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Abstract

Bayesian optimization (BO) algorithm is very popular for solving low-dimensional
expensive optimization problems. Extending Bayesian optimization to high di-
mension is a meaningful but challenging task. One of the major challenges is
that it is difficult to find good infill solutions as the acquisition functions are also
high-dimensional. In this work, we propose the expected coordinate improvement
(ECI) criterion for high-dimensional Bayesian optimization. The proposed ECI
criterion measures the potential improvement we can get by moving the current
best solution along one coordinate. The proposed approach selects the coordinate
with the highest ECI value to refine in each iteration and covers all the coordinates
gradually by iterating over the coordinates. The greatest advantage of the pro-
posed ECI-BO (expected coordinate improvement based Bayesian optimization)
algorithm over the standard BO algorithm is that the infill selection problem of
the proposed algorithm is always a one-dimensional problem thus can be easily
solved. Numerical experiments show that the proposed algorithm can achieve
significantly better results than the standard BO algorithm and competitive results
when compared with five state-of-the-art high-dimensional BOs. This work pro-
vides a simple but efficient approach for high-dimensional Bayesian optimization.
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1. Introduction

Bayesian optimization (BO) [1], also known as efficient global optimization
(EGO) [2] is a class of surrogate-based optimization methods. It employees a
statistical model, often a Gaussian process model [3] to approximate the expensive
black-box objective function, and selects new samples for expensive evaluations
based on a defined acquisition function, such as the expected improvement, lower
confidence bound and probability of improvement [4]. Due to the use of the
Gaussian process model and the informative acquisition function, Bayesian opti-
mization is considered as a sample-efficient approach [5, 6]. Bayesian optimization
has also been successfully extended for solving multiobjective optimization prob-
lems [7, 8, 9] and parallel optimization problems [10, 11, 12].

Despite these successes, Bayesian optimization is often criticized for its inca-
pability in solving high-dimensional problems [6]. As the dimension increases,
the number of samples required to cover the design space to maintain the model
accuracy increases exponentially. In addition, it becomes exponentially difficult to
find the global optimum of the acquisition function which is often highly nonlinear
and highly multi-modal when the dimension of the problem increases. These is-
sues decrease the sample efficiency of Bayesian optimization on high-dimensional
problems.

In the past twenty years, different approaches have been proposed to ease the
curse of dimensionality on Bayesian optimization [13]. The variable selection
approaches assume that most of the variables have little effect on the objective
function and select only the active variables to optimize. The active variables can
be identified by the reference distribution variable selection [14], the hierarchical
diagonal sampling [15], or the indicator-based Bayesian variable selection [16].
Instead of applying sensitivity analysis techniques to select variables, one can also
select a few variables based on some probability distribution. The dimension
scheduling algorithm [17] selects a set of variables based on the probability
distribution that is proportional to the eigenvalues of the covariance matrix in
principle component analysis. While the Dropout approach [18] randomly selects
a subset of variables to optimize in each iteration. The Monte Calro tree search
variable selection (MCTS-VS) approach [19] applies the MCTS to divide the
variables into important variables and unimportant variables, and only optimizes
the important variables in each iteration.

Another idea is to embed a lower-dimensional space into the high-dimensional
space, run Bayesian optimization in the subspace, and project the infill solution
back to the original high-dimensional space for function evaluation. The random
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embedding Bayesian optimization (REMBO) algorithm [20] utilizes a random em-
bedding matrix to map the high-dimensional space into a lower one. The embedded
subspace is guaranteed to contain an optimum for constraint-free problems. But for
box-constrained problems, the projection back to the high-dimensional space may
fall outside the bounds. This is often called the non-injectivity issue, and is further
addressed in [21, 22, 23, 24]. The Bayesian optimization with adaptively expand-
ing subspaces (BAxUS) approach [25] gradually increases the dimension of the
subspace along the iterations to improve the probability for the low-dimensional
space contraining an optimum. The REMBO [20] algorithm assumes that most
of the variables have low effect on the objective function, which is often unreal-
istic in applications. This assumption is relaxed a little by the sequential random
embedding strategy [26], which allows all the variables being effective but still
assumes most of them have bounded effect. Instead of using randomly generated
embeddings, the embeddings can also be learned by using supervised learning
methods, such as the partial least squares regression [27] and sliced inverse regres-
sion [28]. Nonlinear embedding techniques [29, 30, 31, 32] have also been used
for developing high-dimensional BOs, but they are often more computationally
expensive than linear embeddings.

Decomposing the high-dimensional space into multiple lower-dimensional
subspaces is a popular way to ease the curse of dimensionality. The additive
Gaussian process upper confidence bound (Add-GP-UCB) [33] algorithm assumes
the objective function is a summation of several lower-dimensional functions with
disjoint variables, performs BO in the subspaces, and combines the solutions of
the subspaces for function evaluation. The assumption about the objective func-
tion being additively separable in Add-GP-UCB is often too strong, and is further
relaxed to allow projected-additive functions [34] and functions with overlapping
groups [35]. When the decomposition is unknown, it is often treated as a hyper-
parameter and can be learned through maximizing the marginal likelihood [33] or
through Gibbs sampling [36].

Besides variable selection, embedding and decomposition, there are also other
approaches for developing high-dimensional BOs. The trust region Bayesian
optimization (TuRBO) [37] algorithm employees local Gaussian process mod-
els and the trust region strategy to improve the exploitation ability of BO in
high-dimensional space. The Bayesian optimization with cylindrical kernels
(BOCK) [38] algorithm applies a cylindrical transformation to expand the volume
near the center and contract the volume near the boundaries. In line Bayesian opti-
mization, the high-dimensional space is randomly mapped into a one-dimensional
line such that the acquisition function can be efficiently solved [39]. The line can
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be selected as a random coordinate, and the resulting approach is called coordinate
line Bayesian optimization (CoordinateLineBO) [39]. A recent excellent review
about high-dimensional BOs can be found in [13].

Most of current approaches make structural assumptions about the objective
function to be optimized. The performance of these algorithms often decreases
when the assumptions are not met. In this work, we propose a simple and efficient
approach called expected coordinate improvement based Bayesian optimization
(ECI-BO) for high-dimensional expensive optimization. The proposed ECI-BO
optimizes one coordinate at each iteration and the order for optimizing the coor-
dinates is determined by the proposed ECI criterion. The most related work to
our work is the CoordinateLineBO [39]. Both our ECI-BO and the Coordinate-
LineBO optimizes one coordinate at a time. However, the order for optimizing
the coordinates is randomly generated in the CoordinateLineBO but is calculated
based on the coordinates’ ECI values in our ECI-BO approach. We include Co-
ordinateLineBO in the numerical experiments, and the experiment results show
that the proposed ECI approach is able to improve the optimization performance
significantly by introducing only a little computational cost.

The rest of this paper is organized as follows. Section 2 introduces the back-
grounds about the Gaussian process model and the Bayesian optimization algo-
rithm. Section 3 describes the proposed coordinate descent Bayesian optimization
algorithm. Section 4 presents the corresponding numerical experiments. Conclu-
sions about this paper are given in Section 5.

2. Backgrounds

This work considers a single-objective black-box optimization problem

find: x = [x1, x2, · · · , xd]

minimize: f(x)
subject to: x ∈ X ⊆ Rd

(1)

where d is the number of variables, f is the objective function, and X = {x ∈
Rd : ai ≤ xi ≤ bi, i = 1, 2, · · · , d} is the design space. The objective function f
is assumed to be expensive-to-evaluate and noise-free in this work.

The Bayesian optimization algorithm solves this problem by fitting a statistical
model to approximate the black-box objective function, and optimizes an acquisi-
tion function to produce a new point for expensive evaluation in each iteration. The
detailed description about Bayesian optimization can be found in [2, 6, 40, 41]. A
brief introduction to Bayesian optimization is given in the following.
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2.1. Gaussian Process Model
The statistical model Bayesian optimization often uses is the Gaussian process

(GP) regression model [3], also known as Kriging model [42] in engineering
design. The GP model puts a prior probability distribution over the objective
function and refers the posterior probability distribution after observing some
samples [3].

The prior distribution GP uses is an infinite-dimensional Gaussian distribution,
under which any combination of dimensions is a multivariate Gaussian distribu-
tion [3]. The prior is specified by the mean function m(x) and the covariance
function k(x,x′). The most common choice of the prior mean function is a con-
stant value. Popular covariance functions are the squared exponential (SE) kernel
function and the Màtern kernel function [3]. The SE kernel can be expressed as

k
(
x,x′) = s2 exp

(
−
∑d

i=1

(
xi − x′

i

)2
2l2

)
(2)

where s2 is the variance and l is the hyperparameter of the SE kernel. Consider
a set of n points {x(1),x(2), · · · ,x(n)}, the prior distribution on their objective
values is

f(x(1))
f(x(2))
· · ·

f(x(n))

 ∼ N



m(x(1))
m(x(2))

· · ·
m(x(n))

 ,


k(x(1),x(1)) · · · k(x(1),x(n))
k(x(2),x(1)) · · · k(x(2),x(n))

... . . . ...
k(x(n),x(1)) · · · k(x(n),x(n))


 (3)

Assume we have observed the objective values of thenpoints{f (1), f (2), · · · , f (n)}
and want to predict the objective value of an unobserved point x. These n + 1
objective values also follow a joint multivariate Gaussian distribution according
to the property of Gaussian process, and the conditional distribution of f(x) can
be computed using Bayes’ rule [3]

f(x) | f (1:n) ∼ N
(
µ(x), σ2(x)

)
(4)

where
µ(x) = k

(
x,x(1:n)

)
K−1

(
f (1:n) −m(x(1:n))

)
+m(x) (5)

σ2(x) = k(x,x)− k
(
x,x(1:n)

)
K−1k

(
x(1:n),x

)
. (6)

In the equations, f (1:n) = [f (1), f (2), · · · , f (n)], x(1:n) = [x(1),x(2), · · · ,x(n)], and
K is the covariance matrix with entry Kij = k

(
x(i),x(j)

)
for i, j = 1, 2, · · · , n.
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Figure 1: GP approximation of the f = sin(x) function.

This conditional distribution is called the posterior probability distribution. The
hyperparameters in the prior mean and covariance are often determined by the
maximum likelihood estimate or the maximum a posterior estimate [40].

The GP model of a one-dimensional function f = sin(x) is illustrated in Fig. 1.
In this figure, the solid line represents the real function to be approximated, the
circles represent the sample points, the dashed line represents the mean of the
GP model and the filled area around the dashed line shows the standard derivation
function of the GP model. We can see from the figure that the GP mean interpolates
the samples. The standard derivation is zero at sample points and rises up between
them.

2.2. Acquisition Function
After training the Gaussian process model, the next thing is to decide which

point should be selected for expensive evaluation. The criterion for querying new
samples is often called acquisition function or infill sampling function. Popu-
lar acquisition functions in Bayesian optimization are the expected improvement
(EI) [4], probability of improvement (PI) [4], lower confidence bound (LCB) [4],
knowledge gradient (KG) [43, 44], entropy search (ES) [45], predictive entropy
search (PES) [46] and so on. Among them, EI is arguably the most widely
used [47].

Assume current best solution among the n samples is x⋆ and the corresponding
minimum objective value is f ⋆ = f(x⋆). The EI measures the expected value of

6



0 1 2 3 4 5 6
0.00

0.05

0.10

0.15

x

EI

EI function
sample points

Figure 2: The EI function on the f = sin(x) problem.

improvement that the new point x can get beyond the current best solution x⋆

EI(x) = E
[
max

(
f ⋆ − f(x), 0

)]
. (7)

The closed-form expression can be derived using integration by parts [2]

EI(x) =
(
µ(x)− f ⋆

)
Φ

(
µ(x)− f ⋆

σ(x)

)
+ σ(x)ϕ

(
µ(x)− f ⋆

σ(x)

)
(8)

where Φ and ϕ are the cumulative and density distribution function of the stan-
dard Gaussian distribution respectively, and µ(x) and σ(x) are the GP mean and
standard deviation in (5) and (6) respectively.

The corresponding EI function of the GP model of the one-dimensional func-
tion is shown in Fig. 2. We can see that the EI function is multi-modal. The value
is zero at sample points and rises up between different samples. In this simple
example, the next point the EI function locates is very close to the global optimum
point of the real function.

2.3. Bayesian Optimization
Often, Bayesian optimization (BO) starts with an initial design of experiment

(DoE) to get a set of samples and evaluates these initial samples with the real objec-
tive function. Then, Bayesian optimization goes into the sequential optimization
process. In each iteration, a GP model is trained using the samples in current data
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set. After that, a new point is located by optimizing an acquisition function, and
then evaluated with the real objective function. This newly evaluated sample is
then added to the data set. This iteration process stops when the maximum number
of function evaluations is reached. The computational framework of Bayesian op-
timization can be summarized in Algorithm 1, where the EI acquisition function
is used for example.

Algorithm 1 Computational Framework of BO
Require: ninit = number of initial samples; nmax =maximum number of objective

function evaluations.
Ensure: best found solution (x⋆, f ⋆).

1: Design of experiment: generate ninit samples, evaluate them with the objec-
tive function, set current data set D = {(x(1), f (1)), · · · , (x(ninit), f (ninit))}, and
set current number of evaluations n = ninit.

2: Best solution setup: set current best solution as x⋆ = argmin
1≤i≤n

f(x(i)) and

f ⋆ = min
1≤i≤n

f(x(i)).
3: while n < nmax do
4: GP training: train a GP model using the current data set D.
5: Infill selection: locate a new point by maximizing the acquisition function

x(n+1) = argmax
x∈X

EI(x).

6: Expensive evaluation: evaluate the new solution f (n+1) = f(x(n+1)),
update data set D = {D, (x(n+1), f (n+1))}, and update current number of
evaluations n = n+ 1.

7: Best solution update: update current best solution as x⋆ = argmin
1≤i≤n

f(x(i))

and f ⋆ = min
1≤i≤n

f(x(i)).
8: end while

As can be seen, in each iteration the new point is selected by maximizing the
EI function which has the same dimension as the objective function. When the
dimension of the problem is lower than 20, the EI maximum can be efficiently
located by using state-of-the-art evolutionary algorithms. However, when the
dimension of the problem goes up to near 100, locating a good point will be a
great challenge. In addition, the EI function often has highly multi-modal surface
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with lots of flat regions, which makes searching the high-dimensional EI maximum
more difficult.

3. Proposed Approach

In this work, we propose the expected coordinate improvement based Bayesian
optimization (ECI-BO) algorithm to tackle this problem. Instead of searching
the high-dimensional space for identifying a new point, we locate a new point by
searching one coordinate at a time. Through iterates over all the coordinates, the
original problem can be solved gradually. The proposed algorithm is introduced
in detail in the following.

3.1. Expected Coordinate Improvement
First, we propose the expected coordinate improvement (ECI) criterion to

measure how much improvement we can get along one coordinate. Assume x⋆ is
current best point and f ⋆ is the corresponding current minimum objective. The
ECI along the ith coordinate is

ECIi(x) =
(
µ(z)− f ⋆

)
Φ

(
µ(z)− f ⋆

σ(z)

)
+ σ(z)ϕ

(
µ(z)− f ⋆

σ(z)

)
(9)

where z = [x⋆
1, · · · , x⋆

i−1, x, x
⋆
i+1, · · · , x⋆

d] has the same coordinates as the current
best point x⋆ except for the ith coordinate, which is the variable to be optimized.

In fact, the ECI function is a one-dimensional slice of the standard EI function
while fixing all the other dimensions. A two-dimensional example is given in
Fig. 3, where the surface is the standard EI function, the open circle is the current
best point, and the two solid lines are the two ECI functions respectively. We can
see that the ECI1(x) is the EI function fixing x2 = x⋆

2, and the ECI2(x) is the
EI function fixing x1 = x⋆

1. As a result, the ECI function is able to measure the
amount of improvement when we move the current best point along one coordinate.

The major advantage of the proposed ECI function over the traditional EI
function is that it is always a one-dimensional function no matter how many
dimensions the original problem has. Therefore, the ECI function can be easily
and efficiently optimized.

3.2. Expected Coordinate Improvement based Bayesian Optimization
Based on the ECI criterion, we propose the expected coordinate improvement

based Bayesian optimization (ECI-BO) algorithm. The idea is to improve the
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Figure 3: EI function and the corresponding ECI functions.

current best point along one coordinate at a time, and iterates through all the
coordinates as the optimization process goes on. To find the best order to optimize
the coordinates, we use the maximal ECI values to approximately represent the
effectiveness of the corresponding coordinates, and optimize the coordinates based
on the order of their maximal ECI values. The computational framework of the
proposed ECI-BO is given in Algorithm 2.

The key steps of the proposed ECI-BO algorithm are described in the following.

1. Design of experiment: in the first step, we generate ninit initial samples using
a design of experiment (DoE) method, such as Latin hypercube sampling
method. After that, we evaluate these initial samples with the expensive
objective function. In this step, these initial samples can be evaluated in
parallel.

2. Best solution setup: the best solution of the initial samples is identified as
(x⋆, f ⋆).

3. Calculating maximal ECIs: before the acquisition function optimization
process, we try to find the best order to optimize the coordinates. First,
we maximize the ECI function of all the d coordinates. Note that these
d optimization problems are all one-dimensional and can be executed in
parallel.

4. Sorting maximal ECIs: After obtaining the maximal ECI values of all
the coordinates, we sort the coordinates from the highest maximal ECI
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Algorithm 2 Computational Framework of the proposed ECI-BO
Require: ninit = number of initial samples; nmax =maximum number of objective

function evaluations.
Ensure: best found solution (x⋆, f ⋆).

1: Design of experiment: generate ninit samples, evaluate them with the objec-
tive function, set current data set D = {(x(1), f (1)), · · · , (x(ninit), f (ninit))}, and
set current number of evaluations n = ninit.

2: Best solution setup: set current best solution as x⋆ = argmin
1≤i≤n

f(x(i)) and

f ⋆ = min
1≤i≤n

f(x(i)).
3: while n < nmax do
4: for i = 1 to d do
5: Calculating maximal ECIs: Maximize the ECI function of the ith

coordinate
ECIi,max = maxECIi(x)

6: end for
7: Sorting maximal ECIs: Sort the maximal ECI values in descending order

to get the sorting indices

[r1, r2, · · · , rd] = arg sort
1≤i≤d

ECIi,max

8: for i = 1 to d do
9: GP training: train a GP model using the current data set D.

10: Infill selection: maximize the ECI function along the ri coordinate

x(n+1) = argmax
ari≤x≤bri

ECIri(x)

and form the new solution as

x(n+1) = [x⋆
1, · · · , x⋆

ri−1, x
(n+1), x⋆

ri+1, · · · , x⋆
d].

11: Expensive evaluation: evaluate the new solution f (n+1) = f(x(n+1)),
update data set D = {D, (x(n+1), f (n+1))}, and update current number
of evaluations n = n+ 1.

12: Best solution update: update current best solution as x⋆ =
argmin
1≤i≤n

f(x(i)) and f ⋆ = min
1≤i≤n

f(x(i)).

13: end for
14: end while 11



value to the lowest maximal ECI value, and set the coordinate optimization
order as the sorting order. For example, if the maximal ECI values of a
five-dimensional problems are [200, 300, 500, 400, 100], then the coordinate
optimization order is r = [3, 4, 2, 1, 5].

5. GP training: all the samples in current data set are used for training the
GP model. We train the GP model in the original space instead of the one-
dimensional subspace to ensure that the model has reasonable accuracy for
the prediction.

6. Infill selection: in the ith iteration of the coordinate optimization process,
we optimize the ECI function of the rith coordinate, where ri is the ith
element of the previous obtained coordinate optimization order. Then, the
infill solution is formed by replacing the rith coordinate of current best
solution by the optimized value.

7. Expensive evaluation: the new infill solution is evaluated with the expensive
objective function and this newly evaluated point is then added to the data
set.

8. Best solution update: finally we update the best solution by considering the
newly evaluated point. At this point, one coordinate optimization process
is finished. Then, we move to the next coordinate and repeat the process
from Step 9 to Step 12. Once all the coordinates has been covered, we go
back to Step 4 to Step 7 to generate a new coordinate optimization order.
This process continues until the maximum number of function evaluations
is reached.

From the above process, we can find that the major difference between the
proposed ECI-BO and the standard BO is that the proposed approach maximizes
the one-dimensional ECI function to query a new point for expensive evaluation
instead of the d-dimensional EI function. The one-dimensional ECI function is
often significantly easier to solve than the d-dimensional EI function. Through
iterating through all the coordinates, the original problem can be gradually solved.

Since we move the current best solution along one coordinate at a time, the
search trajectory of the proposed ECI-BO is very different from that of the standard
BO. We plot the search trajectories of the standard BO and the proposed ECI-BO
in Fig. 4(a) and Fig. 4(b), respectively, where the objective function is a simple
two-dimensional Ellipsoid function f = x2

1 + 2x2
2, the open circles are six initial

samples and the filled circles are four sequential infill samples. We can clearly
see the difference in the search pattern between the standard BO and the proposed
ECI-BO. In each iteration, the standard BO searches in the two-dimensional space
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Figure 4: Search trajectories of the standard BO and the proposed ECI-BO on the Ellipsoid function.
(a) standard BO. (b) proposed ECI-BO.

to find the a new query point. In comparison, our proposed ECI-BO searches along
one coordinate to locate a new point in one iteration. At the end of four iterations,
both algorithms find solutions that are very close to the global optimum.

4. Numerical Experiments

In this section, we conduct numerical experiments to study the performance of
our proposed ECI-BO algorithm. First, we compare our ECI-BO with the standard
BO to see whether the proposed approach has improvement over the standard
approach. Then, we compare the proposed ECI-BO with five high-dimensional
BOs to see how well our algorithm performs when compared with the state-
of-the-art approaches. A Matlab implementation of our ECI-BO is available at
https://github.com/zhandawei/Expected_Coordinate_Improvement.

4.1. Experiment Settings
The settings of the numerical experiments are given in the following.

1. Test problems: the CEC 2017 test suit [48] is used for testing the compared
algorithms. This test suit contains twenty-nine problems, in which f1 and
f3 are unimodal problems, f4 to f10 are simple multimodal problems, f11
to f20 are hybrid problems, and f21 to f30 are composition problems. The
problems in the test suite can well represent real-world problems. To test
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the competing algorithms’ ability to solve high-dimensional problems, the
dimensions of the test problems are set to d = 100 in the experiments.

2. Design of experiment: the Latin hypercube sampling (LHS) method is used
for generating the initial samples. The number of initial samples is set to
ninit = 200 for all test problems.

3. Computation budget: the maximal number of function evaluations is set to
nmax = 1000 for all test problems. This means the number of additional
infill samples is then nmax − ninit = 800 for the test problems.

4. GP training: the squared exponential (SE) function is used as the kernel
function for the GP model. The optimal hyperparameter of the SE ker-
nel is found within [0.01, 100] using the sequential quadratic programming
algorithm.

5. Infill selection: a real-coded genetic algorithm (GA) is applied to optimize
the acquisition functions in the infill selection process. We use tourna-
ment selection for the parent selection, simulated binary crossover for the
crossover and the ploynomial mutation for the mutation respectively in the
GA. Both the distribution indices for crossover and mutation are set to 20.
The number of acquisition function evaluations is set to 200d throughout the
experiments. For the standard BO, the population size of the GA is set to
200 and the number of maximal generation is set to 100. For the proposed
ECI-BO, the population size and the number of maximal generation are set
to 10 and 20 respectively to maximize the 1-D ECI function.

6. Number of repetitions: all experiments are run 30 times with 30 different
sets of initial samples. The initial design points are the same for different
algorithms in one run but are different for different runs.

7. Experiment environment: all experiments are conducted on a Window 10
machine with an Intel i9-10900X CPU and 64 GB RAM.

In the first set of experiments, we compare the proposed ECI-BO with the
standard BO. The optimization results of the two compared algorithms are given
in Table 1, where the average and standard derivation values of 30 runs are shown.
We conduct the Wilcoxon signed rank test with significance level of α = 0.05 to
see whether the optimization results of the compared algorithms have significant
difference. We use +, − and ≈ to donate that the results of the proposed ECI-BO
are significantly better than, worse than and similar to the results of the standard
BO, respectively.

From the table we can see that our proposed ECI-BO obtains significantly
better results than the standard BO on most of the test problems. For example, on
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Table 1: Average and standard derivation results of the standard BO and the proposed ECI-BO

f BO ECI-BO

f1 1.16E+10 (1.21E+09) + 2.76E+07 (8.03E+06)
f3 1.58E+06 (2.01E+06) ≈ 9.70E+05 (1.23E+05)
f4 1.44E+04 (2.36E+03) + 3.37E+03 (6.83E+02)
f5 1.61E+03 (5.71E+01) + 1.42E+03 (7.83E+01)
f6 6.63E+02 (6.63E+00) + 6.12E+02 (3.25E+00)
f7 2.23E+03 (7.47E+01) + 1.81E+03 (7.91E+01)
f8 1.93E+03 (4.42E+01) + 1.71E+03 (1.03E+02)
f9 4.45E+04 (8.01E+03) − 5.68E+04 (1.63E+04)
f10 3.47E+04 (5.30E+02) + 1.75E+04 (1.96E+03)
f11 4.71E+05 (1.07E+05) + 4.46E+05 (6.70E+05)
f12 1.47E+10 (3.39E+09) + 7.49E+08 (3.12E+08)
f13 4.54E+09 (1.50E+09) + 2.30E+08 (1.56E+08)
f14 9.57E+07 (2.70E+07) + 7.20E+07 (2.90E+07)
f15 3.41E+09 (7.67E+08) + 5.38E+08 (2.20E+08)
f16 1.25E+04 (6.95E+02) + 1.05E+04 (4.63E+02)
f17 9.17E+05 (7.52E+05) − 2.07E+06 (1.98E+06)
f18 1.23E+08 (3.48E+07) ≈ 1.06E+08 (5.51E+07)
f19 2.84E+09 (9.24E+08) + 1.28E+08 (7.42E+07)
f20 8.85E+03 (3.65E+02) + 6.04E+03 (7.41E+02)
f21 3.57E+03 (5.34E+01) + 3.40E+03 (8.57E+01)
f22 3.68E+04 (9.42E+02) + 1.96E+04 (1.61E+03)
f23 4.17E+03 (5.06E+01) + 3.74E+03 (5.86E+01)
f24 4.58E+03 (5.38E+01) + 4.29E+03 (8.35E+01)
f25 1.18E+04 (1.21E+03) + 4.98E+03 (2.96E+02)
f26 2.20E+04 (8.57E+02) + 1.81E+04 (1.13E+03)
f27 4.57E+03 (1.50E+02) + 3.81E+03 (9.76E+01)
f28 1.44E+04 (1.66E+03) + 8.81E+03 (3.34E+03)
f29 4.46E+05 (3.09E+05) ≈ 4.26E+05 (3.85E+05)
f30 7.95E+09 (2.97E+09) + 1.19E+09 (4.25E+08)

+/≈/− 24/3/2 N.A.
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Figure 5: Convergence histories of the standard BO and the proposed ECI-BO on the test problems.
(a) f1. (b) f6. (c) f12. (d) f18. (e) f24. (f) f30.
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the unimodal problem f1, the average result found by the standard BO is 1.16E+10
while the average result found by the proposed ECI-BO is 2.76E+07. On the
multimodal problem f10 the numbers are 3.47E+04 and 1.75E+04, on the hybrid
problem f20 the numbers are 8.85E+03 and 6.04E+03, and on the composition
problem f30 the numbers are 7.95E+09 and 1.19E+09. Overall, our proposed
ECI-BO finds better solutions on twenty-four test problems, worse solutions on two
test problems and similar solutions on three test problems. The major difference
between these two algorithms is that the proposed ECI-BO searches along one
coordinate to find an infill solution in each iteration while the standard BO searches
in the original design space for finding an infill solution. By iterating over the
coordinates, our proposed ECI-BO is able to improve the solution gradually. At
the end of 1000 evaluations, our proposed ECI-BO is able to find better solutions
on most of the test problems. The experiment results can empirically prove the
effectiveness of the proposed expected coordinate improvement approach.

The iteration histories of the two compared algorithms on six selected functions
f1, f6, f12, f18, f24 and f30 are plotted in Fig. 5, where the horizontal axis is the
number of function evaluations and the vertical axis is the current minimum
objective value. The median, first quartile and the third quartile of the 30 runs are
shown in the figures. From the iteration histories we can find a very interesting
phenomenon. The standard BO converges faster than the proposed ECI-BO at the
beginning of iterations, but converges slower than the proposed ECI-BO at the end
of the iterations on most of the test problems. The standard BO searches in the
original space to find new solutions while the proposed ECI-BO searches along
one coordinate. Therefore, the standard BO is able to find better solutions than the
ECI-BO at the beginning of the iterations. However, as the iteration goes on, most
of the promising areas have been explored and exploitation is needed for further
improvement. The standard BO still searches in the whole design space to find
promising solutions, which often brings very little improvement as the iteration
continues. On the contrary, the proposed ECI-BO searches along one coordinate at
a time to find new solutions. Although it converges slower than the standard BO at
the beginning of iterations when exploration is needed, it is able to continually find
good solutions at the middle and at end of iterations when exploitation is urgently
needed. At the end of iterations, the proposed ECI-BO often finds better solutions
than the standard BO approach. Since the standard BO has faster convergence
speed at the beginning of iterations, it is still preferred when the computation
budget is extremely limited. But when the computation budget is fairly enough,
the proposed ECI-BO should be preferred.

At last, we compare the computational time of the two algorithms. The
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Figure 6: Running time of the proposed ECI-BO and the standard BO.

computational time of them within one iteration consists of the time for training
the GP model, the time for optimizing the acquisition function, and the time for
evaluating the new point. The major difference between them is in optimizing
the acquisition function. The proposed ECI-BO maximizes the 1-D ECI function
to query a new point in each iteration while the standard BO maximizes the d-
dimensional EI function to query a new point. As a result, the infill optimization
problem of the proposed ECI-BO is often faster to solve than that of the standard
BO algorithm. The running time of the two compared algorithms is plotted in
Fig. 6, where the average computation time of 30 runs is shown. We can see
that our proposed ECI-BO is significantly faster than the standard BO on 100-D
problems. In summary, the proposed expected coordinate improvement approach
is able to improve the standard Bayesian optimization algorithm’s optimization
efficiency and reduce its computational cost at the same time.

4.2. Comparison with High-dimensional BOs
To verify the effectiveness of the proposed approach, we compare our ECI-BO

wit five high-dimensional BOs. The compared algorithms are described in the
following.

1. Add-GP-UCB: The Add-GP-UCB algorithm [33] is the most popular high-
dimensional BOs with the additive structural assumption. It decomposes
the original problem into multiple low-dimensional sub-problems, solves
these sub-problems and combines the solutions of the sub-problems into a
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high-dimensional solution. The low-dimensional space is also set to five in
the experiments. The open source code of Add-GP-UCB 1 is used in the
comparison.

2. Dropout: The Dropout approach [18] randomly selects a subset of variables
to perform BO, and combine the solutions of the sub-problem with existing
solutions to form a high-dimensional solution. Three different strategies for
forming the high-dimensional solution are proposed in the work [18], and
the copy strategy is used in the comparison. The dimension of the subspace
is also set to five in the experiments. The open source code of the Dropout
approach 2 is used in the comparison.

3. CoordinateLineBO: The CoordinateLineBO approach [39] randomly selects
a coordinate to optimize in each iteration. The coordinates of the infill
solution are the same as the current best solution except for the optimized
coordinate. We implement the CoordinateLineBO algorithm in Matlab
according to the work [39]. We use the genetic algorithm with population
size of 10 and maximal generation of 20 to optimize the selected coordinate
in each iteration for the CoordinateLineBO approach.

4. TuRBO: The TuRBO [37] uses the trust region approach to improve lo-
cal search ability of Bayesian optimization algorithm on high-dimensional
problems. The Thompson sampling is employed in TuRBO to select a batch
of candidates to evaluate in each iteration. The number of trust regions is set
to five and the number of batch evaluations is set to ten in the experiment.
The open source code of TuRBO 3 is used in the comparison.

5. MCTS-VS: The MCTS-VS approach [19] is a high-dimensional BO with
variable selection strategy. The Monte Carlo tree search method in employed
iteratively to select a subset of variables to optimize in each iteration. The
open source code of MCTS-VS 4 is used in the comparison.

The experiment results on the 100-D problems are shown in Table 2, where
the average and standard deviation values of 30 runs are given. We also conduct
Wilcoxon signed rank test, and use +, − and ≈ to donate that our ECI-BO
achieves significantly better, significantly worse and similar results compared with
the competing algorithms.

1https://github.com/kirthevasank/add-gp-banditss
2https://github.com/licheng0794/highdimBO_dropout
3https://github.com/uber-research/TuRBO
4https://github.com/lamda-bbo/MCTS-VS
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Table 2: Average and standard derivation results of the compared high-dimensional BOs

f Add-GP-UCB Dropout Coordinate
LineBO TuRBO MCTR-VS ECI-BO

f1 2.35E+11 + 9.60E+10 + 4.20E+09 + 8.32E+10 + 1.39E+11 + 2.76E+07
f3 4.45E+09 ≈ 9.54E+05 ≈ 9.63E+05 ≈ 9.54E+05 ≈ 2.36E+06 + 9.70E+05
f4 7.09E+04 + 1.67E+04 + 6.81E+03 + 3.24E+04 + 2.51E+04 + 3.37E+03
f5 2.21E+03 + 2.02E+03 + 1.69E+03 + 1.74E+03 + 1.67E+03 + 1.42E+03
f6 7.24E+02 + 6.72E+02 + 6.42E+02 + 6.55E+02 + 6.60E+02 + 6.12E+02
f7 4.49E+03 + 4.15E+03 + 2.35E+03 + 3.60E+03 + 4.73E+03 + 1.81E+03
f8 2.58E+03 + 2.37E+03 + 2.05E+03 + 2.05E+03 + 1.96E+03 + 1.71E+03
f9 9.13E+04 + 1.05E+05 + 8.26E+04 + 8.56E+04 + 5.02E+04 ≈ 5.68E+04
f10 3.29E+04 + 2.60E+04 + 2.30E+04 + 2.84E+04 + 3.42E+04 + 1.75E+04
f11 7.04E+06 + 1.83E+05 − 2.89E+05 − 3.36E+05 ≈ 4.52E+05 + 4.46E+05
f12 2.14E+11 + 2.36E+10 + 4.05E+09 + 2.13E+10 + 5.25E+10 + 7.49E+08
f13 4.46E+10 + 3.83E+09 + 1.68E+09 + 2.28E+09 + 1.10E+10 + 2.30E+08
f14 3.49E+08 + 5.83E+07 − 9.01E+07 + 7.67E+07 ≈ 1.30E+08 + 7.20E+07
f15 3.03E+10 + 9.14E+08 + 1.60E+09 + 5.51E+08 ≈ 5.06E+09 + 5.38E+08
f16 1.53E+04 + 9.70E+03 − 1.14E+04 + 1.42E+04 + 1.27E+04 + 1.05E+04
f17 3.98E+07 + 1.58E+04 − 1.89E+06 ≈ 1.01E+05 − 3.60E+04 − 2.07E+06
f18 6.86E+08 + 5.65E+07 − 1.08E+08 ≈ 1.10E+08 ≈ 2.61E+08 + 1.06E+08
f19 2.93E+10 + 1.10E+09 + 9.95E+08 + 5.16E+08 + 5.78E+09 + 1.28E+08
f20 8.63E+03 + 6.33E+03 ≈ 7.09E+03 + 5.84E+03 ≈ 8.45E+03 + 6.04E+03
f21 4.19E+03 + 3.87E+03 + 3.56E+03 + 3.90E+03 + 3.59E+03 + 3.40E+03
f22 3.60E+04 + 2.91E+04 + 2.44E+04 + 3.06E+04 + 3.64E+04 + 1.96E+04
f23 5.06E+03 + 4.48E+03 + 3.93E+03 + 4.48E+03 + 4.22E+03 + 3.74E+03
f24 6.38E+03 + 5.95E+03 + 4.50E+03 + 5.23E+03 + 5.26E+03 + 4.29E+03
f25 2.40E+04 + 1.27E+04 + 7.08E+03 + 2.06E+04 + 1.99E+04 + 4.98E+03
f26 3.86E+04 + 2.92E+04 + 1.95E+04 + 2.94E+04 + 2.40E+04 + 1.81E+04
f27 7.14E+03 + 5.35E+03 + 4.01E+03 + 5.17E+03 + 5.19E+03 + 3.81E+03
f28 2.38E+04 + 1.67E+04 + 1.50E+04 + 1.70E+04 + 2.22E+04 + 8.81E+03
f29 6.25E+06 + 1.22E+04 − 2.18E+05 − 3.63E+04 − 2.76E+04 − 4.26E+05
f30 4.00E+10 + 2.87E+09 + 2.26E+09 + 1.70E+09 + 7.78E+09 + 1.19E+09

+/≈/− 28/1/0 21/2/6 24/3/2 21/6/2 26/1/2 N.A.
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The Add-GP-UCB [33] assumes the objective function is a summation of
multiple low-dimensional functions. However, the problems in CEC 2017 test
suite do not meet this assumption. In comparison, our proposed ECI-BO does not
make any structural assumption about the objective function we are optimizing.
From Table 2, we can find that the Add-GP-UCB can not achieve satisfying results
on the test problems. Our proposed ECI-BO performs significantly better than the
Add-GP-UCB on twenty-eight of the twenty-nine problems.

The Dropout approach [18] randomly selects a few variables to optimize in
each iteration. When evaluating the new solutions, this approach uses the values
of existing points to fill the unselected variables. From the table we can find that
our proposed ECI-BO performs significantly better on twenty-one problems, and
significantly worse on six problems compared with the Dropout approach.

The CoordinateLineBO [39] is the most similar approach to our proposed
ECI-BO. Both the CoordinateLineBO and our ECI-BO select one variable to
optimize in each iteration. However, there are two major differences between
them. First, our proposed algorithm iterates the coordinates over permutations
while the the CoordinateLineBO iterates the coordinates randomly. When we
iterates d times, all the variables will be covered by the proposed approach, but
some variables may not be covered by the CoordindateLineBO approach since
some variables might be selected multiple times. Second, the CoordinateLineBO
treats the variables equally, while our proposed ECI-BO learns the effectiveness
of the variables based on their ECI values. The experiment results in Table 2 show
that the proposed ECI-BO performs significantly better than the CoordinateLineBO
approach on twenty-four problems. This can empirically prove the effectiveness
of the proposed expected coordinate improvement approach.

The TuRBO [37] employees the trust region strategy in the BO framework to
improve the local search ability of BO on high-dimensional problems. Compared
with the TuRBO, our ECI-BO finds better solutions on twenty-one problems,
similar solutions on six problems, and worse solutions on two problems. This
means our proposed expected coordinate improvement approach is more effective
than the trust region approach on the 100-D CEC 2017 test suite.

The MCTS-VS [19] is a recently developed variable selection strategy for high-
dimensional Bayesian optimization. It employees the Monte Carlo tree search
method to partition the variables into important and unimportant ones, and only
optimizes the important variables [19]. The experiment results show that our
proposed ECI-BO performs significantly better than the MCTS-VS approach on
most of the test problems. This indicates that our ECI-BO is more suitable for
problems whose variables are all effective to the objective function.
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Figure 7: Convergence histories of the proposed ECI-BO and compared BOs on 100-D problems.
(a) f1. (b) f6. (c) f12. (d) f18. (e) f24. (f) f30.
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Figure 8: Running time of the proposed ECI-BO and compared high-dimensional BOs.

The convergence histories of the compared algorithms on six test problems
are plotted in Fig. 7, where the median, first quartile and the third quartile of the
30 runs are shown. We can see that the proposed ECI-BO converges fastest and
achieves the best results at the end of 1000 evaluations on f1, f6, f12, f24 and f30
problems. The Dropout approach converges fastest and finds the best results on the
f18 problem, where the proposed ECI-BO achieves the second best results among
the six compared algorithms.

The running time of the six compared BOs on the 100-D problem is plotted
in Fig. 8, where the average values of 30 runs are shown. We can see that the
CoordinateLineBO is the fastest approach while the Add-GP-UCB is the slowest
approach among the six high-dimensional BOs. The Add-GP-UCB needs to train
multiple low-dimensional GPs and optimize multiple acquisition functions in each
iteration. While the other four approaches need only train one GP and optimize
one acquisition function in each iteration. Therefore, the Add-GP-UCB is the most
time-consuming approach among the six. Our proposed ECI-BO is faster than the
Add-GP-UCB, Dropout and TurBO approaches, and is slightly slower than the Co-
ordinateLineBO and MCTS-VS approaches. The only difference in computational
time between our ECI-BO and the CoordinateLineBO is that our ECI-BO needs
to maximize all the ECI functions to determine the coordinate optimization order
before the infill optimization process. Therefore, our ECI-BO is slightly slower
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than the CoordinateLineBO. However, the additional computational time is around
fifteen seconds, which can be neglected considering we are optimizing expensive
problems.

5. Conclusions

In this work, we propose a simple and efficient approach to extend the Bayesian
optimization algorithm to high-dimensional problems. We propose the expected
coordinate improvement criterion to measure the amount of improvement we can
get by moving the current best solution along one coordinate. Based on the
expected coordinate improvement, we propose a high-dimensional Bayesian opti-
mization approach which optimizes one coordinate at each iteration following the
order of the coordinates’ expected coordinate improvement values. The proposed
algorithm shows very competitive performance on the selected test suite when
compared with the standard Bayesian optimization algorithm and five state-of-the-
art high-dimensional approaches. Applying the expected coordinate improvement
approach to multiobjective optimization would be very interesting work for future
research.
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