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Abstract

Mond and Pecaric proposed a powerful method, namd as MP method, to deal with operator inequal-
ities. However, this method requires a real-valued function to be convex or concave, and the normalized
positive linear map between Hilbert spaces. The objective of this study is to extend the MP method
by allowing non-convex or non-concave real-valued functions and nonlinear mapping between Hilbert
spaces. The Stone–Weierstrass theorem and Kantorovich function are fundamental components em-
ployed in generalizing the MP method inequality in this context. Several examples are presented to
demonstrate the inequalities obtained from the conventional MP method by requiring convex function
with a normalized positive linear map. Various new inequalities regarding hypercomplex functions, i.e.,
operator-valued functions with operators as arguments, are derived based on the proposed MP method.
These inequalities are applied to approximate hypercomplex functions using ratio criteria and difference
criteria. Another application of these new inequalities is to establish bounds for hypercomplex functions
algebra, i.e., an abelian monoid for the addition or multiplication of hypercomplex functions, and to
derive tail bounds for random tensors ensembles addition or multiplication systematically.

Index terms— Operator inequality, Jensen’s inequality, hypercomplex function, Stone–Weierstrass the-
orem, Kantorovich function.

1 Introduction

Operator Jensen’s inequality extends the concept of conventional Jensen’s inequality from real value argu-
ment function to operator argument function and is generally used in optimization, especially in convex
optimization involving operator variables, e.g., matrices, tensors. The inequality states that for an operator
convex function f , we have

f(Φ(A)) ≤ Φ(f(A)), (1)

where A is a self-adjoint operator, Φ is a normalized positive linear map and ≤ is by Loewner ordering
sense [1,2]. Operator Jensen’s inequality is a powerful device in diverse areas, along with machine learning,
signal processing, and control principle. In gadget learning, for example, it is used inside the analysis of
convex optimization problems related to matrices, consisting of matrix factorization and matrix completion.
In signal processing, it finds applications in the design and analysis of convex optimization algorithms for
jobs like blind source separation and beamforming. In the field of control science, it is carried out in the
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evaluation and synthesis of convex control structures regarding matrix variables. Operator Jensen’s inequal-
ity gives a way to generalize the idea of convex features to operator variables and presents insights into the
function convexity related to matrices or tensors, that are frequently encountered in many mathematical and
engineering tasks [3–15].

Mond and Pečarić demonstrated multiple extensions of Kantorovich-type operator inequalities concern-
ing normalized positive linear maps. They highlighted that determining upper bounds for the difference
and ratio in Jensen’s inequality can be simplified to solving a single-variable maximization or minimization
problem by leveraging the concavity of a real-valued function f . Building on this approach, they established
complementary inequalities to the Hölder-McCarthy inequality and Kantorovich-type inequalities, provided
estimates for the difference and ratio of operator means, and explored various converses of Jensen’s inequal-
ity applicable to normalized positive linear maps. In cases where f exhibits concavity, they derived the dual
problem. This method, known as the Mond-Pečarić (MP) method, has proven to be highly fruitful in the
realm of operator inequalities, offering valuable insights and results [1, 2].

The purpose of this work is to extend MP method by allowing f in Eq. (1) to be non-convex or non-
concave and the mapping Φ in Eq. (1) to be a nonlinear mapping. The Stone–Weierstrass theorem and
Kantorovich function serve as the primary ingredients employed in generalizing MP method inequality in
this context. Several examples are shown here to have those inequalities obtained from the conventional
MP method by setting f to be a convex function with Φ as a normalized positive linear map. Various new
inequalities about hypercomplex functions, i.e., operator-valued functions with operators as arguments, are
derived based on the proposed MP method. These new inequalities are applied to approximate hypercomplex
functions by ratio criteria and by difference criteria. The other application of these new inequalities is to
establish hypercomplex functions lower/upper bounds algebra, i.e., these bounds form a abelian monoid
under the addition or the multiplication of hypercomplex functions. Besides, we also can derive random
tensors tail bounds for the addition or the multiplication of random tensors ensembles by an uniform way.

The remainder of this paper is organized as follows. In Section 2, fundamental inequalities about hyper-
complex functions are established. In Section 3, generalized converses of operator Jensen’s inequalities for
ratio kinds with nonlinear Φ are established. On the other hand, generalized converses of operator Jensen’s
inequalities for different kinds with nonlinear Φ are established in Section 4. The first application about
applying newly derived inequalities to hypercomplex functions approximation is studied in Section 5. The
second application about applying newly derived inequalities to investigate lower and upper bounds algebra
is presented in Section 6.

Nomenclature: Inequalities ≥, >,≤, and <, when applied to operators, follow the Loewner ordering.
The symbol Λ(A) denotes the spectrum of the operator A, i.e., the set of eigenvalues of A. If Λ(A) consists
of real numbers, min(Λ(A)) and max(Λ(A)) represent the minimum and maximum values within Λ(A),
respectively. For given M > m > 0 and any r ∈ R where r ̸= 1, the Kantorovich function with respect to
m, M , and r is defined as follows:

K(m,M, r) =
(mM r −Mmr)

(r − 1)(M −m)

[
(r − 1)(M r −mr)

r(mM r −Mmr)

]r
. (2)

2 Fundamental Inequalities for Hypercomplex Functions with Nonlinear
Map

2.1 Upper Bound and Lower Bound of Function f

Let’s start with the Stone-Weierstrass Theorem, which asserts that any continuous real-valued function f(x)
defined on the closed interval [m,M ], where m,M ∈ R and M > m, can be uniformly approximated by
a polynomial p(x). This approximation ensures that the absolute difference between f(x) and p(x) is less
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than any given positive value ϵ across the entire interval [m,M ]. Mathematically, this difference is bounded
by the supremum norm, denoted as ∥f − p∥∞, which remains less than ϵ [16].

Given a continuous real-valued function f(x) and a positive error bound ϵ, we can employ the Lagrange
polynomial interpolation method, grounded in the Stone-Weierstrass Theorem, to ascertain both an upper
polynomial pU(x) ≥ f(x) and a lower polynomial pL(x) ≤ f(x) over the interval [m,M ]. These polyno-
mials are guaranteed to satisfy the following inequalities:

0 ≤ pU(x)− f(x) ≤ ϵ,

0 ≤ f(x)− pL(x) ≤ ϵ, (3)

Additionally, in this paper, we assume that f(A) is a self-adjoint operator if A is a self-adjoint operator.

2.2 Polynomial Map Φ

Consider two Hilbert spaces H and K. B(H) and B(K) represent the semi-algebras comprising all bounded
linear operators on these respective spaces. In Choi-Davis-Jensen’s Inequality, the mapping Φ : B(H) →
B(K) is defined as a normalized positive linear map. Such a map is precisely defined by Definition 1
below [1, 2].

Definition 1 A map Φ : B(H) → B(K) is considered a normalized positive linear map if it satisfies the
following conditions:

• Linearity: Φ(aX + bY ) = aΦ(X) + bΦ(Y ) for any a, b ∈ C and any X,Y ∈ B(H).

• Positivity: If X ≥ Y , then Φ(X) ≥ Φ(Y ).

• Normalization: Φ(IH) = IK, where IH and IK are the identity operators of the Hilbert spaces H and
K, respectively.

In this study, we will explore a broader class of Φ by defining Φ as follows:

Φ(X) = V ∗

(
I∑

i=0

aiX
i

)
V

= V ∗

 ∑
i+∈SI+

ai+X
i+ +

∑
i−∈SI−

ai−X
i−

V , (4)

where, V stands as an isometry within H, adhering to V ∗V = IH. In ai, ai+ signifies the nonnegative coef-
ficients, while ai− denotes the negative coefficients. The set of indices corresponding to positive coefficients
is denoted as SI+ , and those for negative coefficients form SI− . It’s noteworthy that no constraints regarding
linearity, positivity, or normalization are imposed on Φ as outlined in Eq. (4). With this premise, the con-
ventional notion of a normalized positive linear map, delineated in Definition 1, emerges as a special case.

This is accomplished by configuring the polynomial
I∑

i=0
aiX

i as the identity map, wherein all coefficients

ai except a1 are zero.
Contents from Section 2.1 and Section 2.2 are based on [4], however, we present them here again for

self-contained presentation purpose.
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2.3 Fundamental Inequalities

In this section, general converses of operator Jensen’s inequalities for any polynomial map Φ will be ob-
tained. Let us recall Lemma 2 from [4].

Lemma 1 Given a self-adjoint operator A with Λ(A), such that

0 ≤ pU(x)− f(x) ≤ ϵ,

0 ≤ f(x)− pL(x) ≤ ϵ, (5)

for x ∈ [min(Λ(A)),max(Λ(A))] with polynomials pL(x) and pU(x) expressed by

pL(x) =

nL∑
k=0

αkx
k, pU(x) =

nU∑
j=0

βjx
j . (6)

Under the definition of Φ provided by Eq. (4), we have

Φ(f(A)) ≤ V ∗

 ∑
i+∈SI+

ai+K(min(Λ(pU(A))),max(Λ(pU(A))), i+)p
i+
U (A)

+
∑

i−∈SI−

ai−K
−1(min(Λ(pL(A))),max(Λ(pL(A))), i−)p

i−
L (A)

V

def
= V ∗Polyf,U(A)V , (7)

where Λ(pU(A) and Λ(pL(A) are spectrms of operators pU(A and pL(A, respectively. On the other hand,
we also have

Φ(f(A)) ≥ V ∗

 ∑
i+∈SI+

ai+K
−1(min(Λ(pL(A))),max(Λ(pL(A))), i+)p

i+
L (A)

+
∑

i−∈SI−

ai−K(min(Λ(pU(A))),max(Λ(pU(A))), i−)p
i−
U (A)

V

def
= V ∗Polyf,L(A)V . (8)

Given Λ(A) ∈ [m,M ], the value range for the spectrum Λ(Polyf,L(A)) is represented by P̃olyf,L(m,M).
Similarly, the value range for the spectrum Λ(Polyf,U(A)) is represented by P̃olyf,U(m,M).

The main theorem of this work is presented below. Theorem 1 will give operator inequalties, lower and
uppber bounds, of functional with respect to Φ(f(A)).

Theorem 1 Let Aj be self-adjoint operator with Λ(Aj) ∈ [mj ,Mj ] for real scalars mj < Mj . The map-
ping Φ : B(H) → B(K) is defined by Eq. (4). The index j is in the range of 1, 2, · · · , k, and we have a prob-

ability vector w = [w1, w2, · · · , wk] with the dimension k, i.e.,
k∑

j=1
wj = 1. Let f be any real valued conti-

nous functions defined on the range
k⋃

j=1
[mj ,Mj ], represented by f ∈ C(

k⋃
j=1

[mj ,Mj ]). Besides, we assume

that the function f satisfes thsoe conditions provided by Eq. (5) and Eq. (6). The function g is also a real
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valued continous function defined on the range

(
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

)⋃( k⋃
j=1

wjP̃olyf,U(mj ,Mj)

)
.

We also have a real valued function F (u, v) with operator monotone on the first variable u defined on U×V

such that f(
k⋃

j=1
[mj ,Mj ]) ⊂ U , and g

((
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

)⋃( k⋃
j=1

wjP̃olyf,U(mj ,Mj)

))
⊂ V .

Then, we have the following upper bound:

F

 k∑
j=1

wjΦ(f(Aj)), g

 k∑
j=1

wjV
∗Polyf,U(Aj)V

 ≤ max

x∈
k⋃

j=1
wjP̃olyf,U(mj ,Mj)

F (x, g(x))1K. (9)

Similarly, we also have the following lower bound:

F

 k∑
j=1

wjΦ(f(Aj)), g

 k∑
j=1

wjV
∗Polyf,L(Aj)V

 ≥ min

x∈
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

F (x, g(x))1K. (10)

Proof: We begin with the proof for the upper bound provided by Eq. (9). From Lemma 1, we have

Φ(f(A)) ≤ V ∗Polyf,U(A)V . (11)

By replacing A with Aj in Eq. (11) and applying wj with respect to each Aj , we have

k∑
j=1

wjΦ(f(Aj)) ≤
k∑

j=1

wjV
∗Polyf,U(Aj)V . (12)

According to the function F (u, v) condition, we have

F

 k∑
j=1

wjΦ(f(Aj)), g

 k∑
j=1

wjV
∗Polyf,U(Aj)V


≤ F

 k∑
j=1

wjV
∗Polyf,U(Aj)V , g

 k∑
j=1

wjV
∗Polyf,U(Aj)V


≤ max

x∈
k⋃

j=1
wjP̃olyf,U(mj ,Mj)

F (x, g(x))1K, (13)

where the last inequality comes from that the spectrum Λ

(
k∑

j=1
wjV

∗Polyf,U(Aj)V

)
is in the range of

k⋃
j=1

wj P̃olyf,U(mj ,Mj). The desired inequality provided by Eq. (9) is established.

Now, we will prove the lower bound provided by Eq. (10). From Lemma 1, we have

Φ(f(A)) ≥ V ∗Polyf,L(A)V . (14)

By replacing A with Aj in Eq. (11) and applying wj with respect to each Aj , we have

k∑
j=1

wjΦ(f(Aj)) ≥
k∑

j=1

wjV
∗Polyf,L(Aj)V . (15)

5



From the function F (u, v) condition, we also have

F

 k∑
j=1

wjΦ(f(Aj)), g

 k∑
j=1

wjV
∗Polyf,L(Aj)V


≥ F

 k∑
j=1

wjV
∗Polyf,U(Aj)V , g

 k∑
j=1

wjV
∗Polyf,L(Aj)V


≥ min

x∈
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

F (x, g(x))1K, (16)

where the last inequality comes from that the spectrum Λ

(
k∑

j=1
wjV

∗Polyf,L(Aj)V

)
is in the range of

k⋃
j=1

wj P̃olyf,L(mj ,Mj). The desired inequality provided by Eq. (10) is established. □

By applying the function F (u, v) with the following format:

F (u, v) = u− αv, (17)

where α ∈ R, we can have the following Theorem 2. Theorem 2 will provide generalized converses of
operator Jensen’s inequalities with ratio and difference kinds in coming sections.

Theorem 2 Let Aj be self-adjoint operator with Λ(Aj) ∈ [mj ,Mj ] for real scalars mj < Mj . The map-
ping Φ : B(H) → B(K) is defined by Eq. (4). The index j is in the range of 1, 2, · · · , k, and we have a prob-

ability vector w = [w1, w2, · · · , wk] with the dimension k, i.e.,
k∑

j=1
wj = 1. Let f be any real valued conti-

nous functions defined on the range
k⋃

j=1
[mj ,Mj ], represented by f ∈ C(

k⋃
j=1

[mj ,Mj ]). Besides, we assume

that the function f satisfes thsoe conditions provided by Eq. (5) and Eq. (6). The function g is also a real

valued continous function defined on the range

(
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

)⋃( k⋃
j=1

wjP̃olyf,U(mj ,Mj)

)
.

We also have a real valued function F (u, v) defined as Eq. (17) with support domain on U × V such that

f(
k⋃

j=1
[mj ,Mj ]) ⊂ U , and g

((
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

)⋃( k⋃
j=1

wjP̃olyf,U(mj ,Mj)

))
⊂ V .

Then, we have the following upper bound:

k∑
j=1

wjΦ(f(Aj)) ≤ αg

 k∑
j=1

wjV
∗Polyf,U(Aj)V

+ max

x∈
k⋃

j=1
wjP̃olyf,U(mj ,Mj)

(x− αg(x))1K. (18)

Similarly, we also have the following lower bound:

k∑
j=1

wjΦ(f(Aj)) ≥ αg

 k∑
j=1

wjV
∗Polyf,L(Aj)V

+ min

x∈
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

(x− αg(x))1K. (19)
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Proof: By setting F (u, v) = u − αv in Eq. (9) in Theorem 1, we have the desired inequality provided by
Eq. (18). Similarly, By setting F (u, v) = u − αv in Eq. (10) in Theorem 1, we have the desired inequality
provided by Eq. (19). □

Corollary 1 below is provided to give upper and lower bounds for special types of the function g by
applying Theorem 2.

Corollary 1 Let Aj be self-adjoint operator with Λ(Aj) ∈ [mj ,Mj ] for real scalars mj < Mj . The
mapping Φ : B(H) → B(K) is defined by Eq. (4). The index j is in the range of 1, 2, · · · , k, and we have a

probability vector w = [w1, w2, · · · , wk] with the dimension k, i.e.,
k∑

j=1
wj = 1. Let f be any real valued

continous functions defined on the range
k⋃

j=1
[mj ,Mj ], represented by f ∈ C(

k⋃
j=1

[mj ,Mj ]). Besides, we

assume that the function f satisfes thsoe conditions provided by Eq. (5) and Eq. (6).

(I) If g(x) = xq, where q ∈ R and

((
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

)⋃( k⋃
j=1

wjP̃olyf,U(mj ,Mj)

))
≥ 0,

we have the upper bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≤ α

 k∑
j=1

wjV
∗Polyf,L(Aj)V

q

+ max

x∈
k⋃

j=1
wjP̃olyf,U(mj ,Mj)

(x− αxq)1K, (20)

and we have the lower bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≥ α

 k∑
j=1

wjV
∗Polyf,L(Aj)V

q

+ min

x∈
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

(x− αxq)1K. (21)

(II) If g(x) = log(x) and

((
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

)⋃( k⋃
j=1

wjP̃olyf,U(mj ,Mj)

))
> 0 , we have

the upper bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≤ α log

 k∑
j=1

wjV
∗Polyf,L(Aj)V

+ max

x∈
k⋃

j=1
wjP̃olyf,U(mj ,Mj)

(x− α log(x)1K, (22)

and we have the lower bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≥ α log

 k∑
j=1

wjV
∗Polyf,L(Aj)V

+ min

x∈
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

(x− α log(x))1K. (23)
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(III) If g(x) = exp(x) , we have the upper bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≤ α exp

 k∑
j=1

wjV
∗Polyf,L(Aj)V

+ max

x∈
k⋃

j=1
wjP̃olyf,U(mj ,Mj)

(x− α exp(x))1K, (24)

and we have the lower bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≥ α exp

 k∑
j=1

wjV
∗Polyf,L(Aj)V

+ min

x∈
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

(x− α exp(x))1K. (25)

In the following Example 1, we will assume that the function f is bounded by linear functions and derive
related inequalties given by Theorem 1, Theorem 2, and Corollary 1.

Example 1 In this example, we assume that the function f satsifies the following:

0 ≤
pU(x)︷ ︸︸ ︷

(β0 + β1x)−f(x) ≤ ϵ,

0 ≤ f(x)−
pL(x)︷ ︸︸ ︷

(α0 + α1x) ≤ ϵ, (26)

where x ∈ [m,M ] with positive α0, α1, β0 and β1. We also assume that Λ(Aj) ∈ [m,M ] and f(Aj) ≥ 0
for all j ∈ 1, 2, · · · , k. Moreover, the mapping Φ defined by Eq. (4) has all coefficients ai ≥ 0. Then, from
Lemma 1, we have

Φ(f(A)) ≤ V ∗

{
I∑

i=0

aiK(β0 + β1m,β0 + β1M, i)(β0 + β1A)i

}
V . (27)

Besides, we also have

Φ(f(A)) ≥ V ∗

{
I∑

i=0

aiK
−1(α0 + α1m,α0 + α1M, i)(α0 + α1A)i

}
V . (28)

From Eq. (27), we can express Polyf,U(A) as:

Polyf,U(A) =

I∑
i=0

ciA
i, (29)

where coeffcients ci are given by

ci =

I−i∑
j=0

(
i+ j

i

)
ai+jK(β0 + β1m,β0 + β1M, i+ j)βi

1β
j
0. (30)

Similarly, from Eq. (28), we can express Polyf,L(A) as:

Polyf,L(A) =
I∑

i=0

diA
i, (31)
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where coeffcients ci are given by

di =
I−i∑
j=0

(
i+ j

i

)
ai+jK

−1(α0 + α1m,α0 + α1M, i+ j)αi
1α

j
0. (32)

Suppose conditions provided by Theorem 1 are valid, from polynomials given by Eq. (29) and Eq. (31),
we have

F

 k∑
j=1

wjΦ(f(Aj)), g

 k∑
j=1

wjV
∗Polyf,U(Aj)V

 ≤ max
x∈P̃olyf,U(m,M)

F (x, g(x))1K. (33)

Similarly, we also have the following lower bound:

F

 k∑
j=1

wjΦ(f(Aj)), g

 k∑
j=1

wjV
∗Polyf,L(Aj)V

 ≥ min
x∈P̃olyf,L(m,M)

F (x, g(x))1K. (34)

If F (u, v) = u − αv, we can apply Theorem 2 to the function f and Φ provided in this example to obtain
the following:

k∑
j=1

wjΦ(f(Aj)) ≤ αg

 k∑
j=1

wjV
∗Polyf,U(Aj)V

+ max
x∈P̃olyf,U(m,M)

(x− αg(x))1K. (35)

Similarly, we also have the following lower bound:

k∑
j=1

wjΦ(f(Aj)) ≥ αg

 k∑
j=1

wjV
∗Polyf,L(Aj)V

+ min
x∈P̃olyf,L(m,M)

(x− αg(x))1K. (36)

Finally, the application of Corollary 1 to the function f and Φ provided in this example will get:
(I) If g(x) = xq, where q ∈ R and

(
P̃olyf,L(m,M)

⋃
P̃olyf,U(m,M)

)
≥ 0, we have the upper bound

for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≤ α

 k∑
j=1

wjV
∗Polyf,U(Aj)V

q

+ max
x∈P̃olyf,U(m,M)

(x− αxq)1K, (37)

and we have the lower bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≥ α

 k∑
j=1

wjV
∗Polyf,L(Aj)V

q

+ min
x∈P̃olyf,L(m,M)

(x− αxq)1K. (38)

(II) If g(x) = log(x) and
(

P̃olyf,L(m,M)
⋃

P̃olyf,U(m,M)
)

> 0 , we have the upper bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≤ α log

 k∑
j=1

wjV
∗Polyf,U(Aj)V

+ max
x∈P̃olyf,U(m,M)

(x− α log(x)1K, (39)
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and we have the lower bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≥ α log

 k∑
j=1

wjV
∗Polyf,L(Aj)V

+ min
x∈P̃olyf,L(m,M)

(x− α log(x))1K. (40)

(III) If g(x) = exp(x) , we have the upper bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≤ α exp

 k∑
j=1

wjV
∗Polyf,U(Aj)V

+ max
x∈P̃olyf,U(m,M)

(x− α exp(x))1K, (41)

and we have the lower bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≥ α exp

 k∑
j=1

wjV
∗Polyf,L(Aj)V

+ min
x∈P̃olyf,L(m,M)

(x− α exp(x))1K. (42)

3 Generalized Converses of Operator Jensen’s Inequalities: Ratio Kind

In this section, we will derive the lower and upper bounds for
k∑

j=1
wjΦ(f(Aj)) in terms of ratio criteria

related to the function g.

Theorem 3 Let Aj be self-adjoint operator with Λ(Aj) ∈ [mj ,Mj ] for real scalars mj < Mj . The map-
ping Φ : B(H) → B(K) is defined by Eq. (4). The index j is in the range of 1, 2, · · · , k, and we have a prob-

ability vector w = [w1, w2, · · · , wk] with the dimension k, i.e.,
k∑

j=1
wj = 1. Let f be any real valued conti-

nous functions defined on the range
k⋃

j=1
[mj ,Mj ], represented by f ∈ C(

k⋃
j=1

[mj ,Mj ]). Besides, we assume

that the function f satisfes thsoe conditions provided by Eq. (5) and Eq. (6). The function g is also a real

valued continous function defined on the range

(
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

)⋃( k⋃
j=1

wjP̃olyf,U(mj ,Mj)

)

and g(x) ̸= 0 for x ∈

(
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

)⋃( k⋃
j=1

wjP̃olyf,U(mj ,Mj)

)
.

(I) If we also assume that g

(
k∑

j=1
wjV

∗Polyf,U(Aj)V

)
> O and g

(
k∑

j=1
wjV

∗Polyf,L(Aj)V

)
> O,

then, we have the following upper bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≤

 max

x∈
k⋃

j=1
wjP̃olyf,U(mj ,Mj)

xg−1(x)

 g

 k∑
j=1

wjV
∗Polyf,U(Aj)V

 ; (43)
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and, the following lower bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≥

 min

x∈
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

xg−1(x)

 g

 k∑
j=1

wjV
∗Polyf,L(Aj)V

 . (44)

(II) If we also assume that g

(
k∑

j=1
wjV

∗Polyf,U(Aj)V

)
< O and g

(
k∑

j=1
wjV

∗Polyf,L(Aj)V

)
< O,

then, we have the following upper bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≤

 min

x∈
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

xg−1(x)

 g

 k∑
j=1

wjV
∗Polyf,L(Aj)V

 ; (45)

and, the following lower bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≥

 max

x∈
k⋃

j=1
wjP̃olyf,U(mj ,Mj)

xg−1(x)

 g

 k∑
j=1

wjV
∗Polyf,U(Aj)V

 . (46)

Proof: For part (I), we will apply F (u, v) as

F (u, v) = v−1/2uv−1/2, (47)

to Eq. (9) in Theorem 1, then, we will obtaing

 k∑
j=1

wjV
∗Polyf,U(Aj)V

−1/2 k∑
j=1

wjΦ(f(Aj))

g

 k∑
j=1

wjV
∗Polyf,U(Aj)V

−1/2

≤

 max

x∈
k⋃

j=1
wjP̃olyf,U(mj ,Mj)

xg−1(x)

1K. (48)

By multiplying

(
g

(
k∑

j=1
wjV

∗Polyf,U(Aj)V

))1/2

at both sides of Eq. (48), we obtain the desired in-

equality provided by Eq. (43). By applying F (u, v) with Eq. (47) again to Eq. (10) in Theorem 1, then, we
will obtaing

 k∑
j=1

wjV
∗Polyf,L(Aj)V

−1/2 k∑
j=1

wjΦ(f(Aj))

g

 k∑
j=1

wjV
∗Polyf,L(Aj)V

−1/2

≥

 min

x∈
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

xg−1(x)

1K. (49)
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By multiplying

(
g

(
k∑

j=1
wjV

∗Polyf,L(Aj)V

))−1/2

at both sides of Eq. (49), we obtain the desired in-

equality provided by Eq. (44).
The proof of Part (II) is immediate obtained by setting g(x) as −g(x) in Eq. (48) and Eq. (49). □
Next Corollary 2 is obtained by applying Theorem 3 to special types of function g.

Corollary 2 Let Aj be self-adjoint operator with Λ(Aj) ∈ [mj ,Mj ] for real scalars mj < Mj . The
mapping Φ : B(H) → B(K) is defined by Eq. (4). The index j is in the range of 1, 2, · · · , k, and we have a

probability vector w = [w1, w2, · · · , wk] with the dimension k, i.e.,
k∑

j=1
wj = 1. Let f be any real valued

continous functions defined on the range
k⋃

j=1
[mj ,Mj ], represented by f ∈ C(

k⋃
j=1

[mj ,Mj ]). Besides, we

assume that the function f satisfes thsoe conditions provided by Eq. (5) and Eq. (6).

(I) If we also assume that

(
k∑

j=1
wjV

∗Polyf,U(Aj)V

)q

> O and

(
k∑

j=1
wjV

∗Polyf,L(Aj)V

)q

> O

for q ∈ R, then, we have the following upper bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≤

 max

x∈
k⋃

j=1
wjP̃olyf,U(mj ,Mj)

x1−q


 k∑

j=1

wjV
∗Polyf,U(Aj)V

q

; (50)

and, the following lower bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≥

 min

x∈
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

x1−q


 k∑

j=1

wjV
∗Polyf,L(Aj)V

q

. (51)

(II) If we also assume that log

(
k∑

j=1
wjV

∗Polyf,U(Aj)V

)
> O and log

(
k∑

j=1
wjV

∗Polyf,L(Aj)V

)
>

O for q ∈ R, then, we have the following upper bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≤

 max

x∈
k⋃

j=1
wjP̃olyf,U(mj ,Mj)

x

log x

 log

 k∑
j=1

wjV
∗Polyf,U(Aj)V

 ; (52)

and, the following lower bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≥

 min

x∈
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

x

log x

 log

 k∑
j=1

wjV
∗Polyf,L(Aj)V

 . (53)

12



(II’) If we also assume that log

(
k∑

j=1
wjV

∗Polyf,U(Aj)V

)
< O and log

(
k∑

j=1
wjV

∗Polyf,L(Aj)V

)
<

O, then, we have the following upper bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≤

 min

x∈
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

x

log x

 log

 k∑
j=1

wjV
∗Polyf,L(Aj)V

 ; (54)

and, the following lower bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≥

 max

x∈
k⋃

j=1
wjP̃olyf,U(mj ,Mj)

x

log x

 log

 k∑
j=1

wjV
∗Polyf,U(Aj)V

 . (55)

(III) Since we have exp

(
k∑

j=1
wjV

∗Polyf,U(Aj)V

)
> O and exp

(
k∑

j=1
wjV

∗Polyf,L(Aj)V

)
> O,

then, we have the following upper bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≤

 max

x∈
k⋃

j=1
wjP̃olyf,U(mj ,Mj)

x

expx

 exp

 k∑
j=1

wjV
∗Polyf,U(Aj)V

 ; (56)

and, the following lower bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj)) ≥

 min

x∈
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

x

expx

 exp

 k∑
j=1

wjV
∗Polyf,L(Aj)V

 . (57)

Proof: Part (I) of this Corollary is proved by applying Theorem 3 Part (I) with the function g as g(x) = xq.
Part (II) of this Corollary is proved by applying Theorem 3 Part (I) with the function g as g(x) = log(x),
where log(x) > 0. Part (II’) of this Corollary is proved by applying Theorem 3 Part (II) with the function g
as g(x) = log(x), where log(x) < 0. Finally, Part (III) of this Corollary is proved by applying Theorem 3
Part (I) with the function g as g(x) = exp(x). □

4 Generalized Converses of Operator Jensen’s Inequalities: Difference Kind

In this section, we will derive the lower and upper bounds for
k∑

j=1
wjΦ(f(Aj)) in terms of difference criteria

related to the function g.
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Theorem 4 Let Aj be self-adjoint operator with Λ(Aj) ∈ [mj ,Mj ] for real scalars mj < Mj . The map-
ping Φ : B(H) → B(K) is defined by Eq. (4). The index j is in the range of 1, 2, · · · , k, and we have a prob-

ability vector w = [w1, w2, · · · , wk] with the dimension k, i.e.,
k∑

j=1
wj = 1. Let f be any real valued conti-

nous functions defined on the range
k⋃

j=1
[mj ,Mj ], represented by f ∈ C(

k⋃
j=1

[mj ,Mj ]). Besides, we assume

that the function f satisfes thsoe conditions provided by Eq. (5) and Eq. (6). The function g is also a real

valued continous function defined on the range

(
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

)⋃( k⋃
j=1

wjP̃olyf,U(mj ,Mj)

)
.

We also have a real valued function F (u, v) defined as Eq. (17) with support domain on U × V such that

f(
k⋃

j=1
[mj ,Mj ]) ⊂ U , and g

((
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

)⋃( k⋃
j=1

wjP̃olyf,U(mj ,Mj)

))
⊂ V .

Then, we have the following upper bound:

k∑
j=1

wjΦ(f(Aj))− g

 k∑
j=1

wjV
∗Polyf,U(Aj)V

 ≤ max

x∈
k⋃

j=1
wjP̃olyf,U(mj ,Mj)

(x− g(x))1K. (58)

Similarly, we also have the following lower bound:

k∑
j=1

wjΦ(f(Aj))− g

 k∑
j=1

wjV
∗Polyf,L(Aj)V

 ≥ min

x∈
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

(x− g(x))1K. (59)

Proof: The upper bound of this theorem is proved by setting α = 1 in Eq. (18) from Theorem 2 and

rearrangement of the term g

(
k∑

j=1
wjV

∗Polyf,U(Aj)V

)
to obtain Eq. (58).

Similarly, the lower bound of this theorem is proved by setting α = 1 in Eq. (19) from Theorem 2 and

rearrangement of the term g

(
k∑

j=1
wjV

∗Polyf,L(Aj)V

)
to obtain Eq. (59). □

Next Corollary 3 is obtained by applying Theorem 4 to special types of function g.

Corollary 3 Let Aj be self-adjoint operator with Λ(Aj) ∈ [mj ,Mj ] for real scalars mj < Mj . The
mapping Φ : B(H) → B(K) is defined by Eq. (4). The index j is in the range of 1, 2, · · · , k, and we have a

probability vector w = [w1, w2, · · · , wk] with the dimension k, i.e.,
k∑

j=1
wj = 1. Let f be any real valued

continous functions defined on the range
k⋃

j=1
[mj ,Mj ], represented by f ∈ C(

k⋃
j=1

[mj ,Mj ]). Besides, we

assume that the function f satisfes thsoe conditions provided by Eq. (5) and Eq. (6).
(I) If we also assume that g(x) = xq, where q ∈ R, then, we have the following upper bound for

k∑
j=1

wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj))−

 k∑
j=1

wjV
∗Polyf,U(Aj)V

q

≤ max

x∈
k⋃

j=1
wjP̃olyf,U(mj ,Mj)

(x− xq)1K; (60)
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and, the following lower bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj))−

 k∑
j=1

wjV
∗Polyf,L(Aj)V

q

≥ min

x∈
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

(x− xq)1K. (61)

(II) If we also assume that g(x) = log(x), then, we have the following upper bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj))− log

 k∑
j=1

wjV
∗Polyf,U(Aj)V

 ≤ max

x∈
k⋃

j=1
wjP̃olyf,U(mj ,Mj)

(x− log(x))1K; (62)

and, the following lower bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj))− log

 k∑
j=1

wjV
∗Polyf,L(Aj)V

 ≥ min

x∈
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

(x− log(x))1K. (63)

(III) If we also assume that g(x) = exp(x), then, we have the following upper bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj))− exp

 k∑
j=1

wjV
∗Polyf,U(Aj)V

 ≤ max

x∈
k⋃

j=1
wjP̃olyf,U(mj ,Mj)

(x− exp(x))1K; (64)

and, the following lower bound for
k∑

j=1
wjΦ(f(Aj)):

k∑
j=1

wjΦ(f(Aj))− exp

 k∑
j=1

wjV
∗Polyf,L(Aj)V

 ≥ min

x∈
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

(x− exp(x))1K. (65)

Proof: For Part (I), we will use g(x) = xq in Eq. (58) in Theorem 4 to obtain Eq. (60). We will also use
g(x) = xq in Eq. (59) in Theorem 4 to obtain Eq. (61).

For Part (II), we will use g(x) = log(x) in Eq. (58) in Theorem 4 to obtain Eq. (62). We will also use
g(x) = log(x) in Eq. (59) in Theorem 4 to obtain Eq. (63).

For Part (III), we will use g(x) = exp(x) in Eq. (58) in Theorem 4 to obtain Eq. (64). We will also use
g(x) = exp(x) in Eq. (59) in Theorem 4 to obtain Eq. (65). □

5 Hypercomplex Function Approximation

In this section, we will consider hypercomplex function approximation problem in terms of the ratio error
discussed in Section 5.1 and the difference error in Section 5.2.
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5.1 Ratio Type Approximation

Let A be a self-adjoint operator with Λ(A) ∈ [m,M ] for real scalars m < M . The mapping Φ : B(H) →
B(K) is defined by Eq. (4). Let f be any real valued continuous functions defined on the range [m,M ],
represented by f ∈ C([m,M ]). The ratio type approximation problem is to find the function g and the
polynomial function p1 to satisfy the following:

Φ(f(A))

g(V ∗p1(A)V )
≤ α11K, (66)

where α1 is some specified positive real number. Similarly, we also can find the polynomial function p2 to
satisfy the following:

Φ(f(A))

g(V ∗p2(A)V )
≥ α21K, (67)

where α2 is some specified positive real number.
From Theorem 3, if g

(
V ∗Polyf,U(A)V

)
> O, Eq. (66) can be established by setting

α1 ≥

 max
x∈P̃olyf,U(m,M)

xg−1(x)

 . (68)

Similarly, if g
(
V ∗Polyf,L(A)V

)
> O, Eq. (67) can be established by setting

α2 ≤

 min
x∈P̃olyf,L(m,M)

xg−1(x)

 . (69)

On the other hand, from Theorem 3, if g
(
V ∗Polyf,U(A)V

)
< O, Eq. (66) can be established by setting

α1 ≥

 min
x∈P̃olyf,L(m,M)

xg−1(x)

 . (70)

Similarly, if g
(
V ∗Polyf,L(A)V

)
< O, Eq. (67) can be established by setting

α2 ≤

 max
x∈P̃olyf,U(m,M)

xg−1(x)

 . (71)

For k terms, let Aj be self-adjoint operator with Λ(Aj) ∈ [mj ,Mj ] for real scalars mj < Mj . The
mapping Φ : B(H) → B(K) is defined by Eq. (4). The index j is in the range of 1, 2, · · · , k, and we

have a probability vector w = [w1, w2, · · · , wk] with the dimension k, i.e.,
k∑

j=1
wj = 1. Let f be any

real valued continuous functions defined on the range
k⋃

j=1
[mj ,Mj ], represented by f ∈ C(

k⋃
j=1

[mj ,Mj ]).

Besides, we assume that the function f satisfies the conditions provided by Eq. (5) and Eq. (6). The ratio
type approximation problem is to find the function g and the polynomial functions p1,1(x), · · · , p1,k(x) to
satisfy the following:

k∑
j=1

wjΦ(f(Aj))

g

(
k∑

j=1
wjV ∗p1,j(Aj)V

) ≤ α11K, (72)
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where α1 is some specfied positive real number. Similarly, we also can find the polynomial function
p2,1(x), · · · , p2,k(x) to satisfy the following:

k∑
j=1

wjΦ(f(Aj))

g

(
k∑

j=1
wjV ∗p2,j(Aj)V

) ≥ α21K, (73)

where α2 is some specfied positive real number.
From Theorem 3, if g

(
V ∗Polyf,U(A)V

)
> O, Eq. (72) can be established by setting

α1 ≥

 max

x∈
k⋃

j=1
wjP̃olyf,U(mj ,Mj)

xg−1(x)

 . (74)

Similarly, if g
(
V ∗Polyf,L(A)V

)
> O, Eq. (73) can be established by setting

α2 ≤

 min

x∈
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

xg−1(x)

 . (75)

On the other hand, from Theorem 3, if g
(
V ∗Polyf,U(A)V

)
< O, Eq. (72) can be established by setting

α1 ≥

 min

x∈
k⋃

j=1
wjP̃olyf,L(mj ,Mj)

xg−1(x)

 . (76)

Similarly, if g
(
V ∗Polyf,L(A)V

)
< O, Eq. (73) can be established by setting

α2 ≤

 max

x∈
k⋃

j=1
wjP̃olyf,U(mj ,Mj)

xg−1(x)

 . (77)

Remark 1 Given requirements of Eq. (66), Eq. (67), Eq. (72), and Eq. (73), we conjecture the existence of
function g and polynomials p1(x), p2(x), p1,1(x), · · · , p1,k(x), and p2,1(x), · · · , p2,k(x) for any given α1

or α2. If existence, how to find these functions?

The following Example 2 is provided to evaluate the upper ratio bound given by Eq. (72) and evaluate
the lower ratio bound given by Eq. (73).

Example 2 Let Aj be self-adjoint operator with Λ(Aj) ∈ [m,M ] for real scalars m < M . The mapping
Φ : B(H) → B(K) is defined as Φ(X) = V ∗(X)X . The index j is in the range of 1, 2, · · · , k, and we have

a probability vector w = [w1, w2, · · · , wk] with the dimension k, i.e.,
k∑

j=1
wj = 1. Let f be a convex and
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differentiable function such that ax+ b′ ≤ f(x) ≤ ax+ b for x ∈ [m,M ], where

a =
f(M)− f(m)

M −m
,

b =
Mf(m)−mf(M)

M −m
,

b′ = f(x0)−
f(M)− f(m)

M −m
x0, (78)

where f ′(x0) =
f(M)−f(m)

M−m .
If we require g(x) > 0 for all x ∈ [m,M ], from Theorem 3, we have

k∑
j=1

wjΦ(f(Aj)) ≤ max
m<x<M

ax+ b

g(x)
g

 k∑
j=1

wjΦ(Aj)

 , (79)

and

k∑
j=1

wjΦ(f(Aj)) ≥ min
m<x<M

ax+ b′

g(x)
g

 k∑
j=1

wjΦ(Aj)

 . (80)

Let us consider several special cases of the function g(x). If g(x) = xq, where q ∈ R, and m > 0, we
have

α1 ≥ max
m<x<M

ax+ b

xq
,

α2 ≤ min
m<x<M

ax+ b′

xq
. (81)

If g(x) = log(x) and m > 1, we have

α1 ≥ max
m<x<M

ax+ b

log(x)
,

α2 ≤ min
m<x<M

ax+ b′

log(x)
. (82)

If g(x) = exp(x), we have

α1 ≥ max
m<x<M

ax+ b

exp(x)
,

α2 ≤ min
m<x<M

ax+ b′

exp(x)
. (83)

If we require g(x) < 0 for all x ∈ [m,M ], from Theorem 3, we also have

k∑
j=1

wjΦ(f(Aj)) ≤ min
m<x<M

ax+ b

g(x)
, (84)

and

k∑
j=1

wjΦ(f(Aj)) ≥ max
m<x<M

ax+ b′

g(x)
, (85)
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Let us consider several special cases of the function g(x). If g(x) = −xq, where q ∈ R, and m > 0, we
have

α1 ≥ min
m<x<M

−ax+ b

xq
,

α2 ≤ max
m<x<M

−ax+ b′

xq
. (86)

If g(x) = log(x) and 0 < m < M < 1, we have

α1 ≥ min
m<x<M

ax+ b

log(x)
,

α2 ≤ max
m<x<M

ax+ b′

log(x)
. (87)

5.2 Difference Type Approximation

Let A be a self-adjoint operator with Λ(A) ∈ [m,M ] for real scalars m < M . The mapping Φ : B(H) →
B(K) is defined by Eq. (4). Let f be any real valued continuous functions defined on the range [m,M ],
represented by f ∈ C([m,M ]). The difference type approximation problem is to find the function g and the
polynomial function p1(x) to satisfy the following:

Φ(f(A))− g(V ∗p1(A)V ) ≤ β11K, (88)

where β1 is some specified real number. Similarly, we also can find the polynomial function p2(x) to satisfy
the following:

Φ(f(A))− g(V ∗p2(A)V ) ≥ β21K, (89)

where β2 is some specified real number.
From Theorem 4, Eq. (88) can be established by setting

β1 ≥

 max
x∈P̃olyf,U(m,M)

x− g(x)

 . (90)

Similarly, Eq. (89) can be established by setting

β2 ≤

 min
x∈P̃olyf,L(m,M)

x− g(x)

 . (91)

For k terms, let Aj be self-adjoint operator with Λ(Aj) ∈ [mj ,Mj ] for real scalars mj < Mj . The
mapping Φ : B(H) → B(K) is defined by Eq. (4). The index j is in the range of 1, 2, · · · , k, and we have a

probability vector w = [w1, w2, · · · , wk] with the dimension k, i.e.,
k∑

j=1
wj = 1. Let f be any real valued

continuous functions defined on the range
k⋃

j=1
[mj ,Mj ], represented by f ∈ C(

k⋃
j=1

[mj ,Mj ]). Besides, we

assume that the function f satisfies the conditions provided by Eq. (5) and Eq. (6). The difference type
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approximation problem is to find the function g and the polynomial functions p1,1(x), · · · , p1,k(x) to satisfy
the following:

k∑
j=1

wjΦ(f(Aj))− g

 k∑
j=1

wjV
∗p1,j(Aj)V

 ≤ β11K, (92)

where β1 is some specfied real number. Similarly, we also can find the polynomial function p2,1(x), · · · , p2,k(x)
to satisfy the following:

k∑
j=1

wjΦ(f(Aj))− g

 k∑
j=1

wjV
∗p2,j(Aj)V

 ≥ β21K, (93)

where β2 is some specfied real number.
The following Example 3 is provided to evaluate the upper difference bound given by Eq. (92) and

evaluate the lower difference bound given by Eq. (93).

Example 3 Let Aj be self-adjoint operator with Λ(Aj) ∈ [m,M ] for real scalars m < M . The mapping
Φ : B(H) → B(K) is defined as Φ(X) = V ∗(X)X . The index j is in the range of 1, 2, · · · , k, and we have

a probability vector w = [w1, w2, · · · , wk] with the dimension k, i.e.,
k∑

j=1
wj = 1. Let f be a convex and

differentiable function such that ax+ b′ ≤ f(x) ≤ ax+ b for x ∈ [m,M ], where

a =
f(M)− f(m)

M −m
,

b =
Mf(m)−mf(M)

M −m
,

b′ = f(x0)−
f(M)− f(m)

M −m
x0, (94)

where f ′(x0) =
f(M)−f(m)

M−m .
From Theorem 4, we have

k∑
j=1

wjΦ(f(Aj)) ≤ max
m<x<M

(ax+ b− g(x)), (95)

and
k∑

j=1

wjΦ(f(Aj)) ≥ min
m<x<M

(ax+ b′ − g(x)), (96)

Let us consider several special cases of the function g(x). If g(x) = xq, where q ∈ R and m > 0, we
have

β1 ≥ max
m<x<M

(ax+ b− xq),

β2 ≤ min
m<x<M

(ax+ b′ − xq). (97)

If g(x) = log(x) and m > 0, we have

β1 ≥ max
m<x<M

(ax+ b− log(x)),

β2 ≤ min
m<x<M

(ax+ b′ − log(x)). (98)
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If g(x) = exp(x), we have

β1 ≥ max
m<x<M

(ax+ b− exp(x)),

β2 ≤ min
m<x<M

(ax+ b′ − exp(x)). (99)

Remark 2 Given requirements of Eq. (88), Eq. (89), Eq. (92), and Eq. (93), we conjecture the existence of
function g and polynomials p1(x), p2(x), p1,1(x), · · · , p1,k(x), and p2,1(x), · · · , p2,k(x) for any given β1 or
β2. If existence, how to find these functions?

6 Bounds Algebra

In this section, we will apply results from Section 3 to build bounds algebra for addition and multiplication

of hypercomplex functions
k∑

j=1
wjΦ(f(Aj)) and

k∑
j=1

wjΦ(h(Aj)), where functions f and h share some

common properties.

6.1 Hypercomplex Function Bounds Algebra

Let Aj be self-adjoint operator with Λ(Aj) ∈ [m,M ] for real scalars m < M . The mapping Φ : B(H) →
B(K) is defined as Φ(X) = V ∗(X)X . The index j is in the range of 1, 2, · · · , k, and we have a prob-

ability vector w = [w1, w2, · · · , wk] with the dimension k, i.e.,
k∑

j=1
wj = 1. Let f, h be two convex and

differentiable functions defined in [m,M ] such that

ax+ b′ ≤ f(x) ≤ ax+ b,

cx+ d′ ≤ h(x) ≤ cx+ d, (100)

where x ∈ [m,M ]. If we require g(x) > 0 for all x ∈ [m,M ], from Theorem 3, we have

k∑
j=1

wjΦ(f(Aj)) ≤ max
m<x<M

ax+ b

g(x)︸ ︷︷ ︸
:=αf,U

g

 k∑
j=1

wjΦ(Aj)

 , (101)

and

k∑
j=1

wjΦ(f(Aj)) ≥ min
m<x<M

ax+ b′

g(x)︸ ︷︷ ︸
:=αf,L

g

 k∑
j=1

wjΦ(Aj)

 . (102)

Similarly, from Theorem 3, we also have

k∑
j=1

wjΦ(h(Aj)) ≤ max
m<x<M

cx+ d

g(x)︸ ︷︷ ︸
:=αh,U

g

 k∑
j=1

wjΦ(Aj)

 , (103)

and

k∑
j=1

wjΦ(h(Aj)) ≥ min
m<x<M

cx+ d′

g(x)︸ ︷︷ ︸
:=αh,L

g

 k∑
j=1

wjΦ(Aj)

 . (104)
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Consider the addition between
k∑

j=1
wjΦ(f(Aj)) and

k∑
j=1

wjΦ(h(Aj)), from Eq. (101) and Eq. (103),

then, we have

k∑
j=1

wjΦ(f(Aj)) +

k∑
j=1

wjΦ(h(Aj)) ≤ (αf,U + αh,U)g

 k∑
j=1

wjΦ(Aj)

 , (105)

and, from Eq. (102) and Eq. (104), we also have

k∑
j=1

wjΦ(f(Aj)) +

k∑
j=1

wjΦ(h(Aj)) ≥ (αf,L + αh,L)g

 k∑
j=1

wjΦ(Aj)

 . (106)

If any two functions f, h satisfying Eq. (100), from Eq. (112) and Eq. (106), we can bound the ad-

dition between
k∑

j=1
wjΦ(f(Aj)) and

k∑
j=1

wjΦ(h(Aj)) by coefficients of g

(
k∑

j=1
wjΦ(Aj)

)
with the term

g

(
k∑

j=1
wjΦ(Aj)

)
, which is independent of the functions f and h. Therefore, the bounding coefficients of

g

(
k∑

j=1
wjΦ(Aj)

)
form an algebraic system of interval numbers, which is an abelian monoid with respect

to the opration addition accoding to Theorem 2.14 [17].

Consider the multiplication between
k∑

j=1
wjΦ(f(Aj)) and

k∑
j=1

wjΦ(h(Aj)), from Eq. (101) and Eq. (103)

with assumptions of positive αf,U, αh,U, αf,L and αh,L and g

(
k∑

j=1
wjΦ(Aj)

)
> O , then, we have

 k∑
j=1

wjΦ(f(Aj))

×

 k∑
j=1

wjΦ(h(Aj))

 ≤ (αf,U × αh,U)

g

 k∑
j=1

wjΦ(Aj)

2

, (107)

and, from Eq. (102) and Eq. (104), we also have k∑
j=1

wjΦ(f(Aj))

×

 k∑
j=1

wjΦ(h(Aj))

 ≥ (αf,L × αh,L)

g

 k∑
j=1

wjΦ(Aj)

2

. (108)

Analogly, if any two functions f, h satisfying Eq. (100), from Eq. (107) and Eq. (108), we can bound the

multiplication between
k∑

j=1
wjΦ(f(Aj)) and

k∑
j=1

wjΦ(h(Aj)) by coefficients of

(
g

(
k∑

j=1
wjΦ(Aj)

))2

with the term

(
g

(
k∑

j=1
wjΦ(Aj)

))2

, which is independent of the functions f and h. Therefore, the

bounding coefficients of

(
g

(
k∑

j=1
wjΦ(Aj)

))2

form an algebraic system of interval numbers, which is

an abelian monoid with respect to the opration multiplication accoding to Theorem 2.14 [17].

22



Remark 3 The norms of the addition (or multiplication) between
k∑

j=1
wjΦ(f(Aj)) and

k∑
j=1

wjΦ(h(Aj))

can also be bounded by coefficients of g

(
k∑

j=1
wjΦ(Aj)

)
(or

(
g

(
k∑

j=1
wjΦ(Aj)

))2

) with abelian monoid

algebraic structure and norms of g

(
k∑

j=1
wjΦ(Aj)

)
(or

(
g

(
k∑

j=1
wjΦ(Aj)

))2

).

6.2 Random Tensor Tail Bounds Algebra

The purpose of this section is to show a method to obtain tail bound for the addition (or multiplication)

between two random tensors
k∑

j=1
wjΦ(f(Aj)) and

k∑
j=1

wjΦ(h(Aj)) via Theorem 3.

Let Aj be random Hermitian tensor with Λ(Aj) ∈ [m,M ] for real scalars m < M . The mapping
Φ : B(H) → B(K) is defined as Φ(X) = X . The index j is in the range of 1, 2, · · · , k, and we have a

probability vector w = [w1, w2, · · · , wk] with the dimension k, i.e.,
k∑

j=1
wj = 1. Let f, h be two convex

and differentiable functions defined in [m,M ] such that

f(x) ≤ ax+ b,

h(x) ≤ cx+ d, (109)

where x ∈ [m,M ]. If we require g(x) > 0 for all x ∈ [m,M ] and any positive number θ, from Theorem 3,
we have

k∑
j=1

wjf(Aj) ≤ max
m<x<M

ax+ b

g(x)︸ ︷︷ ︸
:=αf,U

g

 k∑
j=1

wjAj

 . (110)

Similarly, from Theorem 3, we also have

k∑
j=1

wjh(Aj) ≤ min
m<x<M

cx+ d

g(x)︸ ︷︷ ︸
:=αh,U

g

 k∑
j=1

wjAj

 . (111)

Consider tail bounds for the addition between
k∑

j=1
wjf(Aj) and

k∑
j=1

wjh(Aj), from Eq. (110) and

Eq. (111), then, we have

Pr

∥∥∥∥∥∥
 k∑

j=1

wjf(Aj)

+

 k∑
j=1

wjh(Aj)

∥∥∥∥∥∥
ℓ

≥ θ


≤ Pr

∥∥∥∥∥∥(αf,U + αh,U)g

 k∑
j=1

wjAj

∥∥∥∥∥∥
ℓ

≥ θ

 , (112)

where ∥·∥(ℓ) is Ky Fan ℓ-norm. R.H.S. of Eq. (112), where the random tensors summation part is indepen-
dent of functions f and h can be upper bounded by those theorems in Section IV in [18].
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Consider the multiplication between
k∑

j=1
wjΦ(f(Aj)) and

k∑
j=1

wjΦ(h(Aj)), from Eq. (110) and Eq. (111)

with assumptions of positive αf,U and αh,U and g

(
k∑

j=1
wjAj

)
> O , then, we have

Pr

∥∥∥∥∥∥
 k∑

j=1

wjΦ(f(Aj))

×

 k∑
j=1

wjΦ(h(Aj))

∥∥∥∥∥∥
ℓ

≥ θ


≤ Pr

∥∥∥∥∥∥(αf,U × αh,U)

g

 k∑
j=1

wjAj

2∥∥∥∥∥∥
ℓ

≥ θ


= Pr

∥∥∥∥∥∥g
 k∑

j=1

wjAj

∥∥∥∥∥∥
ℓ

≥

√
θ

(αf,U × αh,U)

 , (113)

where the last term of Eq. (113) can be upper bounded by those theorems in Section IV in [18].
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