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When granular materials of shape-anisotropic grains are sheared in a split-bottom shear cell, a
localized shear band is formed with a depression at its center. This effect is closely related to
the alignment of the particles with aspect ratio (AR), which, in turn, influences the local packing
density, the stress distribution, and the system’s overall bulk rheology. Particles with large AR tend
to align with the shear direction, which increases the packing density in the shear band and affects
rheological properties like stress, macroscopic friction coefficient, and effective viscosity. A scaling
law correlates particle AR to macroscopic friction and effective viscosity, revealing shear-thinning
behavior in bulk and near the surface.
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I. INTRODUCTION

Granular materials, consisting of shape-anisotropic particles such as elongated grains, are used in a wide range of
applications, including the food industries, chemical industry, and geology [1–3]. Shearing, pouring, or shaking of such
particles induce local or global orientational orders, resulting in anisotropic microstructures that influence material
stress behavior and flow characteristics [4–10]. Specifically, shearing in a split-bottom shear cell causes such elongated
grains to accumulate in the center, forming a heap [11–13]. Wortel et al. first reported this phenomenon, attributing it
to a secondary convective flow driven by an out-of-plane misalignment between particle orientation and flow streamline
[13]. A significant elevation in the surface profile, approximately 30% higher than the initial filling height, was observed
at the central region of the shear cell, resulting from secondary flows induced by shearing prolate and oblate grain
shapes [11]. Concurrently, This elevation corresponds to a depression observed on the shear band surface, which is
absent in the flow of spherical particles[11, 13]. The secondary flow in granular media has been studied in Couette cell
and split-bottom shear cell with densely packed spherical particles [14–16], and in nonspherical isotropic grain shapes
[17]. While research has focused on the influence of particle shape, alignment, and secondary flows, the underlying
mechanisms for changes in the shear band surface profile of anisotropic particles in the split-bottom shear cell remain
elusive.

When the stress exceeds the yield threshold, granular materials flow like non-Newtonian fluids [18, 19]. Specifically,
their viscosity, η = τ/γ̇, decreases as the shear rate γ̇ increases, a phenomenon known as shear-thinning [20]. This
effect is quantified by the inertial number, I, where viscosity is inversely related to the strain rate, τ/γ̇ ∝ I−α, with
α = −1 or -2, depending on the local confining pressure [21]. The shear-thinning behavior is influenced by the particle
shape, the particle interactions, and gravity [20, 22, 23]. Despite its importance, by now the effect of the particle
shape on the viscosity and shear-thinning in granular flows is not well known.

Cylindrical split-bottom shear cells have been used to study the effects of particle shape on granular behavior, such
as dilatancy, orientational order, secondary flows, and stress distribution [7, 10, 11, 13, 24–28]. Expanding on this
approach, subsequent studies have adopted linear split-bottom shear cells (LSC), as demonstrated in [14, 29, 30].
These configurations have similarities with cylindrical ones and offer the advantage of periodic boundary conditions
along the flow direction.

We use the LSC to investigate how particles with different aspect ratios (AR) form a depression on the shear
band surface. We analyze the flow dynamics of elongated particles, focusing on understanding their behavior from
both micro and macro perspectives. We also explore the rheology of non-Newtonian granular flows with anisotropic
particles, drawing parallels with stress responses observed with secondary flows in non-Newtonian fluids, known as
the Weissenberg effect. Our results suggest a scaling law for the effective viscosity of anisotropic particles.
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II. NUMERICAL SETUP AND MATERIALS

(a) (b)

(c) (d)

FIG. 1: (a) Sketch of the linear split-bottom shear cells (LSC), where ‘O’ represents the split position, Vx is the
shear velocity, and g is the acceleration due to gravity. (b) Spherical particles constitute the walls of the shear cell.
The shear cell is filled with (c) spherical particles, showing a flat surface, and (d) elongated particles, showing a

depression on the surface of the shear band.

The LSC consists of two L-shaped walls separated by a split through the origin ‘O’, sliding past each other, as
shown in Figure 1 (a). The space between the walls is filled with particles, deposited under gravity, and then sheared.
The left and right L-shaped walls move in opposite directions at velocities −Vx/2 and Vx/2, respectively, where
Vx = 0.038m/s is the shear velocity. The width, L, of the box, the filling height, H, and the coordinates are defined
in Figure 1(a): The x-direction aligns with the flow, the y-direction is lateral to it, and the z-direction 1s orthogonal to
the bottom wall. The gravitational force acts downward in the negative z-direction. The walls are made of spherical
particles of diameter dp = 8.55mm with a volume equal to that of the bulk particles, as shown in Figure 1(b). The
shear cell dimensions are 25dp, and periodic boundary conditions are applied in the x-direction. In the steady-state
condition, a shear band emerges from the split position, extending laterally and upwards as shown by the regions of
velocity gradient in Figure 1(c) and (d).
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A. Contact model and material parameters

We use the visco-elastic Hertz-Mindlin contact model [31, 32] to calculate the normal and tangential elastic contact
forces between particles. The model defines the normal force as

F⃗n = min

(
0,−ρξ3/2 − 3

2
Anρ

√
ξξ̇

)
e⃗n , (1)

where ξ = Ri +Rj − |r⃗i − r⃗j | is the compression of two interacting particles i, j of radii Ri and Rj at positions r⃗i and
r⃗j , e⃗n = (r⃗i − r⃗j)/|r⃗i − r⃗j | is the normal unit vector, An = 3× 10−4s is the normal dissipative parameter, calculated
as in [33]. The effective stiffness of the Hertzian contact model is

ρ =
4

3
E∗

√
R∗ (2)

where E∗ is the effective elastic modulus, and R∗ is the effective radius. The effective elastic modulus E∗ is given by

E∗ =

(
1− ν2i
Ei

+
1− ν2j
Ej

)−1

, (3)

where Ei is the elastic modulus and νi is the Poisson’s ratio of the material of particle i.
We model the tangential viscoelastic forces using the no-slip expression by Mindlin [34] for the elastic part and

Parteli and Pöschel [35] for the tangential dissipative constant At ≈ 2AnE
∗, which are capped by the static friction

force. The tangential force is given by

F⃗t = −min

[
µ|F⃗n|,

∫
8G∗

√
R∗ξ ds+At

√
R∗ξvt

]
e⃗t , (4)

where µ is the friction coefficient, G∗ is the effective shear modulus calculated as G∗ =
(

2−νi

Gi
+

2−νj

Gj

)−1

, which for

two identical materials in contact simplifies to G∗ = G
2(2−ν) and ds is the tangential relative displacement of the

particles.
The material parameters are given in Table I.

TABLE I: DEM simulation parameters.

variable unit value

elastic modulus (E) MPa 10

sliding friction coefficient (µ) - 0.30

Poisson’s ratio (ν) - 0.35

particle density (ρ) kg/m3 850

For the material density and friction coefficient, we used the values of wooden pegs [11]. The reduced Young’s
modulus was chosen to be smaller to keep the computer time feasible.

III. PARTICLE SHAPES

We perform numerical simulations by solving Newton’s equation of motion in the LSC. The particle AR is varied in
the interval [1, 5]. Contact detection of particles with nonspherical shapes is numerically difficult. To overcome this
issue, these particles are approximated by merging multiple spheres (subspheres) into a single nonspherical particle
[36–38]. We use particles with different AR, represented by both non-overlapping and overlapping subspheres [39, 40].
For instance, the former correlates the number of spheres with AR, while the latter uses 3, 5, 7, and 9 spheres to
represent AR= 2, . . . 5, respectively. We also study particles with non-integer AR, such as 1.2, 1.4, 1.6, and 1.8, using
overlapping subspheres. Details of these particle configurations are shown in Figure 2. We simulate 4318 particles for
each AR. All particles have a uniform volume to maintain consistent hydrostatic pressure across all simulations.
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FIG. 2: Multisphere particles for aspect ratio AR ∈ (1, 5) with both overlapping and non-overlapping subspheres.

IV. MICRO-MACRO TRANSITION

To extract the macroscopic fields, we used a coarse-graining technique to obtain the macro-parameters through
precise calculation of sphere overlap volumes and mesh elements, as outlined by Strobl et al. [41]. We simulated the
system for 100 s real-time. To obtain steady-state data, we average over the x-direction and over time from 80 to
100 s, generating continuum fields as Q(y, z). We focus on the regime beyond the critical state, where the material
deforms continuously at a constant strain rate without further stress changes. This is typically observed at the shear
band’s center. We define the shear band region as the region where the local strain rate at height z exceeds the critical
strain rate, γ̇c(z) ≡ 0.8γ̇max(z), where γ̇max(z) is the maximal value at the given height z.

V. RESULTS AND DISCUSSIONS

A. Shear-induced particle alignment

The aim of our investigations is to clarify the origin of the depression in the spatial proximity of the shear band. We
start by analyzing the particles’ alignment with the shear direction. The alignment angle θx measures the orientation

of the principal vector of an elongated particle, P⃗v, relative to the shear direction, X⃗:

θx ≡ π

2
−

∣∣∣∣∣π2 − arccos

(
P⃗v · X⃗
|P⃗v||X⃗|

)∣∣∣∣∣ . (5)

The limits, θx = 0 and θx = π/2, indicate perfect alignment and misalignment, respectively.
We explored the relation between the particle alignment and AR of elongated particles by averaging along the LSC’s

x and z directions. The correlation between θx and the particle’s position in the y direction is shown in Figure 3(a).
Particles with a smaller AR maintain a uniform, θx across all y positions. However, for particles with larger AR
(3,4,5) we find a clear decrease in θx in the vicinity of the shear band. For instance, for AR=5, θx inside the shear
band is 44% less (θx ≈ 0.15π) compared to outside the shear band where θx ≈ 0.27π. This indicates that elongated
particles align prominently with the shear direction inside the shear band, emphasizing the shear band’s key role in
the orientational ordering of particles.

The global average orientation of the particles with the shear direction, defined by

⟨θx⟩ ≡
1

N

N∑
i=1

θx,i . (6)

decreases with increasing AR for particles regardless of their subsphere configuration, see Figure 3(b), in agreement
with earlier studies [7].
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(a) (b)

FIG. 3: (a) Particle alignment angle θx as a function of the y-position. (b) Global average orientation angle ⟨θx⟩ as
a function of the AR for particles with non-overlapping and overlapping subspheres. The dashed line shows a fit.

B. Packing density

The packing density of particles depends on the particle shape (AR), the friction coefficient, and the shear rate.
Figure 4 shows the packing density distribution across the yz plane of LSC, averaged over the x direction, revealing in-
creased filling height for large AR. The dashed lines indicate the shear band location calculated from the dimensionless
velocity profile in the steady state [29, 42].

For spherical particles, Figure 4(a), Reynolds dilatancy causes the material to expand under shear leading to low
density in the shear band region. Spherical particles rearrange under shear, as they can easily rotate, translate, and
slide over each other, therefore, the surface is uniformly flat.

For particles with larger AR, there are two competing effects within the shear band: dilation due to shearing and
compaction due to reorientation with the shear direction, resulting in less pronounced dilatation [22, 23]. For AR=5,
Figure 4(d), the compaction effect dominates the Reynolds dilatancy, leading to increased packing density inside and
adjacent to the shear band. This combination causes a depression of the surface in the shear band region. Our findings
are in qualitative agreement experiments by Wegner et al. [10].

C. Stress analysis

1. Normal stress

Normal stress differences, defined as the differences between the diagonal components of the stress tensor, are
fundamental to rheology and, thus, to the analysis of the Weissenberg effect for non-Newtonian fluids [43]. In
this section, we investigate how these stress differences manifest in granular systems. We examine all the possible
combinations of normal stress differences,

N1 ≡σxx − σyy

N2 ≡σyy − σzz

N3 ≡σzz − σxx

(7)

as functions of the shear stress

τ ≡
√
σ2
xy + σ2

xz , (8)

for various AR, see Figure 5(a-c).
where σxx, σyy, and σzz are the stresses in shear, lateral, and orthogonal directions, respectively.
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(a) (b)

(c) (d)

(e)

FIG. 4: Packing density in the yz-plane, averaged over x for different AR. The dashed lines indicate the shear band
region calculated from the dimensionless velocity profile in the steady state [29, 42].

For all AR,N1 shows consistently negative values (see Figure 5(a)), increasing in magnitude with the AR. Conversely,
N2 maintains positive values for all AR (see Figure 5(b)). Interestingly, N3 shifts systematically from negative to
positive values with increasing AR from 1 to 5 (see Figure 5(c)). Notably, for spheres, AR=1, all three quantities are
nearly zero.

The behaviors of N1 and N3 are largely influenced of σxx, shown Figure 5(d) as a function of the shear stress. For
spheres, AR=1, σxx dominates in magnitude. With increasing AR, the particles align along the streamline, easing
the flow of elongated particles in the shear direction. Consequently, this diminishes σxx, affecting both N1 and N3

for larger AR.

For the ordinary Weissenberg effect, where polymer solutions climb along a rotating vertical rod, normal stress
differences play a central role [43]. The climbing results due to positive N1 and negligible N2 [43]. In contrast, dense
suspensions of non-colloidal spheres, where N2 < N1 < 0, exhibit an inverse Weissenberg effect, termed as rod dipping
effect [43]. In our granular system, we observe significant values of N1 and N3 for large AR, while N1 ≈ N3 ≈ 0
for spheres, AR=1. These stress differences could indicate the granular analogous to the reverse Weissenberg effect
(rod dipping effect), where the orientation and shape of particles cause the stress differences. An in-depth analysis
is needed to find a more definitive analogy between the classical Weissenberg effect and the observed phenomena in



7

granular matter.

(a) (b)

(c) (d)

FIG. 5: (a-c) Normal stress differences, N1, N2, N3, and (d) σxx as functions of the shear stress, τ , for various AR.

2. Shear stress as a function of normal stress

The correlation between the shear stress and the normal stress,

P ≡ 1

3
(σxx + σyy + σzz) , (9)

is key to the flow properties of granular materials. Figure 6(a) shows a nearly linear increase of the local shear stress
as a function of the local normal stress, τ = τ(P ), where the slope depends on the AR. This linearity allows for the
definition of a macroscopic friction coefficient, µ ≡ τ/P , that quantifies the material’s resistance to motion under
shear at a large scale.

Drawn as a function of the AR, Figure 6(b), µ increases and nearly saturates at larger values, in agreement with
experimental results by Hidalgo et al. [44]. The increase of µ with the AR can be attributed to the additional shear
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(a) (b)

FIG. 6: (a) Shear stress, τ , as a function of pressure, P , for various AR. (b) The macroscopic friction coefficient, µ,
increases and saturates with the AR. The lines show fits for both overlapping and non-overlapping subspheres.

stress required for aligning non-spherical particles with the shear direction. For a given AR, particles with overlapping
subspheres exhibit a larger friction coefficient, µ, than non-overlapping due to the larger number of individual particle
contacts in the granular packing, which increases the shear resistance.

3. Effective viscosity

We explore the effective viscosity, η ≡ τ/γ̇ as a function of pressure and strain rate through the inertial number I.
In granular systems, where the viscosity depends on the confining pressure, it is defined as

I =
γ̇dp√
P/ρ

. (10)

For all values of the AR, the effective viscosity as a function of the inertial number, η(I), is a decaying function,
see Figure 7(a), indicating shear-thinning behavior. At any given I, η increases with the AR, that is, granular flows
of elongated particles reveal a larger viscosity than flows of spheres. This behavior aligns with the same reasoning
explaining the increase of µ with AR.

Figure 7(b) shows the viscosity, scaled by the friction coefficient, η/µ, as a function of I to achieve an AR-
independent function. The solid and dashed lines are linear fits of two branches with slopes -1 and -2, corresponding
to different shear-thinning behaviors, due to the confining pressure (see inset). This result aligns well with previous
studies on dry and wet granular flows [20, 21].

VI. CONCLUSIONS

The influence of varying aspect ratios (AR) on particle alignment, packing density, stress, and effective viscosity
has been studied. Using a multisphere approach, we modeled particles with both non-overlapping and overlapping
subspheres, analyzing how depressions form on the shear band surface when sheared in LSC.

We observed that, with an increase in AR, particles align more readily with the shear direction, mainly within
the shear band, indicating higher shear-induced alignment of elongated particles. The global average alignment angle
decreases with an increase in AR. This behavior is consistent across multisphere configurations of both non-overlapping
and overlapping subspheres.

Spherical particles exhibit dilation within the shear band due to Reynolds dilatancy. However, as the AR increases,
particle alignment with the shear direction induces a compaction effect. This leads to a competition between dilatancy
and compaction. For higher AR, particularly AR=5, the compaction effect dominates, resulting in denser packing
within and adjacent to the shear band.



9

(a) (b)

FIG. 7: (a) Effective viscosity as a function of inertial number η(I) for various values of AR. (b) Scaled effective
viscosity η/µ as a function of I. Solid and dashed lines show linear fits with slopes -1 and -2, indicating different

shear-thinning regimes. The inset shows the pressure-dependent regime of the shear-thinning behavior.

Rheological analysis reveals that normal stress differences, especially N1 and N3, are significantly influenced by
the AR. Particle alignment eases the flow, reducing the stress in the shear direction σxx. The macroscopic friction
coefficient µ(AR) increases with the AR, for both types of multispheres configuration. For a given AR, the overlapping
subspheres exhibit a higher friction coefficient, µ, than the non-overlapping ones due to an increased number of particle
contacts.

Granular flows exhibit shear-thinning behavior across all AR. Elongated particles, particularly with AR=5, exhibit
higher viscosity (η) than spherical particles for a given inertial number, I. Scaling the effective viscosity η with the
macroscopic friction coefficient µ(AR), normalizes the influence of AR, showing that scaled effective viscosity η/µ
follows a power-law behavior similar to Bagnold’s scaling with I.
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[2] J. Torres-Serra, E. Romero, A. Rodŕıguez-Ferran, J. Caba, X. Arderiu, J.-M. Padullés, and J. González, Flowability of
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