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Abstract

We develop theory leading to testing procedures for the presence of a change

point in the intraday volatility pattern. The new theory is developed in the frame-

work of Functional Data Analysis. It is based on a model akin to the stochastic

volatility model for scalar point-to-point returns. In our context, we study intraday

curves, one curve per trading day. After postulating a suitable model for such func-

tional data, we present three tests focusing, respectively, on changes in the shape,

the magnitude and arbitrary changes in the sequences of the curves of interest. We

justify the respective procedures by showing that they have asymptotically correct

size and by deriving consistency rates for all tests. These rates involve the sample

size (the number of trading days) and the grid size (the number of observations per

day). We also derive the corresponding change point estimators and their consis-

tency rates. All procedures are additionally validated by a simulation study and an

application to US stocks.

MSC 2020 subject classifications: 62R10, 62G10, 62M10.
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1 Introduction

Consider a sample of intraday price curves {Pi(t), t ∈ [0, 1]}, 1 ≤ i ≤ N , where i indexes
the trading day and t is intraday time normalized to the standard unit interval. For each
i, we study the limits, as ∆ → 0, of cumulative intraday realized volatility curves

(1.1) RVi(∆)(t) =
∑

1≤k≤Kt

|log[Pi(k∆)]− log[Pi((k − 1)∆)]|2 , t ∈ [0, 1].
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Figure 1: Five consecutive realized volatility curves computed with K = 78 for Tesla Inc.
from Dec 27 to Dec 31, 2021.

To illustrate, five consecutive curves RVi(∆)(·) are shown in Figure 1.
Under suitable assumptions, see Section 2, for each t ∈ [0, 1],

RVi(∆)(t)
P→
∫ t

0

ν2i (u)du, as ∆ → 0.

The object of our study are basically the curves νi, but a more precise problem statement
is needed. We represent the curves νi as

(1.2) νi(u) = hiσi(u), u ∈ [0, 1], i ∈ Z,

where the hi > 0 describe the evolution of the curves from day to day (between-day volatil-
ity), while the functions σi quantify the residual volatility after the between days volatility
has been accounted for by the sequence {hi}. The identifiability of the components in
decomposition (1.2) is addressed in Lemma 3.1. We develop a statistical framework to test
if the functions σi change over a time period of many days. The volatilities hi typically
exhibit persistent magnitude clusters. We propose methodology, and supporting theory,
that allows us to test the constancy of the functions σi in index i. We emphasize that we
do not test if each σi is a constant function because this is well-known not to be true. The
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functions σi are approximately the derivatives of functions like those in Figure 1, divided
by hi. The shape of the functions σi can change, and such a change will be undetectable
if one focuses only on realized daily volatilities RVi(∆) because they are dominated by
the hi. In the following, we refer to the σi(·) as volatility or diffusion functions, while
keeping in mind that the stochastic volatility functions are the products hiσi(·).

Model (1.2) is a useful approximation that allows us to construct an effective test and
justify it. Using a related perspective, [12] assume that νi(u) = hi(u)σi(u) and propose
a test of H0 : hi(u) = hi, ∀ u ∈ [0, 1]. They apply it to over thousand days i and to 30
stocks, about 30,000 tests in total. There are overall more rejections than acceptances of
their H0, the results depend on the implementation of the test. The rejections dominate
if the test is implemented with a good estimate of the function σ2, under the assumption
that it does not change, i.e.

(1.3) σ2
i (·) = σ2(·), ∀ i = 1, 2, . . . , N.

If condition (1.3) does not hold, any estimate of the function σ2(·) may be meaningless.
Our test is thus complementary to that of [12] and impacts its implementation; we test
assumption (1.3) with an unknown σ2(·). We evaluate and apply the test to five minute
intraday returns, so we do not need to be concerned with microstructure noise and price
jumps. Our objective is to provide and effective principled way of testing condition
(1.3) within a broad framework of statistical change point detection and functional data
analysis. Our tests will be useful in any context that requires the verification that an
intraday volatility pattern remains constant over the period of many trading days.

Research on the detection and estimation of a change point in various statistical models
is over 70 years old and forms a well-established subfield of statistics. Its importance stems
from the fact that most statistical models assume a single data generating mechanism,
so if this mechanism changes over the observational period, their application will be
meaningless. There are several monographs and thousands of research papers; the paper of
[23] can serve as a concise and modern introduction to the general framework of this paper.
It includes change point detection for different data structures, among them functional
data. A broad review of inference and estimation techniques is given in [11], who also
consider a range of different applications. The related literature on sequential (online)
tests for structural changes is reviewed in [5]. In the following two paragraphs, we briefly
review the most closely related research. An important point to note is that in the
framework of functional data analysis (FDA), the tests are

√
N -consistent (N is the

sample size), whereas in our framework of replications of a diffusion process, we can
obtain

√
NK-consistency, where K is the number of sampling points for each replication.

Moreover, these rates depend on the type of local alternative, shape change vs. size
change, and arise because we explicitly use modeling though Itô integrals. A key starting
point is new concentration results, Proposition A.1 and its corollaries, that can be used
in other contexts that require information about the rates, in terms of grid size, at which
population volatility functions can be approximated by realized volatility curves. As far as
we know, the framework we study has been considered neither in change point research nor
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in intraday volatility research. We hope that the theoretical advances we make together
with a comprehensive application will motivate further research at the nexus of FDA and
SDEs.
Related change point research in the framework of FDA In FDA, the observa-
tions are random elements in some function space, such the space L2 equipped with the
canonical L2-norm, or C (continuous functions) equipped with the supremum norm. The
space L2 has played a particularly important role in FDA since, under weak assumptions,
it is a separable Hilbert space. [8] proposed a test for a change in the mean function in an
L2 setting; extensions were considered by [3], [22], [19] and [7], among others. Structural
breaks of time series in the space C([0, 1]) were studied in [15], see also [38] for a more
abstract context. Changes in the covariance of a functional time series were considered
in [43] and in the cross-covariance operator in [39]. [14] considered inference for the co-
variance kernel of continuous data. More recently, [24] employed a weighted CUSUM
statistic for the detection and localization of changes in the covariance operator. Tests
for the stability of eigenvalues and principal components were presented in [6] and [17].
A self-normalization approach, see [41] and [40], was used in the context of change point
detection in functional time series by [16]. The cited works comprise only a small fraction
of the relevant literature.
Change point detection in Itô semimartingales We are not aware of any research
that consideres a change point problem in a sample of trajectories, each of which is an Itô
semimartingale. Research to date has focused on the detection of a change point in a single
continuous–time realization. [1] modified the commonly used CUSUM approach to detect
jumps in Itô semimartingales. In particular, in order to detect jumps in asset returns,
they proposed a test statistic based on multiplicative difference of realized truncated p–th
variation. [10] used a similar approach to detect structural changes in the volatility of Itô
semimartingales. They addressed detection of jumps, the so called local changes, as well
as changes in the roughness of sample path, the so called global changes. Other related
papers are [21], [20], and [9] who provide further references to the general area of change
point detection in Itô semimartingales.

The remainder of the paper is organized as follows. In Section 2, we collect the min-
imum required background on Itô integrals and the FDA. Section 3 is dedicated to the
precise formulation of the problem outlined above. Testing and estimation approaches
are developed in Section 4. Their finite sample properties are examined in Section 5.
Section 6 contains an application to sequences of intraday returns on US stocks. Sup-
plementary material contains proof of all results stated in Section 4, details of practical
implementation of all procedures, and some additional information.

2 Mathematical preliminaries

We begin by providing some mathematical background, beginning with stochastic differ-
ential equations. We first recall the definition of the quadratic variation of a stochastic
process {X(t) : t ∈ [0, 1]}. We assume throughout that 0 = t

(K)
0 < t

(K)
1 < · · · < t

(K)
K = 1

4



is a grid on the interval [0, 1] with maxk[tk − tk−1] → 0, as K → ∞. Then,

(2.1)
K∑
k=1

∣∣∣X(t
(K)
k )−X(t

(K)
k−1)

∣∣∣2 I{t(K)
k ≤ t}, P→ [X,X]t t ∈ [0, 1],

The limit [X,X]t exists for any semimartingale, and is called the the quadratic variation
at time t, see e.g. Theorem 1.14 and relation (3.23) in [2]. In this work, we assume that
the process X is given by the Itô integral

X(t) :=

∫ t

0

ν(u)dW (u),

whereW is a standard Wiener process and ν : [0, 1] → (0,∞) is a continuous function (for
a detailed discussion of the existence and properties of this process, see Theorem 5.2.1 in
[36]). It is well-known that for Itô integrals the quadratic variation is given by

(2.2) [X,X]t :=

∫ t

0

ν2(u)du, t ∈ [0, 1],

see e.g. equation (2.1) in [27]. Moreover, in this case, (2.1) can be strengthened to

sup
0≤t≤1

∣∣∣∣∣∑
k

∣∣∣X(t
(K)
k )−X(t

(K)
k−1)

∣∣∣2 I{t(K)
k ≤ t} −

∫ t

0

ν2(u)du

∣∣∣∣∣ P→ 0, K → ∞.(2.3)

see again Theorem 1.14 and relation (3.23) in [2]. Next, we present a consequence of the
Dambis–Dubins–Schwarz theorem which states that any continuous local martingale can
be expressed as a time change of a Brownian motion, see e.g. Section 5.3.2 in [32] for a
general statement. In our setting,{∫ t

0

ν(u)dW (u), t ∈ [0, 1]

}
d
=

{
W

(∫ t

0

ν2(u)du

)
, t ∈ [0, 1]

}
,(2.4)

where the equality in distribution is in the space C([0, 1]) of continuous functions, equipped
with the topology of uniform convergence. Identity (2.4) entails

E
[∫ t

0

ν(u)dW (u)

]2
=

∫ t

0

ν2(u)du,(2.5)

which is a special case of the Itô isometry for a deterministic, square integrable integrand
ν(·).

In identities (2.4) and (2.5), the Itô process is treated as a random function in C([0, 1]).
However, in the context of FDA, it is often useful to embed the smaller space of contin-
uous functions in the larger Hilbert space of square integrable functions. More precisely,
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we define L2([0, 1]) as the space of measurable functions f : [0, 1] → R that satisfy∫ 1

0
f 2(x)dx <∞. Equipped with the inner product

⟨f, g⟩ :=
∫ 1

0

f(t)g(t)dt, f, g ∈ L2([0, 1]),

and the induced norm ∥ · ∥L2 , L2([0, 1]) becomes a separable Hilbert space, where we
identify functions equal almost everywhere. A random function X in L2([0, 1]) is then a
measurable map X : (Ω,A,P) → L2([0, 1]), where (Ω,A,P) is a probability space. If the
first moment of X exists in the sense that E∥X∥ < ∞, we can define the expectation
µ ∈ L2([0, 1]) of X, which is characterized by the identity

E⟨X, f⟩ = ⟨µ, f⟩ ∀f ∈ L2([0, 1]).

Similarly, if the second moment of X exists, E∥X∥2 < ∞, we can define the covariance
operator CX : L2([0, 1]) → L2([0, 1]) of X by the identity

⟨CX [f ], g⟩ := E
[
⟨X − µ, f⟩⟨X − µ, g⟩

]
∀f, g ∈ L2([0, 1]).

It is known that CX is a self–adjoint, positive semi-definite, Hilbert-Schmidt operator and
as such it can be identified with a square integrable kernel function cX : [0, 1]2 → R via

CX [f ](x) :=

∫ 1

0

cX(x, y)f(y)dy ∀f ∈ L2([0, 1]).

Chapters 10 and 11 of [29] provide a concise introduction to the L2 framework of FDA.
For a comprehensive treatment see [25].

3 Statistical model and problem formulation

Suppressing the superscript (K), consider the grid 0 = t0 < t1 < · · · < tK = 1 introduced
in Section 2, and the cumulative returns

Ri(tk) = log[Pi(tk)]− log[Pi(0)].

The realized volatility curves (1.1) for this grid can be written as

RVi(t) =
K∑
k=1

|Ri(tk)−Ri(tk−1)|2 I{tk ≤ t}.

Setting hi = exp(gi) in (1.2), we postulate the model

(3.1) Ri(t) = exp(gi)

∫ t

0

σi(u)dWi(u), t ∈ [0, 1], i ∈ Z.

The Wi(·) are independent standard Wiener processes. The sequence gi is a centered
real–valued, weakly stationary time series independent of (Wi)i∈Z. The following lemma
shows that for each i the volatility function σi(·) depends only on Ri(·), so gi and σi(·)
are identifiable.
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Lemma 3.1 Suppose g satisfies Eg = 0 and is independent of the Wiener process W (·).
Setting

R(t) = eg
∫ t

0

σ(u)dW (u), t ∈ [0, 1],

for a continuous function σ(·), we have∫ t

0

σ2(u)du = exp {E log[R,R]t} .

Proof. By (2.2), [R,R]t = exp(2g)
∫ t
0
σ2(u)du, so

log[R,R]t = 2g + log

∫ t

0

σ2(u)du.

Since E(g) = 0, E log[R,R]t = log
∫ t
0
σ2(u)du, and the claim follows.

To test for changes in the volatility functions σi(·), we propose the following change
point model. Let θ ∈ (0, 1) be a parameter that locates a potential change in the discrete
time index i and let σ(1), σ(2) : [0, 1] → (0,∞) denote two continuous volatility functions.
We postulate that {

σi(·) = σ(1)(·), for i ≤ ⌊Nθ⌋,
σi(·) = σ(2)(·), for i > ⌊Nθ⌋.

(3.2)

A change occurs if σ(1)(·) ̸= σ(2)(·). The testing problem is thus

H0 : σ(1)(·) = σ(2)(·), vs. HA : σ(1)(·) ̸= σ(2)(·).(3.3)

A cornerstone of our statistical analysis is the translation of changes in volatility to changes
of certain features in the quadratic variation process. This allows us to take advantage
of regularities of the quadratic variation process compared to the process Ri(·). Indeed,
(2.2) directly entails

Qi(t) := [Ri, Ri]t = exp(2gi)

∫ t

0

σ2
i (u)du, t ∈ [0, 1], i = 1, 2, . . . , N.(3.4)

This, together with the stationarity of the time series (gi)i∈Z, indicates that a change in
volatility corresponds to a change in the distribution of the quadratic variation process
Qi(·), over index i.

Suppose we observe a sample R1, . . . , RN . Reflecting practically available data, we
assume that the functions Ri are observed at K + 1 equidistant points in [0, 1]. This
means that inference will be based on the matrix of observations

(3.5) {Ri(k/K) : i = 1, . . . , N, k = 0, . . . , K}.

7



In our theory, we assume that the number of grid points, K + 1, as well as the number
of curves, N , tend to infinity. In view of approximations (2.1) and (2.3), we consider the
realized quadratic variation processes

Q̂i(t) =
K∑
k=1

|Ri(k/K)−Ri((k − 1)/K)|2I{k/K ≤ t}(3.6)

= exp(2gi)
K∑
k=1

∣∣∣∣∣
∫ k/K

(k−1)/K

σ(u)dWi(u)

∣∣∣∣∣
2

I{k/K ≤ t}, t ∈ [0, 1].

as estimators of the Qi(·) in (3.4). Observe that Q̂i(t) is equal to the realized volatility
function (1.1), with the second line reflecting the assumed model.

Assuming the gi have exponential moments, a test could be based on the approximation

E[Q̂i(t)] ≈ E[Qi(t)] = E[exp(2gi)] ·
∫ t

0

σ2
i (u)du(3.7)

which indicates that volatility function changes translate to mean changes in the realized
quadratic variation process. Detecting changes in the mean of a functional time series is
a well-studied problem, as discussed in Section 1. However, a test based on (3.7), requires
the existence of exponential moments of the gi and is not robust against distributional
changes in gi, which might be mistaken for changes in the volatility functions σi(·). More-
over, CUSUM based FDA tests are

√
N -consistent, but we demonstrate that against large

classes of common alternatives a much stronger consistency rate of
√
NK is attainable

by some tests we propose. For these reasons, we present in this paper a different, more
effective method to test the hypotheses (3.3). Our approach does not require exponential
moments of gi, is more stable against distributional changes (or spurious changes) in the
gi, and benefits from

√
NK-consistency under typical alternatives. As a first step, we

express the hypothesis H0 in (3.3) in terms of two null hypotheses, H
(1)
0 and H

(2)
0 , that

are together equivalent to H0:

H
(1)
0 :

∫ t
0
σ2
(1)(u)du∫ 1

0
σ2
(1)(u)du

=

∫ t
0
σ2
(2)(u)du∫ 1

0
σ2
(2)(u)du

, ∀ t ∈ [0, 1],(3.8)

H
(2)
0 :

∫ 1

0

σ2
(1)(u)du =

∫ 1

0

σ2
(2)(u)du.(3.9)

Heuristically, H
(1)
0 states that the volatility function does not change its shape, while H

(2)
0

states that the total volatility stays the same. In Section 4, we formulate statistical tests
of H

(1)
0 and H

(2)
0 separately, and then combine them to test the H0 in (3.3).

4 Change point tests

We begin by stating assumptions for our subsequent analysis.
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Assumption 4.1

1. The volatility function σ(1), σ(2) : [0, 1] → (0,∞) are continuous.

2. The standard Wiener processes Wi, i ∈ Z, are independent.

3. The two sequences (gi)i∈Z and (Wi)i∈Z are independent of each other.

4. The time series (gi)i∈Z is centered, weakly stationary and satisfies a weak invariance
principle of the form

{ 1√
N

⌊Nx⌋∑
i=1

gi : x ∈ [0, 1]
}

d→ {λW (x) : x ∈ [0, 1]},

where W is a standard Wiener process and λ2 > 0 denotes the long-run variance.

Assumption 4.1 is satisfied in many different scenarios. It basically postulates a very
general functional stochastic volatility model. Condition 1 (before and after the change)
is common in the literature on diffusion processes and intuitive in our setting. Conditions
2 and 3 determine the dependence structure along our functional time series, which is
moderated by the scaling factors egi . In [28], the gi follow an AR(p) model, but for our
theory the precise dependence structure is immaterial. If the dependence is sufficiently
weak, the partial sum process on the left-hand side of condition 4 converges to a Wiener
process. This is true under a multitude of dependence conditions, see e.g. [33], so instead
of choosing some of them, we postulate the general condition 4.

4.1 Inference for a shape change

Recall the hypothesis H
(1)
0 in (3.8). We begin with the simple observation that, according

to (3.4), the functions in (3.8) can be represented by the standardized quadratic variation
as follows:

(4.1) Fi(t) :=
Qi(t)

Qi(1)
=

∫ t
0
σ2
(j)(u)du∫ 1

0
σ2
(j)(u)du

, with j =

{
1, for i = 1, . . . , ⌊Nθ⌋,
2, for i = ⌊Nθ⌋+ 1, . . . , N.

This motivates using for statistical inference the empirical versions:

F̂i(t) :=
Q̂i(t)

Q̂i(1)
:=

∑K
k=1 |Ri(k/K)−Ri((k − 1)/K)|2 I{k/K ≤ t}∑K

k=1 |Ri(k/K)−Ri((k − 1)/K)|2
(4.2)

=

∑K
k=1

∣∣∣∫ k/K(k−1)/K
σi(u)dWi(u)

∣∣∣2 I{k/K ≤ t}∑K
k=1

∣∣∣∫ k/K(k−1)/K
σi(u)dWi(u)

∣∣∣2 .
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Remark 4.1 We highlight two useful properties of F̂i:

i) F̂i is monotonically increasing with F̂i(0) = 0 and F̂i(1) = 1 and in particular it is
a random cdf (and thus measurable). It can be interpreted as a random function,
mapping into the space L2[0, 1] of square integrable functions on the unit interval.

ii) The functions F̂1, . . . , F̂N are independent, and they do not involve the gi.

Property ii) implies that any test statistic based on the F̂is will be unaffected by the
structure of the gi, or a potentially misspecified model for them.

Lemma 4.1 Suppose that Conditions 1 and 2 of Assumption 4.1 hold. Then, each F̂i is
a consistent estimator of the standardized quadratic variation Fi (defined in (4.1)) and
satisfies a functional central limit theorem of the form

√
K{F̂i(·)− Fi(·)}

d→ Z(·)(4.3)

where Z is a centered, Gaussian process in L2([0, 1]), with distribution depending on the
volatility function σi.

The proof of Lemma 4.1 follows by an application of Theorem 5.3.6 in [26] together with
the continuous mapping theorem. In view of the convergence in (4.3), we expect a test
statistic based on F̂1, . . . , F̂N to have variance of order O(1/(NK)), or a corresponding

test for H
(1)
0 to be

√
NK-consistent.

To test H
(1)
0 , we use the CUSUM statistic

Ŝ(1) :=
K

N2

N∑
n=1

∫ 1

0

( n∑
i=1

F̂i(u)−
n

N

N∑
i=1

F̂i(u)
)2
du.(4.4)

In the following result, the asymptotics “N,K → ∞” should be understood in terms of a
sequence K = KN of natural numbers that diverges as N → ∞. We do not impose any
restrictions on the growth rate of K relative to N , making our method valid regardless of
the interplay between K and N .

Theorem 4.1 Suppose that Conditions 1 and 2 of Assumption hold and that N,K → ∞.
Then, under H

(1)
0 , the weak convergence

Ŝ(1) d→ S(1) :=
∞∑
ℓ=1

λℓ

∫ 1

0

Bℓ(u)2du(4.5)

holds, where (Bℓ)ℓ∈N is a sequence of i.i.d. Brownian bridges and (λℓ)ℓ∈N the collection of
eigenvalues of the asymptotic covariance kernel

cF (u, v) := lim
K→∞

K · E
[
{F̂1(u)− E[F̂1(u)]}{F̂1(v)− E[F̂1(v)]}

]
.(4.6)

Moreover, if H
(1)
0 is violated, Ŝ(1) P→ ∞.
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Denoting for any α ∈ (0, 1) the upper α-quantile of S(1) by q
(1)
1−α, the decision

reject if Ŝ(1) > q
(1)
1−α

yields a consistent asymptotic level α test of H
(1)
0 . While in practice, we do not know

the distribution of S(1), it is uniquely determined by the eigenvalues of cF , which can
be estimated by off-the-shelf methods (we provide details in Appendix C). An explicit
formula for the kernel cF (u, v) is given in Theorem B.1, but it is not needed to estimate
the λℓ because (4.6) is a limit of covariance kernels, and many FDA packages output their
eigenvalues. The distribution of the integral in (4.5) is easy to simulate, and it is fairly
well-known how to compute the approximate quantiles of the right-hand side of (4.5).

In the next theorem, we demonstrate the consistency of our test procedure against
local alternatives.

Theorem 4.2 Suppose Conditions 1 and 2 of Assumption hold. Let σ̃ : [0, 1] → (0,∞) be
a continuous function such that σ̃(·)/σ(1)(·) is not constant and let (aN)N∈N be a bounded
sequence of positive numbers. Then, defining σ(2) := σ(1) + aN σ̃ and imposing the growth

conditions aN
√
NK → ∞ and aNK → ∞, it follows that

lim
N,K→∞

P(Ŝ(1) > c) = 1 ∀ c ≥ 0.

Finally, we define the change point estimator

θ̂(1) :=
1

N
argmax
n∈{1,...,N}

∫ 1

0

( n∑
i=1

F̂i(u)−
n

N

N∑
i=1

F̂i(u)
)2
du.(4.7)

If the hypothesis of no change in the shape of volatility is violated, i.e.{
Fi(·) = F(1)(·), for i ≤ ⌊Nθ⌋
Fi(·) = F(2)(·), for i > ⌊Nθ⌋

, F(1)(·) ̸= F(2)(·)(4.8)

for some θ ∈ (0, 1), we can show that the estimator θ̂(1) in (4.7) is consistent under local
alternatives.

Theorem 4.3 Under the assumptions of Theorem 4.2,

θ̂(1) − θ = OP

(
max

{ a−2
N

NK
,
1

N

})
,

where θ ∈ (0, 1) is the rescaled time of the change in (4.8).

The rate in Theorem 4.3 can be explained as follows: For a change of size aN (potentially
tending to 0) it is well-known in change point estimation that an optimal approximation
rate is given by

θ̂(1) − θ = OP

( a−2
N

sample size

)
.
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In our case the ”sample size” is NK, yielding a rate of OP (a
−2
N /(NK)). However, since

the number of curves in discrete time is N , it is also clear that a convergence rate cannot
be faster than OP (1/N). This limitation is simply due to the discretization of time in N
steps. As a consequence, the best attainable rate is as specified in Theorem 4.3. Notice
that in the special case of aN = O(1/

√
K), we obtain the optimal rate OP (1/N) on the

right side, the same rate as for fully observed functions, see e.g. [4].

4.2 Inference for a change in total volatility

Recall the hypothesis H
(2)
0 in (3.9). The integrals in (3.9) are closely related to the total

quadratic variation Qi(1) and taking its logarithm, we obtain

log(Qi(1)) = 2gi + log
(∫ 1

0

σ2
(j)(u)du

)
, for

{
i = 1, . . . , ⌊Nθ⌋, j = 1,

i = ⌊Nθ⌋+ 1, . . . , N, j = 2.
(4.9)

Since the gi are centered, any change in total volatility translates into a mean change of
the real–valued time series {log(Qi(1))}. An empirical analogue of (4.9) is

log(Q̂i(1)) =2gi + wi,(4.10)

where

wi := log
( K∑
k=1

∣∣∣ ∫ k/K

(k−1)/K

σi(u)dWi(u)
∣∣∣2).(4.11)

This decomposition shows that the observations log(Q̂1(1)), . . . , log(Q̂N(1)) form (for any
fixed K) a dependent time series that is stationary before and after a potential change.
For the purpose of statistical inference, we use the following CUSUM statistics:

Ŝ(2) :=
1

N2

N∑
n=1

( n∑
i=1

log(Q̂i(1))−
n

N

N∑
i=1

log(Q̂i(1))
)2
.(4.12)

Theorem 4.4 If Assumption 4.1 holds and N,K → ∞, then, under H
(2)
0 ,

Ŝ(2) d→ S(2) := (4λ) ·
∫ 1

0

B(u)2du,(4.13)

where B is a standard Brownian bridge and the long-run variance λ is defined as

λ :=
∑
i∈Z

Cov(g0, gi).(4.14)

Moreover, if H
(2)
0 is violated, Ŝ(2) P→ ∞.

12



The fact that the long-run variance λ only depends on the gis is not an accident. As we
will see in the next section, the statistic Ŝ(2) is asymptotically only dependent on the gis
and independent of the Wis. This implies that Ŝ(1) (which does not depend on the gis)
and Ŝ(2) are asymptotically independent.

Theorem 4.4 implies that if we denote by q
(2)
1−α the upper α-quantile of the distribution

S(2), then the decision to
reject if Ŝ(2) > q

(2)
1−α

yields a consistent asymptotic level α test of the hypothesis H
(2)
0 . Again, q

(2)
1−α cannot be

directly computed, but it can be approximated, if a consistent estimator for the long-run
variance is given (see Appendix C).

We now show consistency of the test against local alternatives.

Theorem 4.5 Suppose Assumption 4.1 holds and (aN)N∈N is a bounded sequence of pos-
itive numbers. Then, defining σ(2) := (1 + aN)σ(1) and imposing the growth conditions

aN
√
N → ∞ and aNK → ∞, it follows that

lim
N,K→∞

P(Ŝ(2) > c) = 1, ∀ c ≥ 0.

Finally, with the change point estimator

θ̂(2) :=
1

N
argmax
n∈{1,...,N}

( n∑
i=1

log(Q̂i(1))−
n

N

N∑
i=1

log(Q̂i(1))
)2
,(4.15)

we can localize a change in total volatility. If the hypothesis of no change in the total
volatility is violated, i.e.{

log(Qi(1)) = log(Q(1)(1)), for i ≤ ⌊Nθ⌋
log(Qi(1)) = log(Q(2)(1)), for i > ⌊Nθ⌋

, log(Q(1)(1)) ̸= log(Q(2)(1)),(4.16)

for some θ ∈ (0, 1), we obtain the following result.

Theorem 4.6 Under the assumptions of Theorem 4.5, θ̂(2) − θ = OP (a
−2
N /N).

Taking aN = 1, we obtain the optimal rate.

4.3 Inference for an arbitrary change

In the previous subsections, we have developed test statistics Ŝ(1), Ŝ(2) for the null hy-
potheses H

(1)
0 , H

(2)
0 in (3.8) and (3.9), respectively. We now want to combine these two

tests to yield a test for the global null hypothesis H0 in (3.3). As a first step, we show
that as N,K → ∞, t he two test statistics (4.4) and (4.12) become independent of each
other.

13



Proposition 4.1 If Assumption 4.1 and H0 in (3.3) hold, then, as N,K → ∞,(
Ŝ(1), Ŝ(2)

)
d→
(
S(1), S(2)

)
,

where S(1), S(2) are independent and defined in (4.5), (4.13), respectively.

In order to combine the results from both test statistics, we employ their asymptotic p-
values. To be precise, if Λ(j) is the (continuous) cumulative distribution function of S(j),
we define the p-values

p(j) = 1− Λ(j)
(
Ŝ(j)
)
, j = 1, 2.(4.17)

In practice, the Λ(j) are not known, but can uniformly approximated, yielding empirical p-
values. We discuss this issue in Appendix C. To combine our test statistics, we recall that
under H0, both p-values p(1), p(2) are asymptotically uniformly distributed on [0, 1] and
according to Proposition 4.1 asymptotically independent. Hence, using Fisher’s method,
see e.g. [37], we can combine them to

Ŝ := −2{log(p(1)) + log(p(2))},(4.18)

which then converges under H0 to a chi-squared distribution with four degrees of freedom.
Denoting the upper α-quantile of this distribution by q1−α, gives us the test decision

(4.19) reject if Ŝ > q1−α.

We make this result precise in the following proposition.

Proposition 4.2 Under the assumptions of Proposition 4.1,

Ŝ
d→ χ2

4,

where χ2
4 is a chi-squared distribution with four degrees of freedom. If H0 is violated,

Ŝ
P→ ∞.

It is a simple consequence of Theorems 4.2 and 4.5 that the test (4.19) is consistent
against local alternatives of shape changes and changes in total volatility, with the rates
discussed in those theorems.

Remark 4.2 In view of Proposition 4.1 there are different ways of combining the test
statistics Ŝ(1), Ŝ(2) for a joint test, apart from our choice of Ŝ. Such combinations corre-
spond to different rejection regions in R2

≥0 for (Ŝ
(1), Ŝ(2)). Generically we can define for a

function f : R2
≥0 → R≥0 the combined statistic Ŝf = f(Ŝ(1), Ŝ(2)). A simple choice might

be a sum fsum(x, y) = x + y, which has linear, downward sloping contour lines and thus
triangular rejection regions. Our choice

fFisher(x, y) = −2
{
log
(
1− Λ(1)(x)

)
+ log

(
1− Λ(2)(y)

)}
14



has astroid shaped contour lines (like a p-norm with 0 < p < 1). Accordingly rejection
regions are shaped like ellipsoids. The precise shape of the contour lines depends on
the asymptotic distributions Λ(1),Λ(2). The function f implies how evidence against the
null hypothesis is interpreted in different scenarios. Roughly speaking, fsum is indifferent
between large x, large y or large x + y. This means that more evidence against the null
might come just as well from one statistic, or the other, or their sum. In contrast fFisher is
largest if both x and y are large, treating evidence against the null hypothesis as strongest,
when it comes from both statistics and weaker if it only comes from one.

Finally, we discuss the problem of change point localization. For this purpose, we
introduce the pooled change point estimator

θ̂ :=
p(1)

p(1) + p(2)
θ̂(2) +

p(2)

p(1) + p(2)
θ̂(1).(4.20)

Intuitively, θ̂ combines information from both estimators θ̂(1), θ̂(2), putting priority on the
one where the change is more pronounced (smaller p-value). Our proof rests on a careful
investigation of the tail behavior of the distributions Λ(1),Λ(2), see Theorem B.3 in the
Appendix. The tail behavior of these distributions determines the relative size of the
p-values p(1), p(2) in the above weights.

Proposition 4.3 Suppose Assumption 4.1 holds, K → ∞, K/N → 0, and the continu-
ous function σ̃ : [0, 1] → (0,∞) is such that σ̃(·)/σ(1)(·) is not constant.
(i) If only H

(2)
0 is violated with σ(2) = (1 + 1/

√
K)σ(1), then

|θ̂ − θ| = OP

(
K

N

)
.

(ii) If, in addition, H(1) is violated with σ(2) = (1 + 1/
√
K)σ(1) + σ̃/

√
K, then

|θ̂ − θ| = OP

(
1

N

)
.

5 Finite sample properties

5.1 Empirical size

We generate data under the null hypothesis according to the Functional Stochastic Volatil-
ity Model of [28]:

Ri(t) = exp(gi)

∫ t

0

σ(u)dWi(u), t ∈ [0, 1], i = 1, ..., N,

gi = φgi−1 + εi, εi ∼ i.i.d. N (0, σ2
ε).

There are a number of settings to be carefully chosen:
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• Following [28], we set φ = 0.55 and σ2
ε = 0.25 in order to reflect real-world data.

• We have four settings of σ(·)

– Flat: σ(u) = 0.2. This is a simple case that we have the same intraday
volatility throughout the day.

– Slope: σ(u) = 0.1+0.2u. The is a case that the intraday volatility is increasing
in a linear manner.

– Sine: σ(u) = 0.1 sin(2πu) + 0.2. This the case we have higher volatility in the
morning, but lower volatility in the afternoon.

– U-shape: σ(u) = (u − 0.5)2 + 0.1145299. This choice is the most relevant
one because it reflects the stylized fact that volatility is typically higher at the
beginning and the end of a trading day.

The coefficients in σ(·) are set to ensure that the above four σ(·) have a similar
scale.

• The continuous time t in [0, 1] is discretized as [t0, t1, ..., tK ], where tk = k∆ and
k = 1, ..., K. This is the same for all random curves.

• The number of intraday observations isK = 26, 39, 78, which corresponds to 15-min,
10-min 5-min sampling intervals in our data analysis respectively. Their correspond-
ing stepsizes are ∆ = 1/26, 1/39, 1/78.

• The sample size is N = 100, 200, 500.

Details on the computation of
∫ t
0
σ(u)dW (u) and

∫ 1

0
B2(u)du, both use special ap-

proaches, are presented in Section D, which also contains step-by-step formulas for the
computation of the three test statistics. The long-run variance of the log Q̂i(1) was com-
puted using the Bartlett kernel with bandwidth selected by the procedure of [35] with
prewhitening.

Table 1 provides the empirical sizes of the three tests under four different shapes of
σ(·). We see that the test performs very well, even for fairly small sample sizes N and
low resolution K.

One advantage of using our tests is that it is robust against changes in gi, which should
not be mistaken as changes in the volatility function σi(·). To verify this property, we
consider

gi =

{
0.45gi−1 + εi, ϵi ∼ i.i.d. N (0, σ2

ε), i = 1, . . . , ⌊N/2θ⌋,
0.65gi−1 + εi, ϵi ∼ i.i.d. N (0, σ2

ε), i = ⌊N/2θ⌋+ 1, . . . , N,

and all other settings are the same as before. Table 2 presents the empirical sizes of the
three tests under the U-Shaped σi(·). The other three shapes yield similar results. As
can be seen, the empirical sizes of our three tests are not affected by the change in gi and
match their theoretical levels reasonably well.
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Table 1: Empirical size

Shape of Volatility Total Volatility Global

Flat 10% 5% 1% 10% 5% 1% 10% 5% 1%

N = 100 K = 26 11.4% 5.9% 1.4% 10.5% 5.1% 0.5% 11.4% 5.4% 1.2%
K = 39 10.9% 5.8% 1.2% 10.5% 4.7% 0.4% 10.6% 5.0% 1.0%
K = 78 11.9% 5.9% 0.9% 9.8% 4.3% 0.4% 11.0% 5.0% 0.9%

N = 200 K = 26 10.6% 5.3% 1.1% 10.5% 5.2% 0.9% 10.8% 5.6% 1.2%
K = 39 10.8% 5.5% 1.3% 10.6% 5.1% 0.7% 11.3% 5.3% 1.0%
K = 78 11.8% 5.4% 1.2% 10.1% 5.0% 0.9% 11.2% 5.4% 0.9%

N = 500 K = 26 11.0% 5.6% 1.0% 10.4% 5.6% 1.1% 11.0% 5.9% 1.1%
K = 39 11.2% 5.5% 1.2% 11.0% 5.1% 0.8% 11.5% 5.6% 1.0%
K = 78 11.1% 5.6% 1.3% 10.2% 4.7% 0.9% 10.7% 5.5% 1.2%

Slope

N = 100 K = 26 11.3% 5.9% 1.4% 10.4% 4.6% 0.4% 11.1% 5.3% 0.9%
K = 39 10.9% 5.3% 1.2% 10.0% 4.3% 0.4% 10.7% 5.2% 1.0%
K = 78 10.5% 5.6% 1.4% 9.5% 4.0% 0.6% 10.5% 5.2% 0.8%

N = 200 K = 26 10.3% 5.4% 1.1% 10.9% 5.4% 1.1% 11.3% 5.9% 1.2%
K = 39 11.7% 5.9% 1.3% 9.8% 4.8% 0.7% 11.1% 5.4% 1.0%
K = 78 11.2% 6.1% 1.2% 10.7% 5.1% 0.5% 11.2% 5.8% 1.1%

N = 500 K = 26 10.7% 5.1% 0.9% 10.7% 5.5% 1.2% 11.1% 5.6% 0.8%
K = 39 11.3% 5.6% 1.2% 10.3% 5.0% 1.0% 11.3% 5.6% 1.1%
K = 78 11.2% 5.6% 1.1% 10.2% 5.1% 0.9% 10.9% 5.4% 1.1%

Sine

N = 100 K = 26 11.3% 5.6% 1.1% 11.0% 5.5% 0.7% 11.6% 5.3% 0.8%
K = 39 11.3% 5.9% 1.2% 10.8% 5.1% 0.7% 11.6% 5.7% 1.0%
K = 78 11.8% 6.4% 1.5% 9.6% 4.6% 0.6% 11.5% 5.3% 0.9%

N = 200 K = 26 10.7% 5.1% 1.3% 11.6% 6.2% 1.2% 11.5% 6.2% 1.4%
K = 39 11.1% 5.8% 1.3% 10.3% 4.8% 0.8% 11.5% 5.5% 1.1%
K = 78 10.8% 5.5% 1.0% 10.3% 5.0% 0.8% 11.3% 5.4% 0.8%

N = 500 K = 26 10.6% 5.2% 1.0% 11.0% 5.5% 1.0% 11.2% 5.8% 0.9%
K = 39 11.4% 5.3% 1.1% 9.8% 4.9% 0.8% 11.1% 5.7% 1.2%
K = 78 11.1% 5.8% 1.0% 10.0% 5.0% 0.6% 11.1% 4.9% 0.8%

U-Shape

N = 100 K = 26 11.0% 5.7% 1.2% 10.6% 4.7% 0.5% 11.0% 5.8% 1.0%
K = 39 11.3% 6.1% 1.3% 11.0% 4.9% 0.4% 11.4% 5.2% 1.1%
K = 78 10.9% 5.8% 1.4% 10.1% 4.3% 0.4% 10.7% 5.4% 1.1%

N = 200 K = 26 11.0% 5.9% 1.3% 11.0% 5.4% 0.9% 11.4% 6.1% 1.2%
K = 39 11.2% 6.0% 1.1% 10.5% 5.4% 1.0% 11.2% 5.8% 1.1%
K = 78 11.4% 6.0% 1.4% 10.4% 5.0% 0.8% 11.2% 6.3% 1.2%

N = 500 K = 26 11.0% 5.5% 1.1% 11.3% 5.2% 0.8% 11.0% 5.8% 1.0%
K = 39 9.7% 4.9% 0.8% 10.4% 5.4% 1.0% 10.3% 4.9% 1.0%
K = 78 10.6% 5.2% 1.1% 10.6% 5.2% 1.1% 11.0% 5.7% 1.0%
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Table 2: Empirical size under a change in gi

Shape of Volatility Total Volatility Global

10% 5% 1% 10% 5% 1% 10% 5% 1%

N = 100 K = 26 12.0% 6.0% 1.4% 11.9% 5.8% 0.8% 12.2% 6.0% 1.3%
K = 39 11.4% 6.0% 1.2% 10.9% 5.3% 0.5% 11.9% 5.4% 1.0%
K = 78 10.7% 5.6% 1.1% 11.2% 4.8% 0.5% 11.0% 5.1% 0.8%

N = 200 K = 26 11.6% 6.3% 1.2% 12.8% 6.7% 1.2% 13.3% 6.7% 1.2%
K = 39 10.4% 5.1% 1.0% 12.0% 6.0% 1.2% 11.6% 5.7% 1.3%
K = 78 10.6% 5.0% 0.9% 11.2% 5.3% 0.9% 10.7% 5.5% 1.1%

N = 500 K = 26 10.8% 5.3% 1.0% 12.0% 6.2% 1.2% 11.5% 5.8% 1.3%
K = 39 11.6% 5.9% 1.2% 11.6% 6.5% 1.4% 12.9% 7.2% 1.3%
K = 78 11.3% 5.6% 1.3% 11.6% 6.3% 1.1% 12.3% 6.3% 1.3%

5.2 Empirical power

We set the time of the change at θ = 0.25, 0.5, 0.75 and consider N = 250 and N = 500.
All other settings are the same as under the null.

There are unlimited possibilities for a change in σi(·). To focus on the scenarios em-
phasized in this paper, we consider the following three alternative hypotheses:

1. HA,1: a shape change in volatility, but no change in total volatility,

2. HA,2: a change in total volatility, but no change in the shape of volatility,

3. HA,3: a simultaneous change in the shape of volatility and total volatility.

Under HA,1, we have a change in σi(·) from the flat shape to a sine shape. We have
noticed that our test is very effective in detecting changes in the shape of volatility, and it
can easily get empirical power of 100%. That is why we deliberately choose a very small
change in the shape in order to show the convergence of the empirical power with respect
to N and K. Specifically, we set

σi(u) =

{
0.2, for i = 1, ..., ⌊Nθ⌋,
0.02 sin(2πu) +

√
199/5000, for i = ⌊Nθ⌋+ 1, ..., N.

The constant in the sine function is to ensure that the total volatility before and after the

change is the same, i.e.
∫ 1

0
0.22du =

∫ 1

0

[
0.02 sin(2πu) +

√
199/5000

]2
du = 0.04. Thus,

there is a change in the shape of volatility, but no change in the total volatility.
Under HA,2, we introduce an upward parallel shift of the flat shape:

σi(u) =

{
0.2, for i = 1, ..., ⌊Nθ⌋,
0.4, for i = ⌊Nθ⌋+ 1, ..., N.

Note that an upward parallel shift in the other three shapes (slope, sine, U-shape) will
cause a change in total volatility as well as in the shape of volatility. This is because the
other three shapes are actually “compressed” due to a higher total volatility.
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Under HA,3, we have a simultaneous change in shape and total volatility:

σi(u) =

{
0.2, for i = 1, ..., ⌊Nθ⌋,
(u− 0.5)2 + 0.4, for i = ⌊Nθ⌋+ 1, ..., N.

The shape of σi(·) is changed from flat to U-shape, and total volatility is changed from∫ 1

0
0.22du = 0.04 to

∫ 1

0
[(u− 0.5)2 + 0.3]

2
du = 0.1525.

Table 3 reports the empirical power. The conclusions can be summarized as follows.

1. Under HA,1, the empirical power of the shape test and the global test increases with
of N and K, in agreement with the

√
NK-consistency we established theoretically.

The rejection rate of total volatility test is always around 5%, as expected since
there is no change in total volatility in HA,1.

2. Under HA,2, the empirical power of the total volatility test increases with the growth
of N , not with K. This is exactly what we expected because the test on total
volatility is

√
N -consistent. Additionally, the rejection rate of testing the shape is

typically around 5%, since there is no change in the shape in HA,2.

3. Under HA,3, the empirical power of the shape test and the global test increases with
the growth of N and K, and empirical power of the volatility test increases with
the growth of N , but not with K, again as predicted by our theory.

In Section D.2, we show that the change point estimators under the three alternatives
inherit the properties of the corresponding tests: the performance of θ1 and θ improves
with increasing N and K, θ2 improves with increasing N .

6 Application to US stocks

We begin with an individual stock as a prototype analysis to showcase our developed
tests. Then, there are two ways to use the developed tests on a larger scale. First, since
there could be multiple changes, we use the binary segmentation to explore all changes
for one stock during a sample period. Second, we apply our test procedure to a large
number of stocks and present the summary of first detected changes (without the binary
segmentation).

For the purpose of demonstration, we focus on Tesla Inc. (Permno: 93436) for our
prototype analysis. We consider 5-min intraday prices, the sample period is from Jun 29,
2010 (the IPO date) to Dec 31, 2021, corresponding to N = 2891 trading days. In each
trading day i, we have the opening price Pi(t0) and the subsequent 78 5-min intraday
prices Pi(tk), k = 1, ..., 78, with the last trading price in every 5-min time interval. Thus,
the equidistant grid on the unit interval is tk = k∆, k = 0, 1, ..., K, where K = 78 and
the step size ∆ = 1/78.

Based on the intraday price data, we calculate the cumulative intraday return (CIDR)
curves as

Ri(tk) = log(Pi(tk))− log(Pi(t0)), k = 1, ..., K, i = 1, ..., N.
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Table 3: Empirical power

θ = 0.25 θ = 0.5 θ = 0.75

HA,1 Shape Total Global Shape Total Global Shape Total Global

N = 250 K = 26 62.6% 5.2% 51.1% 86.8% 5.3% 78.2% 62.9% 5.6% 51.3%
K = 39 82.6% 5.0% 72.0% 96.9% 5.1% 93.3% 83.5% 5.0% 72.9%
K = 78 98.7% 5.1% 96.8% 100.0% 4.7% 99.9% 99.2% 4.5% 97.1%

N = 500 K = 26 92.0% 5.5% 84.5% 99.2% 5.1% 97.6% 91.7% 5.5% 83.4%
K = 39 99.1% 4.6% 97.2% 100.0% 5.1% 99.9% 98.8% 5.2% 96.2%
K = 78 100.0% 5.5% 100.0% 100.0% 4.9% 100.0% 100.0% 5.1% 100.0%

HA,2

N = 250 K = 26 5.8% 86.8% 74.5% 5.5% 98.6% 95.2% 5.7% 86.8% 73.2%
K = 39 5.9% 86.1% 72.7% 6.0% 98.5% 95.1% 6.0% 86.6% 73.0%
K = 78 5.9% 86.0% 72.3% 5.3% 98.3% 94.9% 5.5% 85.7% 71.6%

N = 500 K = 26 5.6% 99.6% 97.9% 6.1% 100.0% 100.0% 5.2% 99.5% 98.1%
K = 39 5.4% 99.7% 98.4% 5.9% 100.0% 100.0% 5.3% 99.7% 98.3%
K = 78 5.7% 99.6% 98.3% 5.9% 100.0% 100.0% 5.3% 99.6% 98.0%

HA,3

N = 250 K = 26 89.2% 97.4% 99.9% 99.9% 100.0% 100.0% 95.2% 97.4% 99.9%
K = 39 99.3% 97.3% 100.0% 100.0% 100.0% 100.0% 99.9% 97.7% 100.0%
K = 78 100.0% 97.1% 100.0% 100.0% 99.9% 100.0% 100.0% 97.3% 100.0%

N = 500 K = 26 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
K = 39 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
K = 78 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
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By definition, the CIDR curves always start from zero, i.e. Ri(t0) = 0, and are scale
invariant. We also compute the cumulative intraday realized volatility (CIDRV) curves
as

RVi(tk) =
K∑
k=1

|Ri(tk)−Ri(tk−1)|2 I {tk < t} , k = 1, ..., K, i = 1, ..., N.

In order to visualize the important functional objects, Figure 2 plots the intraday Price
Pi(tk), CIDRs Ri(tk), and CIDRVs RVi(tk) in the upper, middle, and lower panels, re-
spectively.

We apply the tests for the whole sample period, in order to detect 1) a shape change,
2) a change in total volatility, and 3) an arbitrary change. Table 4 presents the test
results. The p-value of testing H1

0 is 0.02%, providing strong evidence of a shape change.
The change point estimator θ̂1 is 0.26, indicating the shape change occurred on Jul 1,
2013. As for testing H2

0 , we find strong evidence of a change in total volatility with p-
value of 0.96%. The date of change in total volatility is May 12, 2014, as suggested by
the θ̂2 = 0.34. Combing the two tests, we have the p-value of 0.00% for the global null
hypothesis H0, with the pooled change point estimator θ̂ = 0.26, implying that the date
of arbitrary change in intraday volatility pattern is July 8, 2013.

Table 4: Test results of Tesla (note that the p-values are in percent).

p-value Change Point Estimator Date of Change

Shape of Volatility (H1
0 ) 0.02% 0.26 Jul 1, 2013

Total Volatility (H2
0 ) 0.96% 0.34 May 12, 2014

Global (H0) 0.00% 0.26 Jul 8, 2013

As the sample period of the Tesla analysis covers more than a decade, there could be
multiple changes in the intraday volatility pattern. Thus, we use the standard binary
segmentation based on the global test at the 5% significance level and the pooled change
point estimator (θ̂). Table 5 presents the result with some associated events that could
be used to validate the identified change points.

Table 5: Result of binary segmentation to test multiple changes for Tesla

p-value Date of Change Related News

0.00% Jul 8, 2013 Tesla joined the Nasdaq 100 index on Jul 15, 2013
0.00% Jul 16, 2014 Tesla announced new smaller electric vehicle named Model 3 on Jul 16, 2014
0.08% Feb 6, 2018 Elon Musk made history launching a car into space on Feb 6, 2018
0.09% Jan 23, 2019 Tesla posted back-to-back profits for the first time
4.79% Dec 20, 2019 Tesla’s Chinese factory delivered its first cars
0.48% Mar 31, 2021 NHTSA confirmed no violation of Tesla’s touchscreen drive selector
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Figure 2: Time series of functional objects derived from intraday Tesla prices. Upper
Panel: Intraday Price Pi(tk); Middle Panel: CIDRs Ri(tk); Lower Panel: CIDRVs RVi(tk).
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It is also interesting to examine change in the intraday volatility pattern for other
stocks. Thus, we apply our test procedure to 7293 stocks in the US stock markets. To
preserve space, we focus on the first change detected by the global test at 5% significance
level, without using binary segmentation to find additional changes. The stocks used and
the data cleaning procedure are the same as in [28]. Their sample period varies in length
from 2 to 25 years. Shorter sample periods could be due to IPO dates later than Jan 3,
2006 or stocks delisted before Dec 31, 2021.

0

200

400

2010 2015 2020

Date of Change

Figure 3: Dates of first change in the intraday volatility pattern for 7168 US stocks.

Our test indicates that 7168 out of 7293 stocks (98.3%) underwent at least one change
in the intraday volatility pattern. This provides the evidence that change in the intraday
volatility pattern is a common issue in the US stocks. To provide further insights, we
plots the histogram of the first detected changes in Figure 3. We can clearly see that
1) the highest frequent changes happen during the subprime mortgage crisis in 2008, 2)
the second highest frequent changes occur around the European debt crisis in the 2010s,
3) the third highest frequent changes appear after COVID in 2020. These results show
that our test is able to detect change points that are consistent with well-known market
events, providing additional validation on a very large data set.
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[43] C. Stöhr, J. Aston, and C. Kirch. Detecting changes in the covariance structure of functional
time series with application to fMRI data. Econometrics and Statistics, 18:44–62, 2021.

[44] L. Tolmatz. On the Distribution of the Square Integral of the Brownian Bridge. The Annals
of Probability, 30:253–269, 2002.

[45] R. Vershynin. High-Dimensional Probability: An Introduction with Applications in Data
Science. Cambridge University Press, Cambridge, 2018.

[46] K. Yoshihara. Moment inequalities for mixing sequences. Kodai Math. J., 1:316–328, 1978.

26



Proofs and additional information

This supplementary material contains the proofs of our theoretical results and informa-
tion about numerical implementation. In the following derivations, c denotes a generic,
positive constant that may change from one line to another and is always independent of
N,K and i. When needed, we use a sequence of positive constants, which we denote by
c1, c2, . . .. The supplementary material consists of three parts: In Appendix A, we gather
concentration results for the realized quadratic variation process (denoted by V̂ (·)) in
the absence of the random factor exp(gi). These results are of independent interest and
formulated for K → ∞, since they do not require functional replications. In Appendix
B, we prove our main results on the convergence of the test statistics Ŝ(i), for i = 1, 2,
under the corresponding null hypotheses H

(i)
0 and local alternatives. Finally, Appendices

C and D provide additional details, as well as pseudocode for all of our procedures.

A Uniform limits for the realized quadratic variation

In this section, we present some fundamental results concerning the limiting behavior of
the realized quadratic variation process of the model (3.1) in absence of the stochastic
coefficient exp(gi). For the sake of simplicity we drop index i, and define

(A.1) V (t) :=

∫ t

0

σ2(u)du, t ∈ [0, 1].

The empirical counterpart of V (·) is

V̂ (t) :=
K∑
k=1

∣∣∣∣∣
∫ k/K

(k−1)/K

σ(u)dW (u)

∣∣∣∣∣
2

I{k/K ≤ t}.(A.2)

Most of the results stated in this section are more general than necessary for our later
investigation. Yet, we consider them to be of independent interest. The bounds are
formulated with constants c that are independent on σ. We make the dependence on σ
explicit, as it is needed for our subsequent theory. It is convenient to state the following
assumption.

Assumption A.1 For the Itô process
∫ t
0
σ(u)dW (u), Condition 1 of Assumption 4.1

holds, i.e. the volatility function σ : [0, 1] → (0,∞) is continuous

Lemma A.1 Under Assumption A.1, for any M ∈ N,

E
[
V̂ (1)− V (1)

]2M
≤c∥σ∥

4M
∞

KM
.(A.3)
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Proof. Recall (A.1) and (A.2). Then we have

E
[
V̂ (1)− V (1)

]2M
= E

 K∑
k=1

∣∣∣∣∣
∫ k/K

(k−1)/K

σ(u)dW (u)

∣∣∣∣∣
2

− V (1)

2M

(A.4)

=E

 K∑
k=1

∣∣∣∣∣
∫ k/K

(k−1)/K

σ(u)dW (u)

∣∣∣∣∣
2

− [V (k/K)− V ((k − 1)/K)]

2M

=:E

[
K∑
k=1

Yk[V (k/K)− V ((k − 1)/K)]

]2M
,

where

Yk =

∣∣∣∫ k/K(k−1)/K
σ(u)dW (u)

∣∣∣2
V (k/K)− V ((k − 1)/K)

− 1, k = 1, 2, . . . , K,(A.5)

are independent centered random variables with law

Yk + 1 ∼ χ2
1.(A.6)

We can now apply Theorem 1 in [46] to the right-hand side of (A.4), which yields

E

[
K∑
k=1

Yk[V (k/K)− V ((k − 1)/K)]

]2M
≤c
( K∑
k=1

[V (k/K)− V ((k − 1)/K)]2
)M

≤c
(
∥σ∥4∞/K

)M
.

This completes the proof of (A.3).

Proposition A.1 below extends the result of Proposition A.1 in [28] to all even moments
2M .

Proposition A.1 Under Assumption A.1,

E

[
sup
t∈[0,1]

∣∣∣V̂ (t)− V (t)
∣∣∣]2M ≤c∥σ∥

4M
∞

KM
.

(The constant c depends on M .)

Proof. For t ∈ [0, 1], we have∣∣∣V̂ (t)− V (t)
∣∣∣2M ≤c

∣∣∣V̂ (t)− V (t)− V̂ (t∗(t)) + V (t∗(t))
∣∣∣2M(A.7)

+ c
∣∣∣V̂ (t∗(t))− V (t∗(t))

∣∣∣2M ,
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where t∗(t) = 1
K
⌊tK⌋, and c depends on the integer M only. Definition (A.2) implies

V̂ (t∗(t)) = V̂ (t). This leads to∣∣∣V̂ (t)− V (t)
∣∣∣2M ≤c |V (t)− V (t∗(t))|2M + c

∣∣∣V̂ (t∗(t))− V (t∗(t))
∣∣∣2M .

Continuity of the volatility function σ(·) implies

sup
t∈[0,1]

∣∣∣V̂ (t)− V (t)
∣∣∣2M ≤cK−2M∥σ∥4M∞ + c max

j∈{1,2,...,K}

∣∣∣V̂ (j/K)− V (j/K)
∣∣∣2M .(A.8)

So, it is enough to focus on the discrete index set {j/K}Kj=0. Observe that the sequence

V̂ (j/K)− V (j/K) =

j∑
k=1

∣∣∣∣∣
∫ k/K

(k−1)/K

σ(u)dW (u)

∣∣∣∣∣
2

−
∫ j/K

0

σ2(u)du

=

j∑
k=1

∣∣∣∣∣
∫ k/K

(k−1)/K

σ(u)dW (u)

∣∣∣∣∣
2

−
∫ k/K

(k−1)/K

σ2(u)du

 , j = 1, 2, . . . K,

forms a martingale, see the proof of Proposition A.1 in [28] for details. We now apply
Doob’s maximal inequality, see [13] Theorem 14.7, to obtain

E

[
sup

j∈{1,2,...,K}

∣∣∣V̂ (j/K)− V (j/K)
∣∣∣]2M ≤

( 2M

2M − 1

)2M
E
∣∣∣V̂ (1)− V (1)

∣∣∣2M .

This, together with inequality (A.8), implies

E

[
sup
t∈[0,1]

∣∣∣V̂ (t)− V (t)
∣∣∣]2M ≤cK−2M∥σ∥4M∞ + cE

∣∣∣V̂ (1)− V (1)
∣∣∣2M ,

where, again, the constant c depends only on M . Applying Lemma A.1 gives

E

[
sup
t∈[0,1]

∣∣∣V̂ (t)− V (t)
∣∣∣]2M ≤cK−2M∥σ∥4M∞ + cK−M∥σ∥4M∞ .

This completes the proof.

Lemma A.2 Under Assumption A.1, there exists an absolute constant c1 > 0 such that
for any ε ∈ (0, 1),

P(|V̂ (1)− V (1)| > ε) ≤ 2 exp
(
− c1ε

2K

∥σ∥4∞

)
.
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Proof. We begin by rewriting the difference

V̂ (1)− V (1) =
K∑
k=1

{∣∣∣ ∫ k/K

(k−1)/K

σ(u)dW (u)
∣∣∣2 − V (1)

}

=
K∑
k=1

∣∣∣∣∣
∫ k/K

(k−1)/K

σ(u)dW (u)

∣∣∣∣∣
2

− [V (k/K)− V ((k − 1)/K)]


=:

K∑
k=1

Yk[V (k/K)− V ((k − 1)/K)],

where Y1, . . . , YK are independent centered random variables defined in (A.5) satisfying
(A.6). We now define the ψ1-norm for a subexponential random variable Y as

∥Y ∥ψ1 := inf{t > 0 : E[exp(|Y |/t)] ≤ 2}.

For details on ∥ · ∥ψ1 as well as the fact that it indeed constitutes a norm see, for example,
[45]. Due to homogeneity of the norm, we can write∥∥∥Yk[V (k/K)− V ((k − 1)/K)]

∥∥∥
ψ1

= ∥Yk∥ψ1 [V (k/K)− V ((k − 1)/K)] ≤ ∥Yk∥ψ1∥σ∥2∞
K

,

for any K. Moreover, ∥Yk∥ψ1 = c2 < ∞, which follows by Lemma 2.7.6 and Exercise
2.7.10 in [45]. Now, applying Bernstein’s inequality for subexponential random variables
(Theorem 2.8.1 in [45]) proves the Lemma.

Lemma A.3 Define the kernel function

cV (s, t) =

∫ min(s,t)

0

σ4(x)dx, s, t ∈ [0, 1],(A.9)

and the sequence (indexed by the grid size K) of kernels

E
({
V̂ (s)− V (s)

}{
V̂ (t)− V (t)

})
, s, t ∈ [0, 1].

Then, under Assumption A.1,

sup
0≤s,t≤1

∣∣∣KE
({
V̂ (s)− V (s)

}{
V̂ (t)− V (t)

})
− cV (s, t)

∣∣∣→ 0, as K → ∞.(A.10)

Proof. We start with

E
[{
V̂ (s)− V (s)

}{
V̂ (t)− V (t)

}]
=E

[{
V̂ (s)− V (t∗(s)) + V (t∗(s))− V (s)

}{
V̂ (t)− V (t∗(t)) + V (t∗(t))− V (t)

}]
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where t∗(t) = 1
K
⌊tK⌋, for t ∈ [0, 1]. This entails

KE
[{
V̂ (s)− V (s)

}{
V̂ (t)− V (t)

}]
=KE

[{
V̂ (s)− V (t∗(s))

}{
V̂ (t)− V (t∗(t)

}]
+KE

{
V̂ (s)− V (t∗(s))

}
{V (t∗(t))− V (t)}

+K {V (t∗(s))− V (s)}E
{
V̂ (t)− V (t∗(t))

}
+K {V (t∗(s))− V (s)} {V (t∗(t))− V (t)} ,

According to Proposition A.1 in [28], we have

E

{
sup
s∈[0,1]

|V̂ (s)− V (t∗(s))|

}
= O

(
K− 1

2

)
.

Moreover, continuity of the volatility function σ(·) implies

sup
s∈[0,1]

|V (t∗(s))− V (s)| = O
(
K−1

)
.

This gives

KE
[{
V̂ (s)− V (s)

}{
V̂ (t)− V (t)

}]
=KE

[{
V̂ (s)− V (t∗(s))

}{
V̂ (t)− V (t∗(t))

}]
+KO

(
K− 3

2

)
=KE

[{
V̂ (s)− V (t∗(s))

}{
V̂i(t)− V (t∗(t))

}]
+O

(
K− 1

2

)
.(A.11)

We now investigate the first term in (A.11). Observe that

V̂ (t)− V (t∗(t)) =
K∑
k=1


∣∣∣∣∣
∫ k/K

(k−1)/K

σ(x)dW (x)

∣∣∣∣∣
2

−
∫ k/K

(k−1)/K

σ2(x)dx

 I{k/K ≤ t}.

Therefore,

KE
[{
V̂ (s)− V (t∗(s))

}{
V̂ (t)− V (t∗(t))

}]
=KE

[ K∑
k=1


∣∣∣∣∣
∫ k/K

(k−1)/K

σ(x)dW (x)

∣∣∣∣∣
2

− [V (k/K)− V ((k − 1)/K)]


2

× I{k/K ≤ s}I{k/K ≤ t}

]

=:KE

( K∑
k=1

Yk[V (k/K)− V ((k − 1)/K)]

)2

I{k/K ≤ min(s, t)}

 ,
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where the Yk are independent, centered random variables defined in (A.5) with the law
specified in (A.6). Consequently,

KE
[{
V̂ (s)− V (t∗(s))

}{
V̂ (t)− V (t∗(t))

}]
=KE

[
K∑
k=1

Y 2
k [V (k/K)− V ((k − 1)/K)]2I{k/K ≤ min(s, t)}

]

=K
K∑
k=1

(∫ k/K

(k−1)/K

σ2(x)dx

)2

I{k/K ≤ min(s, t)}

=K
K∑
k=1

(
K−1σ2(t̃k)

)2 I{k/K ≤ min(s, t)}(A.12)

for some t̃k ∈ [(k − 1)/K, k/K], k = 1, 2, . . . , K. So, it is enough to prove that the
Riemann–type sum (A.12) converges to the kernel (A.9) uniformly. To do so, observe
that

sup
0≤s,t≤1

∣∣∣∣∣K−1

K∑
k=1

σ4(t̃k)I{k/K ≤ min(s, t)} −
∫ min(s,t)

0

σ4(x)dx

∣∣∣∣∣
= sup

0≤s,t≤1

∣∣∣∣∣∣
⌊K·min(s,t)⌋∑

k=1

∫ k
K

k−1
K

(
σ4(t̃k)− σ4(x)

)
dx

∣∣∣∣∣∣+O(K−1)

≤ sup
0≤s,t≤1

⌊K ·min(s, t)⌋K−1 sup
|x−y|≤K−1

∣∣σ4(x)− σ4(y)
∣∣+O(K−1)

=o(1),(A.13)

where (A.13) is a consequence of the uniform continuity of the function σ(·). Combining
(A.11) and (A.13) gives the desired convergence result (A.10).

B Proofs of the results of Section 4

B.1 Proofs of Theorems 4.1, 4.4 and Propositions 4.1, 4.2 (be-
havior under the null hypotheses)

This section is dedicated to the analysis of the test statistics Ŝ(i), for i = 1, 2. We focus
first on Ŝ(1) and subsequently turn to the test statistic Ŝ(2), concluding with their joint
behavior.

To show weak convergence of Ŝ(1), we show a weak invariance principle for the func-
tional partial sum process

P
(1)
N (x, t) :=

1√
N

⌊xN⌋∑
i=1

√
K
{
F̂i(t)− E[F̂i(t)]

}
, t ∈ [0, 1].(B.1)
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Notice that thus defined, P
(1)
N (x) = P

(1)
N (x, ·) is for every x ∈ [0, 1] a random function.

Our first theorem, in conjunction with Lemma B.1 following it, establishes an explicit
formula for the kernel cF (·, ·) in Theorem 4.1 as well as the uniform convergence needed
in subsequent proofs.

Theorem B.1 Under Assumption A.1,

sup
0≤s,t≤1

∣∣∣KE
[(
F̂ (s)− F (s)

)(
F̂ (t)− F (t)

)]
− cF (s, t)

∣∣∣→ 0, as K → 0,

where

cF (s, t) =
1

V 2(1)
cV (s, t)−

V (t)

V 3(1)
cV (s, 1)−

V (s)

V 3(1)
cV (1, t) +

V (s)V (t)

V 4(1)
cV (1, 1), s, t ∈ [0, 1],

and where cV (·, ·) is defined in (A.9) and V (·) in (A.1).

Proof. First define the event AK,ε =
{∣∣∣V̂ (1)− V (1)

∣∣∣ < ε
}
, for sufficiently small positive

ε ∈ (0, V (1)). Then, we have

KE
[(
F̂ (s)− F (s)

)(
F̂ (t)− F (t)

)]
=KE

[(
F̂ (s)− F (s)

)(
F̂ (t)− F (t)

)
I {AK,ε}

]
+KE

[(
F̂ (s)− F (s)

)(
F̂ (t)− F (t)

)
I
{
AcK,ε

}]
=B1(s, t) +B2(s, t).

Since F , F̂ are cdfs, their difference is absolutely bounded by 1. Boundedness of the

difference
(
F̂ (·)− F (·)

)
and Lemma A.1 entail

sup
0≤s,t≤1

|B2(s, t)| ≤ cKP
(
AcK,ε

)
≤ cK

E
∣∣∣V̂ (1)− V (1)

∣∣∣4
ε4

= O
(
K−1

)
.(B.2)

We now investigate B1(·, ·). Define

U(s) :=

[
V̂ (s)− V (s)

]
V (1)− V (s)

[
V̂ (1)− V (1)

]
V̂ (1)V (1)

.

33



A simple calculation entails

B1(s, t) =KE [U(s)U(t)I {AK,ε}]

=KE


[
V̂ (s)− V (s)

] [
V̂ (t)− V (t)

]
V̂ 2(1)

I {AK,ε}


−KE


[
V̂ (s)− V (s)

]
V (t)

[
V̂ (1)− V (1)

]
V̂ 2(1)V (1)

I {AK,ε}


−KE

V (s)
[
V̂ (1)− V (1)

] [
V̂ (t)− V (t)

]
V̂ 2(1)V (1)

I {AK,ε}


+KE

V (s)V (t)
[
V̂ (1)− V (1)

]2
V̂ 2(1)V 2(1)

I {AK,ε}


=:B11(s, t)−B12(s, t)−B13(s, t) +B14(s, t).

The term B11 satisfies

B11(s, t) =KE


[
V̂ (s)− V (s)

] [
V̂ (t)− V (t)

]
V 2(1)

I {AK,ε}


+KE

[[
V̂ (s)− V (s)

] [
V̂ (t)− V (t)

] [ 1

V̂ 2(1)
− 1

V 2(1)

]
I {AK,ε}

]
=:B111(s, t) +B112(s, t).

We first explore B111(·, ·). Doing so observe that∣∣∣∣∣∣B111(s, t)−KE


[
V̂ (s)− V (s)

] [
V̂ (t)− V (t)

]
V 2(1)

∣∣∣∣∣∣
=K

∣∣∣∣∣∣E

[
V̂ (s)− V (s)

] [
V̂ (t)− V (t)

]
V 2(1)

I
{
AcK,ε

}∣∣∣∣∣∣
≤ K

V 2(1)
E
{

sup
0≤t≤1

∣∣∣V̂ (t)− V (t)
∣∣∣2}P

(
AcK,ε

)
≤ K

V 2(1)
E
{

sup
0≤t≤1

∣∣∣V̂ (t)− V (t)
∣∣∣2} E

∣∣∣V̂ (1)− V (1)
∣∣∣2

ε2

=O
(
K−1

)
.
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On the other hand, Lemma A.3 implies

sup
0≤s,t≤1

∣∣∣∣∣∣KE


[
V̂ (s)− V (s)

] [
V̂ (t)− V (t)

]
V 2(1)

− 1

V 2(1)
cV (s, t)

∣∣∣∣∣∣→ 0.

This gives

sup
0≤s,t≤1

|B111(s, t)−
1

V 2(1)
cV (s, t)| → 0, as K → 0.(B.3)

We now investigate B112(·, ·). Using Lipschitz continuity of the map x 7→ x−1 on [ε,∞),
we obtain

sup
0≤s,t≤1

|B112(s, t)|

≤cKE
[[
V̂ (s)− V (s)

] [
V̂ (t)− V (t)

] [
V̂ 2(1)− V 2(1)

]
I {AK,ε}

]
≤cKE

[
sup
0≤t≤1

|V̂ (t)− V (t)|2|V̂ 2(1)− V 2(1)|I {AK,ε}
]

Applying Cauchy-Schwartz inequality, Proposition A.1 and Lemma A.1 we have

sup
0≤s,t≤1

|B112(s, t)| = KO
(
K−1

)
O
(
K−1/2

)
= O

(
K−1/2

)
.(B.4)

Combining (B.3) and (B.4), implies

sup
0≤s,t≤1

|B11(s, t)−
1

V 2(1)
cV (s, t)| → 0, as K → 0.(B.5)

A similar argument implies

sup
0≤s,t≤1

|B12(s, t)−
V (t)

V 3(1)
cV (s, 1)| → 0, as K → 0,(B.6)

sup
0≤s,t≤1

|B13(s, t)−
V (s)

V 3(1)
cV (1, t)| → 0, as K → 0,(B.7)

sup
0≤s,t≤1

|B14(s, t)−
V (s)V (t)

V 4(1)
cV (1, 1)| → 0, as K → 0.(B.8)

Combining (B.5), (B.6), (B.7) and (B.8), we have

sup
0≤s,t≤1

|B1(s, t)− cF (s, t)| → 0, as K → 0.(B.9)

The limiting result (B.9) together with (B.2) completes the proof.

The next lemma relates E[F̂i] to the deterministic function Fi := Vi/Vi(1). As before,
we drop dependence on the index i for this result.
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Lemma B.1 Under Assumption A.1,

∥E[F̂ ]− F∥∞ = cσ O(K
−1),

where cσ, but not the O-term, depends on σ(·). More precisely, cσ = g(∥σ∥∞, ∥σ−1∥∞),
for a function g : (0,∞)× (0,∞) → (0,∞) that is increasing in each component. (Notice
that ∥σ∥∞ and ∥σ−1∥∞ are finite by Assumption 4.1.)

Proof. Let 0 < ε < V (1) and define the event

AK,ε := {|V̂ (1)− V (1)| ≤ ε}.

Then we can decompose

∥E[F̂ ]− F∥∞ ≤ ∥E[(F̂ − F )I {AK,ε}]∥∞ + ∥E[(F̂ − F )I{AcK,ε}]∥∞

≤∥E[(F̂ − F )I {AK,ε}]∥∞ + P(AcK,ε) ≤ ∥E[(F̂ − F )I {AK,ε}]∥∞ + 2 exp
(
− c1ε

2K

∥σ∥4∞

)
.

Here, we have used the fact that F , F̂ are cdfs and hence their difference is absolutely
bounded by 1. Moreover, in the last step, we have employed Lemma A.2 to bound from
above the probability of the event AcK,ε. We can now focus on the first term on the right.
A straightforward calculation shows

∥(E[F̂ ]− F )I {AK,ε} ∥∞ =

∥∥∥∥E[ [V̂ − V ]V (1)− V [V̂ (1)− V (1)]

V̂ (1)V (1)
I {AK,ε}

]∥∥∥∥
∞

≤
∥∥∥∥E[ V̂ − V

V̂ (1)
I {AK,ε}

]∥∥∥∥
∞
+

∥∥∥∥E[V [V̂ (1)− V (1)]

V̂ (1)V (1)
I {AK,ε}

]∥∥∥∥
∞

=: R1 +R2,

where R1, R2 are defined in the obvious way. For R2 we furthermore observe the bound

R2 ≤
∥V ∥∞
V (1)

∣∣∣∣E[ V̂ (1)− V (1)

V̂ (1)
I {AK,ε}

]∣∣∣∣ = ∣∣∣∣E[ V̂ (1)− V (1)

V̂ (1)
I {AK,ε}

]∣∣∣∣ ≤ R1.

Here we have used that maxt |V (t)| = V (1). We can thus focus our further analysis on
R1, which can be bounded from above by∥∥∥∥E[ V̂ − V

V (1)
I {AK,ε}+ [V̂ − V ]

(
1

V̂ (1)
− 1

V (1)

)
I {AK,ε}

]∥∥∥∥
∞

≤
∥∥∥∥E[ V̂ − V

V (1)
I {AK,ε}

]∥∥∥∥
∞
+

∥∥∥∥E[[V̂ − V ]

(
1

V̂ (1)
− 1

V (1)

)
I {AK,ε}

]∥∥∥∥
∞

=: R1,1 +R1,2.

Focusing on R1,1 first, we observe that it can be bounded by

R1,1 ≤
∥E[(V̂ − V )I {AK,ε}]∥∞

V (1)

≤∥E[(V̂ − V )]∥∞
V (1)

+
E∥V̂ − V ∥∞P(AcK,ε)

V (1)
=: R1,1,1 +R1,1,2.
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Jensen’s inequality implies that

R1,1,2 ≤
{E∥V̂ − V ∥2∞}1/2P(AcK,ε)

V (1)
.

As before, we can use Lemma A.2 to bound the probability in R1,1,2, which combined
with the bound in Proposition A.1 implies

R1,1,2 ≤
2c1/2∥σ∥2∞
K1/2V (1)

exp
(
− c1ε

2K

∥σ∥4∞

)
.

The constant c here stems from Proposition A.1 (for M = 1) and is independent of σ.
Now, we turn to R1,1,1, for which we observe

R1,1,1 ≤
maxu∈[0,1] |EV̂ (u)− V (u)|

V (1)
≤

maxk=1,...,K

∫ k/K
(k−1)/K

σ2(u)du

V (1)
≤ ∥σ2∥∞
V (1)K

.

This shows the desired rate for R1,1. For R1,2, we observe that it is upper bounded by

R1,2 ≤
E
[
∥V̂ − V ∥∞|V̂ (1)− V (1)|I {AK,ε}

]
ε2

,

where we have used Lipschitz continuity of the map x 7→ x−1 on [ε,∞), with constant
1/ε2. Notice that here ε has to be sufficiently small, and we can choose it as V (1)/2 (so

that V̂ (1) is also bounded away from 0). Now, employing the Cauchy-Schwartz inequality,
together with the moment bound from Proposition A.1 yields a rate of O(K−1) for the
right side. Together, these considerations demonstrate that

∥E[F̂ ]− F∥∞ ≤ c

K

for a sufficiently large constant c > 0.
The bounds that we have employed so far, namely from Proposition A.1 and Lemma

A.2, depend only on ∥σ∥∞ and are monotonically increasing in it. Moreover, cσ depends
on the factor 1/V (1) (explicitly and via 1/ε = 2/V (1)). Since

1

V (1)
≤ 1

mint∈[0,1] σ2(t)
= ∥σ−1∥2∞,

the constant cσ ∈ (0,∞) depends only on σ via the values ∥σ∥∞ and ∥σ−1∥∞ and this
dependence is monotone in each norm.

Lemma B.1 has two important implications for our analysis. In the context of this section,
it establishes for the covariance operator, that F can be used as a centering term instead
of EF̂ , i.e. that

KE
(
{F̂ (u)− EF̂ (u)} · {F̂ (v)− EF̂ (v)}

)
(B.10)

=KE
(
{F̂ (u)− F (u)} · {F̂ (v)− F (v)}

)
+ o(1).
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Here the o-term vanishes w.r.t. to the sup-norm and the non-negligible part on the right
converges according to Theorem B.1. A second use of Lemma B.1 discussed later will be
that any change in the functions Fi transpires through to the functions F̂i as a (detectable)
mean change.

Lemma B.2 Under Assumption A.1,

KE
∥∥∥F̂ − E(F̂ )

∥∥∥2 ≤ cσ.(B.11)

The constant cσ in (B.11) is different from the cσ in Lemma B.1, but admits the same
representation in terms of the two norms.

Proof. The left hand side of (B.11) satisfies

KE
∥∥∥F̂ − E(F̂ )

∥∥∥2 ≤2KE
∥∥∥F̂ − F

∥∥∥2 + 2K
∥∥∥F − E(F̂ )

∥∥∥2
=: B1 +B2.

According to Lemma B.1, B2 = cσ O(K
−1). We now investigate B1. Define the event

AK,ε =
{∣∣∣V̂ (1)− V (1)

∣∣∣ < ε
}
, for ε = V (1)/2 and observe that

B1 =2KE
[∫ 1

0

(
F̂ (s)− F (s)

)2
ds

]
=2KE

[∫ 1

0

(
F̂ (s)− F (s)

)2
I
{
AcK,ε

}
ds

]
+ 2KE

[∫ 1

0

(
F̂ (s)− F (s)

)2
I {AK,ε} ds

]
.

Therefore,

B1 ≤2KP
(
AcK,ε

)
+ 2KE

[∫ 1

0

(
F̂ (s)− F (s)

)2
I {AK,ε} ds

]
=2KP

(
AcK,ε

)
+ 2KE

∫ 1

0

(
V̂ (s)

V̂ (1)
− V̂ (s)

V (1)
+
V̂ (s)

V (1)
− V (s)

V (1)

)2

I {AK,ε} ds

≤2KP
(
AcK,ε

)
+ 4KE

∫ 1

0

(
V̂ (s)

V̂ (1)
− V̂ (s)

V (1)

)2

I {AK,ε} ds

+ 4KE
∫ 1

0

(
V̂ (s)

V (1)
− V (s)

V (1)

)2

I {AK,ε} ds =: B11 +B12 +B13.

An argument similar to (B.2) implies

B11 ≤ ∥σ∥8∞O
(
K−1

)
.(B.12)

38



Regarding B12, we have

B12 =4KE

∫ 1

0

V̂ 2(s)

(
1

V̂ (1)
− 1

V (1)

)2

I {AK,ε} ds


≤4KE

V̂ 2(1)

(
1

V̂ (1)
− 1

V (1)

)2

I {AK,ε}

(B.13)

≤16KV 2(1)E

( 1

V̂ (1)
− 1

V (1)

)2

I {AK,ε}

(B.14)

≤16KV 2(1)E
[

4

V 2(1)

(
V̂ (1)− V (1)

)2
I {AK,ε}

]
(B.15)

=64KE
[(
V̂ (1)− V (1)

)2
I {AK,ε}

]
≤64KE

[(
V̂ (1)− V (1)

)2]
≤ c∥σ∥4∞.(B.16)

Inequality (B.13) is a consequence of monotonicity of the empirical quadratic variation

process V̂ (·). Inequality (B.14) is a result of restriction to the event AK,ε. Inequality
(B.15) is a consequence of Lipschitz continuity of the function x 7→ x−1 on [V (1)/2,∞),
with Lipschitz constant 4/V (1)2. Finally, Lemma A.1 implies (B.16). We now turn to
B13. Observe that

B13 =4K
1

V 2(1)
E
[∫ 1

0

(
V̂ (s)− V (s)

)2
I {AK,ε} ds

]
=4K

1

V 2(1)
E
[∫ 1

0

(
V̂ (s)− V (s)

)2
ds

]
=4K

1

V 2(1)
E
[
sup
0≤s≤1

∣∣∣V̂ (s)− V (s)
∣∣∣2] ≤ c∥σ∥4∞∥σ−1∥2∞,(B.17)

where (B.17) is a consequence of Proposition A.1. Pooling (B.12), (B.16) and (B.17)
completes the proof.

We are now in the position to demonstrate weak convergence of the partial sum process
P

(1)
N , see (B.1). In the following theorem, we invoke the notion of a Brownian motion G

in a Hilbert space. For the definition and details, we refer to [30].

Theorem B.2 Suppose that Conditions 1, 2 of Assumption 4.1 hold and N,K → ∞.
Then, under H

(1)
0 (3.8), there exists a functional Brownian motion G in the Hilbert space

L2[0, 1] such that

{P (1)
N (x, ·)}x∈[0,1]

d→ {G(x, ·)}x∈[0,1],

where P
(1)
N is the partial sum process defined in (B.1). The process G is centered and

characterized by the covariance in (4.6).
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Proof. We apply Theorem 1 in [30] (a weak invariance principle for triangular arrays of
i.i.d. random elements in a Banach space). We validate the following three conditions of
this theorem.

(K.1) The array
√
K[F̂i − E[F̂i]], i = 1, . . . , N, consists of i.i.d. random elements for any

fixed N (and K).

(K.2) P
(1)
N (1) satisfies a central limit theorem in the space L2[0, 1].

(K.3) For any ϵ > 0, there exists an h > 0 (sufficiently small) such that

lim sup
N

P
(
∥P (1)

N (xh)∥ ≥ ϵ
)
< 1.

Condition (K.1) clearly holds because the Wiener processes Wi are i.i.d. Condition
(K.3) follows directly from Markov’s inequality and the fact that

E∥P (1)
N (xh)∥2 ≤ 1

N

⌊hN⌋∑
i=1

E∥
√
K[F̂i − E(F̂i)]∥2 ≤ ch,

where we have used the moment bound from Lemma B.2 in the last step.
We now proceed to the proof of the above condition (K.2). For this purpose we apply

a central limit theorem for triangular arrays in Hilbert spaces, Theorem 1.1 in [31]. This
result has three conditions, where i)-ii) are implied by the fact that our random functions√
K[F̂i − E(F̂i)] have a covariance that converges w.r.t. to the supremum norm to the

limiting covariance and thus in particular w.r.t. the trace norm (see Theorem B.1, together
with Lemma B.1). The third condition is a Linderberg-type condition, which is implied
by the fact that for any f ∈ L2[0, 1] and δ > 0 it holds that

E
[
⟨f,

√
K[F̂i − E(F̂i)]⟩2 · I{∥

√
K/N [F̂i − E(F̂i)]∥ > δ}

]
→ 0.

This fact follows directly using the Cauchy-Schwarz inequality (essentially the Lyapunov
argument) and recalling the moment bound from Lemma B.2, since

E
[
⟨f,

√
K[F̂i − E(F̂i)]⟩2I{∥

√
K/N [F̂i − E(F̂i)]∥ > δ}

]
≤
{
E
[
⟨f,

√
K[F̂i − E(F̂i)]⟩2

]}1/2

P(∥
√
K/N [F̂i − E(F̂i)]∥ > δ)1/2.

Again using the Markov inequality and the second moment bound for the variable
√
K[F̂i−

E(F̂i)] (see Lemma B.2) we observe that

P(|
√
K/N [F̂i − E(F̂i)]| > δ) ≤ c/N = o(1).

Thus, by Theorem 1.1 in [31] weak convergence of P
(1)
N (1) to a centered Gaussian variable

in L2[0, 1] follows, and then by Theorem 1 in [30] the weak invariance principle for P
(1)
N

of this theorem.
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Proof of Theorem 4.1: The proof is based on Theorem B.2. To demonstrate the
weak convergence of Ŝ(1) (under H

(1)
0 ), we rewrite the statistic as

Ŝ(1) =
K

N2

N∑
n=1

∫ 1

0

( n∑
i=1

F̂i(u)−
n

N

N∑
i=1

F̂i(u)
)2
du

=
1

N

N∑
n=1

∫ 1

0

( 1√
N

n∑
i=1

√
K[F̂i(u)− E[F̂i(u)]]−

n

N
√
N

N∑
i=1

√
K[F̂i(u)− E[F̂i(u)]]

)2
du

=

∫ 1

0

∥P (1)
N (x)− (⌊xN⌋/N) · P (1)

N (1)∥2dx

d→
∫ 1

0

∥G(x)− xG(1)∥2dx.

Here, G denotes a functional Brownian motion (in the space L2[0, 1]) that characterizes

the limit of P
(1)
N and is defined in Theorem B.2. It is known that∫ 1

0

∥G(x)− xG(1)∥2dx d
=

∞∑
ℓ=1

λℓ

∫ 1

0

Bℓ(u)
2du,

see, e.g. Theorem 1 in [19]. The consistency under a fixed alternative follows from
Theorem 4.2 that will be proven in Section B.2.

Proof of Theorem 4.4: Recall the definition of the random variable wi in (4.11). We
can now define the process

P
(2)
N (x) :=

1√
N

⌊xN⌋∑
i=1

log(Q̂i(1))− E[log(Q̂i(1))] =
1√
N

⌊xN⌋∑
i=1

2gi +
1√
N

⌊xN⌋∑
i=1

wi − E[wi]

=:P̃
(2)
N (x) +R(x),

where we have used decomposition (4.10) in the second equality. Both terms on the right
are defined in the obvious way. We first show that

(B.18) sup
x∈[0,1]

|R(x)| = oP (1), as N → ∞.

Corollary A.1 in [28] implies that

E|wi − Ewi|2 = O(1/K).

Since the wi’s are independent, by Doob’s martingale inequality, for any δ > 0,

P
(
sup
x

|R(x)| > δ
)
≤ E|R(1)|2

δ2
≤ c

K
.
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As a consequence, it follows as N,K → ∞ that P
(2)
N = P̃

(2)
N + oP (1) and hence that

(B.19) Ŝ(2) =
1

N

N∑
n=1

( n∑
i=1

(
2gi+E[wi]

)
− n

N

N∑
i=1

(
2gi+E[wi]

))2

+oP (1) =: S̃(2)+oP (1).

Here, the o-term is the same on both sides of the equality, which defines S̃(2).
It remains to show that S̃(2) → S(2). This follows from Condition 4 of Assumption 4.1

and a continuous mapping argument.

The claim that Ŝ(2) P→ ∞ if H
(2)
0 is violated follows from Theorem 4.5 proven in Section

B.2.

Proofs of Propositions 4.1 and 4.2: By (B.19),

(Ŝ(1), Ŝ(2)) = (Ŝ(1), S̃(2)) + oP (1).

Recall that Ŝ(1), S̃(2) are independent of each other, since Ŝ(1) is only a functions of the
Brownian motionsW1,W2, ... (see eq. (4.2) and (4.4)) and S̃(2) only of the random factors
g1, g2, ... (see (B.19)). As a consequence, their limits S(1), S(2) are independent as well.
Recalling that Λ(i) is the cdf of S(i), which is continuous, it follows that

(p(1), p(2)) = (1− Λ(1)(Ŝ(1)), 1− Λ(2)(Ŝ(2)))
d→ (U1, U2),

where U1, U2 are independent uniformly distributed random variables on the unit interval.
It is then standard to show that

2(log(p(1)) + log(p(2)))
d→ 2(log(U1) + log(U2))

d
= χ2

4.

If H0 is violated H
(i)
0 is violated for some i ∈ {1, 2}. In this case Ŝ(i) P→ ∞, hence

Λ(i)(Ŝ(i))
P→ 1 and

log(p(i)) = − log(1− Λ(i)(Ŝ(i)))
P→ ∞

implying that Ŝ
P→ ∞ leading to rejection with asymptotic probability 1.

B.2 Proofs of Theorems 4.2, 4.3, 4.5, 4.6 and B.3 (behavior
under the alternative hypotheses)

Proof of Theorem 4.2: We begin rewriting Ŝ(1) as

Ŝ(1) =
K

N2

N∑
n=1

∥∥∥ n∑
i=1

{F̂i − E[F̂i]} −
n

N

N∑
i=1

{F̂i − E[F̂i]}(B.20)

−
( n
N

N∑
i=1

E[F̂i]−
n∑
i=1

E[F̂i]
)∥∥∥2(B.21)

=

∫ 1

0

∥P (1)
N (x)− (⌊xN⌋/N) · P (1)

N (1) + hN(x)∥2dx.
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Here, P
(1)
N denotes the partial sum process defined in (B.1) and

hN(x) := −
√
K

N

(⌊Nx⌋
N

N∑
i=1

E[F̂i]−
⌊Nx⌋∑
i=1

E[F̂i]
)
.

We decompose P
(1)
N as

P
(1)
N (x) = P

(1)
N (x ∧ θ) + [P

(1)
N (x)− P

(1)
N (θ)]I{x > θ}.(B.22)

The two processes on the right-hand side involve only functions F̂i before (left term) or
after the change point (right term). Moreover, they are stochastically independent of

each other, since the F̂i are independent along i. Consequently, using exactly the same
arguments as in the proof of Theorem B.2, we conclude that

{P (1)
N (x)}x∈[0,θ]

d→{G1(x)}x∈[0,θ]
{[P (1)

N (x)− P
(1)
N (θ)]}x∈[θ,1]

d→{G2(x− θ)}x∈[θ,1],

where G1,G2 are independent functional Brownian motions characterized by the covari-
ance functions

cF,1(u, v) := lim
K→∞

K · E
[
{F̂1(u)− E[F̂1(u)]}{F̂1(v)− E[F̂1(v)]}

]
,

cF,2(u, v) := lim
K→∞

K · E
[
{F̂N(u)− E[F̂N(u)]}{F̂N(v)− E[F̂N(v)]}

]
,

respectively (covariance before and after the change). These limits exist, as demonstrated
in Theorem B.1. Decomposition (B.22), together with the continuous mapping theorem,
implies

{P (1)
N (x)}x∈[0,1]

d→ G(1)(x ∧ θ) + [G(2)(x− θ)]I{x > θ}.(B.23)

Next, we turn to the analysis of the deterministic function hN(x) that can be written as

hN(x) =
√
NK

{
x(1− θ)(E[F̂1]− E[F̂N ]) if x ≤ θ,

θ(1− x)(E[F̂1]− E[F̂N ]) if x > θ.

According to Lemma B.1, ∥E[F̂i]− Fi∥∞ = O(1/K), where the O-term is independent of
the volatility functions σ(j), σ

−1
(j) . Consequently, setting

h̃N(x) :=

{
x(1− θ)(F1 − FN)/aN if x ≤ θ,

θ(1− x)(F1 − FN)/aN if x > θ,

we get the identity

(B.24) hN(x) = O
(√N

K

)
+ aN

√
NK · h̃N .
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Now, a simple calculation shows that

F1 − FN
aN

=

∫ t
0
σ2
(1)(u)du

aN
∫ 1

0
σ2
(1)(u)du

−
∫ t
0
[σ(1)(u) + aN σ̃(u)]

2du

aN
∫ 1

0
[σ(1)(u) + aN σ̃(u)]2du

=

∫ t
0
σ2
(1)(u)du

∫ 1

0
[σ(1)(u) + aN σ̃(u)]

2du−
∫ t
0
[σ(1)(u) + aN σ̃(u)]

2du
∫ 1

0
σ2
(1)(u)du

aN
∫ 1

0
σ2
(1)(u)du

∫ 1

0
[σ(1)(u) + aN σ̃(u)]2du

=

(
2

∫ t

0

σ2
(1)(u)du

∫ 1

0

σ(1)(u)σ̃(u)du+ aN

∫ t

0

σ2
(1)(u)du

∫ 1

0

σ̃2(u)du

− 2

∫ t

0

σ(1)(u)σ̃(u)du

∫ 1

0

σ2
(1)du− aN

∫ t

0

σ̃2(u)du

∫ 1

0

σ2
(1)(u)du

)
(∫ 1

0

σ2
(1)(u)du

∫ 1

0

[σ(1)(u) + aN σ̃(u)]
2du

)−1

→2

∫ t
0
σ2
(1)(u)du

∫ 1

0
σ(1)(u)σ̃(u)du−

∫ t
0
σ(1)(u)σ̃(u)du

∫ 1

0
σ2
(1)(u)du( ∫ 1

0
σ2
(1)(u)du

)2 =: h̄(t).

The function in the numerator of h̄ is not identically equal to 0. To see this, let us define

f(t) :=

∫ t

0

σ2
(1)(u)du, g(t) =

∫ t

0

σ(1)(u)σ̃(u)du.

Notice that by assumption σ̃/σ(1) is not constant. Now, the numerator being 0 would
mean that f(t)g(1) = g(t)f(1), which is equivalent to g/f being constant. But this
means, that g′/f ′ = σ̃/σ(1) must be constant too, which contradicts our assumption.
This means, that

h̃N → h :=

{
x(1− θ)h̄ if x ≤ θ,

θ(1− x)h̄ if x > θ,

where h is a nonzero function. Notice that by assumption aNK → ∞, which implies√
N/K = o(aN

√
NK). This fact, together with the convergence h̃N → h and identity

(B.24), implies that

hN = aN
√
NKh+ o(aN

√
NK).

Now, recalling the representation of Ŝ(1) in (B.20), the weak convergence (B.23) and
the fact that aN

√
NK → ∞, we obtain

Ŝ(1)

a2NNK

d→
∫ 1

0

∥h(x)∥2dx > 0,(B.25)

concluding our proof.
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Proof of Theorem 4.3: Recall the definition of the change point estimator θ̂(1) in
(4.7). Setting

M(n) :=
∥∥∥ n∑
i=1

1

N
F̂i −

n

N2

N∑
i=1

F̂i

∥∥∥2
and n̂ := Nθ̂(1), we see that

n̂ = argmaxn=1,...,N [M(n)−M(n∗)].

Here n∗ = ⌊Nθ⌋ and the above equality holds because M(n∗) is a constant. Let us define
for ease of notation the terms

E(n) :=
1

N

n∑
i=1

{F̂i − E[F̂i]} −
n

N2

N∑
i=1

{F̂i − E[F̂i]},

D(n) :=
n

N2

N∑
i=1

E[F̂i]−
1

N

n∑
i=1

E[F̂i],

D̃(n) :=
n(n∗ −N)

N2
F1 +

n(N − n∗)

N2
FN .

We now show that

lim
M→∞

lim sup
N

P( max
n≤n∗−bN ,

M(n)−M(n∗) ≥ 0) = 0,(B.26)

lim
M→∞

lim sup
N

P( max
n>n∗+bN ,

M(n)−M(n∗) ≥ 0) = 0

where bN := max(M,Ma−2
N /K) and M > 0. For simplicity, we focus on the first identity.

Notice that we can rewrite the difference inside the maximum as

M(n)−M(n∗) = ⟨D(n)−D(n∗)− E(n) + E(n∗), D(n) +D(n∗) + E(n) + E(n∗)⟩
(B.27)

={∥D(n)∥2 − ∥D(n∗)∥2}+ {−∥E(n)∥2 + ∥E(n∗)∥2}+ ⟨D(n)−D(n∗), E(n) + E(n∗)⟩
− ⟨E(n)− E(n∗), D(n) +D(n∗)⟩ =: A1(n) + A2(n) + A3(n)− A4(n).

It is now enough to prove that

lim
M→∞

lim sup
N

P( max
n≤n∗−bN

A1(n)/3 + Ai(n) ≥ 0) = 0, for i = 2, 3, 4.

To obtain these bounds, we use the estimates from Lemma B.3. For i = 2, 3, we can
simply show that A1(n) asymptotically dominates A2(n), A3(n). More precisely, using
Lemma B.3 parts a), b) shows that

A1(n)/3 + A2(n) ≤ −ca2N(n∗ − n)/N +OP (1/(NK)).
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Now, |n− n∗| ≥ bN ≥Ma−2
N /K, implies that

ca2N(n
∗ − n)/N ≥ c

M

NK
,

which goes to ∞ as M does, whereas the part OP (1/(NK)) is independent of M .
Similarly, we can use a) and c) of Lemma B.3, to see that

A1(n)/3 + A2(n) ≤ −ca2N(n∗ − n)/N + caN(n− n∗)/NOP (1/
√
NK)

=
aN(n

∗ − n)

N

(
− caN +OP (1/

√
NK)

)
.

Since aN is of larger order than 1/
√
NK by assumption, the part inside the brackets is

negative, with probability converging to 1, as N → ∞.
Finally, we consider the sum A1(n)/3 + A4(n). Here a slightly more subtle argument is
needed. We decompose the indices n = 1, ..., n∗ − bN in blocks of size bN2

ℓ for ℓ = 1, 2...,
with the the first block consisting of the indices n∗ − bN , n

∗ − bN − 1, ..., n∗ − 3bN , the
second consisting of the indices n∗ − 4bN − 1, ..., n∗ − 7bN and so on. We call these blocks
B1, B2, .... Then, we observe that

max
n≤n∗−bN

A1(n)/3 + A4(n) ≥ max
ℓ

max
n∈Bℓ

A1(n)/3 + A4(n).

Using estimate a) from Lemma B.3, we have

max
n∈Bℓ

A1(n)/3 ≥ −ca2N(n∗ − bN − ℓbN)/N.

We can then use the bound d) from Lemma B.3 to see that

P( max
n≤n∗−bN

A1(n)/3 + A4(n) ≥ 0)

≤
∑
ℓ≥1

P(max
n∈Bℓ

A1(n)/3 + A4(n) ≥ 0)

≤
∑
ℓ≥1

P(max
n∈Bℓ

A4(n) ≥ ca2NbN2
ℓ/N)

≤c
∑
ℓ≥1

a2NbN2
ℓ/(N2K)

a4Nb
2
N2

2ℓ−2/N2
≤
∑
ℓ≥1

c

M2ℓ−2

The right side does not depend on N anymore and converges to 0, as M → ∞. This
completes the proof.

The following lemma was used in the proof of Theorem 4.3.

Lemma B.3 Under the assumptions of Theorem 4.2 (and so of Theorem 4.3),

a) A1(n) < −ca2N(n∗ − n)/N .
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b) maxn≤n∗ |A2(n)| = OP (1/(NK)).

c) |A3(n)| ≤ caN(n− n∗)/NOP (1/
√
NK).

d) For any κ = 2, ..., N it holds that Emax|n−n∗|≤κ |A4(n)|2 ≤ caNOP (
√
κ/(N

√
K)).

Here all Landau symbols and constants are independent of M .

Proof. We begin by considering A1(n). More precisely, we investigate first Ã1(n) :=
{∥D̃(n)∥2 − ∥D̃(n∗)∥2}. By the definition of D̃,

Ã1(n) = ∥FN − F1∥2
(n2(N − n∗)2 − (n∗)2(N − n∗)2

N4

)
.(B.28)

In the proof of Theorem 4.2, we have demonstrated that for a sufficiently small constant
c > 0 it holds that ∥FN − F1∥2 > ca2N . Next, we consider the second factor in (B.28).
Recall thatN−n∗ ≥ cN for some small enough c > 0 and that n2−(n∗)2 = (n+n∗)(n−n∗),
where again n+ n∗ ≥ n∗ ≥ cN . Putting these results together yields

Ã1(n) < −c(n
∗ − n)a2N
N

.

Next, we consider the difference |A1(n)− Ã1(n)|, which can be expressed as

∣∣∥FN − F1∥2 − ∥EF̂N − EF̂1∥2
∣∣∣∣∣n2(N − n∗)2 − (n∗)2(N − n∗)2

N4

∣∣∣.
By analogous arguments as before, the second factor is upper bounded by c|n − n∗|/N .
The first factor can be expressed as

|2⟨[EF̂N − EF̂1]− [FN − F1], FN − F1⟩+ ∥[EF̂N − EF̂1]− [FN − F1]∥2|,

which follows by a version of the third binomial formula for Hilbert spaces. Recalling
Lemma B.1, we observe that

∥[EF̂N − EF̂1]− [FN − F1]∥2 ≤
c

K2

and using additionally that ∥F1 − FN∥ ≤ c/aN

|⟨[EF̂N − EF̂1]− [FN − F1], FN − F1⟩| ≤
caN
K

.

Employing the assumption aNK → ∞, it follows that the term (caN)/K dominates.
Hence, we conclude, that

|A1(n)− Ã1(n)| ≤
c(n∗ − n)aN

NK
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Since aN is asymptotically dominated by 1/K, it follows that Ã1(n) dominates the re-
mainder |A1(n)− Ã1(n)|, proving the rate a).

To demonstrate b), it suffices to show the desired rate for A2,1(n) := ∥E(n)∥2, since
maxn ∥E(n)∥2 ≥ ∥E(n∗)∥2. Next, we recall that by definition of E(n) we can decompose

∥E(n)∥ ≤ 1

N

∥∥∥ n∑
i=1

{F̂i − E[F̂i]}
∥∥∥+ ∥∥∥ n

N2

N∑
i=1

{F̂i − E[F̂i]}
∥∥∥ =: A2,1,1(n)(n) + A2,1,2(n).

It suffices to show the rate A2,1,1(n), A2,1,2(n) = OP (1/
√
NK) (uniformly in n) to get the

desired result and we focus on the more difficult term A2,1,1(n) only. Notice that for all i
it holds that

E∥F̂i − E[F̂i]∥2 ≤ c/K

(see Lemma B.1). Now, given the independence of the random variables across i it holds
for any two indices 1 ≤ n1 < n2 ≤ N , that

E
∥∥∥ n2∑
i=n1

F̂i − E[F̂i]
∥∥∥2 ≤ c(n2 − n1)

K
.(B.29)

So, using Theorem 3.1 in [34] implies that

E
[
∥max

n
A2,1,1(n)∥2

]
≤ c

KN
,

with a possibly larger constant c. Notice that the cited theorem was originally formulated
for real valued random variables, but the proof carries over directly to random variables
on a Hilbert space. This concludes the proof of b)

c) follows by similar techniques as before. We observe that

A3(n) ≤ ∥D(n)−D(n∗)∥∥E(n) + E(n∗)∥.

By the same bounds as in the last step, we conclude that maxn∥E(n) + E(n∗)∥ =
OP (1/

√
NK). Turning to the first factor, we see that

∥D(n)−D(n∗)∥ ≤ ∥D(n)−D(n∗)− [D̃(n)− D̃(n∗)]∥+ ∥D̃(n)− D̃(n∗)∥(B.30)

=:A3,1(n) + A3,2(n).

Using the analogous calculations as in a) shows that

A3,1(n) =
((n∗ − n)(N − n∗)

N2

)
∥F1 − FN − [EF̂1 − EF̂N ]∥

≤ c
n∗ − n

NK
,

where we have used Lemma B.1, to bound the second factor in the first line. Turning to
A3,2(n), we observe (again with the same techniques as in a)), that

A3,2(n) ≤
caN(n

∗ − n)

N
.
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Putting these rates together and noticing that aN dominates 1/K, we observe that

A3(n) ≤
caN(n

∗ − n)

N
OP

( 1√
NK

)
,

proving c).
Finally, we turn to d). We can decompose A4(n) into

A4(n) ≤ ∥E(n)− E(n∗)∥∥D(n) +D(n∗)∥ =: A4,1(n) · A4,2(n).

A4,2(n) is bounded by ∥D(n)∥+ ∥D(n∗)∥. Again, using Lemma B.1 we observe that

∥D(n)∥+ ∥D(n∗)∥ ≤ ∥D̃(n)∥+ ∥D̃(n∗)∥+ c

K
.

Furthermore, by definition we have ∥D̃(n)∥ ≤ ∥F1−FN∥ ≤ aN . Since aN dominates 1/K
we have

A4,2(n) ≤ caN .

Next, we turn to A4,1(n), which using the definition of E can be upper bounded by

∥∥∥ 1

N

n∗∑
i=n

{F̂i − E[F̂i]}
∥∥∥+ ∥∥∥n− n∗

N2

N∑
i=1

{F̂i − E[F̂i]}
∥∥∥ =: A4,1,1(n) + A4,1,2(n).

We confine our proof to the more difficult term A4,1,1(n). We employ Theorem 3.1 in [34]
(where the condition of the named theorem is satisfied due to (B.29)), which entails

E[ max
κ≤n≤n∗

∥A4,1,1(n)∥2] ≤
κ

N2K

and hence that maxκ≤n≤n∗ A4,1,1(n) = OP (
√
κ/(N

√
K)). Combining the rates of A4,1 and

A4,2 now yields the desired result d).

Proof of Theorems 4.5 and 4.6 The proofs of these theorems follow similar steps as
those for Theorems 4.2 and 4.3. The details are, however, easier given that in this case
we consider real-valued time series. We have therefore decided to omit a proof of these
results to avoid redundancy.

Proof of Proposition 4.3 We confine the proof to the more difficult case of the mixed
alternative σ(2) = (1 + 1/

√
K)σ(1) + σ̃/

√
K, that violates both H(1) and H(2). We notice,

we can rewrite
σ(2) = σ(1) +

(
σ̃ + σ(1)

)
/
√
K

and by the proof of Theorem 4.2 (see the convergence (B.25) in particular), we observe
that

Ŝ(1)

N

P→ c1 > 0,
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where c1 > 0 is a constant depending on σ(1) and σ̃. By a similar line of argumentation,
we can show that

KŜ(2)

N

P→ c2 > 0,

where c2 > 0 is a constant that depends on σ(1) and σ̃ as well. Now, notice that we can
rewrite the following fraction of p-values in terms of the distribution functions

p(1)

p(1) + p(2)
=

1− Λ(1)[Ŝ(1)]

(1− Λ(1)[Ŝ(1)]) + (1− Λ(2)[Ŝ(2)])
.(B.31)

If we can prove for an arbitrarily small, but fixed c3 > 0 that

1− Λ(1)[Ŝ(1)]

1− Λ(2)[Ŝ(2)]
= O(exp(−c3N)),(B.32)

it follows that the ratio in (B.31) is exponentially decaying and hence, by definition of θ̂
in (4.20) that

θ̂ = θ̂(1) +OP

(
1

N

)
.

This, together with the fact that

θ̂(1) = θ +OP

(
1

N

)
,

(Theorem 4.3) would already imply the desired result. Now, to prove (B.32), we notice
that by the continuous mapping theorem

1− Λ(1)[Ŝ(1)]

1− Λ(2)[Ŝ(2)]

1− Λ(2)[(N/K)c2]

1− Λ(1)[Nc1]
=

1− Λ(1)[N(Ŝ(1)/N)]

1− Λ(2)[(N/K)(KŜ(2)/N)]

1− Λ(2)[(N/K)c2]

1− Λ(1)[Nc1]

P→ 1.

Consequently, it suffices to analyze the deterministic scaling ratio and show that

1− Λ(1)[Nc1]

1− Λ(2)[(N/K)c2]
= O(exp(−c3N)),

to prove (B.32). Since K → ∞ as N → ∞, this implies that for any arbitrarily small
constant cL > 0 there exists an N0 > 0 such that for all N > N0 we have c2/K < c1cL. It
follows by monotonicity of the denominator and Theorem B.3 that as N → ∞

1− Λ(1)[Nc1]

1− Λ(2)[(N/K)c2]
≤ 1− Λ(1)[Nc1]

1− Λ(2)[Nc1cL]
≤ exp(−c3N)

for an adequate choice of cL and a sufficiently small constant c3 > 0, which concludes the
proof.
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Theorem B.3 Under Assumption 4.1, there exist constants 0 < cL < cU < ∞, and
c′Lc

′
U > 0 such that for sufficiently large x

1− Λ(1)(x)

1− Λ(2)(cLx)
≤ exp(−c′L x),

1− Λ(1)(x)

1− Λ(2)(cUx)
≥ exp(c′U x).

The constants in this Theorem depend on the eigenvalues λi in Theorem 4.1 and the
long–run variance λ in Theorem 4.4.

Proof. We confine the proof to the second equation (the first one follows by the same

reasoning). Let us define B :=
∫ 1

0
[B(x)]2dx and let B1, B2, ... be i.i.d. copies of B. Then

S(1) d
=

∞∑
i=1

λiBi, S(2) d
= (4λ)B,

where λ1 ≥ λ2 ≥ ... are defined in Theorem 4.1 and λ in Theorem 4.4. For simplicity, we
set λ = 1. According to eq. (49) in [44] we can write for large x

1− Λ(2)(x) =
c1 exp(−c2x)(1 +O(1/x))√

x
,(B.33)

for absolute constants c1, c2. Now, let us investigate Λ(1). Therefore, let us assume that
there exists an η > 0 such that c3 :=

∑
i≥1 λii

η < ∞ and set cL := 3c3. Now, it follows
that

1− Λ(1)(cLx) = P
(
S(1) > cLx

)
= P

( ∞∑
i=1

λiBi > (cLx/c3)
∞∑
i=1

λii
η
)

=P
( ∞∑
i=1

λi(Bi − 3xiη) > 0
)
≤

∞∑
i=1

P
(
λiBi > 3xiηλi

)
=

∞∑
i=1

c1 exp(−3c2i
ηx)(1 +O(1/x))√
[3xiη]

=
exp(−2c2x)√

x

∞∑
i=1

c1 exp(−c2x[3iη − 2])(1 +O(1/x))√
3iη

.

The series on the right is of size O(1) and the first factor decays at a rate exp(−2c2x),
which comparing it to (B.33) yields the desired result.

Finally, we have to show that the eigenvalues (λi)i∈N have indeed the property that
for some η > 0 it holds that

∑
i≥1 λii

η < ∞. This follows directly from the fact that the

asymptotic covariance kernel of F̂1 is Lipschitz continuous (defined in Theorem B.1; the
verification of the Lipschitz property is easy). It thus satisfies the conditions of Theorem
3.2 in [18] and hence there exists a sufficiently large constant c > 0 that |λi| ≤ ci−2
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C Implementation

In this section, we provide details on the implementation of our approach. In the following,
for a matrix A ∈ RL×K , we refer to the ℓ–th row as A[ℓ, ], to the k–th column as A[, k]
and to the entry Aℓ,k as A[ℓ, k]. When applying a function f : R → R to a vector or
matrix, we apply it entry-wise. The Euclidean norm and inner product are denoted by
∥ · ∥ and ⟨·, ·⟩, respectively.

We begin by transforming our raw data into estimates of the quadratic variation pro-
cess, Q̂ (appearing in (3.6)) in Algorithm 1.

Algorithm 1 Empirical Quadratic Variation {Q̂i(k/K) : i = 1, . . . , N, k = 1, . . . , K}
input: N (number of curves), K (number of measurements), R ∈ RN×(K+1) (matrix of
observations {Ri(k/K) : i = 1, . . . , N, k = 0, . . . ,K})
output: Quadratic variation matrix Q ∈ RN×K

function Q-Functions(N , K, R)
Define SI ∈ RN×K with 0 entries
for l = 1, . . . ,K do
SI[, l] := (R[, l + 1]−R[, l])2

end for
Define Q ∈ RN×K with Q[, 1] = SI[, 1], 0 otherwise
for l = 2, . . . ,K do

Q[, l] := Q[, l − 1] + SI[, l]
end for

return Q
end function

Algorithm 2 below transforms the estimated quadratic variation into the normalized ver-
sion F̂i, appearing in (4.1). This quantity is used as inputs of the test of hypothesis H

(1)
0 .

Algorithms 3, 4 and 5, respectively, calculate the CUSUM statistic Ŝ(1), the empirical p-
value p̂(1) and the estimator θ̂(1). In the estimation of p̂(1) there exist two user-determined
parameters: r, the number of simulations for the limiting distribution and B, a dimension
reduction parameter that is used to truncate the infinite sum in the definition of Ŝ(1) (see
(4.5)). As defaults, we recommend using r = 1000 and choosing B large enough such
that at least 95% of the empirical variance is explained. More precisely, we pick B as the
smallest value s.t. ∑B

b=1 λ̂b
Tr[ĉF ]

≥ 95%

where Tr refers to the trace of a covariance kernel ĉF , defined as
∫ 1

0
ĉF (u, u)du. The

empirical eigenvalues and the estimator ĉF are defined in Algorithm 4.
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Algorithm 2 {F̂i(k/K) : i = 1, . . . , N, k = 1, . . . , K}
input: N (number of curves), K (number of measurements), Q ∈ RN×K (output of Algorithm
1)
output: The standardized quadratic variation matrix F ∈ RN×K

function F-Functions(N , K, Q)
Define F ∈ RN×K with 0 entries
for n = 1, . . . , N do

for k = 1, . . . ,K do
F [n, k] := Q[n, k]/Q[n,K]

end for
end for

return F
end function

Algorithm 3 Test statistic Ŝ(1)

input: N (number of curves), K (number of measurements), F ∈ RN×K (output of Algorithm
2)
output: Statistic Ŝ(1)

function F-CUSUM(N , K, F )
Define PS ∈ RN×K with PS[1, ] := F [1, ] and otherwise 0 entries
for n = 2, . . . , N do

PS[n, ] := PS[n− 1, ] + F [n, ]
end for
Define S = 0
for n = 1, . . . , N do

S = S + ∥PS[n, ]− (n/N)PS[N, ]∥2
end for
Ŝ(1) = S/N2

return Ŝ(1)

end function
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Algorithm 4 Empirical p-value p̂(1)

input: N (number of curves), K (number of measurements), F ∈ RN×K (output of Algorithm
2), B (dimension reduction parameter), r (simulation number for p-values)
output: p̂(1), empirical p-value for statistic Ŝ(1)

function F-Cov(N , K, F , B)
Define C ∈ RK×K with 0-entries
for n = 2, . . . , N do

C = C + (F [n, ]− F [n− 1, ]) · (F [n, ]− F [n− 1, ])⊤.
end for
Collect the B largest eigenvalues of ĉF := C/(2NK) in the vector vλ := (λ̂1, . . . , λ̂B)

return vλ
end function
function Int-BB(B, N)

Define vB ∈ RB with 0-entries
for rep = 1, . . . , B do

Define vrep = (Brep(0), Brep(1/N), Brep(2/N), . . . , Brep(1)) (where B1, . . . , BB are
independent Brownian Bridges)

vB[rep] = ∥vrep∥2/N
end for

return vB
end function
function pval-1(N , K, B, r, F )

Define vr ∈ Rr with 0-entries
Calculate vλ = F-Cov(N,K,F,B)
for rep = 1, . . . , r do

Generate fresh vB =Int-BB(B,N)
vr[rep] = ⟨vλ, vB⟩

end for
Order vr with entries in decreasing order
Calculate c =F-CUSUM(N,K,F )
Determine i∗ = argmin{|c− vr[i]| : i = 1, . . . , r}
p̂(1) := i∗/r

return p̂(1)

end function
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Algorithm 5 Change point estimator θ̂(1)

input: N (number of curves), K (number of measurements), F ∈ RN×K (output of Algorithm
2)
output: Change point estimator θ̂(1)

function F-CP(N , K, F )
Define PS ∈ RN×K with PS[1, ] := F [1, ] and otherwise 0 entries
for n = 2, . . . , N do

PS[n, ] := PS[n− 1, ] + F [n, ]
end for
Define vN ∈ RN with 0 entries
for n = 1, . . . , N do

Set vN [n] = ∥PS[n, ]− (n/N)PS[N, ]∥2
end for
n∗ = argmax{vN [n] : n = 1, . . . , N}
θ̂(1) = n∗/N

return θ̂(1)

end function

Next, we turn to the test of H
(2)
0 , beginning with the calculation of the logarithmized

total variation log(Q̂i(1)), appearing in (4.10), then calculating the CUSUM statistic

Ŝ(2) in (4.12), and subsequently approximating the p-value. These are implemented in
Algorithms 6, 7 and 8. Algorithm 9 entails the (potential) time change θ̂(2). When
approximating the p-value, we call the LAMBDA-function, that gives an estimate of the
long-run variance (4λ), where λ is defined in (4.14). There exist many preimplemented
methods in statistical softwares to approximate the long–run variance and hence we do
not select any specific method.

Algorithm 6 {log Q̂i(1) : i = 1, . . . , N}
input: N (number of curves), Q ∈ RN×K (output of Algorithm 1)
output: Log total quadratic variation, LTQ ∈ RN
function Log–TQV(N , Q)

Define LTQ ∈ RN with LTQ = logQ[,K]
return LTQ
end function
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Algorithm 7 Test statistic Ŝ(2)

input: N (number of curves), LTQ (output of Algorithm 6)
output: Statistic Ŝ(2)

function logQ-CUSUM(N , LTQ)
Define PS ∈ RN with PS[1] = LTQ[1] and otherwise 0 entries
for n = 2, . . . , N do

PS[n] = PS[n− 1] + LTQ[n]
end for
Define S = 0
for n = 1, . . . , N do

S = S + |PS[n]− (n/N)PS[N ]|2
end for
Ŝ(2) = S/N2

return Ŝ(2)

end function

Algorithm 8 Empirical p-value p̂(2)

input: N (number of curves), LTQ (output of Algorithm 6), r (simulation number for p-
values)
output: p̂(2), p-value for statistic Ŝ(2)

function pval-2(N , B, r, LTQ)
Calculate λ̃ = LAMBDA(LTQ)
Define vr ∈ Rr with 0-entries
for rep = 1, . . . , r do

Generate fresh vB :=Int-BB(1, N)
vr[rep] = λ̃ · vB

end for
Order vr with entries in decreasing order
Calculate c =LOGQ-CUSUM(N,K,F )
Determine i∗ = argmin{|c− vr[i]| : i = 1, . . . , r}
p̂(2) = i∗/r

return p̂(2)

end function

56



θ̂(1)

F̂ Ŝ(1)
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Figure 4: Flowchart of our inference procedure, with arrows indicating input relations.

Algorithm 9 Change point estimator θ̂(2)

input: N (number of curves), LTQ (output of Algorithm 6)
output: Change point estimator θ̂(2)

function logQ-CP(N , LTQ)
Define PS ∈ RN×K with PS[1] = LTQ[1] and otherwise 0 entries
for n = 2, . . . , N do

PS[n] = PS[n− 1] + LTQ[n]
end for
Define vN ∈ RN with 0 entries
for n = 1, . . . , N do

Set vN [n] = |PS[n, ]− (n/N)PS[N, ]|2
end for
n∗ = argmax{vN [n] : n = 1, . . . , N}
θ̂(2) = n∗/N

return θ̂(2)

end function
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Finally, in Algorithms 10 and 11, we combine the p-values and change point estimators
to the pooled change point estimator and the pooled test of H0. As before, we call q1−α
the upper α-quantile of the chi-squared distribution with four degrees of freedom.

Algorithm 10 Change point estimator θ̂

input: θ̂(1) (output of Algorithm 5), θ̂(2) (output of Algorithm 9), p̂(1) (output of Algorithm
4), p̂(2) (output of Algorithm 8)
output: Change point estimator θ̂
function CP(θ̂(1),θ̂(2),p̂(1),p̂(2))

Define θ̂ = p̂(1)

p̂(1)+p̂(2)
θ̂(2) + p̂(2)

p̂(1)+p̂(2)
θ̂(1)

return θ̂
end function

Algorithm 11 The Statistic Ŝ and test decision

input: p̂(1) (output of Algorithm 4), p̂(2) (output of Algorithm 8), α (nominal level)
output: Statistic Ŝ, and test decision
function S(p̂(1),p̂(2), α)

Ŝ = −2{log(p̂(1)) + log(p̂(2))}
if Ŝ > q1−α then

Define decision = 1
else

Define decision = 0
end if

return (Ŝ, decision)
end function

D Details of the computation of test statistics and

critical values in Section 5

D.1 Additional information related to Section 5.1

Computation of
∫ t
0
σ(u)dW (u) We can avoid the numerical integral method (e.g.

Euler-Maruyama) to calculate the integral
∫ t
0
σ(u)dW (u). According to Dambis-Dubins-

Schwarz theorem, see e.g. Section 5.3.2 in [32], any continuous local martingaleM can be
written as a “time-changed” Brownian motion. In particular, if W is a Brownian motion
and σ isW -integrable then the result can be applied to X(t) =

∫ t
0
σ(u)dWi(u). This gives

∀t,
∫ t

0

σ(u)dW (u) = W

(∫ t

0

σ2(u)du

)
a.s.
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Thus, generating from X(t) =
∫ t
0
σ(u)dW (u) reduces to generating from Brownian

motion. Additionally, Brownian motion admits independent and normally distributed
increments. It is enough to generate independent normal variables (precise) and then
sum them up (fast) to obtain discrete observations of Brownian paths. Specifically, the
increments are in the form∫ t

0

σ(u)dW (u)−
∫ s

0

σ(u)dW (u) = W

(∫ t

0

σ2(u)du

)
−W

(∫ s

0

σ2(u)du

)
, 0 ≤ s < t < 1,

that are normally distributed with mean zero and variance
∫ t
s
σ2(u)du, and non-overlapping

increments are independent.

Based on our discretization on t, the increment can be further spelled out as

X(tk)−X (tk−1) = W

(∫ tk

0

σ2(u)du

)
−W

(∫ tk−1

0

σ2(u)du

)
= W (G(tk))−W (G(tk−1)), k = 1, ..., K.

Denote such increment as d(tk) = X (tk)−X(tk−1). We can simulate d(tk) by independent
normal variables, i.e. d(tk) ∼ N (0, G(tk) − G(tk−1)). Therefore, the trajectory of X(tk)
is the summation of those independent normal variables

X(tk) =
k∑
s=1

d(tk), k = 1, ..., K.

Computation of
∫ 1

0
B2(u)du Following [22], we use the expansion discussed in [42], pp

210–211, to approximate the squared integral of Brownian bridge,∫ 1

0

B2(u)du ≈
J∑
j=1

Z2
j

j2π2
,

where {Zj}∞j=1 are i.i.d. standard normal random variables. There is thus no need to
simulate the trajectories and to perform numerical integration. In our work, we used
J = 500.

Simulation procedure for testing a shape change H
(1)
0

1. Simulate the data {Ri(tk), i = 1, ..., N, k = 0, ..., K} based on the DGP.

2. Calculate the realized quadratic variation processes

Q̂i(t) =
K∑
k=1

|Ri(tk)−Ri(tk−1)|2 I {tk ≤ t} , t ∈ [0, 1], i = 1, 2, ..., N.
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3. Calculate the empirical standardized quadratic variation

F̂i(t) =
Q̂i(t)

Q̂i(1)
, t ∈ [0, 1], i = 1, 2, ..., N.

4. Calculate the test statistic Ŝ(1)

Ŝ(1) :=
K

N2

N∑
n=1

∫ 1

0

( n∑
i=1

F̂i(u)−
n

N

N∑
i=1

F̂i(u)
)2
du.

5. We use the following first-order difference estimator(FDE)1:

cF (u, v) =
1

2(N − 1)

N∑
i=2

{Fi(u)− Fi−1(u)} {Fi(v)− Fi−1(v)} .

6. Collect the first largest B eigenvalues {λ1, ..., λB} of cF (u, v) so that∑B
ℓ=1 λℓ∑K
ℓ=1 λℓ

≥ 95%.

7. Approximate the limit distribution of Ŝ(1) by simulating the following quantity by
r = 5000 times

B∑
ℓ=1

λℓ

J∑
j=1

Z2
j

j2π2
,

and use its empirical distribution to obtain the p̂(1).

8. If reject H
(1)
0 , perform the change point estimator

θ̂(1) =
1

N
argmax
n∈{1,...,N}

∫ 1

0

( n∑
i=1

F̂i(u)−
n

N

N∑
i=1

F̂i(u)
)2
du.

9. Repeat Steps (1)–(8) for M = 5000 times to obtain the empirical rejection rate.

1I think here we can divide by 2(N − 1), rather than 2N . This is because there are only N − 1 of
first-order difference observations. Based on a small-scale simulation (not reported), I notice that dividing
by 2(N − 1) gives slightly better size than dividing by 2N .
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Simulation procedure for testing a change in total volatility H
(2)
0

1. Use
{
Q̂i(t)

}N
i=1

calculated above to obtain
{
log Q̂i(1)

}N
i=1

.

2. Calculate the test statistic Ŝ(2)

Ŝ(2) :=
1

N2

N∑
n=1

( n∑
i=1

log(Q̂i(1))−
n

N

N∑
i=1

log(Q̂i(1))
)2
.

3. Calculate the long-run variance of
{
log Q̂i(1)

}N
i=1

by

λ̂ = γ̂(0) + 2
N−1∑
h=1

K

(
h

H

)
γ̂(h),

where

γ̂(h) =
1

N

N−h∑
i=1

(
log Q̂i(1)−

1

N

N∑
i=1

log Q̂i(1)

)(
log Q̂i+h(1)−

1

N

N∑
i=1

log Q̂i(1)

)
.

4. Approximate the limit distribution of Ŝ(2) by simulating the following quantity by
r = 5000 times

λ̂
J∑
j=1

Z2
j

j2π2
,

and use its empirical distribution to obtain the p̂(2).

5. If reject H
(2)
0 , perform the change point estimator

θ̂(2) =
1

N
argmax
n∈{1,...,N}

( n∑
i=1

log(Q̂i(1))−
n

N

N∑
i=1

log(Q̂i(1))
)2
,

6. Repeat Steps (1)–(5) for M = 5000 times to obtain the empirical rejection rate.

Simulation procedure for testing the global null hypothesis H0

1. Calculate the test statistic Ŝ by

Ŝ = −2{log(p̂(1)) + log(p̂(2))}.

2. Use its limit distribution χ2
4 to obtain the p-value of the global test.

3. If reject H0, perform the pooled change point estimator

θ̂ =
p̂(1)

p̂(1) + p̂(2)
θ̂(2) +

p̂(2)

p̂(1) + p̂(2)
θ̂(1).

4. Repeat Steps (1)–(3) for M = 5000 times to obtain the empirical rejection rate.
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D.2 Distribution of change point estimators

Now we validate the convergence of the change point estimators, θ̂1, θ̂2, θ̂, under different
alternative hypotheses. Figure 5 provides the violin plot (with included boxplot) for θ̂1
under HA,1 with θ = 0.5. We can observe that θ̂1 converges to the true θ = 0.5 as N

and K increases. Figure 6 provides the violin plot (with included boxplot) for θ̂2 under
HA,2 with θ = 0.5. As K is not relevant for HA,2, we only present θ̂2 in terms of different

N , and there is a converge in θ̂2 to the true θ = 0.5. Figure 7 provides the violin plot
(with included boxplot) for θ̂ under HA,3 with θ = 0.5. We can observe that θ̂ is already
very close to θ = 0.5, even under small N and small K. The density is very concentrated
around θ = 0.5, and get more concentrated for larger N small K.
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Figure 5: Distribution of θ̂1 under HA,1 with θ = 0.5. Top panel: K = 26; Bottom left
panel: K = 39; Bottom right panel: K = 78.
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Figure 6: Distribution of θ̂2 under HA,2 with θ = 0.5.
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Figure 7: Distribution of θ̂ under HA,3 with θ = 0.5. Top panel: K = 26; Bottom left
panel: K = 39; Bottom right panel: K = 78.
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