially increase the 

precision of the simulations by propagating thousands rather than ca. a hundred of trajectories. 

While for this study the results are similar at different precision levels, it was recently clearly 

pointed out that a hundred trajectories are often insufficient for obtaining precise results and 

in the last five years the reported studies used too few trajectories.45 

Our more precise results for the Diels–Alder reaction confirmed that, indeed, the reaction 

is symmetric as both bonds form roughly at the same time in all 944 reactive trajectories 

(Figure 7c, see Methods for definition of reactive trajectories). We also confirm the same 

observation as before44 that this dynamics strongly supports the applicability of the transition 

state theory for this reaction as the transition state zone represents the major bottle neck as 

exemplified by the clear potential energy maximum and corresponding kinetic energy 

minimum (Figure 7b).44 

 

Table 1. Time to traverse the transition zone and time gap of C–C bond formation for Diels–Alder 
reaction of 1,3-butadiene and ethene at 298 K. The bond forming time and the dissociating time are 
also shown. Medians are given in parentheses and standard deviations are also shown.  

 Average time to traverse the 
transition zone (fs) 

Average time gap of C–C 
bond formation (fs) 

Number of trajectories: 
reactive/total 

DFT44 52.6 (50.9) ± 12.0 3.9 (3.4) ± 2.9 117/128 

DFT 54.0 (52.0) ± 12.9 3.6 (3.0) ± 2.9 124/128 

MLP 55.0 (52.5) ± 14.3 3.9 (3.0) ± 3.7 944/1000 
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Conclusions 

We presented the active learning protocol for constructing machine learning potentials 

based on physics-informed sampling from PES. The key idea is to use different amounts of 

physical information about the PES shape available in the sampled points. We also proposed 

an automatic determination of the uncertainty threshold to avoid the manual experimentation 

of the optimal threshold for the end-to-end AL protocol, which takes the initial molecular 

structure as input and outputs the final model and simulation results. The AL implementation 

is based on the open source MLatom’s software ecosystem27,28 enabling seamless execution 

of all required steps including labeling with the reference QM method. 

We showed the efficiency of this end-to-end physics-informed AL in PES sampling and 

obtaining accurate MLPs in different application scenarios, i.e., spectra simulations, 

conformer search, and elucidating the time-resolved mechanism of a Diels–Alder reaction. 

Our AL protocol provides a robust solution for speeding up quantum chemical 

simulations and allows us to break through the bottleneck of expensive MD simulations to 

make them possible at an affordable cost on the commodity hardware. While the presented 

results were shown for the ground-state dynamics, we are currently also extending the 

protocol to the surface-hopping excited-state dynamics which are even more expensive. 

Methods 

Active learning 

Our active learning workflow consists of the following steps (Figure 1): 

1. Getting initial data pool. 

In general, the user can provide any initial data pool (collection of geometries). 

Here we introduce automatic initial pool generation followed by automatic 

determination of the sampling criteria based on uncertainty quantification as 

described in the main text. 

2. Labeling points by running single-point calculations with the chosen QM method to 

generate energies and energy gradients. 

3. Training MLP models. 

4. Running simulations with MLP. 

Implementation is general, but here we run quasi-classical MD. An important 

consideration is how many trajectories to run and for how long. How long 
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depends on an application and ideally it should be as long as anticipated in the 

required production simulations (this anticipated result can be updated 

iteratively). We initially run 100 trajectories but if the previous active learning 

iteration samples less than 100 points, we have an option to increase the 

number of trajectories to roughly sample 100 points in the current iteration. 

This ensures faster convergence of the active learning and reduces the number 

of expensive MLP trainings. 

5. Sampling new points to label from simulation data. 

6. Add new points to the data pool. 

7. End, if the number of new points is fewer than the pre-defined threshold. Otherwise, 

repeat starting from step 2. In this work, the threshold is 5% of the number of MD 

trajectories. 

All of these steps are implemented in a seamless workflow with open-source MLatom’s 

Python API27,28, which supports all required functionality, i.e., generating initial conditions 

for MD, labeling points (by running single-point calculations with many supported QM 

methods), training MLP models of different types (not just ANI and also including their 

hyperparameter optimizations if required), propagating MD, and handling data (dumping, 

loading, converting, splitting, etc.). This workflow is integrated into MLatom and will be 

included in one of its future releases. 

Quasi-classical molecular dynamics 

In this work, we use the quasi-classical molecular dynamics because it accounts for the 

zero-point energy (ZPE) in contrast to classical dynamics. We follow the reported protocols42: 

generate initial conditions (geometries and velocities) from the normal mode sampling to 

account for ZPE (details described below) and propagate classical MD trajectories from these 

initial conditions. In this work, we use velocity Verlet algorithm to integrate the Newton’s 

equations of motion. 

Sampling of initial conditions 

Initial conditions are required for both quasi-classical MD trajectories and for automatic 

construction of the initial data set (in the latter case no velocities are needed). For local 

minima, we sample them from the non-sharp Wigner distribution as implemented in Newton-

X and described in this software’s paper (Eq. 20)46. This approach is used without 

modification for the energy minima (ethanol and glycine simulations). 
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We adopt another sampling method that was previously developed for transition states.47 

For all the real normal modes that are perpendicular to the reaction coordinate, the quantum 

number 𝑛1  of normal mode 𝑖  is first sampled from a harmonic quantum Boltzmann 

distribution48: 

𝑝(𝑛1) = 𝑒23!45!/7"8M1 − 𝑒245!/7"8N, 

where ℎ is the Planck constant, 𝑣1 is the vibrational frequency, 𝑘9 is the Boltzmann constant 

and 𝑇 is the temperature. The coordinates 𝑄1 and momenta 𝑃1 are then generated by49-51 

𝑄1 = 𝐴1 cos(2𝜋𝑅1), 

𝑃1 = −𝜔1𝐴1 sin(2𝜋𝑅1), 

where 𝜔1 = 2𝜋𝑣1 , 𝐴1 = [2𝐸1/𝜔1 , 𝐸1 = (𝑛1 + 1/2)ℎ𝑣1  and 𝑅1  is a uniform random number 

on [0, 1]. The reaction coordinate (corresponding to the normal mode with the imaginary 

frequency) is fixed while the mass-weighted momentum 𝑃  is calculated by52 

±[−2𝑘9𝑇 ln(1 − 𝑅), where 𝑅 is also a uniform random number on [0, 1]. 

Ethanol 

Initial training set in active learning and initial conditions of molecular dynamics are 

generated by Wigner sampling at 300 K. 50 points are sampled in iteration while constructing 

the initial data for AL and the value of 𝑁 is set as 50. 100 molecular dynamics trajectories are 

generated in each AL iteration and run in the NVE ensemble. The propagation time is 

constrained to be less than 5 ps. A maximum of 50 points are sampled in each iteration, 

otherwise, the excess points (which are not labeled) are removed randomly. The AL 

procedure is considered converged if the number of sampled points is less than 5. The UQ 

threshold is calculated only once and remains unchanged after the very first iteration. 

B3LYP/6-31G* is chosen as the reference method. For MD in the NVE ensemble, initial 

conditions of 100 reference trajectories are generated by Wigner sampling at 300 K. The 

trajectories using the reference method and the final ML model are propagated with 

molecular dynamics at 300 K in the NVE ensemble. The first 3 ps of trajectories are removed. 

The power spectra are calculated by averaging spectra calculated for each trajectory, 

followed by the normalization of their Riemann sum:53 

`𝑢1d𝑢
1

=! 1, 
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where 𝑢1 is the intensity of the i-th point and d𝑢 is the distance between the point i and i+1. 

MD trajectories in the NVT ensemble are propagated in the Nosé–Hoover thermostat at 

300 K and using 0.5 fs time step. The first 3 ps of trajectories are removed before calculating 

the spectra. We only have one 100-ps long reference trajectory and one 200-ps-long MLP 

trajectory. Thus, for calculating power spectra, each trajectory is split into 10-ps trajectory 

segments, and the power spectra are calculated by averaging spectra calculated for each 

segment. The normalization of their Riemann sum is also applied. 

Glycine 

B3LYP/6-31G* is chosen as the reference method. The settings of AL for glycine are 

basically the same as those for ethanol except that we sample all possible points in each 

iteration (i.e., up to 100 points). The Wigner sampling is based on all the conformers that are 

found during active learning. As for the conformer search, we start from one of the 

conformers. After new ML models are trained (except for the first iteration), the geometries 

sampled from the last iteration are optimized with the main model. Root-mean-square 

deviation (RMSD) between optimized molecules and conformers is calculated to measure the 

similarities; reflections and atom permutations are taken into account. If the smallest RMSD 

is larger than 0.125 Å, the geometry is considered a potentially new conformer and further 

optimized by the reference method. If the QM-optimized geometry meets the RMSE criterion, 

it is considered a true conformer. 

Diels–Alder reaction 

Following the literature44, UB3LYP/6-31G* is used as the reference method. AL starts 

from the transition state of the reaction. The initial points and conditions are sampled at 298 

K. To increase the sampling efficiency, the number of molecular trajectories is calculated by 

dividing the maximum number of sampled points (100 points here) by the fraction of sampled 

points in the previous iteration. This makes the AL sample roughly 100 points in each 

iteration and the AL is considered converged if the fraction is less than 5%. Following the 

literature, the propagation time of molecular dynamics is set to 150 fs with time step of 0.5 fs. 

Trajectories are propagated in sets of forward and reversed directions, where the initial 

conditions are the same except that the velocities directions are the opposite. Following the 

literature44, the product is considered formed if both forming C–C bonds are shorter than 

1.6 Å and two reactants are separated if both bonds are longer than 5.0 Å. If the set of the 

forward and reversed trajectories leads to the set of reactants and product, they are labeled as 
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reactive; if both trajectories in the set lead to one side of the reaction, they are considered 

unreactive. Each trajectory discussed in the main text comprises the forward and backward 

trajectories. 1000 trajectories are generated using the AL model, and 128 trajectories are 

generated using DFT. The transition zone covers C–C bond length from 2.02 to 2.52 Å, 

which includes 98% of the initial points which is the same as in the literature44. 

Computational details 

All the calculations are done in the MLatom ecosystem. In the case of learning the ethanol 

PES, all QM calculations were done via Gaussian 1654 interfaced to MLatom27,28. The ANI 

models were trained using TorchANI55 interfaced to MLatom with the default settings 

(except that the models were trained on 90% of the labeled data set and validated on the rest 

of it). Geometry optimization and frequency calculations are done in MLatom through the 

interfaces to Gaussian and Atomic Simulation Environment (ASE)56. Further details of AL 

calculations for all applications are summarized in Table S1 (Supplementary Information). 

Code availability 

The calculations were performed with the open-source MLatom 

(https://github.com/dralgroup/mlatom). The tutorials how to perform the active learning 

simulations with the required additional code will be posted soon, please check 

http://mlatom.com/contact/ how to receive updates. 
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