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Abstract 

 

We show that in the flavor spin theories (theories with non-Euclidean 

signature of the kinematic quadratic term of the Lagrangian) for physical mass 

eigenstates the transition from the interaction to the mass eigenstate basis is 

constrained. In the corresponding modification of the SM the constraints result in 

the experimentally observed textures of both lepton and quark flavor mixing 

matrices. Furthermore, the number of real mixing parameters is reduced by one 

for each of the quark and lepton sectors. In addition some pairs of elements of 

CKMV  and separately PMNSU  must have the same absolute values. The equalities 

are observed experimentally within the error bounds. Apart from its imprint on 

the flavor mixing the modified SM is identical to the SM. 

 

1. Introduction 

 
Among the arbitrary parameters of the SM eight are the parameters of CKMV and 

PMNSU unitary matrices. Their textures and values remain a tantalizing flavor puzzle, despite 

many decades of search for an explanation. In the lepton sector PMNSU  is close to the 

tribimaximal matrix. In the quark sector mixing between the first two and the third generations is 

by orders of magnitude smaller then between the first two [1]. In addition, a remarkable near 
equality of two CKMV elements absolute values is observed, namely  tscb VV   within the 

respective 1   error bounds. Assumed a coincidence, so far it received little attention. 

Various methods were developed to reduce the arbitrariness of mixing parameters. A large 

class of models originates from and further develops the Froggart-Nielsen mechanism, where 

additional horizontal gauge symmetries plus a new scalar sector are introduced and then are 

broken to imprint a pattern on the Yukawa couplings in the form of the residual discrete groups 
[2]. Many continuous such as  2SU ,  3SU  and discrete groups such as 4A have been 

investigated in detail. More recently a modular form approach has become an alternative. For a 

review see [3]. Despite the plethora of the continuous and discrete groups that has been 

investigated there appeared no clear winner [4]. 
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In this paper we follow a somewhat different approach applied to either three or four 

generations of quarks and leptons. It has some similarities with the Froggart-Nielsen mechanism. 

It appears naturally and is unavoidable if one tries to quantize multi-generation gauge theories 

whose kinematic quadratic form signature is not Euclidean but pseudo-Euclidean. In the present 
work the  3U  invariant   ,,  signature of the SM is replaced by either   ,,  or   ,,,  

signatures leading to  1,2U  or  2,2U  kinematic invariance of the respectively three- or four-

generation theory. It turns out in such a case only a restricted set of Yukawa couplings produces 

real positive masses for the mass eigenstates. This results in constrains on the diagonalizing 

matrices and in the end on the mixing matrix parameters, eliminating one real parameter from 
each of CKMV and PMNSU .  Furthermore, all physical mass eigenstates are forced to be grouped 

into either doublets or singlets of the pseudo-unitary group  1,1SU . Each doublet transforms 

under the fundamental representation of  1,1SU . The singlets are split in those with the standard 

Dirac action and those with its negative.  

We show here that the mixing matrix texture patterns for both quarks and leptons might 
come from the same source: the singlet/doublet assignment of the broken global  2,2SU  

symmetry. The corresponding local  2,2SU  symmetry, together with the associated gauge field, 

appears as the symmetry of the kinematic part of the fermionic Lagrangian when we assume that 

the fermionic degrees of freedom are described by quantum differential forms. However, the 
theory contains no Froggart-Nielsen flavons, because the curvature of the  2,2SU  connection 

turns out to be zero by construction. The global  2,2SU  algebra is isomorphic to  4,2SO , 

which is essentially the conformal symmetry of the massless SM. Therefore, it is broken by the 
same mechanisms by the mass terms and on the quantum level. As a consequence,  1,1SU of the 

doublets breaks down as well, because of the quantum corrections, lifting mass degeneracy of the 

doublets. In the end only the singlets appear on the quantum level. Some of them have the Dirac 

action and some have its negative. 

Nevertheless the presence of the global symmetry places constraints on the physical Yukawa 

mass matrices. Diagonalization of the physically admissible mass matrices, together with 

essentially unique singlet/doublet assignments, after the symmetry breakdown results in the 

CKM and PMNS mixing matrices with the observed textures. Both matrices contain two real 

parameters and one CP violating phase, which is altogether two real parameters less then in the 

SM. The theory that produces the closest match with the experiment uses four generations for 
quarks and three or four for leptons. In addition two relations for CKMV  and one for three-

generation PMNSU  are predicted. These are tscb VV  , tbcs VV  and 2323 cossin   . These are 

satisfied within the experimental 3 error bounds. tscb VV   is satisfied within the mutual 1  

errors.  

Finally, we address here the issue of the quantization of the spinors with the negative action. 

We call them the anti-Dirac (aD) spinors. Their peculiarity is that the use of the standard 

quantization procedure results either in the free Hamiltonian unbounded from below or in their 

evolution backwards in time. We show how to cure this problem by the use of the Keldysh 
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formalism and an appropriate assignment of the creation and annihilation operators.  

The paper is organized as follows. In Section 2 we describe all possible physical eigenstates 

for the Yukawa mass matrices. This complements and expands the treatment in [5]. In Section 3 

we describe the general setting for the transition from the interaction to the mass eigenstate basis 

and the resulting flavor mixing. In Section 4 we discuss in detail how the experimentally 
observable CKMV  appears in our theory. In particular, we describe what happens to four-

generation CKMV  if the masses of the third and the fourth generation quarks cannot be resolved 

experimentally.  In Section 5 we do the same for the lepton sector, describing both three- and 

four-generation scenarios. Section 6 is devoted to the issue of quantization of the negative action 

aD spinors. Section 7 is the summary. 

 

2. The Physical Mass Terms  

 

The origin of what we call the flavor spin theories lies in the bi-spinor nature of the fermionic 

fields extracted from inhomogeneous differential forms. The history of the attempts to use bi-

spinor correspondence to differential forms is as old as the Dirac theory of the electron with the 

first attempt made in 1928 using a collection of antisymmetric tensors [6].  The connection 

between antisymmetric tensors with differential geometry and Clifford algebras was established 

in [7, 8]. Later the approach enjoyed a surge of interest as a basis for explaining multiple 

generations geometrically [9] and to describe fermions on the lattice [10].  However, the standard 

quantization of the theory in Minkowski space-time was shown to result in the anomalous anti-

commutation relations [11], the problem that we solve in this paper, and the application of this 

approach was mostly in the Euclidean domain.  

A different approach to the use of quantum bi-spinor fields directly, based on the extraction 

of the spinorial content from bi-spinors was described in detail in [12], where also the 

quantization of the aD doublets is also discussed. However, despite the progress in describing 

flavor mixing textures, the proposed solution of the problem of quantization in [12] resulted in 

fields propagating backwards in time. Below we will describe the correct quantization procedure. 

First, in this Section we will recapitulate and expand the results of [5] on the physical mass 

eigenstates and establish their consequences for flavor mixing. 
We begin with the action for free massive fermionic bi-spinor field    RL  ,  

given by  

 

      LRRLRRLL MMiitr  ~
L ,             (2.1) 

 
where MM   is a constant bi-spinor matrix and 

 
0

,
0

,   RLRL ,  00~   MM .     (2.2) 

 



   

   

 - 4 -

The usual spinors appear after a representation of bi-spinor   as a bilinear of two spinors. This 

is done by using the spinbein decomposition of   [5, 12]. The decomposition uses a flavor 

multiplet of auxiliary classical spinors. A spinbein is defined as a set of four Dirac spinors 
  xA  that satisfy the normalization 

 
ABBA    ,1 ,    AA,1 ,     (2.3) 

 
where BABA

   , ,  1,1,1,1  diag . We call index A interchangeably the flavor 

or the generation index. The spinbein decomposition is  2,2SU  invariant. This is caused by the 

presence of    in (2.3). An example of a spinbein in the momentum space is the set of familiar 

four normalized positive and negative energy plane wave solutions of the Dirac equation.  
For a constant spinbein A  and a multiplet of four Dirac spinors  xA  the spinbein 

decomposition of a bi-spinor   is defined by 

 

 ,  AA
  ,  , AA

  .    (2.4) 

 
Using two different spinbein decompositions (2.4) of two chiral bi-spinors  xRL, we obtain 

the reduced Lagrangian in terms of Dirac field content 

 
     RRRLRRLL ii   MML ,    (2.5) 

 

where  T

LR MM ,  MM~ . The  2,2SU  invariance of the spinbein decomposition is 

inherited by the kinetic term of the Lagrangian (2.5). The kinetic terms of the two of the flavors 

enter (2.5) with a plus, while the remaining two with a minus. The appearance of this symmetry 
is not surprising, considering that  2,2SU  algebra is isomorphic to the algebra of the conformal 

group, which is the symmetry of the free massless Dirac action. In transition from bi-spinors to 

flavor spinors the conformal group acting on one of the indices of a bi-spinor was replaced by the 
 2,2SU  acting on the flavor indices. 

Note that the choice of normalization in (2.3) is somewhat arbitrary. If we replace in (2.3) 
A with its unitary transform  AU  in the flavor space, then instead of    we obtain 

UU . This can be used to obtain different forms of the Lagrangian, for example after 

symmetry breaking. 

To extract the spinorial degrees of freedom one can also use non-constant spinbeins. Non-
constant spinbeins lead to the appearance in (2.5) of a gauge field for non-compact  2,2SU  

gauge group. Gauge theories with non-compact gauge group fields are usually avoided in model 

building, because generally they lead to a non-unitary S-matrix. However, in our case, because of 
the normalization (2.3) the  2,2SU  field has zero curvature. Therefore, it cannot carry energy 

and is non-dynamical. As a result, the potential  2,2SU  flavons cannot appear. This can be seen 
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as follows. In addition to making spinbein depending on the coordinate we relax the spinbein 

normalization in (2.3) to  

 
        1,  gxxgxx   ,           (2.6) 

 
where g  is a dimensionless constant, and rescale the spinor fields  21 g . Now consider the 

kinematic term of the Lagrangian:   itr . The substitution of (2.6) together with field 

redefinition transforms it into    

           

    gBiitr  ,        (2.7) 

 

where   B  , BAABB    , is a  2,2SU  gauge field in the flavor space with the 

coupling constant g . It is easy to verify that as a consequence of (2.6) its curvature is identically 

zero.  

Returning to the original normalization (2.3), we obtain the equations of motion  

 
  0 RLi  M- ,      

                                                                                                   (2.8) 
  0~  LRi  M- .                                                                                                    

 

Since in general MM~ , it is not guaranteed that (2.8) results in physical states with real 

positive masses. To determine the admissible mass eigenstates, we rewrite (2.8) in the second 

order form to obtain separate equations on the chiral components 

 

  0~2  LLi  MM- ,      0~2  RRi  MM- .                                        (2.9)                                                             

 
For the plane wave solutions of positive and negative energy,   ikx

RLRL ex 0
,,   , from (2.9) 

we obtain the dispersion relations for the left and the right modes  

 
  0~det 2 MM-k ,     0~det 2 MM-k .      (2.10) 

 
The eigenvalues of MM ~ , MM~  determine the squared mass spectrum of the particles. Unlike in 

the SM, where MM~ , matrices MM ~ , MM~ are not necessarily Hermitean and thus may have 

complex eigenvalues. Therefore, to deal with physical particle states, we need to determine the 

set of M , M~  that results in the real positive particle masses. 
To generate physical masses, both MM ~  and MM~  must be hermitean and non-negative-

definite. Additionally, the masses for the left and the right modes must be equal. This results in 
the three conditions that MM ~,  must satisfy 
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  MMMM
~~ 


,              

           (2.11) 

  MMMM ~~ 


,                                                                                                             

 

and for some unitary U    

 
UU MMMM ~~  .         (2.12)   

 

We now solve (2.11, 2.12) for various number of generations. We begin with the two 

generations, where mass matrices are two dimensional. For the two dimensional case the metric 
in the kinematic term is  1,12  diag instead of  . For MM ~,  we obtain 

 











2221

1211

aa

aa
M , 













*

22
*

12

*
21

*
11~

aa

aa
M ,      (2.13) 

 
















 2

22

2

21
*

1222
*

1121

*
2212

*
2111

2

12

2

11~

aaaaaa

aaaaaa
MM ,     (2.14)  

 
















 2

22

2

1221
*

2211
*

12

22
*

2112
*

11

2

21

2

11~

aaaaaa

aaaaaa
MM .     (2.15) 

 
We see that to be hermitean both MM ~ and MM~ must be diagonal. That is we must have 

 

0*
2212

*
2111  aaaa , 

            (2.16) 

022
*

2112
*

11  aaaa . 

 

The two equations may be considered as linear equations on *
2112 ,aa . Since the corresponding 

determinant is 
2

22

2

11 aa  , when 
2

22

2

11 aa  these equations have only a trivial solution 

02112  aa . In such a case 2211,aa  are arbitrary. For the trivial solution we obtain that MM ~,  are 

diagonal with arbitrary diagonal entries and MM ~ .  Otherwise, 
2

22

2

11 aa  and  

 

   1211
*

22
*

21 aaaa  .           (2.17) 

 
Since 2112 aa   then MMMM ~~  and they are proportional to the unit matrix. Therefore, all non-

trivial MM ~,  are proportional to a  1,1SU  matrix, provided . Hence all non-trivial positive mass 
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solutions can be represented as 

 
 21RUUmM  ,   2,12,12,1 exp,exp  iidiagU  ,    0kk  ,           

                  (2.18) 















cs

sc
R ,     

2

12

2

1111cosh aaac   ,     sinhs ,  

where 
2

12

2

11 aam  . The matrix generates two equal real positive masses m  if 1211 aa   

and two equal zero masses if 1211 aa  . Otherwise the two masses are no longer real.  

The mass degeneracy in the non-trivial case indicates the presence of  what we, by analogy 
with isospin, call  1,1SU  flavor symmetry and that the two flavors form a flavor spin doublet. 

To complete the classification we note that if 
2

12

2

11 aa   in the non-trivial case the two flavors 

are massless. 

In summary, Lagrangian (2.5) with positive physical masses admits only specific mass 
matrices and describes either two particles with arbitrary masses, or one  1,1SU  flavor doublet 

of mass m .   

Let us now consider the four-dimensional case. In the 22  block notation  

 











DC

BA
M ,  

















DB

CA
M
~ . 

 
We can use two unitary transformations from      2,222 UUU   on the left and the right 

modes to diagonalize the diagonal 22  blocks DA,  in MM ~,  so that the diagonal entries are all 

positive. We can do this because the kinetic term in the action is invariant under    22 UU  . 

Then, returning to four-index notation, the conditions for a physical mass term amount to 

 

0**  mmkmmkkk aaaa ,          

           (2.19) 
0**  mmmkkmkk aaaa , 

 

which means either 
22

mmkk aa  or 0 kmmk aa for all elements in the upper right and lower left 

blocks. In the 22  block notation 

 


















DDCCDBCA

BDACBBAA
MM
~  ,  

            (2.20) 


















DDBBCDAB

DCBACCAA
MM

~ , 
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where  

 

 2
2

2
1 ,aadiagAAAA   ,  2

2
2

1 ,dddiagDDDD   .   (2.21) 

 

The condition (2.11) implies the vanishing of the off-diagonal blocks  

 

 0  BDAC ,  0  DCBA .      (2.22) 

            
Since DA,  are diagonal with positive diagonal entries, the solution of (2.22) is  

 
 BC .           (2.23) 

 
It then follows that MMMM ~~  , which satisfies (2.12). 

We see that in order to generate physical masses, the quasi-diagonalized mass matrix must be 

Hermitean. In the Standard Model MM~  and any matrix can be a mass matrix, because 
MMMM  , are hermitean and have equal positive eigenvalues. Not so here. 

We can now classify all possible physical mass spectra in terms of elements of DBA ,, . The 

mass squared eigenvalues are the eigenvalues of two matrices   BBAA and BBDD   .  
Depending on how many entries in  DDAA , coincide a single bi-spinor field can generate from 

one to four different masses. The solutions can be organized in terms of the flavor symmetry of 
the Lagrangian:   2,2SU  quadruplet when all masses coincide or  1,1SU  for each flavor doublet 

when there are two pairs or only one pair of equal masses or none, when all masses are different. 
In the three-dimensional case we obtain a similar result, except that  2,2SU  symmetry cannot be 

realized with only three masses. The mass spectrum in this case is composed of the spectrum of 

the two-dimensional case plus an arbitrary mass. For completeness we should mention the 
 1,3SU  case. It cannot be realized in our formalism, because the assumption that fermionic 

degrees of freedom are described by quantum differential forms leads only to  2,2SU  or  1,2SU  

cases.  

3. The Mass Eigenstate Basis and Flavor Mixing 

  

 Having classified the possible physical mass terms in the theory, we can describe the 

transition from the interaction to the mass eigenstate basis and the resulting flavor mixing. Let us 

begin by looking at the version of the SM, where some of MM mass eigenvalues coincide. This 

would mean that all field components with the same eigenvalue transform in a unitary 
representation of  3SU  or its subgroup and hence describe a single particle state. Depending on 

how many eigenvalues coincide, mass matrix would then describe from one to three particles. 

Note, that when some of its eigenvalues coincide, the diagonalization of MM is no longer 

unique. It becomes unique only when all symmetries responsible for the equality of the 
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eigenvalues are broken. 

The same arguments apply in our case. For four generations Lagrangian with the kinematic 
 2,2SU  symmetry the number of the particles the Lagrangian describes is determined by the 

symmetry of the mass matrix. Obviously, the same also applies to the kinematic  1,2SU  or  

 2,1SU  with three generations.  

Let us begin with two generations. The starting point is the Lagrangian  

 

  




















2

1

5

5
21,












cmism

smcmi
L .                    (3.1) 

 

Like in the degenerate mass SM we need to transform it into the form where all mass eigenvalues 

become explicit and equations of motion decouple. This can be achieved with the transformation 

to what we call the chiral flavor spin variables 

 

 
















2

1

2

1







T , 






 


11

11

2

1
T .       (3.2) 

 
We use the term because for two dimensions in the Dirac representation 2

0   and (3.2) is the 

transformation to the representation where 3  is diagonal. The same applies to four dimensions. 

There 0  and, after 4D version of (3.2), it is 5  becomes diagonal. Applying (3.2) to (3.1) 

we obtain  

 

   
  





















2

1

5

5
21

0

0
,












smcmi

smcmi
L ,     (3.3) 

 

leading to the decoupled equations of motion for each component. The equations become 
identical for 0,1   sc . In the chiral flavor spin basis we can replace 5  with 1  to obtain 

 
  0,

1
,

1  
RLLR emi   ,        

                     (3.4) 
0,

2
,

2  RLLR emi    

 

We see that each field component k  satisfies the Klein-Gordon equation      022  kmi  . 

This follows from the identity          2255 miscmiscmi    . Therefore, 

each doublet component formally has the equations of motion of a free particle. Note that the 
chiral flavor spin transformation does not break the  1,1SU  symmetry of (3.1). Instead, it 

replaces it by an isomorphic symmetry. Despite the unorthodox appearance, the Lagrangian (3.3) 

results in the Hamiltonian that is diagonal in the creation-annihilation (c-a) operators, provided 

we use a compensating unitary transformation with T  applied to the c-a operators. We can use 
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T , because for anticommuting c-a operators unitary rotations preserve the anti-commutation 

relations. 

Just like in the degenerate mass version of the SM, to obtain from (3.3) a physical particle 
state for each field component, the  1,1SU -related symmetry must be broken. In fact, it must 

broken by quantum effects, because  1,1SU  is a subgroup of  2,2SU , which is isomorphic to 

the conformal group    4,23,1 SOC  .The explicit construction of the isomorphism can be found 

in [13]. It is well-known that the conformal group of the Minkowski space-time is broken via the 

trace anomaly.  
In our case the breaking the  1,1SU  symmetry fixes the  1,1SU  gauge uniquely, because we 

can obtain a renormalized theory with physical mass states only if 0,1   sc . This follows 

from the results of the preceding section, where we have shown that the mass term must either be 
proportional to either a  1,1SU  element or the unit matrix. From the form of (3.3) we observe 

that the one-loop renormalization corrections to the mass term must be diagonal 

 

  




















2

1
21

0

0
,





m

m
mL .          (3.5) 

 
This results in two different masses mmm 2,1 . These leading contributions come from the 

one-loop self-energy diagrams for 21, .  Off-diagonal contributions appear first from two-loop 

diagrams.  
The  1,1SU  case is generalized to four generations  2,2SU  or three generations  1,2SU  in 

a straightforward way. In summary, for four generations despite non-compactness of  2,2SU  

the transition from the interaction to the mass basis is effected by a unitary transformation using 
block diagonal    22 UU  . The same happens for  1,2SU  using    12 UU  . Let us consider 

these cases in more detail.  
It follows from the above discussion that in the  2,2SU  case the transformation to the mass 

basis involves a block-diagonal unitary transformation that mixes 21,  and separately 43,   

 











2

1

0

0

W

W
U ,  2UWk  ,        (3.6)  

possibly followed by the unitary transformations T  in (3.2) that mix the members of the k -th 
 1,1SU  pairs, such as 31, and/or 42 , .  

 

4. The CKM Mixing Matrix 

 

We now consider flavor mixing in our theory, beginning with the quark sector. For the SM 

Higgs field expectation value  2,0 v  and the left mass terms diagonalized as 

  du
R

du
diag

du
L

du VMVvM ,,,, 2


 the CKM matrix CKMV  is defined by 


 d
L

u
LCKM VVV  and similarly 

for the PMNS matrix PMNSU . Combining (3.2) and (3.6) we obtain all possible charged current 
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quark mixing matrices for the four generations SM 

 

    DmnUkl UTUTV 4 ,        (4.1) 

 
where 1,0,, lkTkl  are obtained by combining either the 22 unit matrix ( 0k or 0l ) or a 

transformations (3.2) ( 1k or 1l ) acting on pairs of indices 3,1, ji  and 4,2, ji of the 44  

matrix. There are four possible 2,1,, lkTkl  and hence 16 possible quite distinct textures of 

V parameterized by two  2U  matrices 'ˆ
111 WWW   and 'ˆ

222 WWW   in (3.6). The choice from 

which one obtains the closest match with the experimental values for the three generation CKMV  is 

 

  1111
4 TUTV CKM ,  DUUUU .       (4.2) 

 

Explicitly 



































































210210

021021

210210

021021

00

00

00

00

210210

021021

210210

021021

22

22

11

11

4

wz

yx

wz

yx

VCKM ,(4.3) 

 
where kx , etc are the matrix values in (3.6). The form of the 4

CKMV  indicates that before the 

 1,1SU  symmetry breaking  the four generations of up and down quarks form two  1,1SU  

doublets. The final form of 4
CKMV  is  

 





























wzwz

yxyx

wzwz

yxyx

VCKM
4 ,          (4.4) 

 
where   221 xxx   etc.  

To obtain the 3 generation mixing matrix we need to assume 21 WW   and either (1) non-

observation of one of the four generations because of its high mass or (2) decoupling of one of 

the generations from all SM gauge fields or (3) near-degeneracy in mass of the two heaviest 

generations. We then obtain the three-generation CKM matrix derived in [5] 

  
























wwz

wwz

yyx

VCKM .          (4.5) 

 

This matrix has two real parameters and one rephasing non-removable phase, which is one real 
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parameter less then in the SM. Note that inequality of   22131 zzza   , 

  22113 yyya    is due to the possible difference in the relative phases  21    of 
1

11 sin  iey  relative to 2
22 sin  iey   and  21    of 1

11 sin  iez  relative 2
22 sin  iez  . 

These relative phases cannot be eliminated by re-phasing of the fermionic fields. 

 From (4.5), taking into account that the phases of the matrix elements can be changed by re-

phasing the fields, we obtain two tree level predictions of equality of two pairs of its elements:   

 
  tscb VV  ,          (4.6) 

              
  tbcs VV  .          (4.7) 

 

tscb VV   is experimentally observed to lie within 1  errors for tscb VV ,   [1]. 

  3104.18.40 cbV    3109.05.41 tsV  . tbcs VV   is also observed but with less 

accuracy. The values are measured at 006.0975.0 csV  and 029.0014.1 tbV  so their 2  

ranges overlap.    

We will now discuss three scenarios of the non-observation of the fourth quark generation 
that we mentioned above. The first and most widely discussed one is that the masses of  ',' bt  are 

too large for them to be generated experimentally. Currently the lower limits are 
GeVmGeVm bt

33 106.1,103.1   [1]. The second one is that the fourth generation decouples 

from all gauge fields and interacts only gravitationally, thus acting as dark matter. The third one 

apparently has not been mentioned in the literature so far. Namely, that the fourth generation is 

not observed, because of near degeneracy in mass with the third generation. In the SM there is no 

reason for such degeneracy. However, in our theory our first and second generations and 
separately the second and the fourth generation form  1,1SU  doublets before its breakdown. 

Because of this, is would not be extraordinary to find that the mass differences between the third 

and the fourth generations should be similar to that of the first and the second generations. If 
masses of ',' bt  lie within 1  error ranges of the measured bt,  masses, they would not be 

distinguishable experimentally from ',' bt . 

The experimentally measured masses of  bt,  quarks are GeVmb
03.0
02.08.4 

  and depending on 

its definition ranges from GeVmt
1.2
5.15.162 

 to  GeVmt 9.02.173  . The corresponding mass 

differences are GeVmm uc 7.1  , MeVmm ds 93 . It is not so implausible that tt mm  and 

bb mm   lie in the range of GeV1 and MeV30 respectively. Therefore, this scenario needs to be 

taken as a possible explanation. 

Let us consider the effects of the three different scenarios on the mixing matrix. The effects 

of the first two are identical but differ from those in the third scenario. The difference lies in the 

statistics of the event count. Whereas in the first two scenarios the fourth generation is not 

present in the event count, in the third scenario it is but is summed together with the third 

generation event count.  
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As a result the first two scenarios result in both horizontal and the vertical unitarity deficits. 

The first row and the first column possible deficits were discussed in [14]. The third scenario 

produces a different effect. First, in this scenario the definition of the effective three generation 

matrix would depend on the choice of the incoming states. For simplicity we will assume that all 

incoming states are the up quark states and that the third and the fourth generations of the up 

quark states are produced at the same rate.  Note that we have to take into account that as 
quantum states ',' bt  are distinguishable from bt, , respectively. Hence, the rule that we have to 

average the amplitudes over the incoming states and sum them over the outgoing states now 

applies to the probabilities and not to the amplitudes. If we denote as bt ˆ,ˆ  the effective 

top/bottom quarks in the effective three-generation mixing matrix, then summing over the final 

states we obtain 

 
222

ˆ buubbu
VVV           (4.8) 

 
222

ˆ bccbbc
VVV           (4.9) 

 
222

ˆ bttbbt
VVV           (4.10) 

 
222

ˆ btbtbt
VVV            (4.11) 

 

At the same time to obtain 2
ˆˆbt

V  we have to average over the incoming ', tt , which produces 

 

 22222
ˆˆ 2

1
btbtbttbbt

VVVVV   .       (4.12) 

 

We see that because of the averaging the vertical unitarity can be violated. For example, using 

the four-generation unitarity we obtain 

 

  11
2

1
1 3

2

'

2

'

222
ˆˆ

2
ˆ

2
ˆ  cbubcbubbtbcbu

VVVVVVV ,   (4.13) 

which exhibits a small positive unitarity deficit. The remaining two vertical unitarity sums are 

given by  

 

  11
2

1
1 1

222
ˆ

22  dttddtcdud VVVVV ,     (4.14) 

 

  11
2

1
1 2

222
ˆ

22  sttsstcsus VVVVV .     (4.15) 
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Here we have small negative unitarity deficits. At the same time the horizontal unitarity 

obviously holds by construction. Using four-dimensional unitarity, we can rewrite  

 

 2222

3 2

1
1 sttsdttd VVVV   ,  

 

and summing all of the deficits we obtain  

 
  0

k
k .          (4.16) 

 

The positive and the negative deficits cancel each other because of the horizontal unitarity. This 

relation between the unitarity deficits in principle can be used to determine experimentally 

whether the first two or the third scenarios are realized in the experiments.  

Another important fact about the unitarity deficits is that their magnitude is of the order of the 

largest small mixing element. It is worth noting that the possible unitarity deficits reported in 

[14] are in fact of that order. 

 

5. The PMNS Mixing Matrix 

 

Let us turn to the leptonic flavor mixing. In the case of leptons the assumption of the non-

interacting fourth lepton generation can be used to derive the three generation mixing like for 

quarks but it turns out to be not necessary. Here it is enough to assume that there is only one 
broken  1,1SU  doublet consisting of mu and tau leptons. The rest of the leptons are  1,1SU  

singlets. This implies that the classical Lagrangian has  1,1SU  mu - tau symmetry.  It is worth 

noting that a possible mu - tau symmetry and its consequences have been discussed in the 

literature [15].  

Using the mass matrix diagonalizing unitary transformations described above we obtain for 

leptons 

 
 NNEEPMNS TUUTU ,        (5.1) 

  
An essentially unique choice for PMNSU  that fits the experimental data is 

   

  


















21210

21210

001

ET  ,


















11

1

11

0

00

0

wz

u

yx

U E , 


















2

22

22

00

0

0

u

wz

yx

U N , 1NT , (5.2) 

 
where kk wx ,,  are elements of  2U  and ku  are complex phases. All other choices either do 

not fit the experimental data or are obtained by renaming the lepton generations and assigning 
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different signatures to the mu-tau doublet.  Explicitely we have 

 

   
    



















222

222

2121212121

2121212121

212121

uwwuyzzuxz

uwwuyzzuxz

yxuyxx

U PMNS .   (5.3) 

 

We observe that absolute values of two elements of the matrix are equal, namely   

 

33  UU  ,          (5.4)  

 
and that it reduces to the tri-bimaximal (TBM) mixing matrix when 1EU . If we now set 

all kk wx ,, ,  21,uu to be real positive except for  iezy  13
*

11 sin  then, after phases 

adjustment due to change of 2323   , in (5.2) we recognize the standard parameterization of 

PMNSU . Therefore, our theory predicts that at tree level 

 
  2323 cossin   .         (5.5) 

 
The remaining two angles 12 , 13  remain arbitrary.  

It is worth to compare (5.3) with the matrix that is obtained by the reduction from four to 

three generations as was done above for quarks. The essentially unique fit with the lepton mixing 

data texture comes from using 

 



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






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






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

































22

11

22

11

22

22

11

11

4

ˆ0ˆ0

0ˆ0ˆ

ˆ0ˆ0

0ˆ0ˆ

00

00

00

00

210210

0100

210210

0001

wz

wz

yx

yx

wz

yx

wz

yx

UPMNS ,   (5.6) 

 

which, after decoupling of the fourth generation, reduces to  

 

     
      



















2ˆˆ2ˆˆ2ˆˆ

2ˆˆ2ˆˆ2ˆˆ

ˆˆˆ

222122211211

222122211211

212111

3

wwywzwxwzzxz

wwywzwxwzzxz

yyxyxx

UPMNS .  (5.7) 

 

Also this mixing matrix exhibits constraints on its elements. However they are no longer linear.  
From [1] we find the present 3   range for the leptonic angle 23  derived from all available 

up to 2022 data and for various neutrino mass orderings is  61.041.0  . The best fit plus 1  

error values for 23
2sin  vary from 019.0

016.0451.0 
  to 016.0

021.0578.0 
 , depending on inclusion or exclusion 

of the SK atmospheric data.  
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 As we have shown in our theory the difference between quark and lepton mixing comes 
primarily from  1,1SU  flavor spin doublet assignments. There are four such doublets for quarks 

and only one for leptons. This may not answer the question why such a difference arises, but 

allows looking at the problem from a somewhat different angle. Another significant difference 

with the quark case is that, whereas for quarks the sign of the kinetic term is the same for the 

members of the isospin doublet, for leptons for the second and the third generation of leptons it is 

the opposite, so that while for mu and tau the signs are plus and minus, respectively, for the mu 

and tau neutrinos it is minus and plus. It would have been a potential problem for our theory, 

were not both mu-tau flavor spin and isospin symmetries broken, as is the case. 

 

6. The Quantization of the Anti-Dirac Spinors 

 

In the preceding section we showed that using the spinors whose action is the negative of the 

standard ones helps to explain mixing matrix textures and near coincidence of their elements 

both for quarks and leptons. The free field action for such spinors is given by 

 
    mixdSaD

4 .        (6.1) 

 

We shall call such fields the anti-Dirac or aD-spinor fields. aD spinors have not been used in the 

model building, because their standard quantization obviously results in the Hamiltonian 

unbound from below. In this section we describe the modification of quantization of such fields 

that solves this poblem.  

Although the equations of motion for both D and aD fields are the same, the minus in (6.1) 

causes non-trivial physical consequences. The most prominent of them is the change of sign of 
the classical Hamiltonian: DaD HH  . Recall that it is only after the standard quantization that 

the operator DH  becomes bounded from below. Hence the standard quantization of aDH results 

in an unphysical theory. 

To understand how to cure the problem, recall the expression for the evolution for operator 
 tA  from its initial state  itA  to the final state  ftA  in the Heisenberg representation   

 
         ifiiff ttiHtAttiHtA  expexp .     (6.2) 

 
If we replace H  in (6.2) with H , we see that the evolution of  tA  is completely equivalent to 

evolution with the original H  but backwards in time. Obviously, the same applies to the 

interaction representation and hence to the expression for the S-matrix. We conclude that S-

matrix with a negative definite Hamiltonian is equivalent to the S-matrix with the time-reversed 

evolution. We can use this equivalence to define a well-defined quantum field theory, where 

some of the particles are described by (6.1). 

To proceed further it is helpful to use quantum filed theory formalism, where time evolution 



   

   

 - 17 -

in both directions enters on equal footing. Such extended formalism has been described by 

Keldysh [16]. Although it is mostly used in the solid state physics to describe non-equilibrium 

QFT at finite temperature, it can very well be used at zero temperature if we omit the averaging 

over thermal states and set the initial density matrix to one.  

In the Keldysh QFT formalism one considers the evolution of Greens function as a T-product 

along the time path that extends from   to  and then back to  . As a result one can 

construct Greens functions that are the vacuum expectation values of the fields with time 

coordinates on both positive and the negative time branches. This is a consistent procedure if we 

consider the time coordinates on the negative time branch as lying in the absolute future of all 

time values on the positive branch.  
As a result the definition of various two point Greens functions and their perturbation theory 

can be considered from a unified point of view. The matrix of four Greens functions is assembled 

into a single one 

     
   












yxGyxG

yxGyxG
yxG

c

c

,
~

,

,,
, ,        ( 6.3) 

 

      00,  yxTiyxGc  ,  xtx


,  , 

      0
~

0,
~

 yxTiyxGc  ,       (6.4) 

      00, yxTiyxG  
  , 

 

where t  is the point on the positive time direction path branch while t  is a point on the 

negative time direction path branch. T
~

is the T-product on the negative time path branch, that is 

with respect to negative time direction. All coupling constants acquire a minus sign on the 

negative time branch and symbolically can be assembled into  

 

 










g

g
g

0

0
.         (6.5) 

Using these generalized Greens functions, not all of them independent, we can construct a well-
defined interaction representation, where  yxG ,  enters as the main object. 

We observe that the aD quantum field described by (6.1) for all intends and purposes is the 

quantum field of the Keldysh formalism that is defined on the negative time direction branch. We 

can use this observation to define a theory, where aD fields are incorporated in the standard QFT 

with the associated S-matrix. To do this we need to make sure that all scattering processes are 

employing exchange of particles with positive energy.   



   

   

 - 18 -

We now describe how to achieve this. Recall the standard mode expansion for the Dirac field  

 

 
 

        ikxr
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ikxr
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   03
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     (6.6) 

  
 

        ikxr
r

ikxr
r ekvkdekukb

k

mkd
x   


03

3

2
 ,          (6.7) 

 

where 220 mkk 


. The plane-wave solutions  ku r


, 2,1r ,  for the positive and  kvr


, 

2,1r , for the negative energy satisfy         0 kvmkkumk rr


 and are normalized in 

the standard way:         pqqpqp kvkvkuku 


.  After quantization  kbr


 ,  kbs


 become the 

anti-commuting c-a operators for the Dirac particles, while  kdr


 ,  kds


 become the c-a 

operators for the Dirac antiparticles.  The energy momentum operator P  is  

 

  
 

        :
2

:
03

3

kdkdkbkbk
k

mkd
P rrrr


   


, 000 P ,         (6.8) 

 
where ::  denotes the normal ordering of the operators.  

To define S-matrix one uses the time-ordered product of two spinor fields,  

 
                 xyxyyxyxyxT  0000  ,               (6.9) 

 

and the Feynman propagator for the Dirac field 

 

       
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2
00 .             (6.10) 

 

For the time-reversed propagator with T
~

 we obtain 

 

       
 

   yxik
F e

imk

mkkd
yxTiyxS 
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

  
 224

4

2
0

~
0

~
,             (6.11) 

 

where we took into account that the contour of integration for  yxSF 
~

 is in the opposite 

direction to that of  yxSF  , which generates a factor of 1  in (6.11). Note the change of path 

around the pole due to replacement of i  for  yxSF   to i  for  yxSF 
~

. It is indicative of 

the revered time propagation or more precisely it indicates propagation of positive energy into 

the past and consequently the negative energy into the future.  

Clearly we cannot use the mode expansion (6.6-7) for the aD spinor field, because then we 

obtain a negative definite Hamiltonian operator. Furthermore, since the aD field in effect is 

defined on the negative time direction branch, for its description we need to use the reversed time 
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order T-product definition. This is a physically understandable result:  xSF

~
 is the amplitude of 

the process, where a particle with positive energy first destroyed and then created. This is 

equivalent to saying that a particle with negative energy as first created and then destroyed. In 

both processes the flow of positive energy is backwards in time as is expected on the negative 

direction time branch.  

The resolution of the negative Hamiltonian problem comes if we use the fact that in the mode 

expansion (6.6-7) it is left to our choice what we declare as particles and what as anti-particles.  

Therefore, if we exchange the creation and the annihilation operators in (6.6-7), then the 

corresponding amplitude will describe positive energy transfer in the positive time direction and 

we obtain 000 
aDP . In summary, the fields in (6.1) with the swapped c-a operators 

propagate backwards in time apparently but they transfer positive energy in the positive time 

direction. It may be useful here to distinguish between the kinematic direction of time and the 

causal direction of time. If the kinematic direction of time is defined by the sign of the action, the 

causal direction of time is defined by the direction of the positive energy transfer. Then 

kinematically aD fields propagate in the negative time direction, while causally the time direction 

of their evolution is positive.   

With all the above in mind, the modified mode expansion that ensures the positivity of the 

Hamiltonian and maintains the causality becomes 
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  
 

        ikxr
r

ikxr
raD ekvkdekukb

k

mkd
x  


03

3
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 ,             (6.13) 

 
where now  kbr


 ,  kbs


 become the c-a operators for aD anti-particles, while  kd r


 ,  kd s


 are 

the c-a operators for aD particles. 

To computing the vacuum expectation value of the T-product of the aD fields with mode 

expansion (6.12-13), we define  

 

      yxTixS aDaDaF ~ ,        (6.14) 

             

                 xyyxyxxyyxT aDaDaDaDaD  0000~  .  (6.15)               

 

After a simple calculation we obtain  
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aF e

imk

mkkd
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or not surprisingly 
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   xSxS FaF  .         (6.17) 

 

If we now turn to the definition of the S-matrix we find that the same assignment of the c-a 

operators that changed the sign of the Hamiltonian works the same way on the interaction 

Hamiltonian. It in effect changes the sign of the coupling constant in the interaction Hamiltonian 

on the reversed time branch of the Keldysh path. If we look at the definition of S-matrix for 

fermions interacting with gauge fields given by 

 

     



 xAxxdiTS I ,exp 4 L ,       (6.18) 

 
where  xIL  is the interaction Lagrangian, for generically           xxAxgxAxI  ,L  we 

obtain that because  xIL  is bilinear in spinor fields, swapping the c-a operators in their mode 

expansion after normal ordering results in effect in gg   on the reversed time branch. This 

makes both coupling constants in (6.5) to have the same sign. Naturally, our arguments have to 

be confirmed in the renormalized theory. This, however, is out of scope for this article. 

In summary, when we choose the appropriate mode expansion for the aD fields, the 

corresponding particles, just like the Dirac field particles, carry the positive energy forwards in 

time, despite the formally negative Hamiltonian derived from (6.1) and the negative gauge field 

coupling constant. This means that all amplitudes generated with aD fields are indistinguishable 

from those coming from the Dirac fields.  

 

7. Summary 

 

In summary, we have described here the consequences of a single assumption that the 

quantum fermionic degrees of freedom in the three or four generation theories are described by 

inhomogeneous differential forms. The assumption results in the change of the signature of the 

kinematic quadratic form to a non-Euclidean.  

The most important consequence of the assumption is the change of the signature of the 
kinematic Lagrangian in such theories. The  3SU or  4SU  invariant signature for three or four 

generations is replaced by  1,2SU  or  2,2SU  invariant signatures. The consequence of this is 

that for such Lagrangians not all Yukawa coupling terms generate physical real positive masses.  
To extract the physical eigenstates one has to perform two  2SU  transformations in the 

flavor space. Some of them are fixed 2  rotations. Because of this the resulting mixing matrix 

has one real parameter less then in the SM. As a result, four elements of CKMV  must be pairwise 

equal at the tree level. For  PMNSU  derived under the three generation assumption we obtain the 

tree level prediction that 2323 cossin   . 

We compared the quark and lepton mixing matrices we obtained with the latest experimental 
data [1] and found that in the quark sector   3104.18.40 cbV ,   3109.05.41 tsV , 

while 006.0975.0 csV  and 029.0014.1 tbV . In the lepton sector we have 23  the 3   
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range is  61.041.0   and the best fit plus 1  error values vary from 019.0
016.0451.0 

  to 016.0
021.0578.0 

 . 

To obtain three generation quark mixing we had to assume that in fact at least four 

generations of quark are present in nature. We discussed three scenarios for non-observation of 

the fourth generation. In the addition of the conventional high mass scenario, we considered the 

decoupling of the fourth generation or the mass near degeneracy of the third and the fourth 

generations. We showed that the mass near degeneracy scenario is observationally distinct from 

the first two. The lepton sector mixing can be derived either with three or with four generation 
assumptions. In the first case the tree level equality 2323 cossin    is predicted. In both sectors 

one obtains experimentally observable mixing matrix textures. 

Finally, to be able to construct physically acceptable gauge theory for aD spinors, whose 

action is the negative of that for the Dirac spinors, we described a modification of the standard 

quantum field theory to include fermionic fields that propagate backwards in time kinematically 

but forwards in time causally. The modification implies no changes in the S-matrix for such 

particles compared to the standard theory of gauge interactions with gauge fields coupling to the 

fermion bilinears.  
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