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Abstract 

Finding maximum cliques in large networks is a challenging combinatorial problem with many real-world applications. 

We present a fast algorithm to achieve the exact solution for the maximum clique problem in large sparse networks based 

on efficient graph decomposition. A bunch of effective techniques is being used to greatly prune the graph and a novel 

concept called Complete-Upper-Bound-Induced Subgraph (CUBIS) is proposed to ensure that the structures with the 

potential to form the maximum clique are retained in the process of graph decomposition. Our algorithm first pre-prunes 

peripheral nodes, subsequently, one or two small-scale CUBISs are constructed guided by the core number and current 

maximum clique size. Bron-Kerbosch search is performed on each CUBIS to find the maximum clique. Experiments on 

50 empirical networks with a scale of up to 20 million show the CUBIS scales are largely independent of the original 

network scale. This enables an approximately linear runtime, making our algorithm amenable for large networks. Our 

work provides a new framework for effectively solving maximum clique problems on massive sparse graphs, which not 

only makes the graph scale no longer the bottleneck but also shows some light on solving other clique-related problems. 
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Introduction 

The Maximum Clique Problem (MCP), which involves identifying all complete subgraphs (subnetworks) with the 

maximum number of nodes, wherein every pair of nodes is adjacent in a general graph (network), stands as a fundamental 

combinatorial optimization challenge. Its significance extends across diverse fields, both theoretically and practically. 

The MCP has profound connections with various scientific problems, including the Maximum Independent Set [1-4], 

Graph Coloring [3-6], Minimum Vertex Cover [7,8], Optimal Winner Determination [9,10], Boolean Satisfiability 

Problem [11,12], and Graph Clustering [13]. With the burgeoning proliferation of network-based applications, the MCP 

has gained increasing prominence across a broad spectrum of research and practical domains. Notably, it plays a pivotal 

role in the analysis of human brain networks [14,15], social networks [16-19], economic and financial networks [20], 

biological information networks [21,22], and communication networks [23-25]. Furthermore, the MCP serves as a vital 

subproblem in various distinct fields [26,27]. 

In light of the broad significance and the diverse practical requirements previously outlined, several approaches with 

varying emphases have emerged to address MCP, one of the renowned Karp's 21 NP-complete problems [28]. Existing 

algorithms for MCP, based on their precision, can be broadly categorized into two classes: exact algorithms and heuristic 

algorithms. Exact algorithms [29-34] primarily adhere to the branch-and-bound framework, systematically exploring all 

feasible branches while also intelligently pruning branches that are theoretically incapable of yielding superior solutions 

to the current optimum. Although exact algorithms hold the theoretical advantage of ensuring optimality, they grapple 

with the intrinsic computational complexity of the MCP, incurring substantial computational time costs. Consequently, 

this type of algorithm finds suitability in scenarios involving finite-scale problems. For tackling the MCP on large-scale 

graphs within an acceptable timeframe, heuristic algorithms have been introduced. Heuristic algorithms [30,35-39], as a 

distinctive trait, provide solutions that are theoretically approximate to optimality. These heuristic approaches incorporate 
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diverse branch-and-bound techniques, such as the maximum degree-based heuristic [39] and the degeneracy order-based 

heuristic [18]. Exact and heuristic methodologies complement and, in some instances, converge [5,18], collaborating 

effectively to address diverse problem settings. Furthermore, emerging algorithms employing alternative methodologies 

continue to be developed [37,40]. 

From the perspective of the sparsity of the graphs, MCP algorithms also can be categorized into two distinct branches: 

the MCP on dense graphs and sparse graphs, each tailored to optimize performance within its respective scenario. The 

MCP on dense graphs has garnered extensive research attention, leading to the development of a multitude of effective 

techniques [31,33,41,42], many of which have found applicability in related studies [43-47]. The evaluation of 

algorithmic performance often leverages the DIMACS benchmark graphs [43,48]. However, empirical graphs are often 

of substantial scale and continue to grow, yet fortunately, they predominantly exhibit sparsity. Consequently, the MCP 

on sparse graphs has experienced a rapid ascent in response to the escalating demand for graph analysis. Concurrently, 

the utilization of distributed and parallel technologies in addressing MCP challenges has garnered substantial interest 

[18,32,34]. 

The branch-bound technique significantly reduces the search space and shortens the search time for finding the 

maximum clique. Compared with the maximum degree of node, the core number [49,50] serves as a more efficient upper 

bound for the size of the maximum clique. Calculating the core number requires only linear time [51]. A 𝑘-core is a node-

induced subgraph of the graph, meeting the following criteria: 1) every node within it has a core number equal to 𝑘; 2) 

the degree of any node in the 𝑘-core is not less than 𝑘, and 3) the size of any clique in the 𝑘-core is not larger than 𝑘 + 1. 

These assertions can be easily established by means of contradiction. Consequently, if the largest core number of any 

node in graph 𝐺 is denoted as 𝑘𝑚𝑎𝑥(𝐺), then the upper bound on the maximum clique size is 𝑘𝑚𝑎𝑥(𝐺) + 1. This value 

also represents the upper bound on the number of colors required for graph coloring [52], denoted as 𝑙𝑚𝑎𝑥(𝐺). Hence, it 

can be inferred that 𝑙𝑚𝑎𝑥(𝐺) ≤ 𝑘𝑚𝑎𝑥(𝐺) + 1. Therefore, 𝑙𝑚𝑎𝑥(𝐺) is the upper bound for the maximum clique size. This 

upper bound constraint remains applicable to each neighborhood subgraph [18], 

𝜔(𝐺) ≤ max
𝑣

𝑙𝑚𝑎𝑥(𝑁𝑅(𝑣)) ≤ max
𝑣

𝑘𝑚𝑎𝑥(𝑁𝑅(𝑣)) + 1,                                          (1) 

where 𝜔(𝐺) represents the size of the maximum clique,  𝑁𝑅(𝑣) denotes the node-induced subgraph of 𝐺 corresponding 

to node 𝑣, the neighbors of 𝑣 are those that remain after removing nodes that would not belong to the maximum clique. 

There is a maximum clique algorithm based on Formula 1 [18], which comprises two main processes. First, a greedy 

heuristic algorithm is employed to identify a larger clique. During this stage, the core number serves as both the upper 

and lower bounds for the maximum clique size, effectively pruning numerous nodes. Subsequently, a branch-bound 

algorithm [53] is applied to explore the maximum clique within the node neighborhoods of the remaining graph. 

Concurrently, the current maximum clique size is used to further prune remaining nodes. However, this algorithm 

necessitates repeated construction of the neighborhood graph and calculation of the core number for nodes in the pursuit 

of the maximum clique. Furthermore, repeated node pruning substantially escalates the time cost. 

In this study, we introduce a novel maximum clique algorithm designed for large-scale sparse graphs. Our approach 

reduces computational complexity by requiring the calculation of the core number only once, with the construction of at 

most two subgraphs. Importantly, the maximum clique identified during the search is guaranteed to be theoretically 

optimal for the original graph. Additionally, the size of the subgraphs generated during computation is significantly 

smaller than that of the original graph. Notably, our proposed algorithm eliminates the need for frequent construction of 

node neighborhood subgraphs and node color number calculations. Specifically, the proposed algorithm first prunes 

nodes with lower degrees because it is among these nodes that the maximum clique cannot form, resulting in a reduction 

in the computation time required for the core number. Subsequently, the first subgraph, derived from one or more 𝑘-

cores and their eligible neighbors, is constructed. This subgraph is considerably smaller than the original graph. Next, a 

Bron-Kerbosch-based algorithm is deployed to search for the maximum clique within this subgraph. Following this, the 

current maximum clique size and other constraints guide the construction of the second subgraph. This subgraph 

encompasses all remaining nodes that have the potential to form the maximum clique. Finally, the Bron-Kerbosch-based 

algorithm is once again utilized to search for the ultimate maximum clique. For certain graphs, under the constraint of 

the maximum clique size obtained after the initial search, the algorithm may terminate without constructing the second 

subgraph. During the creation of these two subgraphs, we introduce a novel concept known as the Complete-Upper-

Bound-Induced Subgraph (CUBIS). CUBIS ensures that potential structures capable of forming a maximum clique are 

preserved even after splitting the original graph. 



Algorithm 1 Pseudocode for proposed maximum clique algorithm 

 

1 Procedure 1 MAXIMUMCLIQUE(𝐺) 

2       𝐺′, 𝑀 ← PREPURNING(𝐺) 

3       if |𝑀| > |𝐺′| then return 𝑀 

4       𝐿 ← {𝑐𝑣}      ⊳ 𝑐𝑣 is the core number of 𝑣 and {𝑐𝑣} in descending order 

6       if |𝑀| > max(𝐿) + 1 then return 𝑀 

7       𝐺1 ← CONSTRUCTFIRSTCUBIS(𝐺′, 𝐿[0: 𝑡𝑜𝑝𝐿], 𝑀) 

8       𝑀 ← SEARCHMAXCLIQUE(𝐺1, 𝑀) 

9       if |𝑀| > max(𝐿[𝑡𝑜𝑝𝐿: ]) + 1 then return 𝑀 

10     𝐺2 ← CONSTRUCTSECONDCUBIS(𝐺′, 𝐿[𝑡𝑜𝑝𝐿: ], 𝑀) 

11     𝑀 ← SEARCHMAXCLIQUE(𝐺2, 𝑀) 

12     return 𝑀      ⊳ 𝑀 is the maximum clique in 𝐺 

 

1 Procedure 2 PREPRUNING(𝐺)      ⊳ Prune all peripheral nodes in 𝐺 

2       𝑀 ← SEARCHMAXCLIQUE(𝐺𝑝𝑟𝑒, 1)    ⊳ 𝐺𝑝𝑟𝑒 is the neighborhood subgraph of the node with 𝑘𝑚𝑎𝑥 

3       𝐺′ ← Pruning all nodes with 𝑘 < |𝑀| − 1 from 𝐺  

4       return 𝐺′, 𝑀 

 

1 Procedure 3 CONSTRUCTFIRSTCUBIS (𝐺′, 𝐿[0: 𝑡𝑜𝑝𝐿], 𝑀)   ⊳ Construct the first CUBIS (CUBIS-1) with the nodes 

corresponding to the first 𝑡𝑜𝑝𝐿 largest core number, here 𝑡𝑜𝑝𝐿 satisfies 𝑚𝑎𝑥(𝐿) ≥ 𝐿(𝑡𝑜𝑝𝐿) ≥ |𝑀| 
2       𝑊 ←  ∅ 

3       for each node in 𝐺′ do 

4             if 𝑐𝑣 ≥ 𝐿[𝑡𝑜𝑝𝐿] then 𝑊 ← 𝑊 ∪ {𝑣} 

5       return 𝐺1    ⊳ Induced subgraph of 𝑊 from 𝐺′ 

 

1 Procedure 4 CONSTRUCTSECONDCUBIS(𝐺′, 𝐿[𝑡𝑜𝑝𝐿: ], 𝑀)   ⊳ Construct the second CUBIS (CUBIS-2) with the nodes 

with the potential to form the maximum clique from the remaining 𝐿 

2       𝐻, 𝑍, 𝐹, 𝐵, 𝑋 ← ∅ 

3       while  𝐿[𝑙] + 1 > |𝑀| do  𝐻 ← 𝐻 ∪ {𝐿[𝑙]}  

4       if 𝐻 is empty then return 𝑀 

5       for each node 𝑚 in 𝐺′ do 

6              if 𝑐𝑣 ∈ 𝐻 then 𝑍 ← 𝑍 ∪ {𝑣} 

7       for each node 𝑚 in 𝑍 do 

8              if 𝑐𝑗 ≥ min(𝐻) then 𝐹 ← 𝐹 ∪ {𝑗}   ⊳ 𝑗 is each neighbor of 𝑚 

9              𝑆𝑎𝑡, 𝑈𝑛𝑠𝑎𝑡 ← 0 

10            for each node 𝑛 in do   ⊳  𝐹 in ascending order of nodes’ degree 

11                  if len(F)⋂𝑁(𝑛) > |𝑀| − 2 then 

12              𝑆𝑎𝑡 ← 𝑆𝑎𝑡 + 1 

13              if 𝑆𝑎𝑡 > |𝑀| − 1 then 𝑎𝑑𝑑𝐹 = True and break 

14       else 

15              𝑈𝑛𝑠𝑎𝑡 ← 𝑈𝑛𝑠𝑎𝑡 + 1 

16              if 𝑈𝑛𝑠𝑎𝑡 > 𝑙𝑒𝑛(𝐹) − (|𝑀| − 1) then 

17                               𝑎𝑑𝑑𝐹 = False and break 

18 if 𝑎𝑑𝑑𝐹 then 𝐵 ← 𝐵 ∪ {𝑛} 

19       if 𝑐𝑝 > max (𝐻) then 𝑋 ← 𝑋 ∪ {𝑝}   ⊳ 𝑝 is each neighbor of 𝑛 

20     𝐵 ← 𝐵⋃𝑋 

21     return 𝐺2  ⊳ Induced subgraph of 𝐵 from 𝐺′ 

 

1 Procedure 5 SEARCHMAXCLIQUE(𝐺, 𝑀)   ⊳ Maximum clique finder  

based on the Bron-Kerbosch algorithm 

2       𝐴, 𝑈 ← {𝐺}; 𝑄, 𝑌 ←  ∅ 

3       choose the node 𝑢 with the biggest degree from 𝐺 

4       𝑃 = 𝐺\𝑁(𝑢)  
5       while 𝑇𝑟𝑢𝑒 do 

6 if 𝑃 is not empty then 

7       Pop a node as 𝑞 from 𝑃 and remove q in 𝐴 

8                    if 𝑐𝑞 + 1 < |𝑀| then continue   ⊳ For Procedure 2, replace with 𝑘𝑞 + 1 < |𝑀| 

9       𝑄 ← 𝑄 ∪ {𝑞} 

10       if |𝑈⋂𝑁(𝑞)| + |𝑄| < |𝑀| then continue 



  

 

11 if 𝑈⋂𝑁(𝑞) is not empty and |𝑄| > |𝑀| then 𝑀 ← 𝑄 

12       else if 𝐴⋂𝑁(𝑞) is not empty then 

13                        add (𝑈, 𝐴, 𝑃) into 𝑌,  and add 𝑁𝑜𝑛𝑒 into 𝑄    ⊳ here None is a placeholder 

14             𝑈 = 𝑈⋂𝑁(𝑞), 𝐴 = 𝐴⋂𝑁(𝑞) 

15 choose the node 𝑢 with the biggest degree in 𝑈 and set 𝑃 = 𝐴\𝑁(𝑢) 

16 else then 

17       Remove a node from 𝑄 

18                  if 𝑌 is not empty then pop an element assigned to 𝑈, 𝐴, 𝑃 

19       else return 𝑀 

 

2 Results 

2.1 Algorithm 

The main procedure of the proposed algorithm is outlined in Procedure 1 within Algorithm 1. Initially, we perform pre-

pruning by removing nodes and all associated edges from the graph if they cannot participate in cliques larger than those 

obtained through a heuristic process (Procedure 2). Subsequently, we construct two CUBISs on a small scale, guided by 

the known maximum clique size and core number, and search for the maximum clique within them. The algorithm may 

be terminated prematurely if, at a certain stage, the maximum clique size satisfies specific judgment criteria. 

Pre-pruning Pre-pruning involves the initial removal of peripheral nodes from the graph, typically nodes with low 

degrees that lack the potential to contribute to the formation of the maximum clique. As depicted in Procedure 2 within 

Algorithm 1, our approach begins by extracting the neighborhood subgraph of the node with the highest degree, denoted 

as 𝐺𝑝𝑟𝑒. Subsequently, we identify the maximum clique, denoted as 𝑀, within 𝐺𝑝𝑟𝑒, and proceed to prune all nodes within 

𝐺 that possess a degree less than  |𝑀| − 1, where |𝑀| represents the size of 𝑀. The resulting graph is denoted as  𝐺′. 

Both 𝑀  and 𝐺′  are retained for subsequent steps in the algorithm. Pre-pruning offers the significant advantage of 

reducing the size of the original graph, consequently minimizing the time required for core number calculations. This 

holds true whether such calculations are performed in parallel [54,55] or on standard consumer-grade PCs [56]. In 

addition to obtaining the neighborhood subgraph of the node with the maximum degree, an alternative approach is to 

randomly select a node and extract its neighborhood subgraph. This method, while saving time in identifying the highest-

degree node, may yield a smaller maximum clique within 𝐺𝑝𝑟𝑒, resulting in fewer nodes being subject to pre-pruning. In 

some instances, particularly when specific graph attributes or maximum clique size constraints 𝜓 are known, nodes with 

degrees less than 𝜓 − 1 can be directly pruned without the need to construct the neighborhood subgraph. 

CUBIS To ensure that the two subgraphs constructed in Procedures 3 and 4 within Algorithm 1 can retain the graph 

structure conducive to forming a maximum clique, we introduce the concept of a Complete-Upper-Bound-Induced 

Subgraph (CUBIS). Given a simple graph 𝐺(𝑉, 𝐸), a CUBIS 𝐺𝑐(𝑁, 𝑀) of 𝐺 is a node-induced subgraph where the set of 

nodes 𝑁 ⊆ 𝑉 comprises nodes with a core number equal to 𝑐 and their neighbors with a core number greater than 𝑐, i.e., 

𝑁 = {𝑖 ∪ 𝑗|𝑐𝑛(𝑖) = 𝑐, 𝑐𝑛(𝑗) > 𝑐 and (𝑖, 𝑗) ∈ 𝐸},                                                (2) 

          𝑀 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁 and (𝑖, 𝑗) ∈ 𝐸},                                                           (3) 

where 𝑐𝑛(𝑖) presents the core number of node 𝑖, and 𝑀 is the set of edges with both endpoints in 𝑁. The CUBIS 𝐺𝑐 

consists of the 𝑐-core [57] of 𝐺 and the neighbors of nodes within the 𝑐-core that have a core number greater than 𝑐. 

Additionally, it includes edges connecting all these nodes, as illustrated in Figures 1c and 1d." 

Our maximum clique algorithm incorporates two CUBISs: the first CUBIS, denoted as 𝐺𝑐𝑚𝑎𝑥
, and the second CUBIS, 

denoted as 𝐺𝑐2𝑛𝑑
. 𝐺𝑐𝑚𝑎𝑥

 is identical to the 𝑐𝑚𝑎𝑥-core, representing the nucleus with the largest core number, 𝑐𝑚𝑎𝑥 , as the 

nodes within 𝐺𝑐𝑚𝑎𝑥
 lack neighbors with larger core numbers. Notably, for large-scale sparse graphs, the size of 𝐺𝑐𝑚𝑎𝑥

 is 

typically quite small [58,59]. If 𝜔(𝐺𝑐𝑚𝑎𝑥
)  > 𝑐2𝑛𝑑 + 1, it implies that there is no clique with a size exceeding 𝜔(𝐺𝑐𝑚𝑎𝑥

) 

in the remaining graph, and the algorithm terminates. Here, 𝜔(𝐺𝑐𝑚𝑎𝑥
) represents the size of the maximum clique obtained 

from 𝐺𝑐𝑚𝑎𝑥
, and 𝑐2𝑛𝑑  is the second-largest core number. Otherwise, the algorithm proceeds to find the minimum core 

number, 𝑐𝑚𝑖𝑛, that satisfies the condition: 

                    𝑐𝑚𝑖𝑛 + 1 ≥ 𝜔(𝐺𝑐𝑚𝑎𝑥
),                                                                    (4) 



Subsequently, 𝐺𝑐2𝑛𝑑
 is constructed from nodes with core numbers within the range [𝑐𝑚𝑖𝑛 , 𝑐2𝑛𝑑] and their neighbors with 

higher core numbers. It is important to note that 𝐺𝑐2𝑛𝑑
 comprises nodes corresponding to multiple core numbers and their 

neighbors, except when𝑐𝑚𝑖𝑛 equals 𝑐2𝑛𝑑 . The algorithm then proceeds to search for the maximum clique within 𝐺𝑐2𝑛𝑑
 

after further pruning and subsequently concludes. 

Formula 4 highlights that as 𝜔(𝐺𝑐𝑚𝑎𝑥
) increases, 𝑐𝑚𝑖𝑛  also increases accordingly. Consequently, the size of 𝐺𝑐2𝑛𝑑

 

becomes smaller, leading to shorter search times for finding the maximum clique within 𝐺𝑐2𝑛𝑑
. Therefore, the first CUBIS 

𝐺𝑐𝑚𝑎𝑥
 can be appropriately extended to the nodes corresponding to the top 𝑡𝑜𝑝𝐿 largest core numbers, rather than solely 

focusing on nodes with the largest core number. Procedure 3 within Algorithm 1 illustrates this extension. The parameter 

𝑡𝑜𝑝𝐿 can be determined based on graph size and the core number-based graph stratification. Further details are provided 

in the Discussion section. 

For convenience, we denote the sequence of core numbers of a graph 𝐺 as follows: 𝑐𝑚𝑎𝑥 , 𝑐2𝑛𝑑 , … , 𝑐𝑛 , … , 𝑐𝑚 , …, in 

descending order, where 𝑛 < 𝑚 and 𝑐𝑛 > 𝑐𝑚. The key steps of our algorithm can be outlined as follows: 

1. Pre-prune the graph according to the maximum clique size in the neighborhood subgraph of the node with the 

maximum degree, followed by core number calculation; 

2. Formulate the node set 𝑆1 as {𝑖|𝑐𝑛 ≤ 𝑐𝑛(𝑖) ≤ 𝑐𝑚𝑎𝑥}, where 𝑐𝑛(𝑖) represents the core number of node 𝑖. Then, 

construct the first CUBIS denoted as 𝐺1 using 𝑆1 and proceed to search for the maximum clique within 𝐺1, 

denoting its size as 𝜔(𝐺1). 

3. If ω(G_1) > c_(n+1) + 1, the algorithm concludes. However, if not, we identify a core number 𝑐𝑚 that satisfies 

the following condition: 

                 𝑐𝑚 = min(𝑐𝑖 + 1 ≥ 𝜔(𝐺1)) , 𝑛 + 1 ≤ 𝑖 ≤ 𝑚.                                                (5) 

This results in a new node set 𝑆2, defined as: 

𝑆2 = {𝑖 ∪ 𝑗|𝑐𝑚 ≤ 𝑐𝑛(𝑖) ≤ 𝑐𝑛+1, (𝑖, 𝑗) ∈ 𝐸 and 𝑐𝑛(𝑗) > 𝑐𝑛+1}.                                  (6) 

Following further pruning of 𝑆2, we construct the second CUBIS, referred to as 𝐺2. The algorithm concludes 

upon completing the search for the maximum clique within 𝐺2. 

 

Further pruning In this step, nodes in 𝑆2 can undergo further pruning. According to Formula 6, the nodes in 𝑆2 can be 

divided into two subsets: 

                    𝑆2
1 = {𝑖|𝑐𝑚 ≤ 𝑐𝑛(𝑖) ≤ 𝑐𝑛+1},                                                              (7) 

and 

           𝑆2
2 = {𝑗|𝑖 ∈ 𝑆2

1 , (𝑖, 𝑗) ∈ 𝐸 and 𝑐𝑛(𝑗) > 𝑐𝑛+1}.                                                (8) 

We can further prune the nodes in 𝑆2
1 to prevent both nodes that do not contribute to the maximum clique and their 

neighbors in  𝑆2
2 from being included in 𝐺2. We apply a rapid but approximate assessment to each node in 𝑆2

1 sequentially 

and add them, along with their neighbors, to set  𝑆3 if they meet certain conditions. Specifically, we begin by obtaining 

a node set 𝑁𝑖, comprising neighboring nodes of node 𝑖 whose core number is not less than 𝑐𝑛(𝑖), and we arrange them 

in ascending order of degree. We introduce two counters, 𝑆𝑎𝑡 and 𝑈𝑛𝑠𝑎𝑡, initially set to 0. For each node𝑛𝑗  in 𝑁𝑖, if: 

                          𝑙𝑒𝑛 (𝑁𝑖 ∩ 𝑁𝑛𝑗
) > 𝜔(𝐺1) − 2,                                                              (9) 

then 𝑆𝑎𝑡 is incremented by 1, where 𝑙𝑒𝑛(∙) represents the length of the set, and 𝑁𝑛𝑗
 represents the neighbor set of 𝑛𝑗 . 

When: 

                                     𝑆𝑎𝑡 > 𝜔(𝐺1) − 1,                                                                      (10) 

it implies that node 𝑖 and its neighbors have the potential to form a larger clique than the current maximum clique. In 

such cases, we add node 𝑖 and its neighbors whose core number exceeds 𝑐𝑛+1 to 𝑆3. If Formula 9 does not hold, 𝑈𝑛𝑠𝑎𝑡 

is incremented by 1. When: 



  

 

                          𝑈𝑛𝑠𝑎𝑡 > 𝑙𝑒𝑛(𝑁𝑖) − (𝜔(𝐺1) − 1),                                                        (11) 

it suggests that node 𝑖 cannot contribute to the maximum clique, and we cease to include it in 𝑆3. It's worth noting that 

arranging  𝑁𝑖 in ascending order ensures that Formula 11 can be satisfied first, thus allowing for an early termination of 

the node 𝑖 evaluation process. Once these operations have been performed on all nodes in 𝑆2
1, rather than 𝑆2, we derive a 

further pruning subgraph 𝐺2
′ = (𝑆3, 𝑀), where the edge set is defined as: 

                       𝑀 = {(𝑖, 𝑗)|(𝑖, 𝑗) ∈ 𝐸 and 𝑖, 𝑗 ∈ 𝑆3}.                                                       (12) 

After searching for the maximum clique in 𝐺2
′ , the algorithm ends. Note that this loose judgment process can further 

enhance time efficiency, particularly when leveraging parallel computing. 

The search for the maximum clique in 𝐺1 and 𝐺2
′  can be executed using a modified version of the classical Bron-

Kerbosch algorithm [8], as outlined in Procedure 5 in Algorithm 1. Note that for each candidate node 𝑞, it is necessary 

to first determine the relationship between its core number plus 1 and the current maximum clique size (as seen in Line 

8 of Procedure 5). Additionally, after obtaining the neighborhood subgraph of 𝑞, we must assess the relationship between 

the subgraph's size, plus the size of the current clique 𝑄, and the current maximum clique size |𝑀| (Line 10 in Procedure 

5). These two assessments enable timely termination of any invalid search processes. 

 
Figure 1: Example graph and its three subgraphs. (a) An example graph 𝐺. (b) The residual graph 𝐺1 , which results 

from the pre-pruning of low-degree nodes in 𝐺. Nodes are color-coded to represent different core numbers. (c) and (d) 

showcase the first CUBIS and the second CUBIS, respectively. In (b), (c) and (d), the nodes within the red, green, and 

gray regions correspond to core numbers 3, 2, and 1, respectively. 

2.2 Calculation on an Example Graph 

Figure 1 depicts an example graph along with its three subgraphs, showcasing the various stages of the maximum clique 

search process. Following our algorithm, we initiate the process by identifying a node with the highest degree in graph 

𝐺 , as shown in Figure 1a. In this case, it is node 1. We then construct its neighborhood subgraph and identify the 

maximum clique in it, denoted as 𝑀, with a size of |𝑀| = 3. During the pre-pruning step, we eliminate all nodes whose 

degree is less than |𝑀| − 1, resulting in the residual graph 𝐺1, presented in Figure 1b. Subsequently, we calculate the 

core number for the remaining graph and proceed to construct the first CUBIS (CUBIS-1), represented in Figure 1c, with 

𝑡𝑜𝑝𝐿 set to 1. We conduct a search within CUBIS-1 to identify the maximum clique, again with a size of |𝑀| = 3. At 

this juncture, the algorithm's termination condition is not met, meaning that |𝑀| > 2 + 1  does not hold true. 

Consequently, we proceed to construct the second CUBIS (CUBIS-2), illustrated in Figure 1d. However, we exclude 

node 7 from further consideration due to the fact that its core number plus 1 is less than |𝑀| (and thus does not satisfy 

Formula 5). After searching for the maximum clique in CUBIS-2, the algorithm concludes. Ultimately, the maximum 

clique size of 𝐺 is determined to be 3. 

2.3 Application to Empirical Networks 

We conducted experiments on 50 empirical networks spanning various domains, including social networks, 

communication networks, citation networks, cooperation networks, infrastructure networks, biological networks, neural 



networks, and ecological networks. These networks were primarily sourced from a network repository1, with their scales 

ranging from 1,000 to over 20 million. For detailed information regarding the basic topological statistics and algorithm 

results for the networks analyzed in this study, please refer to Table 1 in the Appendix. It's worth noting that one-third of 

these networks were terminated prematurely after completing the first CUBIS search. In Figure 2a, we present a 

comparison between the scales of the original networks and those of the two CUBISs. Notably, the scales of the two 

CUBISs remain consistently small in magnitude, and their proportions tend towards zero as the scale of the original 

network increases. This observation implies that the portion of the network that requires searching is, to some extent, 

independent of the original network's scale. 

 
Figure 2: Performance statistics for proposed algorithm across 50 empirical networks. (a) Compares the scale of 

the original network with that of the two CUBISs (𝐺1 + 𝐺2). The 𝑥-axis represents the scale of the original network, with 

each blue circle representing a specific network. The dashed line represents the diagonal 𝑦 = 𝑥. The inset displays the 

proportion of the scale of the two CUBISs relative to the original network, with a red solid line indicating their linear 

fitting and a shaded region representing the confidence interval. This illustrates that, as the scale of the original network 

increases, the proportion of the scale of the two CUBISs approaches zero. (b) Shows empirical runtime, with the red 

solid line representing linear fitting, indicating an approximately linear relationship between runtime and the scale of the 

original network. (c) Compares runtime with a benchmark algorithm. The diagonal line represents equal runtime between 

the two algorithms, with circles closer to the 𝑥-axis indicating an advantage for proposed algorithm. Otherwise, the 

benchmark algorithm outperforms. (d) Depicts the dependence of search time on parameter 𝑡𝑜𝑝𝐿. Each line corresponds 

to results from one network, illustrating that the algorithm's computational complexity is generally independent of the 

value of 𝑡𝑜𝑝𝐿 in most networks. 

 
1 https://networkrepository.com/ 



  

 

Figure 2b illustrates the runtime of our maximum clique algorithm, which was implemented in Python and executed 

on a consumer-grade laptop equipped with an Intel 8-Core processor (i7-10510U) running at 1.80GHz. The red line 

represents a linear fitting of the data. It is evident that there exists an approximately linear relationship between runtime 

and the scale of the original network. Notably, the linear runtime pruning process effectively reduces the number of nodes, 

ensuring that the more time-consuming clique search process is executed on a significantly smaller scale within the two 

CUBISs. It's important to mention that the runtime mentioned here excludes the pre-pruning step and the core number 

calculation. Pre-pruning is solely performed on the neighborhood subgraph of a single node, and core number calculation 

incurs only linear runtime. 

Figure 2c compares the runtime of our proposed algorithm with that of an optimized benchmark algorithm [8]. Our 

algorithm outperforms the benchmark on the majority of networks, with a few cases where the performance is comparable. 

In these analyses, the parameter 𝑡𝑜𝑝𝐿 is set to 1 in Figures 2a~c. It's worth noting that increasing 𝑡𝑜𝑝𝐿 may result in 

capturing larger maximum cliques from the first CUBIS but also lead to increased computation time. However, this also 

significantly reduces the number of nodes to be considered in the second CUBIS for the remaining graph. Figure 2c 

presents the influence of 𝑡𝑜𝑝𝐿 on search time, where each line corresponds to a specific network. Comparing the results 

for four different 𝑡𝑜𝑝𝐿 values, we observe that the algorithm's computing complexity remains relatively consistent across 

most networks, independent of the 𝑡𝑜𝑝𝐿 value. However, in a few cases, the judicious selection of 𝑡𝑜𝑝𝐿 can enhance the 

algorithm's efficiency. 

3 Discussion 

This study introduces a rapid algorithm for the maximum clique problem in massive sparse networks based on 

efficient graph decomposition. The key innovation is the proposal of complete-upper-bound-induced subgraphs to 

preserve potential maximum clique structures during decomposition. Experiments demonstrate the CUBIS scales are 

largely independent of the original network sizes, enabling approximately linear runtimes and applicability to large 

networks. Distinct from conventional methods, our approach avoids repeated neighborhood subgraph constructions and 

node color number calculations, reducing computational complexity. Moreover, constructing one or two small-scale 

CUBISs instead of searching the entire graph further shortens solving times. The algorithm also exhibits strong scalability 

by combining with parallel computing for acceleration in multi-core environments. 

This work establishes connections between the maximum clique problem and network decomposition, providing a 

new framework to effectively tackle maximum clique challenges in massive sparse graphs. The methodology can be 

extended to enumerating all maximum cliques. Future work may explore more rigorous pruning strategies to further 

optimize CUBIS construction or design incremental CUBIS update methods to handle dynamic networks. Investigating 

parallel CUBIS building and searching to maximize acceleration also represents a promising direction. Overall, 

decomposition-driven maximum clique algorithms offer new perspectives on combinatorial optimization problems in the 

big data era. 
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Appendix 

Table 1: Basic topological features and algorithm results of the 50 real-world networks considered in this work. 

Here |𝑁| and |𝑀| are the number of nodes and edges, respectively. 𝑁𝑝𝑟𝑒−𝑝𝑟𝑢𝑛𝑖𝑛𝑔
𝑛𝑜𝑑𝑒  is the number of pre-pruning nodes. 

𝑁CUBIS−1
𝑛𝑜𝑑𝑒  and 𝑁CUBIS−1

𝑒𝑑𝑔𝑒
 are the number of nodes and edges of CUBIS-1, respectively, 𝑇CUBIS−1  is the total time to 

construct CUBIS-1 and search for the maximum clique in it. Analogously, 𝑁CUBIS−2
𝑛𝑜𝑑𝑒  , 𝑁CUBIS−2

𝑒𝑑𝑔𝑒
 and 𝑇CUBIS−2 correspond 

to the three parameters in CUBIS-2, 𝜔 is the size of the maximum clique in the original network. The value “null” in the 

table indicates that the algorithm has prematurely terminated. 

Network |N| |M| 𝑵𝒑𝒓𝒆−𝒑𝒓𝒖𝒏𝒊𝒏𝒈
𝒏𝒐𝒅𝒆  

CUBIS-1 CUBIS-2 

𝝎 
𝑵𝐂𝐔𝐁𝐈𝐒−𝟏

𝒏𝒐𝒅𝒆  𝑵𝐂𝐔𝐁𝐈𝐒−𝟏
𝒆𝒅𝒈𝒆

 
𝑻𝐂𝐔𝐁𝐈𝐒−𝟏 

/s 
𝑵𝐂𝐔𝐁𝐈𝐒−𝟐

𝒏𝒐𝒅𝒆  𝑵𝐂𝐔𝐁𝐈𝐒−𝟐
𝒆𝒅𝒈𝒆

 
𝑻𝐂𝐔𝐁𝐈𝐒−𝟐 

/s 

Jazz 198 2742 69 30 435 0 null null null 30 

C. elegans 297 2148 58 119 1015 0 7 15 0 8 

USAir 332 2126 277 35 539 0 38 604 0 22 

NS 379 914 336 null null null null null null 9 

bio-CE-GT 924 3239 700 56 420 0 0 0 0 8 

Email 1133 5451 564 12 66 0 null null null 12 

bio-grid-plant 1717 6196 1345 22 354 0 45 468 0 9 

bn-fly-drosophila 1781 8911 1279 93 1277 0 127 1735 0.016 9 

Yeast 2375 11693 2129 64 1623 0.3 85 2063 0.711 23 

bio-grid-worm 3507 13062 2520 25 340 0 47 572 0.016 7 

ca-GrQc 4158 13422 4109 null null null null null null 44 

Router 5022 6258 4245 26 140 0 26 96 0 6 

ca-Erdos992 5094 7515 4462 8 28 0 null null null 8 

power-bcspwr10 5300 8271 2082 17 38 0 null null null 5 

bio-dmela 7393 25569 4078 75 674 0 89 405 0.063 7 

ca-HepPh 11204 117619 11003 null null null null null null 239 

bio-CE-CX 15229 245952 11648 90 3916 0.01 0 0 0 74 

Google 23628 39194 23073 43 378 0 65 523 0.012 7 

gc_Email_Enron  33696 180811 26682 275 9633 0.216 1208 41464 1.203 20 

Facebook 63392 1633772 24905 701 61774 0.802 4675 352266 23.206 30 

Livemocha 104103 2194779 45804 2117 170611 7.216 4080 314130 51.233 15 

soc-LiveMocha 104103 2193083 45824 2117 170595 7.165 4080 314035 50.967 15 

road-usroads 129164 165435 74834 38 60 0 null null null 3 

soc-sign-epinions 131580 711210 120026 149 10439 3.34 207 17073 5.316 94 

Douban 154908 654188 103129 1857 50426 0.08 150 1280 1.102 11 

ca-citeseer 227320 814134 196352 87 3741 0 null null null 87 

dblp-1 317080 1049866 316595 114 6441 0.01 null null null 114 

ca-MathSciNet 332689 820644 278421 25 300 0 null null null 25 

rt-higgs 425008 732790 408476 279 4378 0.02 161 1804 0.314 12 

soc-youtube 495957 1936748 455739 711 29882 0.724 2808 107986 10.827 16 

Delicious 536408 1385843 429351 93 2571 0.02 679 14130 1.787 21 

CL-2d1-trial1 910184 2748475 386355 9042 92502 0.517 56 65 13.373 3 



  

 

Network |N| |M| 𝑵𝒑𝒓𝒆−𝒑𝒓𝒖𝒏𝒊𝒏𝒈
𝒏𝒐𝒅𝒆  

CUBIS-1 CUBIS-2 

𝝎 
𝑵𝐂𝐔𝐁𝐈𝐒−𝟏

𝒏𝒐𝒅𝒆  𝑵𝐂𝐔𝐁𝐈𝐒−𝟏
𝒆𝒅𝒈𝒆

 
𝑻𝐂𝐔𝐁𝐈𝐒−𝟏 

/s 
𝑵𝐂𝐔𝐁𝐈𝐒−𝟐

𝒏𝒐𝒅𝒆  𝑵𝐂𝐔𝐁𝐈𝐒−𝟐
𝒆𝒅𝒈𝒆

 
𝑻𝐂𝐔𝐁𝐈𝐒−𝟐 

/s 

CL-1d9-trial3 919225 3700086 352111 20901 323757 1.837 0 0 20.331 4 

rgg_n_2_20_s0 1048575 6891620 864850 59 637 0 null null null 17 

Tencent-QQ 1052129 8022535 698581 454 102830 1.27 null null null 453 

inf-roadNet-PA 1087562 1541514 278605 916 1491 0.061 null null null 4 

rt-retweet-crawl 1112702 2278852 980622 725 11522 0.109 315 1736 3.105 13 

Weibo 1113435 6947122 725257 453 102378 1.259 null null null 453 

soc-youtube-snap 1134890 2987624 1085272 845 36363 1.016 2947 119642 10.92 17 

YouTube 1138498 2990443 1088875 845 36363 0.99 2947 119642 11.852 17 

soc-lastfm 1191805 4519330 1024801 597 35153 3.026 5920 221557 31.953 14 

Last.fm 1191812 5115300 1022179 420 31527 1.628 7698 365233 52.568 14 

Hyves 1402673 2777419 1215916 347 10879 0.166 541 15801 1.127 18 

soc-pokec 1957027 2760388 519224 4454 7393 0.178 null null null 4 

inf-roadNet-CA 2523386 9197337 2424689 120 10334 1.305 3654 208544 75.425 31 

Flixster 2523386 7918801 2280122 123 5501 2.861 2152 70763 33.684 31 

flixster-2 3774768 16518947 1599348 106 4043 2.145 16992 177097 31.224 11 

cit-Patents 5689498 14067887 4398280 56 1326 0.042 2848 51831 23.761 25 

Friendster 11548845 12369181 656315 81 131 0 null null null 3 

road-germany 910184 2748475 386355 9042 92502 0.517 56 65 13.373 3 

 

 


