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Abstract

We study the geometry of Calabi–Yau conifold transitions. This deformation process is
known to possibly connect a Kähler threefold to a non-Kähler threefold. We use balanced
and Hermitian–Yang–Mills metrics to geometrize the conifold transition and show that the
whole operation is continuous in the Gromov–Hausdorff topology.

1 Introduction

Our discussion begins with the Kähler Calabi–Yau threefold. Our broad goal is to understand
the geometric properties of these complex manifolds as they undergo deformation. Various
mechanisms for the degeneration and resolution of Calabi–Yau structures exist, and in this
work we focus on the conifold transition.

A conifold transition is a process where a birational contraction of holomorphic curves is
followed by a deformation of complex structure. We denote a conifold transition by

pX Ñ X0 ù Xt.

In this process, holomorphic curves in pX are mapped to singular points in the analytic spaceX0,
and the singularities are locally modeled by 0 P t

ř

z2i “ 0u Ă C4. The smoothings Xt deform
the complex structure of X0 in a way which is locally modeled by t

ř

z2i “ tu Ă C4.

As the initial threefold X̂ is deformed into Xt, its Hodge numbers undergo jumps. This implies
that distinct threefolds with varying topologies can be interconnected through this deformation
process. It is conjectured that all Kähler Calabi–Yau threefolds can be linked by conifold
transitions [CGH90, Rei87, GH88, Fri91], and for an introduction to conifold transitions, we
refer readers to [Ros06].

The goal of this work is to identify a suitable sense in which conifold transitions are continuous,
even though the Hodge numbers change discretely. This is a well-studied phenomenon in
string theory, and there are various string theoretic interpretations [GMS95, Str95, CdlO90,
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ABG23] of the smooth interpolation of string theory through topological change of Calabi–
Yau threefolds. From our perspective as differential geometers, we endow the Calabi–Yau
threefolds with special Riemannian metrics and study their degenerations through conifold
transitions.

Kähler metrics are not suitable for this purpose, as a conifold transition may connect a pro-
jective threefold to a non-Kähler complex manifold. A simple example is given by letting pX
be a smooth quintic threefold. In this case, b2p pXq “ 1, and so once holomorphic curves are
contracted, the resulting manifolds Xt have b2pXtq “ 0. For a more in-depth discussion of this
example, readers are directed to [Fri91].

There are nevertheless many examples where the resulting manifold Xt does admit a Kähler
structure, and in this case there exists a significant body of literature dedicated to understand-
ing the degeneration and resolution process via Kähler Ricci-flat metrics. For the local model
of the conifold transition, families of Calabi–Yau metrics were constructed by Candelas–de la
Ossa [CdlO90]. On compact Kähler threefolds, Kähler Ricci-flat metrics exist by Yau’s theorem
[Yau78], and the challenge is to carry these metrics through a conifold transition. The work of
Ruan–Zhang [RZ11b], Rong–Zhang [RZ11a] and J. Song [Son14, Son15] give the existence of
a sequence

p pX, pgaq Ñ pX0, d0q Ð pXt, gtq

where the metrics pga gt are smooth Kähler Ricci-flat metrics converging in the Gromov–
Hausdorff topology. The limiting length space pX0, d0q is the metric completion of pXreg, g0q,
where g0 is a singular Calabi–Yau metric constructed by Eyssidieux–Guedj–Zeriahi [EGZ09].
The metrics pga on the small resolution converge smoothly uniformly on compact sets away from
the exceptional curves by work of Tosatti [Tos09], and the metrics gt on the smoothings con-
verge smoothly uniformly on compact sets away from the singularities by work of Ruan-Zhang
[RZ11b] and Rong-Zhang [RZ11a].

For a survey on degenerations of Calabi–Yau metrics, we refer to [Tos18], and for recent work
on understanding Calabi–Yau metrics near isolated singularities we refer to e.g. [DS17, HS17,
NGG22, Fu23, CS23] and references therein.

The current work takes initial data to be a Kähler threefold pX and investigates conifold tran-
sitions emanating from pX without imposing a priori assumptions on the resulting space Xt.
This setup has the implication that Xt may or may not be Kähler. Instead of relying on Kähler
Ricci-flat metrics, the idea in [FLY12, CPY24] is to geometrize the conifold transition by a
pair of metrics:

p pX, pga, pHaq Ñ pX0, dg0 , dH0q Ð pXt, gt, Htq.

Here pg,Hq is a pair of metrics on T 1,0X solving

dω2 “ 0, FH ^ ω2 “ 0, (1)

where ω “ igjk̄dz
j ^ dz̄k. The balanced metrics pga and gt were constructed by Fu–Li–Yau

[FLY12]. The Hermitian-Yang–Mills metrics pHa and Ht were constructed by Collins, Yau and
the second named author [CPY24]. These non-Kähler equations are suggested by string the-
ory [Str86], and proposed by S.-T. Yau and collaborators to geometrize conifold transitions
[LY05, FLY12, CPY24, CGPY23]. Near the ordinary double points, both metrics are close
to the Candelas–de la Ossa [CdlO90] Kähler Ricci-flat local models, but there are also global
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non-Kähler corrections. In other words, g “ H solves (1) when they are both equal to a
Kähler Ricci-flat metric, and although the global geometry is necessarily non-Kähler, the so-
lution of [FLY12, CPY24] approximately returns to the Kähler Ricci-flat solution on the local
model.

Remark 1.1. There is a third equation constraining pg,Hq which appears in heterotic string
theory. This additional equation, named the anomaly cancellation equation, is conjectured to
be solvable through conifold transitions [LY05, YN10, FLY12] (see also e.g. [dlOS14, GF18,
GFM23, TY12, Pic24] for a mathematical introduction to these equations). It is further
conjectured that the pair pg,Hq can be rigidified in a suitable notion of cohomology class by
a uniqueness property once this additional equation is imposed [GFRST22].

Remark 1.2. Another approach to geometrizing conifold transitions via Chern-Ricci flat bal-
anced metrics is proposed in [Tos15, TW17, FWW10] with recent progress by Giusti-Spotti
[GS23]. We also remark that the anomaly flow [PPZ18a, PPZ18b] is another mechanism for
creating a canonical path of balanced metrics which has not yet been understood in the context
of conifold transitions.

Our main result is:

Theorem 1.3. Let pX be a compact Kähler Calabi–Yau threefold with finite fundamental
group. Let pX Ñ X0 ù Xt be a conifold transition. There exists a family of smooth met-
rics p pX, pga, pHaq for 0 ă a ă 1 and pXt, gt, Htq for 0 ă |t| ă ϵ solving

dω2 “ 0, FH ^ ω2 “ 0

such that as the parameters a and t are varied, the geometries pX, pga, pHaq and pXt, gt, Htq vary
continuously in the Gromov-Hausdorff sense and

p pX, pgaq Ñ pX0, dg0q Ð pXt, gtq

p pX, pHaq Ñ pX0, dH0q Ð pXt, Htq

as a, t Ñ 0 in the Gromov–Hausdorff topology. The length spaces pX0, dg0q and pX0, dH0q are
induced by a limiting Hermitian–Yang–Mills structure on ppX0qreg, ω0, H0q.

Our proof begins by analyzing the local models, which are Kähler Ricci-flat metrics on the
small resolution and smoothing of the affine cone t

ř

z2i “ 0u Ă C4. Once the local models are
understood, we move on to the global balanced and Hermitian-Yang-Mills structures pg,Hq.
These global metrics add non-Kähler corrections to the Kähler Ricci-flat local models by solving
a PDE on the global compact manifold: for the balanced metrics ω, the PDE involves the 4th
order Kodaira–Spencer operator, while for the metricH, the PDE is the Hermitian–Yang–Mills
equation. Our analysis relies on suitable estimates for these equations along degenerations. To
obtain continuity at a “ t “ 0, the main step is to obtain diameter bounds tending to zero near
the singular points, and the general approach is in the style of Song-Weinkove [SW13, SW14],
where exceptional sets are contracted along a sequence of metrics.
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2 Preliminaries

2.1 The Gromov–Hausdorff Topology

The Gromov–Hausdorff topology was introduced in 1975 by Edwards [Edw75], and was then
independently rediscovered by Gromov in the 1980’s. Since then, it has been an indispensable
tool in geometry. There has been growing interest in applications of the Gromov–Hausdorff
topology to Calabi–Yau manifolds starting with the work of Gross–Wilson [GW00], and we
note in particular the use of this topology in studying the continuity of conifold transitions of
Calabi–Yau threefolds (see [RZ11a, RZ11b, Son15]).

We will now introduce certain definitions and notions pertaining to Gromov–Hausdorff conver-
gence of compact metric spaces. Other sources for this material include e.g. [BBI01, Gro07,
GW00, Edw75, Pet06]. We will implicitly assume that all our metric spaces in this section
are compact, though generalizations exist for the non-compact case (c.f. pointed Gromov–
Hausdorff convergence).

Let pX, dq be a compact metric space. For A Ď X and ϵ ą 0, we set

BϵpAq “
ď

xPA

Bϵpxq,

where Bϵpxq “ tx1 P X | dpx1, xq ă ϵu is the ball of radius ϵ around x.

Definition 2.1. Let pX, dXq and pY, dY q be compact metric spaces and ϵ ą 0. A map f : X Ñ

Y is called an ϵ-isometry if

i) |dXpx, x1q ´ dY pfpxq, fpx1qq| ă ϵ for all x, x1 P X, and

ii) Y Ď BϵpfpXqq.

In general, ϵ-isometries need not be injective or even continuous.

Definition 2.2. The Gromov–Hausdorff distance dGH between two compact metric spaces
pX, dXq and pY, dY q is

dGHpX,Y q “ inftϵ ą 0 | There exist ϵ-isometries f1 : X Ñ Y, f2 : Y Ñ Xu.

The Gromov–Hausdorff distance dGH defines a metric, and hence a topology, on the set M of
isometry classes of compact metric spaces.

Remark 2.3. We note that only one of the ϵ-isometries in the previous definition is required
as given an ϵ-isometry f1 : X Ñ Y , one can construct a 3ϵ-isometry f2 : Y Ñ X. This in
essence scales the Gromov–Hausdorff metric dGH by a factor of 3, but both generate the same
topology on M.

2.2 Conifold Transitions

Conifold transitions describe an process wherein one Calabi–Yau threefold is gradually de-
formed into another, passing through an intermediate space having cone singularities (i.e. a
conifold).
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We briefly review certain facts about the geometry of conifold transitions. The exposition here
will follow [CPY24, FLY12, Fri91]. We begin with some definitions to fix the set-up of this
document.

Definition 2.4. A Kähler Calabi–Yau threefold pX is a compact complex manifold of complex
dimension 3 with finite fundamental group, trivial canonical bundle, and admitting a Kähler
metric.

Definition 2.5. A p´1,´1q-curve E P pX is a smooth rational curve E » P1 such that the
normal bundle N

E{ pX
» Op´1q ‘ Op´1q.

Around a p´1,´1q-curve E, there exists an open neighbourhood pU which is biholomorphic to
a neighbourhood of the zero section in the total space of the bundle

pV “ Op´1q ‘ Op´1q Ñ P1.

Given a collection of disjoint p´1,´1q curves tEiu Ă pX, we may contract them to points by
a blowdown map π : pX Ñ X0, where X0 is a singular space with isolated singular points at
si “ πpEiq.

In more detail, we identify a neighborhood of Ei with the model space pV and the blowdown
map π sends the complement of the zero section biholomorphically to the complement of the
origin in the conifold

V0 “

!

z P C4 |
ÿ

i

z2i “ 0
)

.

This map π can be holomorphically extended to all of pV by sending the zero section to the
origin in V0. The map π near Ei can be made explicit and we give the expression later in
(5). The result is that X0 has isolated ordinary double point (ODP) singularities si with local
neighborhoods biholomorphic to 0 P V0.

We next discuss how to smooth the singular space X0 by deforming its holomorphic structure.
The local model is a singular variety V0 which can be smoothed by considering the space

V “

!

pz, tq P C4 ˆ C |
ÿ

i

z2i “ t
)

.

The fiber over t is denoted Vt (considered as a subset of C4) and is smooth for all t ‰ 0.

Vt “

!

z P C4 |
ÿ

i

z2i “ t
)

.

This is the local model which we would like to achieve globally on X0. A result of R. Friedman
[Fri86] gives a condition describing the existence of a smoothing.

Theorem 2.6 (R. Friedman [Fri86, Fri91]). Suppose pX is a Kähler Calabi–Yau threefold and
let E1, . . . , Ek be disjoint p´1,´1q-curves. Let π be the blowdown map that contracts each Ei,
resulting in the singular space X0 with ODP singularities si “ πpEiq. There exists a first order
deformation of X0 smoothing each si if and only if there exists a relation

ÿ

i

λirEis “ 0 in H2p pX,Rq

with each λi ‰ 0.
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E » P1

v

u
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πpEq

λ

pV π
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Vt

Figure 1: Local model of a conifold transition.

It has been shown that the first order deformations from the above theorem integrate to genuine
smoothings; see [Kaw92, Ran92, Tia92]. Thus assuming the condition of Theorem 2.6 holds,
we get a holomorphic familily

µ : X Ñ ∆

where ∆ Ă C denotes the unit complex disk such that the fibers Xt “ µ´1ptq are smooth
complex manifolds for t ‰ 0 and X0 “ µ´1p0q. A result of Kas–Schlessinger [KS72] shows that
the family X is locally biholomorphic to the model V near each ODP. It can be shown that
the complex manifolds Xt have trivial canonical bundle; see [Fri86] for an algebraic proof or
[CGPY23] for a differential geometric proof.

Definition 2.7. Let pX be a Kähler Calabi–Yau threefold. A conifold transition starting
from pX, denoted pX Ñ X0 ù Xt, consists of a holomorphic map π : pX Ñ X0 and a family
µ : X Ñ ∆ with X0 “ µ´1p0q such that

i) the map π : pX Ñ X0 contracts a collection of disjoint p´1,´1q-curves E1, . . . , Ek Ď
pX to isolated ODP singularities s1, . . . , sk P X0, and π is a biholomorphism between
pX\pE1 Y . . . Ekq and X0\ts1, . . . , sku; and

ii) the total space X is a smooth complex fourfold with a proper flat map µ : X Ñ ∆, where
X0 “ µ´1p0q and Xt “ µ´1ptq are smooth complex manifolds for t ‰ 0.

It is known that the Kähler condition is not necessarily preserved along a conifold transition.
For a concrete example, suppose pX is a quintic threefold and choose a pair of disjoint p´1,´1q-
curves E1, E2 (for the existence of such curves, see e.g. [Cle83]). Since b2p pXq “ 1, these satisfy
Friedman’s condition. Thus a conifold transition exists, and since the generator of second
homology has been sent to a point, we have b2pXtq “ 0. We see that Xt may not support any
Kähler metric, even if the initial pX is a projective threefold. For further examples of Kähler to
non-Kähler conifold transitions we refer to [Fri91, LT94], and for the study of Hodge structures
through such a process, see [Fri19].

To geometrize the parameter space of Calabi–Yau threefolds connected by conifold transitions,
we must therefore look for special non-Kähler metrics. This program was initiated by Fu–
Li–Yau [FLY12]. The inspiration comes from supersymmetric constraints in string theory.
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Kähler Calabi–Yau metrics satisfy the system of supersymmetric constraints when the H-flux
is taken to be zero [CHSW85]. As pointed out in e.g. [Rei87], Chapter 4 of [Hub92], or Section
6 of [CdlOGP91], a degeneration and resolution may connect a Kähler threefold to a non-
Kähler space, and so it is necessary to look for more general solutions to the supersymmetric
constraints with non-zero H-flux. These constraints were worked out by Strominger [Str86]
and imply the following two equations:

• X admits a balanced metric ω. A Hermitian metric g on T 1,0X over a complex manifold
X of dimension n is balanced if

dωn´1 “ 0. (2)

Here ω is the p1, 1q-form associated to g via ω “
?

´1gjk̄dz
j ^ dz̄k. Various properties

of balanced metrics were explored by Michelsohn [Mic82].

• X admits a Hermitian–Yang–Mills metric. A Hermitian metricH on T 1,0X is Hermitian–
Yang–Mills with respect to a balanced metric ω if

F ^ ωn´1 “ 0. (3)

The Chern curvature of a metric H is denoted by F P Λ1,1pEndT 1,0Xq, and is given
by F “ B̄pBHH´1q. The criterion for the solvability of this equation over a general
holomorphic bundle is given by the Donaldson–Uhlenbeck–Yau theorem [Don85, UY86]
in the Kähler case, with an extension by Li–Yau [LY87] for non-Kähler metrics.

When X is a Kähler threefold, Yau’s theorem [Yau78] gives the existence of a Kähler Ricci-flat
metric gCY. The above equations are then solved with g “ H “ gCY. More generally, let Xt be
a complex manifold connected to a Kähler threefold via a conifold transition pX Ñ X0 ù Xt.
The main results of [FLY12] and [CPY24] give the existence of a pair pg,Hq solving the
supersymmetric equations (2) and (3).

Remark 2.8. The Hermitian–Yang–Mills equation may in principle also be solved over an
auxiliary gauge bundle E, but the mechanism under which a conifold transition creates a
stable holomorphic vector bundle Et Ñ Xt is not understood except for the case at hand,
which is when Et “ T 1,0Xt. There is a proposal by Anderson–Brodie–Gray [ABG23] in the
string theory literature on how such general bundles may appear on the other side. There
is also work of Chuan [Chu12] on the Hermitian–Yang–Mills equation on a gauge bundle E
with the additional assumption that E is locally a trivial bundle through the singularities of a
conifold transition.

In the remainder of this preliminary section, we recall various metrics which can be defined
both globally and on the local models, and state the main results of this paper, which state
that conifold transitions, when bestowed with these metrics, describe a continuous path in M
with respect to the Gromov–Hausdorff topology.

2.3 Metrics on Small Resolutions

2.3.1 Candelas–de la Ossa Metrics on the Local Model

Consider the space pV , which is the total space of the bundle

pV “ Op´1q ‘ Op´1q Ñ P1.
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On this space, we have two trivializations

pU, pλ, u, vqq and pU 1, pλ1, u1, v1qq,

with transition functions given by

λ1 “ λ´1, u1 “ λu, v1 “ λv.

Note that λ is the coordinate on the base space P1, while u, v are fibre coordinates.

It will be convenient to define the well-defined radius function r : pV Ñ r0,8q given by

rpλ, u, vq “ p1 ` |λ|2q
1
3 p|u|2 ` |v|2q

1
3 .

Without the power of 1
3 , this function measures the distance from a point to the zero section

E » P1 along the fibers using the Fubini–Study metric pωFS . The power is introduced so that
this radius function coincides with the radius of the Calabi–Yau cone metric on the blowdown,
and this will be discussed later.

The space ppV , rq is also equipped with a family of scaling maps. Namely, for R ą 0, we have
the map SR : pV Ñ pV given by

SRpu, v, λq “ pλ,R
3
2u,R

3
2 vq.

The radius behaves as it should under the scaling, as we have

r ˝ SR “ R ¨ r.

In [CdlO90], Candelas–de la Ossa look for a Kähler Ricci-flat metric pωco,1 on pV of the form

pωco,1 “
?

´1BBfpr3q ` 4pωFS,

where pωFS is the Fubini–Study metric on P1, and fpxq “ fpr3q is a smooth function. They
show that imposing the condition of Kähler–Ricci flatness yields the following first order ODE
for f :

xpf 1pxqq3 ` 6pf 1pxqq2 “ 1.

The solution admits an expansion [CPY24] for x " 1 given in terms of r “ x
1
3 by

f “ c0r
2 ` c1 log r ` c2r

´2 ` c3r
´4 ` ¨ ¨ ¨

for constants c0, c1, c2, ¨ ¨ ¨ . Thus, after rescaling pωco,1 such that c0 “ 1
2 , we have the following

expansion for large radius r " 1:

pωco,1 ´
1

2

?
´1BB̄r2 “ c´1ωFS ` c1

?
´1BB̄ log r ` c2

?
´1BBr´2 ` c3

?
´1BBr´4 ` . . . . (4)

Next, we note that the space pV can be regarded as a small blow-up of the space

V0 “

!

z P C4 |
ÿ

i

z2i “ 0
)

.
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There is a (scaled) blow-down map π : pV Ñ V0 such that π´1p0q is the zero section E “ tr “ 0u,
and the restriction

π : V̂ zE Ñ V0 z t0u

is biholomorphic. The map π has the explicit expression

πpλ, u, vq “

˜

λv ` u
?
2

,´
?

´1 ¨
λv ´ u

?
2

,´
?

´1 ¨
v ` λu

?
2

,´
v ´ λu

?
2

¸

. (5)

Likewise, away from the singularity at the origin, we can see that

π´1pz1, z2, z3, z4q “

˜

z1 ´
?

´1z2
?
2

,

?
´1pz3 `

?
´1z4q

?
2

,
?

´1 ¨
z3 ´

?
´1z4

z1 ´
?

´1z2

¸

.

The function r on pV becomes }z}
2
3 on V0 via the identification π, in the sense that rpλ, u, vq “

}πpλ, u, vq}
2
3 . For this reason, we will also denote

r “ }z}
2
3 , r : V0 Ñ r0,8q.

The space V0 admits a Calabi–Yau cone metric

ωco,0 “
1

2

?
´1BB̄r2.

We briefly discuss the cone metric geometry on pV0, ωco,0q. Observe that V0 is closed under
scalar multiplication and addition, so that V0 is a cone. The metric ωco,0 is well-known [CdlO90]
to be Kähler Ricci-flat and is a cone metric over the link

L “ tz P V0 | rpzq “ 1u,

and we may write
gco,0 “ dr b dr ` r2 ¨ gL, (6)

where gL is the pullback of a metric on L.

The link L is S3 ˆ S2. To see this, we express the defining condition
ř

i z
2
i “ 0 of V0 in real

coordinates xi, yi such that zi “ xi `
?

´1yi for each i P t1, 2, 3, 4u. We obtain

0 “ ∥x∥2 ´ ∥y∥2 ` 2
?

´1xx, yy,

where x “ px1, x2, x3, x4q P R4 and y “ py1, y2, y3, y4q P R4. Expressed in these terms,
V0 is the set of all px, yq P R8 – R4 ‘ R4 on which ∥x∥ “ ∥y∥ and xx, yy “ 0. Fixing
r3 “ ∥x∥2 ` ∥y∥2 “ 2 implies that ∥x∥ “ ∥y∥ “ 1. In particular, we have x P S3 Ă R4.
Then for each such choice of x, the conditions xx, yy “ 0 and ∥y∥ “ 1 imply that y is in the

unit 2-sphere centered at 0 in the tangent space TxS
3. Thus, the set tz P V0 | rpzq “ 2

1
3 u is

diffeomorphic to the unit sphere bundle contained in the tangent bundle TS3, which is trivial.
Thus tz P V0 | rpzq “ 2

1
3 u – S3 ˆ S2, and by rescaling we have L – S3 ˆ S2 as well.

Returning to ppV , pgco,1q, we can rescale the area of the zero section E » P1 to obtain a 1-
parameter family of metrics. We will refer to this family of metrics as the Candelas–de la
Ossa metrics pgco,a on the small resolution. The metrics pgco,a satisfy the following important
properties:

9



(CO SR I) Normalization: For a ą 0, we have

pgco,a “ a2 ¨ S˚
a´1ppgco,1q.

(CO SR II) Asymptotically Conical Decay: There exists C ą 0 independent of a such that for
all a ą 0,

|pπ´1q˚ppgco,aq ´ gco,0|gco,0 ď Ca2r´2.

The asymptotic decay can be derived from (4) for a “ 1. Pulling-back the estimate when
a “ 1 by S˚

a gives the estimate for general a. The estimate implies that the Candelas–de
la Ossa metrics pgco,a converge uniformly to the cone metric gco,0 on compact sets away
from the zero section E.

For R ą 0, we will denote by pT pRq the “tube”

pT pRq :“ tr ď Ru Ď pV

around the zero section E » P1. On the cone V0, we will analogously refer to the “disc”

D0pRq :“ tr ď Ru Ď V0.

of radius R around 0.

Let pdco,a and dco,0 denote the induced distance functions on pX and X0 by pgco,a and gco,0
respectively. As warm-up for our proof of the convergence of metrics on the compact threefold,
we will present a proof of convergence of the local models.

Theorem 2.9. The spaces p pT p1q, pdco,aq converge in the Gromov–Hausdorff topology as a Ñ 0
to the space pD0p1q, dco,0q.

A proof of this fact also follows from the PDE estimates in [CGT22] for general asymptotically
conical Calabi–Yau metrics on small resolutions.

2.3.2 Balanced Metrics on the Small Resolution

Next, we state the properties that we will need from the Fu–Li–Yau metrics on the compact
Calabi–Yau threefold pX. Let pωCY be a Kähler metric on the Kähler threefold pX. The Fu–Li–
Yau [FLY12] gluing construction (see also [CPY24], [Chu12] for further details on pωFLY,a for
a ‰ 0) produces a sequence of metrics pωFLY,a for 0 ď a ď 1 such that

dpω2
FLY,a “ 0, rpω2

FLY,as “ rpω2
CYs P H4p pX,Rq.

For the purposes of this paper, we will mainly make use of the two following properties:

(FLY SR I) Local Model: there exists δ ą 0 and R ą 1 such that for all 0 ď a ď 1, we have

pωFLY,a|trăδu “ R ¨ pωco,a.

Here the function r : pX Ñ r0,8q extends the local functions r defined on a neighborhood
of the curves Ei Ă pV to the whole compact manifold pX such that the set tr ă δu consists
of small disjoint open neighborhoods containing the p´1,´1q-curves E1, . . . , Ek.

10



(FLY SR II) Uniform Convergence: For any compact set K Ă pXzpE1Y¨ ¨ ¨YEkq, the sequence
pωFLY,a converges uniformly to pωFLY,0 as a Ñ 0 on K.

For each Ei » P1, these metrics satisfy
ż

P1

pωFLY,a Ñ 0, a Ñ 0. (7)

The limiting metric pωFLY,0 is singular on the curves E1, . . . Ek, and only defines a genuine

metric on pXzpE1 Y ¨ ¨ ¨ Y Ekq.

Let π : pX Ñ X0 be the contraction of the curves, and let si “ πpEiq be the singular points of
X0. We will write pX0qreg “ X0zts1, . . . , sku. Since pXzpE1 Y ¨ ¨ ¨ Y Ekq » pX0qreg, the limiting
metric pωFLY,0 defines a Riemannian structure ppX0qreg, ωFLY,0q with conical singularities. This
induces a distance function dFLY,0 on X0.

This brings us to one of our main theorems:

Theorem 2.10. The compact metric spaces p pX, pdFLY,aq converge to pX0, dFLY,0q in the Gromov–
Hausdorff topology as a Ñ 0.

2.3.3 Hermitian–Yang–Mills Metrics on the Small Resolution

We review the relevant properties of the sequence of Hermitian–Yang–Mills metrics from
[CPY24]. Recall that our initial threefold pX is Kähler Calabi–Yau and simply connected. By
dimensional considerations, an application of the de Rham Decomposition Theorem [Yau93]
implies that p pX, pωCYq satisfies the stability condition

1

rankF

ż

pX
c1pF q ^ pω2

CY ă 0

for all torsion-free coherent proper subsheaves F Ď T 1,0
pX. The Fu–Li–Yau metric pωFLY,a and

the Calabi–Yau metric pωCY have the same squared cohomology class and so

1

rankF

ż

pX
c1pF q ^ pω2

FLY,a ă 0.

It follows that T 1,0
pX is stable with respect to each of the Fu–Li–Yau metrics. The Li–Yau

[LY87] generalization of the Donaldson–Uhlenbeck–Yau Theorem [Don85, UY86] to Gauduchon
metrics yields a family of metrics pHa satisfying

F
pHa

^ pω2
FLY,a “ 0,

ż

X̂
log

det pHa

det pgFLY,a
dvolgFLY,a “ 0. (8)

This sequence pHa satisfies the following estimates:

Proposition 2.11 (Collins–Picard–Yau [CPY24]). There exists constants C,Ck ą 0 such that
the Hermitian–Yang–Mills metrics pHa satisfy

C´1
pgFLY,a ď pHa ď CpgFLY,a,

|∇k
pHa|

pgFLY,a
ď Ckr

´k.

11



The metric H0 on pX0qreg can be constructed as the limit of these metrics pHa. This was

done in [CPY24] by taking a subsequence of t pHau. In Appendix A, we will show that these
estimates imply that the full sequence converges on compact sets. Therefore there exists a
Hermitian–Yang–Mills metric H0 over the singular space X0 such that

FH0 ^ ω2
FLY,0 “ 0, C´1gFLY,0 ď H0 ď CgFLY,0

and for any compact set K Ă pXzpE1 Y ¨ ¨ ¨ Y Ekq, the sequence pHa converges uniformly to H0

on K as a Ñ 0. Going beyond compact subsets, we will prove:

Theorem 2.12. The compact metric spaces p pX, pd
pHa

q converge to pX0, dH0q in the Gromov–
Hausdorff topology as a Ñ 0.

2.4 Metrics on Smoothings

2.4.1 Candelas–de la Ossa Metrics on the Local Model

Next, for t ą 0, we consider the smooth submanifolds Vt Ă C4 defined by

Vt “

!

z P C4 |
ÿ

i

z2i “ t
)

.

We have the usual norm }z}2 on Vt induced from C4 given by

}z}2 “

4
ÿ

i“1

|zi|
2.

Candelas–de la Ossa also constructed metrics ωco,t on the smoothings Vt [CdlO90]. The metrics
are obtained by looking for potentials of the form

ωco,t “
?

´1BBφt, φt “ ftp}z}2q,

and imposing the Ricci-flat condition which reduces to solving a differential equation for ft.
These metrics ωco,t are asymptotic to the cone geometry pV0, ωco,0q, and we will make this more
precise below.

As we did in the previous section, we define a radius function r : Vt Ñ p0,8q by

rpzq “ }z}
2
3 .

Note that the condition
ř4

i“1 z
2
i “ t implies that rpzq ě |t|

1
3 for all z P Vt.

When R ą 0, we may also define scaling maps SR : C4 Ñ C4 by

SRpzq “ R
3
2 ¨ z.

The scaling map SR sends Vρ to VR3¨ρ and satisfies

r ˝ SR “ R ¨ r and S˚
Rpωco,0q “ R2 ¨ ωco,0.

12



Unlike the case of the small resolutions, the metrics ωco,t and ωco,0 all lie on different spaces.
In order to compare them (and obtain an analog of Property (CO SR II)), we use the map
Φ: C4\t0u Ñ C4 given by

Φpzq “ z `
z

2}z}2
.

Routine computations show that Φ maps V0\t0u into V1. This map is not injective in general,

but is a diffeomorphism when restricted to the set tz P V0 | rpzq ą p12q
1
3 u with image tz P V1 |

rpzq ą 1u. In the sequel, Φ will refer to this restricted map and we will use results involving
the map Φ as required. More details regarding them can be found in Appendix B.

By composing Φ with SR for appropriate choices of R, we get a map from V0\t0u to Vt. More
precisely, let

Φt “ S
t
1
3

˝ Φ ˝ S
t´ 1

3
. (9)

It follows that

rpΦtpzqq “

´

prpzqq3 `
|t|2

4prpzqq3

¯
1
3
.

As such, for convenience, we define

βt,ρ “

´

ρ3 `
|t|2

4ρ3

¯
1
3
.

We also can check that Φt is a diffeomorphism from tz P V0 | rpzq ą p
|t|
2 q

1
3 u to tz P Vt | rpzq ą

|t|
1
3 u. We use Φt to refer to the restricted map.

Using the maps SR and Φt, we have the analogous properties of the Candelas–de la Ossa
metrics gco,t on the smoothings:

(CO SM I) Normalization: For t ‰ 0, we have

gco,t “ |t|
2
3 ¨ S˚

t´ 1
3

pgco,1q.

(CO SM II) Asymptotically Conical Decay: There exists C ą 0 independent of t such that for
all t ‰ 0,

|pΦtq
˚pgco,tq ´ gco,0|gco,0 ď C|t|r´3.

A consequence of this is that the metrics gco,t approach gco,0 on compact sets away from
the cone singularity as t Ñ 0.

The proof of the asymptotically conical decay estimate can be found in e.g. [CH13], where the
estimate is given on pV1, gco,1q:

|Φ˚gco,1 ´ gco,0|gco,0 ď Cr´3, (10)

and the estimate for pVt, gco,tq follows by pulling-back via S
t´ 1

3
.

Let
DtpRq :“ tr ď Ru Ď Vt.

be “discs” of radius R in Vt.

As warm-up to our result on continuity of the global non-Kähler geometry, we will present the
following well-known convergence of the local models:
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Theorem 2.13. The spaces
´

Dtpβt,1q, dco,t

¯

converge in the Gromov–Hausdorff topology as

t Ñ 0 to the space
´

D0p1q, dco,0

¯

.

2.4.2 Balanced Metrics on the Smoothings

We return to the global setting, where we have a holomorphic family µ : X Ñ ∆ with smooth
fibers Xt “ µ´1ptq for t ‰ 0 and central fiber X0 with singularities ts1, . . . , sku which are locally
of the form 0 P V0. If X0 comes from holomorphic contraction π : pX Ñ X0 of p´1,´1q-curves,
the compact complex manifolds Xt may not support any Kähler metric. Fu–Li–Yau [FLY12]
prove that Xt admits balanced metrics.

In order to define metrics on the smoothings Xt, we first need to extend the local maps r and
Φt from the previous section to global objects.

For this, we note that there are disjoint open sets Ui Ă X containing each singular point si
such that Ui is identified with

0 P U Ă

!

pz, tq P C4 ˆ C |
ÿ

i

z2i “ t
)

.

We can then extend the local functions r “ }z}
2
3 on C4 to a global function r : X Ñ r0,8q

with r´1p0q “ ts1, . . . , sku.

Next, we can extend the local maps Φt to global diffeomorphisms.

Φt : X0 X

!

rpzq ą

´

|t|

2

¯
1
3
)

Ñ Xt X trpzq ą |t|
1
3 u

such that Φt is the model smoothing (9) on the local sets Ui. This can be done by taking a
horizontal lift ξ of the vector field B

Bt on ∆ which agrees with the vector field generating the
model smoothing. Then flowing by the lifted vector field ξ on X gives Φt.

The Fu–Li–Yau construction [FLY12] leads to a sequence ωFLY,t of hermitian metrics on Xt

solving
dω2

FLY,t “ 0.

These are obtained by: 1) a pullback and gluing construction, followed by 2) a perturbation
step to ensure the balanced condition. The metric in step 1 is denoted gt and the metric in
step 2 is denoted gFLY,t.

‚ Step 1. The expression for ωt from [FLY12] is

ω2
t “ pr2,2t

«

pΦ´1
t q˚

´

ω2
FLY,0 ´

?
´1BBpρ0 ¨ f0p}z}2q ¨

?
´1BBf0p}z}2qq

¯

`
?

´1BB

´

ρt ¨ ftp}z}2q ¨
?

´1BBftp}z}2q

¯

ff (11)

where pr2,2t denotes the projection onto the p2, 2q component with respect to the complex struc-
ture Jt on Xt and ρ0 and ρt are smooth cutoff functions. In the above, ft is the function

ftpxq “

´

|t|2

2

¯
1
3

ż cosh´1px{|t|q

0
psinhp2yq ´ 2yq

1
3dy.
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These functions are from the Calabi–Yau local model ωco,t “
?

´1BB̄ft, so that in a neighbor-
hood tr ă δu where the cutoff functions ρ ” 1 there holds ω2

t “ ω2
co,t. We take a square-root

of (11) to obtain the metric ωt.

‚ Step 2. The Fu–Li–Yau metrics correct ωt by

ω2
FLY,t “ ω2

t ` BB̄:B:γt ´ B̄B:B̄:γ̄t (12)

where γt P Λ2,3pXtq solves
Etpγtq “ B̄ω2

t , dγt “ 0

and Et is the Kodaira–Spencer operator [KS60], which is a 4th order elliptic operator which
acts on p2, 3q-forms by

Et “ BB̄B̄:B: ` B:B̄B̄:B ` B:B.

The adjoints here are with respect to ωt. The construction is such that dω2
FLY,t “ 0, and the

main part of the argument in [FLY12] is to prove that ωFLY,t ą 0 for small enough t.

We will need the following two properties of the Fu–Li–Yau metrics. These properties can be
extracted from the estimates in [FLY12], and we refer to [CPY24] for further discussion.

(FLY SM I) Local Model: Near each singular point si P X , there exists constants c, C, ϵ, δ ą 0
and such that for all t P ∆ϵ, we have

sup
trďδu

|gFLY,t ´ c ¨ gco,t|gco,t ď C|t|
2
3 . (13)

Here ∆ϵ “ tt P C : |t| ă ϵu.

(FLY SM II) Uniform Convergence: For any compact set K Ă pX0qreg, the sequence Φ
˚
t gFLY,t

converges uniformly to gFLY,0 as t Ñ 0 on K.

Our main theorem on the smoothings takes the form:

Theorem 2.14. The compact metric spaces pXt, dFLY,tq converge to pX0, dFLY,0q in the Gromov–
Hausdorff topology as t Ñ 0.

2.4.3 Hermitian–Yang–Mills Metrics on the Smoothing

In order to get approximate Hermitian–Yang–Mills solutions on the smoothings, Collins–
Picard–Yau glued the pullback of the metric H0 to the Candelas–de la Ossa metrics [CPY24].
These approximate metrics were perturbed to obtain true solutions Ht to the Hermitian–Yang–
Mills equations. The resulting metrics Ht on Xt solve

FHt ^ ω2
FLY,t “ 0,

ż

Xt

log
detHt

det gFLY,t
dvolgFLY,t “ 0.

The construction of [CPY24] is such that

Ht “ Ht,refe
u, |u|Ht,ref

` r|∇u|Ht,ref
ď C|t|p1{3q|β|

for |β| P p0, 1q, and
Ht,ref “ χgco,t ` p1 ´ χqrpΦ´1

t q˚H0s1,1
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and χpzq “ ζp|t|´α}z}2q for 0 ă α ă 1 and ζ : r0,8q Ñ r0, 1s with ζ ” 1 on r0, 1s and ζ ” 0 on
r2,8q.

The metrics Ht are uniformly equivalent to gFLY,t, so that

C´1 ¨ gFLY,t ď Ht ď C ¨ gFLY,t. (14)

Furthermore, for any compact set K Ă pX0qreg, the sequence Φ˚
tHt converges uniformly to

H0 as t Ñ 0 on K. We will show the Gromov–Hausdorff convergence of the Yang–Mills
metrics.

Theorem 2.15. The compact metric spaces pXt, dHtq converge to pX0, dH0q in the Gromov–
Hausdorff topology as t Ñ 0.

2.5 Notation and conventions

Before we continue with our study of conifold transitions, we establish a general notational
guideline due to the sheer number of metrics involved:

When working with quantities related to metrics on small resolutions ( pX and pV ), we will
include a hat and a subscript to denote the metric being used. We will also use the parameters
a and b for families of metrics on these spaces.

In a similar vein, analogous quantities on the smoothings (Xt and Vt) and singular spaces (X0

and V0) will not have a hat, but will include an appropriate subscript. The parameters used
for families of metrics here will be s and t.

At times we will present lemmas and results that can be applied in more general settings
encompassing both the small resolution and the smoothings. In this setting, we will not
include the hat, but we will use the Greek letters α and β as parameters.

For example:

ĝco,1 Candelas–de la Ossa metric on the small resolution V̂ at a “ 1.

gco,1 Candelas–de la Ossa metric on the smoothing V1 at t “ 1.

d̂FLY,a Distance w.r.t the Fu–Li–Yau metric ĝFLY,a on the small resolution X̂.

dFLY,t Distance w.r.t the Fu–Li–Yau metric gFLY,t on the smoothing Xt.

L̂Ĥa
pγq Length of a curve γ w.r.t. the HYM metric Ĥa on the small resolution X̂.

LHtpγq Length of a curve γ w.r.t. the HYM metric Ht on the smoothing Xt.

diamαpSq Diameter of a set S w.r.t a metric gα on a manifold X.

In addition, we adopt the convention that C denotes a generic positive constant that may
change from line to line but do not depend on a or t.

3 Gromov–Hausdorff Continuity in the Regular Case

In this section, we show Gromov–Hausdorff continuity of the geometries p pX, pdFLY,aq and

p pX, pd
pHa

q for a ą 0, as well as pXt, dFLY,tq and pXt, dHtq for t ‰ 0. That is, we show that
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the variations of geometry induced by a conifold transition is a continuous process in M away
from the singular conifold. Namely, we have the following theorem:

Theorem 3.1. The following paths p0, 1s Ñ M are continuous in the Gromov–Hausdorff
topology:

(i) a ÞÑ p pX, pdFLY,aq,

(ii) a ÞÑ p pX, pdHaq.

Furthermore, the following maps ∆ϵzt0u Ñ M are continuous in the Gromov–Hausdorff topol-
ogy:

(iii) t ÞÑ pXt, dFLY,tq,

(iv) t ÞÑ pXt, dHtq.

Extending this continuity to the singular spaces obtained when a “ t “ 0 is a more difficult
task, which we will describe in Section 4. Our final result will be that the maps r0, 1s Ñ M
and ∆ϵ Ñ M are continuous, but in this current section we only consider the geometries away
from X0.

3.1 Gromov–Hausdorff vs Uniform Convergence

Since Riemannian manifolds exhibit more structure than that of a metric space, there is con-
siderably more flexibility when defining notions of continuity of the geometry of a family of
Riemannian manifolds than that of continuity in the Gromov–Hausdorff topology. In particu-
lar, a very natural way to define continuity of the geometry is through some continuity condi-
tion on a family of metrics. As the following well-known lemma shows, the Gromov–Hausdorff
topology is weaker than the topology of uniform convergence of Riemannian metrics. Many
similar results can be found in the literature, c.f. Example 7.4.4 of [BBI01], and we include
the proof as a warm-up.

Proposition 3.2. Let gα be a family of metrics on a connected, compact manifold X of
dimension n, where the parameter α P U lies in an open set which we take to be either real or
complex: U Ă R or U Ă C. Fixing a parameter β P U , suppose that α ÞÑ gα is continuous at
α “ β in the L8 norm with respect to gβ. Then α ÞÑ pX, dgαq is continuous at α “ β in the
Gromov–Hausdorff topology.

Remark 3.3. Since X is compact, all metrics on X are uniformly equivalent. That is, given
two metrics g, g̃ on X, there is some C ą 1 such that

C´1 ¨ g ă g̃ ă C ¨ g.

Thus, the continuity assumption in Proposition 3.2 could be replaced by continuity of the
family of metrics gα in the L8 norm with respect to any metric on X.

Proof. Let 0 ă ϵ ă 1 and fix a parameter β. Consider the identity map pX, dgαq Ñ pX, dgβ q.
This map is surjective, so it suffices to show that it is an pCϵq-isometry when |α´ β| is small,
for some constant C independent of α.
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The L8 continuity of the metrics gα at α “ β implies that we may choose δ ą 0 sufficiently
small so that if |α ´ β| ă δ, then supX |gα ´ gβ|gβ ă ϵ. It follows that there exists some
ϵ1 “ ϵ1pδq P R such that for all |α ´ β| ă δ, we have

p1 ´ ϵ1q ¨ gβ ď gα ď p1 ` ϵ1q ¨ gβ.

Thus any α with |α ´ β| ă δ, the length of a curve γ satisfies Lαpγq ď p1 ` ϵ1q ¨ Lβpγq. It
follows that D :“ p1 ` ϵ1q ¨ diamβpXq ě diamαpXq for all α with |α ´ β| ă δ.

Pick points p, q P X and choose minimizing geodesics γα, γβ : r0, 1s Ñ X from p to q in the
gα and gβ metrics, respectively. We have that γαp0q “ γβp0q “ p and γαp1q “ γβp1q “ q, and
furthermore Lαpγαq “ dαpp, qq and Lβpγβq “ dβpp, qq. Comparing the lengths of γα and γβ in
the metrics gα and gβ, we note that

|Lαpγαq ´ Lβpγαq| ď

ż 1

0
|gα ´ gβ|gα ¨ | 9γα|gα ds

ď

˜

sup
X

|gα ´ gβ|gα

¸

¨

ż 1

0
| 9γα|gα ds

ă Dϵ.

Similarly, we have |Lαpγβq ´ Lβpγβq| ă Dϵ. Then we see that for |α ´ β| ă δ, we have

dαpp, qq ď Lαpγβq ď Lβpγβq `Dϵ

“ dβpp, qq `Dϵ.

Similarly, dβpp, qq ă dαpp, qq ` Dϵ, so that |dαpp, qq ´ dβpp, qq| ă Dϵ if |α ´ β| ă δ. Since
this choice of δ does not depend on the choice of p, q P X, the identity map is a Dϵ-isometry,
completing the proof.

When applying this statement to the geometry of the smoothings Xt, we will use the following
variant:

Corollary 3.4. Let tpXα, gαqu be a family of compact Riemannian manifolds parametrized by
α P U Ă C. Fix β P U , and suppose that for each α there is a diffeomorphism Fα : Xβ Ñ Xα.
Suppose F ˚

αgα Ñ gβ in the L8 norm with respect to gβ as α Ñ β. Then pXα, dgαq Ñ pXβ, dgβ q

in the Gromov–Hausdorff topology as α Ñ β.

Proof. This follows by applying the proposition above to the family of metrics F ˚
αgα on the

fixed manifold Xβ. Thus pXβ, F
˚
αgαq Ñ pXβ, gβq in the Gromov–Hausdorff topology as α Ñ β.

Since pXβ, F
˚
αgαq is isometric to pXα, gαq, the result follows.

3.2 Small Resolution Metrics pgFLY,a

In order to prove Theorem 3.1, it suffices by Proposition 3.2 to show that each of the families
of metrics is continuous in the L8 norm. To that end, we will show in this subsection that the
family pgFLY,a is continuous in the L8 norm.

Lemma 3.5. The Fu–Li–Yau metrics tpgFLY,a | a P p0, 1su on pX satisfy the continuity condition
of Proposition 3.2.
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Proof. Let b P p0, 1s. Recall that the Fu–Li–Yau metrics are obtained via a gluing construction
which interpolates between a multiple of the Candelas–de la Ossa metrics (near the p´1,´1q-
curves) and the ambient Calabi–Yau metric (away from the p´1,´1q-curves) [CPY24, FLY12].
The gluing region is independent of the parameter a, and pω2

FLY,a ´ pω2
FLY,b is supported on open

sets around each p´1,´1q curve, and in particular we have the following expression on the
local models with }z}2 ă 1:

pω2
FLY,a ´ pω2

FLY,b “ C
2R´1

3

?
´1BB

´

χ
´2R2

3
fap}z}2q

¯

p
?

´1BBfap}z}2q ` 8a2π˚ωFSq

¯

´ C
2R´1

3

?
´1BB

´

χ
´2R2

3
fbp}z}2q

¯

p
?

´1BBfbp}z}2q ` 8b2π˚ωFSq

¯

,

(15)

where C and R are constants, χ is a smooth function, and fs are a family of smooth functions
such that fspxq “ s2f1p x

s3
q and

pxf 1
1q3 ` 6pxf 1

1q2 “ x2.

(see [CPY24]). It follows that the map |pω2
FLY,a ´ pω2

FLY,b|
2
gFLY,b

is smooth in a and p.

Since b ‰ 0, we can pick some h ą 0 such that I “ rb´h, b`hs Ă p0, 1s (or I “ r1´h, 1s Ď p0, 1s

in the case where b “ 1q. One can check that in coordinates around a point p P pX, each
component in (15) is smooth in a and p. In particular, differentiating the function fap}z}2q

involves uniform bounds since we have the expression fap}z}2q “ a2f1p
}z}2

a3
q and also because

a ą 0 in our interval so that }z}2

a3
lies in a compact set.

It follows that the covariant derivative of |pω2
FLY,a ´ pω2

FLY,b|
2
gFLY,b

is continuous on I ˆ pX. By
compactness, we obtain uniform boundedness of the covariant derivative on I. By a corollary
of the Arzelà–Ascoli theorem, the pointwise convergence of the function |pω2

FLY,a ´ pω2
FLY,b|

2
gFLY,b

is actually uniform.

A positive pn´1, n´1q-form has a unique pn´1q-th root and this is determined in a continuous
fashion (see e.g. [Mic82]). It follows that sup |pgco,a ´ pgco,b|pgco,b approaches 0 as a Ñ b.

We can now apply Proposition 3.2 to this path of spaces to obtain the desired Gromov–
Hausdorff continuity.

3.3 Smoothing Metrics gFLY,t

We prove the analogous results of Section 3.2 for the smoothings.

Let µ : X Ñ ∆ be a holomorphic smoothing of X0 and let Xt “ µ´1ptq. Fix s ‰ 0 and
consider the smoothings Xt nearby Xs. As this is a smooth family of complex manifolds, by
Ehresmann’s lemma there exists a smoothly varying family of diffeomorphisms Ft : Xs Ñ Xt

such that Fs is the identity map.

Recall that the Fu–Li–Yau [FLY12] metrics on the smoothings are obtained by: 1) pullback
and a gluing construction leading to a pre-perturbed metric gt followed by 2) a perturbation
to a balanced metric gFLY,t.

We see that the expression (11) for ω2
t is smooth in the parameter t and can employ the

method in the proof of Lemma 3.5. The metric gt on Xt is extracted from ωt via a square root

19



construction (see e.g. [Mic82]), and since the dependence on t is explicit here and Ft : Xs Ñ Xt

varies smoothly with Fs “ id, we can see that

lim
tÑs

sup
Xs

|F ˚
t gt ´ gs|gs “ 0.

Corollary 3.4 applies to pXt, gtq, however these are not the Fu–Li–Yau metrics as these do not
satisfy dω2

t “ 0. For this we need to estimate the correction term γt appearing in (12). As this
term γt comes from solving Etpγtq “ B̄ω2

t , we need to deduce from the fact that the right-hand
sides B̄ω2

t vary smoothly for t ‰ 0 that the solutions γt vary smoothly. We first need to study
some properties of the Kodaira–Spencer operator Et (which in this case is determined with
respect to the auxiliary metric ωt).

Lemma 3.6. Let pX Ñ X0 ù Xt be a conifold transition from an initial Kähler Calabi–Yau
threefold with finite fundamental group. Endow Xt with the auxiliary Hermitian metric ωt

from the Fu–Li–Yau construction. Then Et : Λ
2,3pXtq Ñ Λ2,3pXtq satisfies kerEt “ t0u for all

0 ă |t| ! 1.

Proof. Let χ P Λ2,3pXtq be such that χ P kerEt. Integrating by parts over the identity
xEtχ, χy “ 0 implies

Bχ “ 0, B̄:B:χ “ 0.

Next, we note that B:χ P Λ1,3pXtq and so B̄pB:χq “ 0 by type consideration. It is noticed in
[FLY12] that

H1,3pXt,Cq “ H0pXt, TXtq “ 0

by using H1,3p pX,Cq “ 0 on the small resolution together with Hartog’s lemma; we refer to
[FLY12] for the proof. Therefore

B:χ “ B̄β

and so
xB:χ, B:χy “ xB̄:B:χ, βy “ 0.

We conclude that if χ P Λ2,3 X kerEt, then Bχ “ B:χ “ 0. It follows that ψ “ χ̄ P Λ3,2pXtq

solves
∆B̄ψ “ 0, ∆B̄ “ B̄B̄: ` B̄:B̄.

By the Hodge theorem, this defines an element in Dolbeault cohomology, and since Xt has
trivial canonical bundle then H3,2pXt,Cq “ H2pXt,Ω

3
Xt

q “ H2pXt,OXtq. Lemma 8.2 in [Fri91]

states that if H2p pX,O
pX

q “ 0 then H2pXt,OXtq “ 0. Since

H2p pX,O
pX

q “ H0,2p pX,Cq “ H0,1p pX,Cq “ 0

on the initial Kähler Calabi–Yau threefold with finite fundamental group, we conclude that
H3,2pXt,Cq “ 0 and so ψ “ 0.

We will also need some uniform estimates as t Ñ s. This is a standard argument given that
the kernel of E is trivial and Xs is smooth.
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Lemma 3.7. Fix s ą 0. There exists ϵ ą 0 and C ą 1 such that

}γt}C4,αpXtq ď C}Etpγtq}CαpXtq (16)

for all γt P Λ2,3pXtq with |t ´ s| ă ϵ. Here each norm on Xt is taken with respect to the
auxiliary Hermitian metrics ωt from the Fu–Li–Yau construction.

Proof. Since the compact manifolds Xt deform smoothly to the compact manifold Xs, the
Schauder estimates

}γt}C4,αpXtq ď Cp}γt}C0pXtq ` }Etpγtq}CαpXtqq (17)

hold uniformly for all t close to s where the norms on Xt are taken with respect to ωt. We
would like to upgrade this estimate to (16).

Suppose (16) is false, so that there exists a sequence ti Ñ s and constants Ci Ñ 8 with

}γti}C4,αpXti q ě Ci}Etipγtiq}CαpXti q.

Consider γ̃i “ γti{}γti}C4,αpXti q. As

}γ̃i}C4,αpXti q “ 1, }Etipγ̃iq}CαpXti q ď C´1
i

we may apply the Arzelà–Ascoli theorem to extract a convergent subsequence to a limit γ8

solving
Espγ8q “ 0.

By the previous lemma, γ8 “ 0. This contradicts estimate (17), which implies

1 ď Cp}γ̃i}C0pXtq ` }Etpγ̃iq}CαpXtqq

and so 1
2C ď }γ̃i}C0pXti q for all ti close to s and thus }γ8}C0pXsq ą 0.

Returning to the construction of the metrics ωFLY,t, we claim F ˚
t γt Ñ γs in C4pXsq as t Ñ s.

Suppose not, so that there exists ϵ ą 0 with

}F ˚
t γt ´ γs}C4pXsq ě ϵ (18)

along a subsequence ti Ñ s. The uniform elliptic estimate (16) implies }γt}C4,αpXtq ď C, and so
F ˚
t γt is also bounded on pXs, gsq. Applying the Arzelà–Ascoli theorem, there is a subsequence

converging to a limit γ8 on Xs solving

Espγ8q “ B̄ω2
s .

It follows that
Espγ8 ´ γsq “ 0

and since kerEs “ t0u, we conclude γ8 “ γs, which contradicts (18).

Using that F ˚
t γt Ñ γs, taking a square root of (12) gives a family of metrics ωFLY,t varying

continuously as t Ñ s, and so

lim
tÑs

sup
Xs

|F ˚
t gFLY,t ´ gFLY,s|gs “ 0.

By Remark 3.3, this convergence also holds with respect to the Fu–Li–Yau metrics gFLY,s and
thus Corollary 3.4 applies to pXt, gFLY,tq. This proves that pXt, dFLY,tq Ñ pXs, dFLY,sq in the
Gromov–Hausdorff sense as t Ñ s.
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3.4 Small Resolution Metrics pHa

We return to the small resolution pX Ñ X0, where there is a family of metrics pHa satisfying
the Hermitian–Yang–Mills equation

F
pHa

^ pω2
FLY,a “ 0.

We will show that for b ą 0 fixed, then

lim
aÑb

sup
pX

} pHa ´ pHb} pHb
Ñ 0. (19)

Suppose this is false. Then there exists ϵ ą 0 and a sequence ai Ñ b such that

} pHai ´ pHb} pHb
ě ϵ, iΛ

pωFLY,ai
F

pHai
“ 0

for all ai. By the estimates in Proposition 2.11, we have

C´1
pgFLY,b ď pHa ď CpgFLY,b.

Standard estimates for the Hermitian–Yang–Mills equations then give

|∇ pHa|
pgb ` |∇2

pHa|
pgb ď C. (20)

For a proof of these standard estimates, see e.g. Proposition 3.9 with r ” 1 in [CGPY23] and
the higher order estimates which follow after, or in the Kähler case Appendix C of [JW18]. By
the Arzelà–Ascoli theorem, we may extract a subsequence pHaik

converging to a limit H8 such
that

}H8 ´ pHb} pHb
ě ϵ, iΛ

pωFLY,b
FH8

“ 0. (21)

This uses that pωFLY,aik
Ñ pωFLY,b as aik Ñ b, which holds by properties of the Fu–Li–Yau

metrics. We now have two Hermitian–Yang–Mills metrics H8 and pHb with respect to pωFLY,b.
By uniqueness of Hermitian–Yang–Mills metrics (see e.g. [Don85], or (55) below), we have
that these must be multiples of each other: H8 “ λHb. By the normalization condition (8),
it follows that λ “ 1. This contradicts (21), and thus (19) is proved, and we conclude that
p pX, pd

pHa
q Ñ p pX, pd

pHb
q in the Gromov–Hausdorff sense as a Ñ b.

3.5 Smoothing Metrics Ht

Fix s ‰ 0 and consider the smoothings Xt near the smooth fiber Xs with smoothly varying
family of diffeomorphisms Ft : Xs Ñ Xt with Fs the identity. The metrics Ht also satisfy
continuity of the form

lim
tÑs

}F ˚
t Ht ´Hs}Hs “ 0. (22)

The proof is similar to the arguments given before: suppose F ˚
t Ht does not converge to Hs as

t Ñ s and extract a converging subsequence via the estimates (14) and (20). The limit solves
the Hermitian–Yang–Mills equation, and by uniqueness and normalization then this limit must
be Hs, which is a contradiction.
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4 Gromov–Hausdorff Convergence in the Singular Case

In this section, we extend Theorem 3.1, and show that conifold transitions with the Fu–Li–
Yau metrics and the Hermitian–Yang–Mills metrics are continuous in the Gromov–Hausdorff
topology through the singular conifold at t “ a “ 0. That is, we show that:

Theorem 4.1. The following four convergences hold in the Gromov–Hausdorff topology:

As a Ñ 0: As t Ñ 0 :

p pX, pdFLY,aq Ñ pX0, dFLY,0q, pXt, dFLY,tq Ñ pX0, dFLY,0q

p pX, pd
pHa

q Ñ pX0, dH0q, pXt, dHtq Ñ pX0, dH0q.

Therefore the maps r0, 1s Ñ M given by

(i) a ÞÑ p pX, pdFLY,aq,

(ii) a ÞÑ p pX, pdHaq,

and the maps ∆ϵ Ñ M given by

(iii) t ÞÑ pXt, dFLY,tq,

(iv) t ÞÑ pXt, dHtq,

are continuous and agree at a “ t “ 0.

Before starting the proofs, we discuss how to interpret the limiting spaces pX0, dFLY,0q and
pX0, dH0q.

Remark 4.2. Given a cone V0, and a cone metric g0 on pV0qreg, one can define a distance
function d0 on all of V0 by extending g0 to all of V0, taking g0|s “ dr2 at the singularity s. This
extension g0 is continuous, but fails to be positive-definite. However, since the singularity is a
point, this will have no effect on the lengths of curves, so one can define d0 in the usual way
without a fuss.

This idea can be extended to a conifold X0 equipped with a smooth metric g0 on pX0qreg

satisfying g0 ď Cpdr2 ` r2 ¨ gLq in a neighborhood of each isolated singularity si (recall the
notation in (6)). We first extend g0 arbitrarily to all of X0, e.g. by setting g0 “ 0 at each
singular point si. The distance function d0 on X0 is then defined by integration of curves, and
the distance between two points in X0 is finite. The result of this construction is that X0 is a
compact length space, whose admissible curves are exactly the piecewise differentiable curves
on X0. A similar construction is done in [SW13, SW14].

In our case, we can apply this to X0 endowed with either the Fu–Li–Yau metric gFLY,0 or the
Hermitian–Yang–Mills metric H0 to obtain two distance functions on X0.

We will make use of the following theorem (Theorem 2.5.23 of [BBI01]):

Theorem 4.3. Let X be a complete, locally compact length space. Then given any p, q P X,
there exists an admissible curve γ : r0, 1s Ñ X such that γp0q “ p and γpqq, with Lpγq “ dpp, qq.

Lastly, we adopt the convention that the diameter of a set Q is understood to mean the
intrinsic diameter, as we explain in the following definition:
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Definition 4.4. Let Q be a bounded, path connected set in a length space X. Given two
points p, q P Q, the intrinsic distance from p to q is defined as dintpp, qq :“ inf Lpγq, where
the infimum is taken over all admissible curves γ from p to q contained in Q. The diameter
of Q is defined by

diampQq :“ sup
p,qPQ

dintpp, qq.

Note that this is a non-standard definition of diameter, since many authors take the diameter
of Q to be the supremum of the distance (in X) between pairs of points in Q.

4.1 Reduction of a Curve

In order to prove our main lemma (Lemma 4.6), we will first need the following curve reduction
lemma:

Lemma 4.5. Suppose Q1, . . . , Qk are disjoint, closed, path-connected, bounded sets in a com-
plete, locally compact length space X, and let γ : r0, 1s Ñ X be an admissible curve. Then
there exists an admissible curve µ : r0, 1s Ñ X such that

(i) µp0q “ γp0q and µp1q “ γp1q,

(ii) For all i P t1, . . . , ku, the set µ´1pQiq Ă r0, 1s is either empty or a single closed subinterval
of r0, 1s, and:

(iii) We have the estimate (noting Definition 4.4)

Lpµq ď Lpγq `

k
ÿ

i“1

diampQiq.

Proof. We will construct the curve µ in the following way:

Define a1 P r0, 1s as a1 :“ inf
!

s P r0, 1s | γpsq P Yk
i“1Qi

)

. Relabeling the sets Qi if necessary,

we can say that γpa1q P Q1. Now, define a time b1 P r0, 1s by b1 :“ sup
␣

s P r0, 1s | γpsq P Q1

(

.
Using Theorem 4.3, take µ |ra1,b1s to be any admissible curve such that µ

`

ra1, b1s
˘

Ă Q1, the
endpoints satisfy µpa1q “ γpa1q and µpb1q “ γpb1q, and furthermore

L
´

µ |ra1,b1s

¯

ď diampQ1q.

Now, for i ą 1 define ai to be ai :“ inf
!

s P pbi´1, 1s | γpsq P Yk
i“1Qi

)

, and relabel the sets

so that γpaiq P Qi ‰ Q1, . . . , Qi´1. Take bi to be the time bi :“ sup
␣

s P r0, 1s | γpsq P Qi

(

.
Once again, choose µ |rai,bis to be an admissible curve where µ

`

rai, bis
˘

Ă Qi, the endpoints
are µpaiq “ γpaiq and µpbiq “ γpbiq, and the length satisfies

L
´

µ |rai,bis

¯

ď diampQiq.

Eventually, after ℓ ď k iterations, there will not exist an aℓ`1.

At this point, we have constructed the curve µ on the set A “
Ťℓ

i“1rai, bis. For s P A1 :“
r0, 1s zA, set µpsq “ γpsq.
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Since the class of admissible curves is closed under restrictions and concatenations (see Defi-
nition 2.1.1 of [BBI01]), we see by construction that µ is admissible. Furthermore µ´1pQiq “

rai, bis for 1 ď i ď ℓ, and µ´1pQiq “ ∅ otherwise. Finally, note that

Lpµq “ L
`

µ |A1

˘

`

ℓ
ÿ

i“1

L
´

µ |rai,bis

¯

ď L
`

γ |A1

˘

`

ℓ
ÿ

i“1

diampQiq

ď Lpγq `

k
ÿ

i“1

diampQiq,

completing the proof.

4.2 The Main Lemma

Gromov–Hausdorff convergence of the various metrics on both the small resolution and the
smoothing will follow by applying the following general lemma. A similar strategy is used in
[SW13]. With this lemma in place, it will remain to verify its hypothesis in our geometric
setups.

Lemma 4.6. Let Xα be a family of connected compact smooth manifolds where the parameter
α lies in either α P p0, 1s or α P ∆zt0u Ă C. Let X0 be a compact analytic space with
X0 “ pX0qreg Y pX0qsing where pX0qreg is a connected smooth manifold and there are finitely
many ODP singular points pX0qsing “ ts1, . . . , sku, meaning that each si P X0 is contained in
a neighborhood Ui Ă X0 which can be identified with a neighborhood of the origin in V0 Ă C4.

For each α, let Ki,α Ď X0 and Ci,α Ď Xα be disjoint compact sets with si P Ki,α, for i P

t1, . . . , ku. Suppose further that we have a family of maps Fα : Xα Ñ X0 such that

• The restriction Fα : Xα\
Ť

iCi,α Ñ X0\
Ť

iKi,α is a diffeomorphism, and

• For each i P t1, . . . , ku, we have FαpCi,αq Ă Ki,α.

Let gα be a Riemannian metric on Xα for each α. Let g0 be a smooth Riemannian metric on
pX0qreg satisfying the bound g0 ď Cpdr2 ` r2 ¨ gLq in a neighborhood Ui of the singular points
si. Let d0 be the distance function induced by g0 on X0 (see Remark 4.2).

Now, let ϵ ą 0, and suppose that there exist disjoint open sets G1, . . . , Gk Ă X0 and α0 ą 0
such that each Gi satisfies

(i) Ki,α Ă Gi for all |α| ă α0,

(ii) pF´1
α q˚gα converges uniformly to g0 on the compact set X0z

Ť

iGi as α Ñ 0,

(iii) diam0pGiq ă ϵ, and

(iv) diamαpF´1
α pGiqq ă ϵ whenever |α| ă α0.

Then there exists α1 ą 0 and a constant C ą 0 independent of α such that

Fα : pXα, dαq Ñ pX0, d0q

is a Cϵ-isometry for all |α| ă α1.
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Proof. Let ϵ ą 0. We first prove that the image of each Fα is ϵ-dense inX0. By our assumptions,
the only points in X0 not in FαpXαq must lie in some Ki,α. For each i, we can choose some
p P Gi\Ki,α which is in the image of Fα. Since diamg0pGiq ă ϵ, we have that FαpXαq is ϵ-dense
in X0 with respect to d0 for sufficiently small α.

It remains to prove that there exists some C,α1 ą 0 such that for all |α| ă α1 then

|dαpp, qq ´ d0pFαppq, Fαpqqq| ă Cϵ (23)

for each p, q P Xα.

Let p, q P Xα. Using Theorem 4.3, pick a curve γ : r0, 1s Ñ X0 such that γp0q “ Fαppq and
γp1q “ Fαpqq and

L0pγq “ d0pFαppq, Fαpqqq. (24)

We will replace this curve γ with a curve µ on X0 passing through the bad sets Gi at most
k times using Lemma 4.5. The new curve µ is piecewise differentiable with µp0q “ Fαppq,
µp1q “ Fαpqq,

L0pµq ď L0pγq `

k
ÿ

i“1

diam0pGiq ď L0pγq ` kϵ, (25)

and the construction of Lemma 4.5 provides an integer ℓ ď k and a sequence

0 ď a1 ď b1 ă . . . ă aℓ ď bℓ ď 1,

such that (by relabelling si if necessary) we have µ
´1pGiq “ rai, bis for 1 ď i ď ℓ and µ´1pGiq “

H for ℓ` 1 ď i ď k. Set Ai “ rai, bis and A
1 “ r0, 1s \

Ťℓ
i“1Ai.

Over the closed time intervals A1, the curve µ does not enter any Ki,α, and can be identified
with a curve on Xα by the diffeomorphism Fα. Define a curve µα : A1 Ñ Xα on Xα by
µαpsq “ F´1

α ˝ µpsq.

By the triangle inequality and the diameter estimate diamαpF´1
α pGiqq ă ϵ, we have that

dαpp, qq ď dpp, µαpa1qq `

ℓ
ÿ

i“1

dαpµαpaiq, µαpbiqq `

ℓ
ÿ

i“2

dαpµαpbi´1q, µαpaiqq ` dαpµαpbℓ, qq

ď Lαpµα|r0,a1sq `

ℓ
ÿ

i“2

Lαpµα |rbi´1,aisq ` Lαpµα |rbℓ,1sq ` kϵ

ď

ż

A1

| 9µαpsq|gα ds` kϵ “

ż

A1

|pF´1
α q˚ 9µpsq|gα ds` kϵ.

(26)

The set A1 is defined such that µ|A1 P X0\
Ť

iGi. The uniform convergence of the metrics
pF´1

α q˚gα to g0 on this region gives that
ż

A1

|pF´1
α q˚ 9µpsq|gα ds ď p1 ` δq

ż

A1

| 9µpsq|g0 ds ď p1 ` δqL0pµq,

and δ can be made arbitrarily small for sufficiently small α. We can next apply (24), (25) to
obtain

ż

A1

|pF´1
α q˚ 9µpsq|gα ds ď L0pµq ` δ pdiam0pX0q ` kϵq. (27)
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Note that diam0pX0q ă 8 since it is a union of a smooth geometry on a compact manifold
X0\

Ť

iGi with sets Gi of bounded diameter that have non-trivial intersection with X0\
Ť

iGi.
Combining (26) and (27) and choosing δ small enough gives

dαpp, qq ď L0pµq ` pk ` 1qϵ.

Applying (24) and (25), we then have

dαpp, qq ď d0pF ppq, F pqqq ` p2k ` 1qϵ. (28)

We now need to obtain the other side of the desired inequality (23), and the argument is
similar. Let ηα : r0, 1s Ñ Xα be a curve such that ηαp0q “ p and ηαp1q “ q, and

Lαpηαq “ dαpp, qq.

As before, we use Lemma 4.5 to replace ηα with a curve να passing through the bad sets
F´1
α pGiq at most k-times. The replacement curve ηα : r0, 1s Ñ Xα has the same endpoints να

with ναp0q “ p, ναp1q “ q and satisfies the length estimate

Lαpναq ď Lαpηαq `

k
ÿ

i“1

diamαpF´1
α pGiqq ď Lαpηαq ` kϵ. (29)

The time interval can be broken into r0, 1s “ Aα YA1
α as before where να|A1

α
P Xαz

Ť

F´1
α pGiq.

We now move onto the space pX0, d0q. Define a curve ν : A1
α Ñ X0 by νpsq “ Fα ˝ ναpsq, and

apply the triangle inequality as in (26) to obtain

d0pF ppq, F pqqq ď

ż

A1
α

| 9ν|g0ds` kϵ “

ż

A1
α

| 9να|F˚
α g0ds` kϵ. (30)

The convergence of the metrics pF´1
α q˚gα to g0 on X0z

Ť

iGi and the fact that να|A1
α
stays

within Xαz
Ť

F´1
α pGiq implies that

ż

A1
α

| 9ναpsq|F˚
α g0 ds ď

ż

A1
α

p1 ` |F ˚
αg0 ´ gα|gαq| 9να|gαds ď Lαpναq ` δ pdiamαpXαq ` 1q, (31)

where δ is small for sufficiently small α. We can bound uniformly in α the diameter

diamαpXαq ď C.

For this, note that pXαz
Ť

i F
´1
α pGiq, gαq is isometric to pX0z

Ť

iGi, pF
´1
α q˚gαq which has

bounded diameter since pF´1
α q˚gα Ñ g0 smoothly uniformly on this region. The remaining

piece of the geometry pXα, gαq, namely the sets
Ť

i F
´1
α pGiq, also have bounded diameter.

From here, we can combine (30), (31) and (29) and choose δ small enough to establish

d0pF ppq, F pqqq ď dαpp, qq ` p2k ` 1qϵ.

Combining this together with (28), we obtain (23) and the lemma holds for the uniform constant
C “ 2k ` 1.
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4.3 Estimates on the Small Resolution

In this subsection, we will show how Lemma 4.6 gives convergence of the families of metrics
on the small resolution. In the small resolution case, the maps Fα are simply the blowdown
map F : pX Ñ X0, while the sets Ci,α Ă pX are the p´1,´1q-curves Ei » P1, and the sets
Ki,α Ă X0 are the singletons Ki,α “ tsiu containing the conifold singularities. At this point,
we must check that the diameter estimates (ii) and (iii) appearing in Lemma 4.6 apply for
the small resolution metrics. Since these are local estimates around the p´1,´1q-curves and
around the singularities, we work on the local model ppV , pgco,aq. In order to get a handle on

bounds pertaining to the “tube” pT p1q “ tr ď 1u, we split it up into a smaller “tube” pT paKq

and an “annulus” pT p1q \ pT paKq.

4.3.1 Tubular Bounds

Recall the Asymptotically Conical Decay Property (CO SR II). We may fix a constant K such
that

|pπ´1q˚ppgco,aq ´ gco,0|gco,0 ď
1

2

when r ą aK. We start with uniform bounds on the spaces p pT paKq, pgco,aq. These will be ob-

tained using the Scaling Property (CO SR I) and the compactness of the set p pT pKq, pgco,1q.

To estimate the diameter, we consider a curve γ : r0, 1s Ñ pT paKq. The length of this curve
with respect to the metric pgco,a is given by

pLco,apγq “

ż 1

0

c

pgco,a

´

9γpsq, 9γpsq
¯

ds

“

ż 1

0

c

a2 ¨ S˚
a´1ppg1q

´

9γpsq, 9γpsq
¯

ds

“ a ¨

ż 1

0

c

pgco,1

´

pSa´1q˚ 9γpsq, pSa´1q˚ 9γpsq
¯

ds

“ a ¨ pLco,1pSa´1 ˝ γq,

where we have used (CO SR I). Since there is a one-to-one correspondence between curves in
pT paKq and curves in pT pKq given by composition with Sa´1 , it follows that

zdiamco,ap pT paKqq “ a ¨ zdiamco,1p pT pKqq. (32)

To obtain a volume bound, we note that

yVolco,ap pT paKqq “

ż

pT paKq

pω3
co,a “

ż

pT paKq

a6 ¨ S˚
a´1ppω3

co,1q.

Using the change of variables formula, this becomes

yVolco,ap pT paKqq “ a6 ¨

ż

Sa´1 p pT paKqq

pω3
co,1 “ a6 ¨

ż

pT pKq

pω3
co,1.

Therefore
yVolco,ap pT paKqq “ a6 ¨ yVolco,1p pT pKqq. (33)
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4.3.2 Annular Bounds

Let δ ą 0. We will obtain diameter and volume bounds on the annular region pT pδq\ pT paKq

for 0 ă a ď δ
K . These are derived using the Asymptotically Conical Decay Property (CO SR

II).

Fix a point p “ pλ, u0, v0q P pT pδq\ pT paKq, and denote ρ “ rppq. Then ρ P paK, δs.

Consider the curve pγ : raρK, 1s Ñ pTδ given by

pγpsq “ pλ0, s
3
2u0, s

3
2 v0q. (34)

This path begins in pT paKq and moves along the fiber over λ0 to arrive at p “ pγp1q.

Using the blowdown map π : pV Ñ V0 (5), it can be directly checked that this curve is sent to
the curve γ “ π ˝ pγ in V0 given by:

γpsq “ s
3
2 ¨ πpλ0, u0, v0q.

It follows that
rpγpsqq “ s ¨ ρ.

Lemma 4.7. The path γpsq on V0 given above has speed | 9γ|gco,0 “ ρ, and length Lco,0pγq “

ρ´ aK.

Proof. The cone metric can be written as gco,0 “ dr2 ` r2 ¨ pr˚
1gL, where gL is a metric on the

link L “ tr “ 1u and pr1 : V0 Ñ L is the projection to the link pr1pzq “ z
}z}

. We can then
compute

drp 9γq “
d

ds
pr ˝ γq “ ρ,

and

ppr1q˚ 9γ “
d

ds
pp1 ˝ γq “ 0.

Therefore
gco,0p 9γ, 9γq “ ρ2.

This gives the speed of γ, and integration gives the length.

We now compare the length of the curve ppγ, pgco,aq to the length of the curve pγ, gco,0q.

|pLco,appγq ´ Lco,0pγq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ż 1

a
ρ
K

| 9
pγ|

pgco,a ´ | 9γ|gco,0 ds

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż 1

a
ρ
K

ˇ

ˇ

ˇ

ˇ

| 9
pγ|

pgco,a ´ | 9γ|gco,0

ˇ

ˇ

ˇ

ˇ

ds

“

ż 1

a
ρ
K

ˇ

ˇ

ˇ

ˇ

| 9γ|pπ´1q˚ppgco,aq ´ | 9γ|gco,0

ˇ

ˇ

ˇ

ˇ

ds

“

ż 1

a
ρ
K

ˇ

ˇ

ˇ

ˇ

ˇ

| 9γ|2
pπ´1q˚ppgco,aq

´ | 9γ|2gco,0

| 9γ|pπ´1q˚ppgco,aq ` | 9γ|gco,0

ˇ

ˇ

ˇ

ˇ

ˇ

ds.

29



We then obtain the estimate

|pLco,appγq ´ Lco,0pγq| ď

ż 1

a
ρ
K

|pπ´1q˚
pgco,a ´ gco,0|gco,0 | 9γ|2gco,0

| 9γ|pπ´1q˚ppgco,aq ` | 9γ|gco,0
ds

ď

ż 1

a
ρ
K

|pπ´1q˚
pgco,a ´ gco,0|gco,0 | 9γ|gco,0 ds.

We now use | 9γ|gco,0 “ ρ, rpγpsqq “ s ¨ ρ, and (CO SR II) to obtain

|pLco,appγq ´ Lco,0pγq| ď

ż 1

a
ρ
K

Ca2ρ

r2
ds “

Ca2

ρ
¨

ż 1

a
ρ
K

1

s2
ds “ Ca ¨

´ 1

K
´
a

ρ

¯

.

Therefore

pLco,appγq ď |pLco,appγq ´ Lco,0pγq| ` |Lco,0pγq| ď Ca ¨

´ 1

K
´
a

ρ

¯

` pρ´ aKq.

For fixed 0 ă a ď δ
K , this is maximized when ρ “ δ, giving

pLco,appγq ď C ¨

ˆ

a

Kδ
` 1

˙

¨ pδ ´ aKq ď C ¨ pδ ´ aKq

As such, we get
pdco,app, pT paKqq ď C ¨ pδ ´ aKq.

In tandem with our diameter bound for pT paKq (32), we get

zdiamco,ap pTδq ď a ¨ zdiamco,1p pT pKqq ` 2C ¨ pδ ´ aKq,

which for fixed δ and K, is uniformly bounded for 0 ă a ď δ
K .

For the volume estimate, have

yVolco,ap pT pδq\ pT paKqq “

ż

pT pδq\ pT paKq

dvolgco,a

“

ż

aKărďδ
pπ´1q˚dvolgco,a

ď

ż

aKărďδ
dvolgco,0 `

ˇ

ˇ

ˇ

ˇ

ˇ

ż

aKărďδ
pπ´1q˚dvolgco,a ´ dvolgco,0

ˇ

ˇ

ˇ

ˇ

ˇ

.

We can write

pπ´1q˚dvolgco,a ´ dvolgco,0 “

ż 1

0

d

ds
dvolgs “

1

2

ż 1

0
Trgspgco,0 ´ pπ´1q˚gco,aq dvolgs

where gs “ spπ´1q˚gco,a ´ p1 ´ sqgco,0.

30



Our choice of K was such that |pπ´1q˚gco,a ´ gco,0|gco,0 ď 1
2 on when r ą aK and as such we

have C´1gco,0 ď gs ď Cgco,0 for all 0 ď s ď 1 on that region. Therefore

yVolco,ap pT pδq\ pT paKqq ď

ż

aKărďδ
p1 ` C ¨ |pπ´1q˚gco,a ´ gco,0|gco,0q dvolgco,0

ď C ¨

”

ż δ

aK
pr5 ` a2r3qdr

ı

ď C ¨

”

pδ6 ´ a6K6q ` a2 ¨ pδ4 ´ a4K4q

ı

.

Combining this with (33), it follows that

yVolco,apT̂ pδqq ď a6 ¨ yVolco,1p pT pKqq ` C ¨

”

pδ6 ´ a6K6q ` a2 ¨ pδ4 ´ a4K4q

ı

.

As a consequence, we conclude

Lemma 4.8. For δ ą 0, we have

zdiamco,ap pT pδqq ď a ¨ zdiamco,1p pT pKqq ` C ¨ pδ ´ aKq, (35)

and
yVolco,apT̂ pδqq ď a6 ¨ yVolco,1p pT pKqq ` C ¨

”

pδ6 ´ a6K6q ` a2 ¨ pδ4 ´ a4K4q

ı

. (36)

for any 0 ă a ď δ
K .

4.3.3 Applying the Main Lemma

Our diameter estimates will enable us to prove the following useful lemma akin to that of
Song–Weinkove [SW13]:

Lemma 4.9. For 0 ă ϵ ă 1, there exists δ ą 0 and 0 ă a0 such that for 0 ă a ă a0

i) diamco,0pD0pδqq ă ϵ, and

ii) zdiamco,apπ´1pD0pδqqq ă ϵ.

Proof. We have that D0pδq is a closed disc of radius δ with respect to a cone metric gco,0 “

dr2 ` r2 ¨ gL. Standard arguments from Riemannian geometry give the diameter of D0pδq to
be 2δ. We can then take δ ă ϵ

2 to satisfy the first condition.

Next, we consider the second condition, and note π´1pD0pδqq “ pT pδq. Using (35), we can see
that for all 0 ă a ď δ

K , we can estimate

zdiamco,ap pT pδqq ď Cδ,

for a uniform constant C ą 0.

As such, we choose δ small enough such that δ ă C´1ϵ, δ ă ϵ
2 , and a0 “ δ

K and the result
follows.

We can now apply Lemma 4.6 to prove convergence of the three classes of metrics on the small
resolution:
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• Theorem 2.9 - Convergence of the local models p pT p1q, pdco,aq Ñ pD0p1q, dco,0q:

In this case, we have only one ODP singularity s. By the diameter estimate of gco,a
(Lemma 4.9), we see that for each ϵ ą 0, we can pick the set G “ D0pδq for an appropri-
ately small δ ą 0 such that Lemma 4.6 applies.

• Theorem 2.10 - Convergence of the global balanced metrics p pX, pdFLY,aq Ñ pX0, dFLY,0q:

Here we use the fact that the Fu–Li–Yau metrics are, up to scaling, just the Candelas–de
la Ossa metrics in a compact set around the p´1,´1q-curves Ei and the ODP singu-
larities si. For ϵ ą 0, we can pick Gi “ D0pδiq for appropriately small δi around each
singular point si. Coupling this with the smooth convergence of the Fu–Li–Yau metrics
on compact sets away from the p´1,´1q-curves, we may apply Lemma 4.6.

• Theorem 2.15 - Convergence of the global HYM metrics p pX, pd
pHa

q Ñ pX0, dH0q:

By Proposition 2.11, we have the estimate

C´1gco,a ď pHa ď Cgco,a

on the local sets D0pδiq around each singularity si where the Fu–Li–Yau metrics are a
scaling of the Candelas–de la Ossa metrics. Lemma 4.9 implies that for ϵ ą 0, there
exists δi ą 0 and a0 ą 0 such that for all 0 ă a ă a0 then

diamH0pD0pδiqq ă ϵ, zdiam
pHa

pπ´1pD0pδiqqq ă ϵ.

We may therefore apply Lemma 4.6.

4.4 Estimates on the Smoothing

We now prove the analogous statements on the smoothings. We will derive diameter bounds on
Dtpβt,δq Ă Vt with respect to gco,t. Volume bounds can also be obtained in a similar way as for
the small resolution, and we omit the details as they are not needed in the current work.

We recall that βt,ρ is defined by

βt,ρ “

´

ρ3 `
|t|2

4ρ3

¯
1
3

and the role of βt,ρ is so that the set tr “ βt,ρu Ă Vt on the smoothing is identified with the
set tr “ ρu Ă V0 on the cone via the map Φt.

The method we will use is analogous to that of the small resolutions. First, we use the
Asymptotically Conical Decay Property (CO SM II) to set K ą 0 such that

|pΦtq
˚pgco,tq ´ gco,0| ď

1

2

when r ą |t|
1
3K.

We will then split our region of interest Dtpβt,δq into a “disc” Dtpβ
t,|t|

1
3K

q and an “annulus”

Dtpβt,δq \Dtpβ
t,|t|

1
3K

q.
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4.4.1 Bounds on the Disc

We start by estimating the geometry of the disc Dtpβt,|t|1{3Kq. For this, we note that

S
t´ 1

3
:

ˆ

Dtpβ
t,|t|

1
3K

q, gco,t

˙

Ñ

ˆ

D1pβ1,Kq, |t|
2
3 gco,1

˙

is an isometry. This is due to the scaling property gco,t “ |t|2{3S˚
t´1{3pgco,1q. It follows that

diamco,tpDtpβ
t,|t|

1
3K

qq “ |t|
1
3 ¨ diamco,1pD1pβ1,Kqq. (37)

4.4.2 Annular Bounds

Let δ ą 0. We now compute diameter bounds on the “annular” region
Dtpβt,δq \Dtpβ

t,|t|
1
3K

q when 0 ă |t| ď p δ
K q3. As before, this relies on (CO SM II).

Let q P Dtpβt,δq \Dtpβ
t,|t|

1
3K

q be an arbitrary point in the annular region. We will construct a

curve γ̃ from Dtpβ
t,|t|

1
3K

q to q and estimate its length Lco,tprγq. To do this, we will bring the

setup back to the cone V0 and use a radial ray.

Since Φt is a diffeomorphism on the annular region, we can write q “ Φtppq for p P V0. We

note that β is defined such that |t|
1
3K ă rppq ď δ and we define ρ ą 0 by rppq “ ρ. Hence

|t|1{3K ă ρ ď δ.

We can define a path γ : r|t|
1
3
K
ρ , 1s Ñ V0 by

γpsq “ s
3
2 ¨ p. (38)

This path is chosen such that it begins in D0p|t|
1
3Kq and moves outward along a ray emanating

from 0 to reach γp1q “ p. It can be checked that

9γpsq “ ρ ¨
B

Br
and rpγpsqq “ ρ ¨ s.

The corresponding path in Vt is γ̃ “ Φt ˝ γ, and our goal is to estimate its length. We start
with

|Lco,tprγq ´ Lco,0pγq| ď

ż 1

|t|1{3 K
ρ

ˇ

ˇ

ˇ

ˇ

ˇ

| 9γ|pΦtq˚pgco,tq ´ | 9γ|gco,0

ˇ

ˇ

ˇ

ˇ

ˇ

ds

ď

ż 1

|t|1{3 K
ρ

|pΦtq
˚gco,t ´ gco,0|gco,0 | 9γ|gco,0 ds.

Using | 9γ|gco,0 “ ρ, rpsq “ s ¨ ρ, and (CO SR II), we get

|Lco,tprγq ´ Lco,0pγq| ď C

ż 1

|t|1{3 K
ρ

|t|r´3psqρ ds ď C

ˆ

|t|1{3

K2
´

|t|

ρ2

˙

.

We can also check that

Lco,0pγq “

ż 1

|t|1{3 K
ρ

ρ ds “ ρ´ |t|1{3K.
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By the triangle inequality and the above estimates, we conclude

Lco,tprγq ď Cpρ` |t|1{3K´2q.

Since |t| ď δ3K´3 and ρ ď δ, we conclude that

dco,t

´

q,Dtpβ
t,|t|

1
3K

q

¯

ď Cδ. (39)

Combining this with our diameter bound (37) for Dtpβ
t,|t|

1
3K

q, we get

diamco,t

´

Dtpβt,δq

¯

ď Cδ, 0 ă |t| ď
δ3

K3
, (40)

which is the desired diameter bound for the Calabi-Yau metrics on the local model pVt, gco,tq.

4.4.3 Bounds for the Fu–Li–Yau Metrics

On the smoothings, the Fu–Li–Yau metrics are only close to scaled Candelas–de la Ossa metrics
instead of being exactly equal to them. Due to this, we require a version of the diameter bound
(40) for the Fu–Li–Yau metric. This will follow by virtue of the estimate (13).

Consider a curve γ on the disc Dtpβt,δq. We compare the length of this path γ with respect to
the Fu–Li–Yau metric and to a scaled Candelas–de la Ossa metric.

|LFLY,tpγq ´
?
c ¨ Lco,tpγq| ď

1
?
c

ż 1

0
|gFLY,t ´ c ¨ gco,t|gco,t ¨ | 9γ|gco,t ds.

Using (13), and recognizing that the 0 ă δ ă 1 and K " 1 appearing here can be chosen such
that βt,δ is smaller than the δ appearing in (13) for all 0 ă |t| ď p δ

K q3, we have

|LFLY,tpγq ´
?
c ¨ Lco,tpγq| ď C|t|

2
3 Lco,tpγq.

Thus
LFLY,tpγq ď Cp|t|

2
3 ` 1qLco,tpγq.

It then follows that

diamFLY,tpDtpβt,δqq ď Cp|t|
2
3 ` 1qdiamco,t

´

Dtpβt,δq

¯

.

Combining this with (40), we have

Lemma 4.10. For δ ą 0, we have

diamFLY,tpDtpβt,δqq ď Cδp|t|
2
3 ` 1q, (41)

for all 0 ă |t| ď p δ
K q3.
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4.4.4 Applying the Main Lemma

Using the diameter estimates, we prove an analog of Lemma 4.9 in the case of the smoothings
for the Candelas–de la Ossa and Fu–Li–Yau metrics.

Lemma 4.11. For 0 ă ϵ ă 1, there exists δ ą 0 and 0 ă t0 such that for 0 ă |t| ă t0,

i) diamco,0pD0pδqq ă ϵ, and

ii) diamco,tpDtpβt,δqq ă ϵ.

The result also holds when taking diameters with respect to the Fu–Li–Yau metrics gFLY,0 and
gFLY,t instead of the Candelas–de la Ossa metrics gco,0 and gco,t.

Proof. As was the case in Lemma 4.9, the first condition holds as long as δ ă ϵ
2 . Using (40)

or (41), we see that for all 0 ă |t| ď p δ
K q3, we have the estimate

diamco,t

´

Dtpβt,δq

¯

ď Cδ (42)

for some uniform constant C ą 0. The result follows.

Applying our lemma then gives convergence of our metrics on the smoothings:

• Convergence of the local models pDtpβt,1q, dco,tq Ñ pD0p1q, dco,0q:

We have only one ODP singularity s for this case. Using our diameter estimate (40),

we have that for ϵ ą 0, we can pick G “ D0pδq, Kt “ D0pp
|t|
2 q

1
3 q, and Ct “ Dtp|t|

1
3 q for

sufficiently small δ ą 0 and t such that Lemma 4.6 applies with the maps Φt.

• Convergence of the global balanced metrics pXt, dFLY,tq Ñ pX0, dFLY,0q:

Here, we use the diameter estimate (41) instead. For ϵ ą 0, we can again pick Gi “

D0pδiq, Ki,t “ D0pp
|t|
2 q

1
3 q, and Ci,t “ Dtp|t|

1
3 q for sufficiently small δi ą 0 and t around

each singularity si. As such, we can apply the lemma with the maps Φt.

• Convergence of the global HYM metrics pXt, dHtq Ñ pX0, dH0q:

Similarly to the case of the small resolutions, we use estimate (14), which is,

C´1gFLY,t ď Ht ď CgFLY,t (43)

on the local sets D0pδiq around the singularities si. Set Ki,t “ D0pp
|t|
2 q

1
3 q and Ci,t “

Dtp|t|
1
3 q. Lemma 4.11 then gives that for ϵ ą 0, there exists δi ą 0 and t0 ą 0 such that

for all 0 ă |t| ă t0,

diamH0pD0pδiqq ă ϵ, diamHtpDtpβt,δiqq ă ϵ. (44)

Applying Lemma 4.6 using the maps Φt proves the result.

Combining these results with the analogous results for the small resolution found at the end
of section 4.3.2, we obtain Theorem 4.1.
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A Hermitian–Yang–Mills Metrics on the Resolution

The presentation in [CPY24] only uses convergence of Hermitian–Yang–Mills metrics along a
subsequence of the Fu–Li–Yau metrics pωFLY,ak as ak Ñ 0. Convergence along the full sequence
a Ñ 0 also follows from the estimates in [CPY24], and in this section we provide the full
details.

We start by establishing notation. We denote the components of a Hermitian metric H on
T 1,0X by Hαβ̄, and this convention is such that the associated inner product on T 1,0X is given
by

xu, vy “ uαHαβ̄v
β u, v P ΓpT 1,0Xq.

The components of the inverse of H are denoted H µ̄ν so that Hµν̄H
ν̄κ “ δµ

κ. The Chern
connection associated to H will be denoted ∇, so that

∇ku
α “ Bku

α ` uβpBkHβγ̄H
γ̄αq, ∇k̄u

α “ Bk̄u
α.

The Chern curvature of H will be denoted by F P Λ1,1pEndT 1,0Xq with conventions

Fβ
α
jk̄ “ ´Bk̄pBjHβγ̄H

γ̄αq.

We often omit the endomorphism indices and write Fjk̄ “ ´Bk̄pBjHH
´1q. Given two metrics

H and Ĥ, the difference in curvature tensors is

pFHqjk̄ ´ pFĤqjk̄ “ ´Bk̄p∇̂jhh
´1q, h “ HĤ´1, (45)

where ∇̂h “ Bh` rh, BĤĤ´1s is the induced connection on EndT 1,0X.

Let ωa “ ipgaqjk̄dz
j ^dz̄k be the sequence of Fu–Li–Yau balanced metrics on the resolution X̂.

To ease notation, in this section we write ωa instead of pωFLY,a. We will use the notation

iΛωF “ gjk̄Fjk̄.

From [CPY24], there is a sequenceHa of Hermitian–Yang–Mills metrics on T 1,0X solving

iΛωaFHa “ 0,

along with estimates
C´1ga ď Ha ď Cga, r|∇Ha|ga ď C, (46)

where the constants are uniform in a. Furthermore, for each K Ď X̂zE there are esti-
mates

sup
K

|∇jHa|ga ď CpK, jq.

We first normalize the sequence tHau. We define

fa :“ log
detHa

det ga
,

and after replacing Ha with e´caHa, we can fix the normalization
ż

X̂
fa dvolga “ 0. (47)
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Since C´1ga ď Ha ď Cga, the constants e´ca are uniformly bounded, and so the normalized
sequence tHau still satisfies the estimates (46).

We now move on to showing that Ha Ñ H0 uniformly on compact sets. By the Arzelà–Ascoli
theorem, for each K Ă X̂zE there is a subsequence Hbi Ñ H0 converging uniformly. Taking
an exhaustion of compact sets and identifying X̂zE with pX0qreg, we obtain a subsequence
Hbi Ñ H0 which converges pointwise on pX0qreg and uniformly on compact subsets.

We next want to upgrade the subsequential convergence to convergence of the full sequence
tHau uniformly on compact subsets of pX0qreg. We proceed by contradiction. Suppose not,
so that there exists an ϵ ą 0, a compact subset K0 Ď pX0qreg, and a subsequence ai Ñ 0
with

sup
K0

|Hai ´H0|g0 ě ϵ (48)

for all ai. We can apply the estimates (46) and the Arzelà–Ascoli theorem to the tHaiu to
extract a further subsequence tHaik

u converging uniformly to a limit H̃0 on compact subsets
of pX0qreg.

We now have two limiting metrics H0 and H̃0 on pX0qreg, each satisfying

ω2
0 ^ FH “ 0, C´1g0 ď H ď Cg0, r|∇H|g0 ď C. (49)

From (49) and the normalization condition, our goal will be to show that H0 “ H̃0. Taking
the limit of (48) along the subsequence aik gives

sup
K0

|H̃0 ´H0|g0 ě ϵ,

which is the desired contradiction.

To show H0 “ H̃0, we consider eu “ H̃0H
´1
0 and show that u “ 0.

Lemma A.1.
ż

pX0qreg

pTruq dvolg0 “ 0. (50)

Proof. We have two subsequences tbiu and taiu such that fbi Ñ f0 and fai Ñ f̃0 pointwise on
X̂zE and uniformly on compact sets. Taking the logarithm of

det H̃0

det g0
“ pdet euq

detH0

det g0

we have f̃0 “ Tru` f0. Thus if we can show that
ż

pX0qreg

f0 dvolg0 “ 0,

ż

pX0qreg

f̃0 dvolg0 “ 0

we will have established (50). The calculation of both these integrals is the same, so we only
calculate for the sequence tbiu. We split the integral as

ż

pX0qreg

f0 dvolg0 “

ż

trăδu

f0 dvolg0 `

ż

trěδu

f0 dvolg0
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The first integral can be estimated by using |f0| ď C (49), so that

ˇ

ˇ

ˇ

ˇ

ż

trăδu

f0 dvolg0

ˇ

ˇ

ˇ

ˇ

ď C

ż

trăδu

dvolg0 ď Cδ6.

The second integral can be estimated by passing the limit under the integral over compact sets
and using

ş

X fi dvolgi “ 0.

ˇ

ˇ

ˇ

ˇ

ż

trěδu

f0 dvolg0

ˇ

ˇ

ˇ

ˇ

“ lim
biÑ0

ˇ

ˇ

ˇ

ˇ

ż

trěδu

fbidvolgbi

ˇ

ˇ

ˇ

ˇ

“ lim
biÑ0

ˇ

ˇ

ˇ

ˇ

ż

trăδu

fbidvolgbi

ˇ

ˇ

ˇ

ˇ

ď C lim sup
biÑ0

Volco,bipT̂δq

Here we used C´1gb ď Hb ď Cgb implies |fb| ď C. We use the volume estimate (36) to
conclude

lim sup
biÑ0

Volco,bipT̂δq ď Cδ2.

We can now send δ Ñ 0 to complete the proof of the lemma.

Taking the trace of (45) and using the Hermitian–Yang–Mills equation gives the following
identity for h “ H̃0H

´1
0 .

pg0qjk̄Bk̄pp∇H0qjhh
´1q “ 0. (51)

The following key identity was observed by Uhlenbeck–Yau [UY86]. We will use a version from
Jacob–Walpuski [JW18] and give the proof for completeness.

Lemma A.2. Let H “ euĤ be a pair of Hermitian metrics on a holomorphic bundle E Ñ X
over a Hermitian manifold pX, gq. Write h “ eu. Then we have the identity

∆g|u|2
Ĥ

“ 2xgk̄jBk̄p∇̂jhh
´1q, uyĤ ` 2gk̄jx∇̂jhh

´1, ∇̂kuyĤ . (52)

If we assume |u|Ĥ ď R then there exists a constant CpRq ą 0 such that the following estimate
holds:

∆g|u|2
Ĥ

ě 2xgjk̄Bk̄p∇̂jhh
´1q, uyĤ `

1

C
|∇̂u|2

Ĥ
. (53)

Proof. We start by recalling the definition of u. Let teau be a local smooth frame for T 1,0X
such that

Ĥ “

3
ÿ

a“1

ea b ea, h “

3
ÿ

a“1

λa ea b ea.

Then u is defined by

u “

3
ÿ

a“1

plog λaq ea b ea.

In this frame, the adjoint : with respect to Ĥ is just the conjugate-transpose of the components,
and so h: “ h and u: “ u.
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The connection coefficients are ∇̂iea “ Aia
beb and metric compatibility implies Aia

b “ ´Aīb
a.

We can then compute

p∇̂iuqa
b “

Biλa
λa

δa
b ` plog λa ´ log λbqAia

b

and

p∇̂ihh
´1qa

b “
Biλa
λa

δa
b ` λ´1

b pλa ´ λbqAia
b.

The inner product on endomorphisms is xu, vyĤ “ Truv:

Ĥ
, and to ease notation we drop the

subscript Ĥ. We have

Bi|u|2 “ x∇̂iu, uy ` xu, ∇̂īuy “ 2x∇̂iu, uy,

since u: “ u and p∇īuq: “ ∇̂iu. Furthermore, we notice that the expressions above imply

x∇̂iu, uy “ x∇̂ihh
´1, uy,

since the inner product only picks up the diagonal part. Therefore

gk̄jBk̄Bj |u|2 “ 2gk̄jBk̄x∇̂ihh
´1, uy

“ 2xgk̄jBk̄p∇̂jhh
´1q, uy ` 2gk̄jx∇̂ihh

´1, ∇̂kuy.

This proves identity (52). For the estimate, it remains to show

gk̄jx∇̂jhh
´1, ∇̂kuy ě

1

C
gk̄jx∇̂ju, ∇̂kuy. (54)

We compute
x∇̂jhh

´1, ∇̂kuy “ p∇̂jhh
´1qa

bp∇̂k̄uqb
a

which gives

x∇̂jhh
´1, ∇̂kuy “

ÿ

a,b

Bj log λaBk̄ log λa ` log
λa
λb
λ´1
a pλb ´ λaqAja

bAk̄b
a

and so

gk̄jx∇̂jhh
´1, ∇̂kuy “

ÿ

a

|B log λa|2 `
ÿ

a,b

log
λa
λb
λ´1
a pλa ´ λbq|Aa

b|2.

On the other hand,

gk̄jx∇̂ju, ∇̂kuy “
ÿ

a

|B log λa|2 `
ÿ

a,b

ˇ

ˇ

ˇ

ˇ

log
λa
λb

ˇ

ˇ

ˇ

ˇ

2

|Aa
b|2

To show (54), it suffices to prove

log
λa
λb
λ´1
a pλa ´ λbq ě

1

C

ˇ

ˇ

ˇ

ˇ

log
λa
λb

ˇ

ˇ

ˇ

ˇ

2

.

Let ex “ λa{λb, and recall that by assumption there holds |x| ď R. We are seeking an
inequality of the form

xp1 ´ e´xq ě
1

C
x2, |x| ď R.

This inequality indeed holds since x´1p1 ´ e´xq ą 0 for all x P R, so a constant C ą 1 exists
such that x´1p1 ´ e´xq ě C´1 on the compact region |x| ď R.
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We now apply this lemma and combine it with (51) to obtain

∆g0 |u|2H0
ě C´1|∇u|2g0,H0

(55)

on pX0qreg. Let η : r0,8q Ñ r0,8q be a cutoff function such that η ” 0 on 0 ď r ď 1 and
η ” 1 on r ě 2. Let ηδprq “ ηpr{δq, so that ηδ vanishes on tr ă δu. Identifying pX0qreg with
X̂zE, we have

ż

X̂
ηδ|∇u|2 dvolg0 ď C

ż

X̂
ηδ∆|u|2 dvolg0 .

Integrating by parts, we can estimate
ż

X̂
ηδ∆|u|2 dvolg0 ď

ż

X̂
|∇ηδ||∇u||u| dvolg0

ď Cδ´1

ż

tδără2δu

r´1dvolg0

ď Cδ4,

by using |∇u| ď Cr´1 (49) and |∇ηδ| ď Cδ´1. Sending δ Ñ 0, we conclude
ż

X̂zE
|∇u|2dvolg0 “ 0.

We conclude that |∇u| “ 0 on X̂zE, and since ∇ is the Chern connection this implies

B̄u “ 0

on X̂zE. Since u is bounded, by Hartog’s theorem we may extend u to all of X̂. Thus u is
a holomorphic endomorphism of the tangent bundle T 1,0X̂. Since X̂ is a simply-connected
Calabi–Yau threefold, its tangent bundle is stable and so u must be a multiple of the identity:
u “ λ id. From (50), we conclude that λ “ 0 and so u “ 0. This completes the proof that
H̃0 “ H0.

B The (Local) Map Φ

We collect several results regarding the map Φ : V0\t0u Ñ V1. We recall that Φ was defined
by

Φpzq “ z `
z

2}z}2
.

We will show that Φ is a diffeomorphism from tz P V0 | }z}2 ą 1{2u to tz P V1 | }z}2 ą 1u.

We start by taking the norm:

}Φpzq}2 “ }z}2 ¨

´

1 `
1

4}z}4

¯

.

Let x “ }z}2, and remark that the function

fpxq “ x
´

1 `
1

4x2

¯

, x ą 0
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is strictly increasing on p12 ,8q. From this, we see that Φ is injective on V0\t}z}2 ď 1
2u. Indeed,

suppose that Φpzq “ Φpz1q with }z}2 ą 1
2 and }z1}2 ą 1

2 . Then the restriction of the domain
implies that }z}2 “ }z1}2. From here, we can split the equation Φpzq “ Φpz1q into real and
imaginary parts and a straightforward calculation shows z “ z1.

Our next step is to find an inverse for Φ. First, we note that

gpxq “
1

2
px`

a

x2 ´ 1q, x ą 1

is an inverse of f : p12 ,8q Ñ p1,8q.

Now, let w P V1, with }w}2 “ B ą 1. It can be checked by direct calculation that

zi “

´ 2gpBq

2gpBq ` 1

¯

¨ Repwiq ´
?

´1 ¨

´ 2gpBq

2gpBq ´ 1

¯

¨ Impwiq,

satisfies:

‚ z P V0,

‚ }z}2 “ gpBq ą 1
2 ,

‚ Φpzq “ w.

It follows that Φ is a bijection from tz P V0 | }z}2 ą 1
2u to tz P V1 | }z}2 ą 1u. The coordinate

expressions for Φ and the ones appearing in the previous computations show that Φ and its
inverse are smooth, hence Φ is a diffeomorphism between these sets. Written in terms of
rpzq “ }z}

2
3 , we get:

Proposition B.1. The map Φ: V0\tz P V0 | rpzq ą 2´ 1
3 u Ñ tz P V1 | rpzq ą 1u is a

diffeomorphism.

We recall that we can compose the map Φ with scaling maps S˚
R. In particular, we defined

Φt “ S
t
1
3

˝ Φ ˝ S
t´ 1

3
. One can check that in coordinates, this map takes the form

Φtpzq “ z `
tz

2}z}2
.

Smoothness of the scaling maps gives us the following corollary:

Corollary B.2. The map Φt : V0\tz P V0 | rpzq ą 2´ 1
3 ¨ t

1
3 u Ñ tz P V1 | rpzq ą t

1
3 u are

diffeomorphisms for t ą 0.
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