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Abstract

Higher-order theories of gravity are a branch of modified gravity wherein the geometrodynamics
of the four-dimensional Riemannian manifold is determined by field equations involving derivatives
of the metric tensor of order higher than two. This paper considers a general action built with the
Einstein-Hilbert term plus additional curvature-based invariants, viz. the Starobinsky R2-type term, a
term scaling with R3, and a correction of the type R□R. The focus is on the background inflationary
regime accommodated by these three models. For that, the higher-order field equations are built and
specified for the FLRW line element. The dynanical analysis in the phase space is carried in each
case. This analysis shows that the Starobinsky-plus-R3 model keeps the good features exhibited by
the pure Starobinsky inflationary model, although the set of initial conditions for the inflaton field χ
leading to a graceful exit scenario is more contrived; the coupling constant α0 of the R3 invariant is also
constrained by the dynamical analysis. The Starobinsky-plus-R□R model turns out being a double-
field inflation model; it consistently enables an almost-exponential primordial acceleration followed by
a radiation dominated universe if its coupling β0 takes values in the interval 0 ≤ β0 ≤ 3/4. The models
introducing higher-order correction to Starobinsky inflation are interesting due to the possibility of a
running spectral index ns, something that is allowed by current CMB observations.

1 Introduction

General relativity (GR) currently stands as the canonical theory describing the gravitational interaction.
Since its proposition early in the XX century, GR was able to explain and predict a plethora of phenomena
in the realms of physics, astrophysics and cosmology. Among them are the examples of gravitational
redshift [1], gravitational lensing [2], prediction of existence of black holes [3] and gravitational waves [4],
and the description of the universe’s large scale evolution [5]. Even so, there are indications that GR is
not a definitive theory of gravity. The hints are structural in nature—e.g. the existence of singularities
within GR—or particularly related to high-energy regimes: GR can not be trivially quantized [6, 7] and
it does not provide a completely consistent description of the primeval universe (around the energy scales
related to inflation) [8, 9]. Therefore, it is only natural to propose modification to GR in an attempt to
overcome these challenges.

From a purely theoretical point of view, GR is built by considering that gravity is described by a
metric-compatible four-dimensional Riemannian manifold, which is endowed with a single rank-2 tensorial
field—the metric tensor gµν—, which is invariant under diffeomorphisms, and which exhibits second-order
equations of motion (cf. the Lovelock theorem) [10]. Modifications to GR are implemented by relaxing
anyone of the aforementioned hypotheses. For instance, Horndeski theories [11] stem from violating the
hypothesis that the metric is the only fundamental field: an extra degree of freedom is also assumed.
A different pathway is to admit a Riemann-Cartan-type of spacetime substrate, a manifold equipped
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with an affine connection bearing a non-null antisymmetric sector; in this case, torsion is included as a
gravitational entity and the Einstein-Cartan theories are born [12]. Another possibility is to eliminate
curvature while keeping a non-null torsion; this is a feature of Weitzenböck manifold and the teleparallel
equivalent of general relativity [13, 14, 15, 16, 17, 18].1 On the other hand, if the fields equations for
the metric tensor are allowed to include derivatives of order greater than two—while simultaneously
maintaining all the other hypotheses—then the higher-order gravity theories are obtained [19, 20].

Higher-order theories of gravity feature additional terms to the Einstein-Hilbert (EH) action engen-
dering higher-order derivatives in the field equations. Such extra terms in the action may be seen as
correction terms, classified according to their typical mass/energy scale. Following this classification,
zero-order terms are those counted in units of square mass; they correspond to the curvature scalar R
and the cosmological constant Λ in the EH action. First-order corrections to EH action involve term of
mass to the fourth power; these are built with the invariants

R2 and RµνR
µν . (1)

It is worth mentioning that the other two possible first-order invariants, RµναβR
µναβ and □R, do not

contribute to the field equations.2 Second-order terms are corrections to EH action having units of mass
to the sixth power; they made up with the following invariants [21]

R□R, Rµν□R
µν ,

R3, RRµνR
µν , RµνR

ν
αR

αµ, (2)

RRµναβR
µναβ , RµαRνβR

µναβ , andRµναβR
αβ

κρR
κρµν .

Among the various applications of higher-order theories of gravity [22, 23, 24, 25], one class of particular
interest is that of inflationary cosmology [26, 27, 28, 29].

In the end of 1979, Alexei A. Starobinsky proposed that quantum gravitational effects, presumably sig-
nificant in the primordial universe, produce a quasi-de Sitter cosmic dynamics, i.e. an almost-exponential
inflationary regime [9, 30]. In fact, A. A. Starobinsky showed that the inclusion of the term R2 in the
EH action is able to generate an early accelerated expansion ending in a radiation-dominated deceler-
ated universe. Starobinsky model is an enormous success: nowadays, it is one of the most promising
candidates for realizing the inflationary dynamics. The main reason for this accomplishment is its being
a single-parameter model fitting perfectly the most recent observations of the cosmic microwave back-
ground radiation (CMB) [31, 32]. Moreover, the theoretical motivation for Starobinsky model is quite
robust. In effect, Starobinsky inflation occurs in energy scales of about 1015 GeV; in such period the
action containing the term R2 may be considered as part of a higher-order theory expected in the context
of quantization of gravity [33].

The main goal of this contribution is to review the basic aspects of the cosmic dynamics predicted by
Starobinsky inflation and to study its extension to models containing second-order derivative corrections
involving the curvature scalar. Section 2 presents a general action integral encompassing the regular
EH term, plus Starobinsky R2-contributions, and the novel higher-order corrections; the field equations
for this modified gravity are also derived therein. Section 3 summarizes the conditions for inflation in
a homogeneous and isotropic background; the field equations are also specified in FLRW spacetime.
Subsections 3.1, 3.2, and 3.3 analyse the inflationary dynamics (in the phase space) in three separate
models, viz. the original Starobinsky proposal, the model supplementing Starobinsky term with a R3

contribution, and a higher-order model adding a correction of the type R□R to the traditional R2-term.
Section 4 brings our final comments.

1Regarding the teleparallel framework for gravity, we also point the reader to the contribution by P. J. Pompeia for this
book and the references cited in that paper.

2The term RµναβR
µναβ may be written as a linear combination of R2, RµνR

µν , and the Gauss-Bonnet topological
invariant. The term □R is explicitly a surface term.
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2 Fundamentals of the proposed modified gravity models

The most general action presenting up to second order correction to the EH action involving the curvature
scalar reads:

S =
M2

Pl

2

∫
d4x

√
−g

[
R+

1

2κ0
R2 +

α0

3κ20
R3 − β0

2κ20
R□R

]
. (3)

Herein κ0 has units of square mass while α0 and β0 are dimensionless parameters. Starobinsky R2 term
introduce the first-order correction to Einstein-Hilbert R term. The last two terms of (3) account for all
the possible second-order corrections built with the curvature scalar. Parameter κ0 sets the energy scale
for inflation; α0 and β0 regulate the deviations from Starobinsky model.

It is convenient to perform a conformal metric transformation and to introduce dimensionless fields
as follows:

ḡµν = eχgµν , λ =
R

κ0
and eχ = 1 + λ+ α0λ

2 − β0
κ0

□λ. (4)

The above allows one to cast (3) in the Einstein frame [29]:

S̄ =
M2

Pl

2

∫
d4x

√
−ḡ

[
R̄− 3

(
1

2
∇̄ρχ∇̄ρχ− β0

6
e−χ∇̄ρλ∇̄ρλ+ V (χ, λ)

)]
, (5)

where

V (χ, λ) =
κ0
3
e−2χλ

(
eχ − 1− 1

2
λ− α0

3
λ2

)
, (6)

stands for the multi-field potential of our model. The latter is a gravity model described in terms of the
metric tensor ḡµν along with two scalar fields, viz. χ and λ.

The field equations follow from setting to zero the variations of the action (5) with respect to the
fields ḡµν , χ and λ. Executing this procedure for the metric tensor yields:

R̄µν −
1

2
ḡµνR̄ =

1

M2
Pl

T̄ (eff)
µν , (7)

with the effective energy momentum tensor given by

1

M2
Pl

T̄ (eff)
µν =

3

2

(
∇̄µχ∇̄νχ− 1

2
ḡµν∇̄ρχ∇̄ρχ

)
− β0e

−χ

2

(
∇̄µλ∇̄νλ− 1

2
ḡµν∇̄ρλ∇̄ρλ

)
− 3

2
ḡµνV (χ, λ) . (8)

The field equations for the scalar fields are:

□̄χ− β0
6
e−χ∇̄ρλ∇̄ρλ− Vχ = 0, (9)

β0e
−χ

(
∇̄ρχ∇̄ρλ− □̄λ

)
− 3Vλ = 0. (10)

The shorthand notations Vχ = ∂V
∂χ and Vλ = ∂V

∂λ were used.

3 Inflation on the FLRW background

Generically, inflation may be regarded as an early period of near-exponential accelerated expansion taking
place at some point roughly in between 10 MeV and 1016 GeV. The motivations for this early vertiginous
expansion range from the need to explain the observed flat universe, to the attempt to justify the high
degree of homogeneity and isotropy displayed by the CMB, and, more importantly, to predict the causally
connected density fluctuations that are correlated to the large-scale structure in the present-day universe
[8, 34, 35].

Inflationary cosmology addresses basically three points:
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1. Initial conditions leading to the quasi-exponential expansion;

2. The details of the early accelerated regime and its connections with observations;

3. The ending of the accelerated expansion and reheating.

The first point is addressed in two ways. Approach number one is more thorough; it admits a broad range
of possible initial conditions in a non-homogeneous and anisotropic spacetime. The second approach
to point number 1 is a simplified approach assuming generic initial conditions while the spacetime is
restricted to being described by FLRW line element at the background level [36]. Notice that the flatness
problem and the problem of generating the primordial fluctuations can be treated via both the above
approaches; however, the problem of explaining homogeneity and isotropy can only be addressed by the
first, more complete approach. Regardless the approach, a robust inflationary model should be able to
produce an accelerated expansion from fairly general initial conditions.

Point number 2 is the most relevant one since it directly connects inflation to observations. In fact,
initial fluctuations are generated during the inflationary dynamics; these density perturbations are the
very seeds of the universe’s large-scale structure. The necessary condition for achieving an inflationary
regime accommodating causally connected perturbation is an accelerated expansion:3

Inflation ⇐⇒ ä > 0 ⇐⇒ d

dt
(aH)−1 < 0.

The scale (aH)−1 is known as Hubble horizon or Hubble radius; it delimits the region wherein two points
are momentarily causally connected. The Hubble radius decreases during inflation allowing quantum
fluctuations to exit the the horizon. These initially correlated perturbations are then frozen, and later
produce the necessary conditions for structure formation [37] (after horizon crossing at the end of the
accelerated period).

Point number 3 addresses the end of the inflationary regime. The particles the eventually populated
the primeval universe were diluted to such a degree during the almost-exponential expansion that any hint
of a thermalized universe disappears after inflation. Hence, a viable inflationary model should be able to
repopulate the universe after its ending, then producing a hot Big Band phase dominated by radiation
(ultra-relativistic particles). The period bridging inflation to a radiation-dominated era is called reheating
[38, 39].

The three points above can be (partially) studied in a Friedmann-Lemâıtre-Robertson-Walker (FLRW)
background. The homogeneous and isotropic FLRW flat spacetime is described by the line element

ds2 = −dt2 + a2 (t)
(
dx2 + dy2 + dz2

)
, (11)

where a (t) is the scale factor; natural units are assumed: c = 1. Specifying the field equations (7), (9),
and (10) on the spacetime (11), leads to:

h2 =
1

2

(
1

2
χ2
t −

β0
6
e−χλ2t + V̄ (χ, λ)

)
, (12)

ht = −3

4
χ2
t +

1

4
β0e

−χλ2t , (13)

and

χtt + 3hχt −
β0
6
e−χλt

2 + V̄χ = 0, (14)

β0e
−χ [λtt − (χt − 3h)λt]− 3V̄λ = 0. (15)

3The Hubble function is defined as usual: H = ȧ/a, where an overdot denotes differentiation with reespect to the cosmic
time t.
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For convenience, the above equations were written in terms of the dimensionless Hubble function h and
the dimensionless potential V̄ :

h ≡ 1
√
κ0

ȧ

a
and V̄ (χ, λ) ≡ 1

κ0
V (χ, λ) . (16)

Moreover, use is made of the dimensionless time derivative

At ≡
1

√
κ0
Ȧ. (17)

The following three subsection deal with particular solutions to Eqs. (12), (13), (14), and (15).

3.1 Starobinsky model

Starobinsky inflation adds the first-order correction to EH action via the term proportional R2. In this
case, S is simplified by taking α0 = β0 = 0. Consequently, the field equation for λ—Eq. (15)—becomes
a constraint equation given by:

V̄λ = 0 ⇒ λ = eχ − 1. (18)

Inserting (18) into Eqs. (12), (13) and (14), leads to:

h2 =
1

2

(
1

2
χ2
t + V̄ St

)
, (19)

ht = −3

4
χ2
t , (20)

and
χtt + 3hχt + V̄ St

χ = 0. (21)

The χ-related potential V̄ St (χ) for the Starobinsky model (label St) reads

V̄ St (χ) =
1

6

(
1− e−χ

)2
. (22)

Notice that Starobinsky inflation is achieved by the dynamics of the scalar field χ alone. This dynamics
is obtained from Eqs. (19) and (21). By taking χ as the variable describing the evolution of the system,
one rewrites Eq. (21) in the form:

dχt

dχ
=

−3χt

√
1
4χ

2
t +

1
2 V̄

St − V̄ St
χ

χt
. (23)

The above equation is an autonomous first-order ordinary differential equation; its structure is studied
by means of the direction fields related to (χ, χt). Fig. 1 shows the phase space for system of Eq. (23).

There are two noticeable features in 1: an approximately horizontal attractor line in the vicinity of
χt ≈ 0 and an accumulation point at the origin.

The attractor line realizes an (almost-)exponential expansion regime since χ2
t ≪ V̄ St (χt ≪ 1 and

V̄ St ∼ 1/6) along this trajectory. In fact, by using these conditions in Eqs. (19) and (20), we build a
slow-roll parameter ϵ satisfying

ϵ = −ht
h2

=
3χ2

t(
χ2
t + 2V̄ St

) ≪ 1. (24)

The condition ϵ≪ 1 yields the inflationary period because

ht ≪ h2 ⇒ h ≈ constant ⇒ a (t) ∝ exp (
√
κ0ht) . (25)
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Figure 1: Phase space (χ, χt) for the inflaton field in Starobinsky model. The red dot corresponds to the
accumulation point at (0, 0); the red oriented line highlights a possible trajectory in the phase space.

Moreover, Fig.1 makes it transparent that a broad range of initial conditions (χi > 2 and χi
t arbitrary) set

the system towards the attractor line. Starobinsky model is therefore capable of producing an inflationary
regime starting from a very general set of initial conditions.4

The accumulation point at (χ, χt) = (0, 0) is the point of inflation’s end. The dynamics of χ in the
vicinity of this point is oscillatory. This means that χ transfers energy to the matter fields it is coupled
with while it oscillates coherently about the origin. The process just described is known as pre-heating; it
is the initial phase of the reheating, when a large number of matter particles is produced. Since pre-heating
is essentially a non-thermal process, a subsequent thermalization stage is demanded to lead the universe
to a radiation-dominated era where all kinds of matter particles are in thermal equilibrium [40, 41].

In spite of being a preliminar analysis, the above study based on Fig. 1 shows that Starobinsky model
successfully addresses the three basic points of interest listed at the beginning of Section 3. In the next
two subsection, it will be checked if that continues to be the case for the models including the R3- and
R□R-type corrections to Starobinsky inflation.

3.2 Starobinsky-plus-R3 model

A term of the type R3 can be added to Starobinsky action (∝ R+R2) thus generating the Starobinsky-
plus-R3 model. The inflationary dynamics accommodated by this modified gravity model respects Eqs.
(19), (20), and (21) provided that V̄ St is generalized to the potential [28]

V̄ α0 (χ) =
e−2χ

72α2
0

(
1−

√
1− 4α0 (1− eχ)

)(
−1 + 8α0 (1− eχ) +

√
1− 4α0 (1− eχ)

)
. (26)

The potential is real-valued regardless of the value taken by χ under the constraint: 0 ≤ 4α0 ≤ 1.

4Starobinsky inflation is an example of the chaotic inflationary scenario [35].
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Figure 2: Phase-space representation (χ, χt) for Starobinsky-plus-R3 model with parameter α0 = 10−2.
The red dot and the black dot in the plot mark the critical points (0, 0) and (χc, 0) where χc = 3.06.
The red line and the black line show two opposite trajectories with respect to the critical point (χc, 0).
Source: Ref. [28].

The phase-space analysis for the Starobinsky-plus-R3 model is performed along the lines of what was
done in Section 3.1, by employing Eq. (23) with the substitution V̄ St → V̄ α0 . This leads to Fig. 2.

The main difference between the Figs. 2 and 1 is the appearance of a new critical point

Pc = (χc, 0) =

(
ln

(
4 +

√
3α−1

0

)
, 0

)
. (27)

This critical point is a saddle point that splits the phase space into two distinct regions in regard to the
direction field lines. The sector of Fig. 2 to the left of the vertical red attractor line yields an inflationary
regime ending in the stable accumulation point (χ, χt) = (0, 0). If the inflaton field χ starts from

(
χi, χi

t

)
in this region, inflation occurs in the usual way: the accelerated expansion subsequently gives off into
a decelerated phase with χ oscillating about the origin (potential minimum). On the other hand, the
trajectories to the right from the vertical black line yield a inflationary dynamics that never ends. In fact,
Ref. [28] details how the field χ grows indefinitely in this sector; its dynamics leading to the transition
of an initial almost-exponential expansion to the asymptotically accelerated phase of the power-law type
a (t) ∼ t12.

The precise location of the point Pc is sensitive to the value of parameter α0 accompanying the term
R3 in the action (3). The smaller the value of α0, the greater the value of χc. Reassuringly enough, in
the (Starobinsky) limit α0 → 0, it is χc → ∞, and Fig. 2 degenerates into 1, as it should. The most
notable difference between the Starobinsky-plus-R3 setup and the standard Starobinsky inflation is the
fact that the initial conditions leading to a physically meaningful inflation cannot be chosen arbitrarily.5

In effect, the greater the value of α0 the smaller the set of initial conditions
(
χi, χi

t

)
capable of producing

an inflationary regime that evolves to a radiation epoch. In this sense, a introduction of the R3 correction

5By “physically meaningful inflation” it is meant a primordial accelerated expansion that ends in a radiation-dominated
Hot Big-Bang phase.
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to the Starobinsky model requires some sort of fine tuning in the initial conditions of the inflaton field
[28].

3.3 Starobinsky-plus-R□R model

This section deals with the changes to inflation resulting from the inclusion of a R□R-type correction to
Starobinsky model.

This scenario is called the Starobinsky-plus-R□R model; its main distinctive feature with respect to
the previous cases (Subsections 3.1 and 3.2) is the presence of two scalar fields χ and λ that are both
responsible for the background dynamics, i.e. wherein a multi-field inflation will be realized. The related
phase-space analysis is performed rewriting the second-order equations (14) and (15) as a system of four
first-order equations. Accordingly, by defining

χt = ψ and λt = ϕ (28)

it results:

χt = ψ, (29)

ψt = −3hψ +
β0
6
e−χϕ2 − V̄ β0

χ , (30)

λt = ϕ, (31)

β0ϕt = β0 (ψ − 3h)ϕ+ 3eχV̄ β0

λ , (32)

with

h =

√
1

2

(
1

2
ψ2 − β0

6
e−χϕ2 + V̄ β0

)
(33)

and

V̄ β0 (χ, λ) = lim
α0→0

V̄ (χ, λ) =
1

3
e−2χλ

(
eχ − 1− 1

2
λ

)
. (34)

Notice that: (i) the phase space is four dimensional in the higher-order Starobinsky model—it is built with
χ, χt, λ, and λt; (ii) the dimensionless Hubble function h depends explicitly on the parameter β0—the
coupling of the R□R-term in the action (3); and, predictably (iii) the dimensionless potential V̄ β0 is a
double-field quantity.

The autonomous system formed by Eqs. (29), (30), (31), and (32) admits a single critical point at the
origin:

P0 = (χ0, λ0, ψ0, ϕ0) = (0, 0, 0, 0) . (35)

Eqs. (29)—(32) can be linearized about point P0. Thereby, it follows that Lyapunov exponents r0 related
to the stability of the critical point satisfy the algebraic equation

β0r
4
0 + r20 +

1

3
= 0. (36)

The solution of Eq. (36),

r0 = ±

√√√√−1±
√

1− 4β0

3

2β0
, (37)

and the analysis of the direction fields in the phase-space, lead to the conclusion that P0 is a stable fixed
point only within the interval

0 ≤ β0 ≤
3

4
. (38)
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Figure 3: Two-dimensional (λ, λt)-slices of the four-dimensional (χ, χt, λ, λt)-phase space corresponding
to β0 = 10−3 and χt = 0 with χ = 5.18 (left panel) and χ = 4.58 (right panel). The black dots mark
the position of the accumulation points: (λ, λt) ≃ (177, 0) in the left panel; (λ, λt) ≃ (98, 0) in the right
panel.

In fact, any value of β0 outside the above interval leads to Re [r0] > 0 for at least one of the four possible
r0 in Eq. (37). To put it another way, the equilibrium point P0 is unstable whenever condition (38) is
violated. Moreover, it is worth mentioning that the stability of P0 is a necessary condition for a graceful
exit from inflation into a radiation-dominated universe. This result was first published in Ref. [27] and
later reanalyzed by [29].

Details about the dynamics of the double-field higher-order Starobinsky inflation are obtained from
the numerical analysis of the four-dimensional phase space (χ, χt, λ, λt). For this end, Eqs. (14) and (15)
are cast into the form:

dχt

dχ
=

−3hχt +
β0

6 e
−χλ2t − V̄ β0

χ

χt
, (39)

dλt
dλ

= (χt − 3h) +
3eχ

β0λt
V̄ β0

λ , (40)

with h given by Eq. (33).
By using Eqs. (39) and (40), two-dimensional slices of the phase space can be performed, e.g. plots of

(χ, χt) and (λ, λt) are built for fixed values of β0 and of the remaining dynamical variables. Specifically,
the direction fields in the (χ, χt) slice are obtained by choosing adequate values for β0, λ, and λt; Fig. 1 is
representative of the (χ, χt) plane thus constructed: it is verified the existence of an attractor line close to
χt ≃ 0 in the Starobinsky-plus-R□R model. The attractor line in the (χ, χt)-plane is very robust in the
sense that it exists for arbitrary values of β0, λ, and λt that are consistent with a physical inflation—i.e.
β0 within the interval in (38) and a real-valued h given by Eq. (33). On the other hand, the direction
fields for the two-dimensional slice (λ, λt) are built by fixing the values assumed by β0, χ, and χt; Fig. 3
illustrates two such examples of (λ, λt)-plane slices.

A joint analysis of Figs. 1 and 3 indicates that the field χ approaches the attractor line χt ≃ 0 simulta-
neously as the field λ tends to the accumulation point where λt → 0 and λ ≃ eχ. This attractor trajectory
(χ, λ, χt,λt) ≃ (χ, eχ, 0, 0) in the four-dimensional phase space corresponds to the configuration realizing
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the inflationary regime. This fact is verified from the first-order approximation slow-roll parameter

ϵ ≃ 4e−2χ

(3− β0eχ)
. (41)

Internal consistency with the first-order approximations requires β0e
χ smaller than (but not to close to)

3. Accordingly, Eq. (41) shows that the inflationary regime (ϵ≪ 1) takes place whenever χ ≳ 2. Further
details on the show-roll regime are available in Ref. [29].

We summarize the analysis of this subsection by stating the three basic conditions that must be satis-
fied for achieving a physical inflationary regime within the Starobinsky-plus-R□R model: (1) Parameter
β0 should pertain to the interval of values specified in (38); (2) The initial condition for the field χ must
comply with χi ≳ 2; and (3) The dimensionless Hubble function should be well defined, i.e. h (t) ∈ R, for
all trajectories taken by the fields χ and λ.

4 Final remarks

This article recalls some of the motivations to consider extensions to general relativity for describing the
gravitational interaction. A particular branch of modified gravity proposals is chosen as the focus, namely
that of higher-order gravity. The latter admits a four-dimensional Riemaniann manifold endowed with
a rank-2 metric tensor gµν which field equations include derivatives of order higher than two (Section
1). For this reason, Einstein-Hilbert action (wherein the Lagrangian density is LEH ∝ R ∼ ∂2g) is
generalized into Starobinsky model (LSt ∝ R+R2), and further into the higher-order Starobinsky model
(LHOSt ∝ R+R2 +α0R

3 + β0R□R)—cf. Section 2. The main scope of the paper was to specify the field
equations for gµν and the extra scalar degree(s) of freedom χ (and λ) for the homogeneous and isotropic
FLRW background of non-perturbative cosmology before studying the early-universe inflationary regime
allowed within those modified gravity models (Section 3).

Three specific examples were scrutinized in Subsections 3.1 through 3.3. Starobinsky model was taken
as the paradigm of successful realization of inflation. Its dynamics was studied carefully in the phase
space because of its transparency and for setting the stage for the more complicated models that followed.
Starobinsky’s inflaton field dynamics follows an attractor line towards an accumulation point for arbitrary
general initial conditions (Fig. 1). It engenders a quasi-exponential expansion that exits gracefully to a
radiation-dominated universe.

The same possibility—that of an inflation ending in a Hot Big-Bang universe—is realized within the
Starobinsky-plus-R3 model (Subsection 3.2), albeit for a more restrict set of initial conditions. In fact,
besides the accumulation point at the origin of the phase space (χ, χt) for the single inflaton field of

this model, there is an unstable equilibrium point depending on χc = ln

(
4 +

√
3α−1

0

)
; the associated

trajectories split the phase space into two region, one of those leading to eternal inflation (see Fig. 2). In
order to tone down this possibility, the parameter α0 could be constraint to assume small values.

Parameter β0 typical of the Starobinsky-plus-R□R model is also constrained based on similar argu-
ments. However, this case is more evolved partially due to the fact that there are two scalar degrees
of freedom (χ and λ) playing the role of the inflaton. The related double-field inflation is achieved by
requiring β0 to take on values within the interval 0 ≤ β0 ≤ 3/4. This requirement is based both on
the phase-space analysis and on the demand for stability of the critical point at the origin of the four-
dimensional space (χ, λ, χt, λt). Subsection 3.3 contains the details of how to slice the phase space into
two-dimensional sectors (such as those in Fig. 3) leading to these conclusions and to the additional
requirement that it should be χi ≳ 2 for an initial condition leading to a physical inflationary regime.

The constraints on the parameters α0 and β0 deduced here stem from a simplistic reasoning based
on the backgroung evolution of the field equations. These constraints can be refined by the perturbative
treatment of the modified gravity models. This technically sofisticated task is undertaken elsewhere—see
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e.g. [29, 28, 27]. In fact, the CMB data offers a contour region in a plot of the tensor-to-scalar ratio
r in as a function of the scalar tilt ns [32]. Starobinsky model is highly favored because its prediction
for r = r (ns) for a number of e-folds in the interval 50 ≲ N ≲ 60 respects r ≲ 0.01. Starobinsky-
plus-R3 model [28] and Starobinsky-plus-R□R model [29, 27] are also consistent with CMB observations;
additionally, they allow for a larger variability of ns values thus accommodating a greater flexibility for
data constraining. This might be consistent with the possibility of a non-null running of ns in the power
spectrum parameterization [31].
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