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Abstract. Gravitational-wave memory is a non-linear effect predicted by
general relativity that remains undetected. We apply a Bayesian analysis
framework to search for gravitational-wave memory using binary black hole
mergers in LIGO-Virgo-KAGRA’s third gravitational-wave transient catalogue.
We obtain a Bayes factor of lnBF = 0.01, in favour of the no-memory hypothesis,
which implies that we are unable to measure memory with currently available
data. This is consistent with previous work, suggesting that a catalogue of
O(2000) binary black hole mergers is needed to detect memory. We look for
new physics by allowing the memory amplitude to deviate from the prediction
of general relativity by a multiplicative factor A. We obtain an upper limit of
A < 23 (95% credibility).
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1. Introduction

The landmark detection of gravitational waves from
the merger of a binary black hole in 2015 by the
LIGO-Virgo Scientific Collaboration has provided new
methods to test general relativity and fundamental
physics [3, 27]. However, a particularly interesting
phenomenon predicted by general relativity remains
unconfirmed: gravitational-wave memory. Linear
memory was first predicted by Zel’dovich and Polnarev
and is produced from unbound systems such as
hyperbolic orbits, supernovae and triple black hole
interactions [47, 10]. In 1991, Christodoulou
identified a significant non-linear memory component
in bound systems, such as compact binary mergers
[11]. Non-linear memory arises from the gravitational
waves themselves, resulting in an accumulation of
memory that physically manifests as a permanent
displacement between test masses following the passage
of gravitational waves [42].

The displacement memory signal has not yet
been directly observed because the amplitude of the
memory is only around ≲ 5% of the oscillatory
waveform amplitude for a GW150914-like event
[26]. Due to the low amplitude of memory, a
direct detection of memory from a single event is
improbable with current gravitational-wave detectors,
unless observatories detect a surprisingly close (≈
20Mpc) binary black hole event [25, 19, 26]. Therefore,
previous work focuses on detecting memory in the
entire population of gravitational-wave events, rather
than a single event [26]. Searches for memory have
been carried out with data from the first [23] and
second [22] gravitational-wave transient catalogue. No
evidence of memory was found and Ref. [22] showed
that definitive evidence of memory is likely to require
an ensemble of O(2000) gravitational-wave events [22,
19]. Proposed future gravitational-wave detectors such
as Cosmic Explorer [32], the Einstein Telescope [31]
and LISA [6] may be able to directly detect memory
from a single event [19, 24].

Theoretical work has shown that gravitational-
wave memory is connected to the Bondi-Metzner-
Sachs (BMS) symmetry group and Weinberg’s soft
graviton theorem in quantum field theory [38, 45].
Each of these three seemingly unrelated concepts
represent a corner in the so-called “infrared triangle”
[37]. These connections may serve as a possible
bridge between general relativity and quantum field

theory, and can be used to test spacetime symmetries
[18]. These connections to asymptotic symmetries and
soft theorems may provide insight to the black hole
information paradox [20].

Recent work seeks to test if the memory amplitude
is consistent with predictions from general relativity
[35, 18]. The premise of these studies is that
new physics could produce deviations from general
relativity that may lead to a different memory
amplitude [21]. Other work explores how the inclusion
of memory may help to improve the accuracy of
gravitational-wave parameter estimation [28, 17, 46].
Still other publications have discussed the possibility
of identifying subsolar-mass compact binary mergers
[15] and using memory to distinguish between neutron
star-black hole binary and binary black hole mergers
[43].

In this Paper, we perform a search for
gravitational-wave displacement memory using 88
events from LIGO–Virgo–KAGRA’s third gravitational-
wave transient catalogue (GWTC-3). Since we are well
short of the ≈ 2000 events that are expected to be re-
quired to detect memory, we view this paper as an on-
going effort to refine the memory detection pipeline and
identify potential problems early. In order to search
for new physics, we constrain the memory scale factor,
which is A = 1 in general relativity. We show that this
search is complicated by low-frequency, non-Gaussian
noise. We discuss possible remediation strategies.

The remainder of this Paper is structured as
follows. In Section 2, we describe our search for
gravitational-wave memory using data from GWTC-
3. In Section 3, we describe our search for physics
beyond general relativity and our constraints on the
memory scale factor A, which is expected to be A = 1
for general relativity. In Section 4, we summarise our
results and discuss future research.

2. Search for gravitational-wave memory with
GWTC-3

We follow the method laid out in Refs. [23, 22],
calculating a memory versus no-memory Bayes factor
for each event and then adding the log Bayes
factors. However, in this work we use a different
waveform. Reference [22] used two waveform
approximants: IMRPhenomXHM [16] to cover the
extreme mass ratios and NRSur7dq4 [44] spin
precession effects. In this work, we use a single
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waveform, IMRPhenomXPHM [30], which includes
extreme mass ratios, spin precession effects, and
includes several of the most dominant higher-order
modes [40].

The memory component of the gravitational-wave
waveform is calculated from the oscillatory component
of the waveform by using the gwmemory Python
package [40]. Our analysis consists of two models, a
no-memory hypothesis in which our waveform contains
only oscillatory wave and a memory hypothesis in
which our waveform has both the oscillatory wave
and the memory. We calculate a memory Bayes
factor, which is a ratio of the Bayesian evidence values
computed for our two hypotheses:

BFmem =
Zosc+mem

Zosc
. (1)

We use data from the Advanced LIGO H1
observatory in Hanford, WA, the LIGO L1 observatory
in Livingston, LA [13] and the Virgo observatory in
Italy [5].

To calculate the Bayes factors, we use parameter
estimation results obtained using the bilby [7, 33]
implementation of dynesty [36]. Where possible,
we use results available on the Gravitational-Wave
Open Science Centre.‡ However, bilby results are
not available for the events GW190725, GW190728,
GW190917 and GW190924, and so we generate
new results from scratch. We omit binary neutron
star mergers GW170917 and GW190425. The
IMRPhenomXPHM waveform model does not take
into account neutron star physics and, at any rate, low-
mass binaries produce relatively less memory, making
these events expendable for this analysis.

After performing parameter estimation with the
oscillatory waveform, we employ importance sampling
on each event in order to reweight the n samples with
the oscillatory+memory likelihood [29]:

BFmem =
1

n

n∑
k=1

w(θk). (2)

Here, the weights w are the likelihood ratios comparing
our two hypotheses

wi(θk) =
Losc+mem(di|θk)

Losc(di|θk)
, (3)

where di is the data for event i and θk are the
parameters associated with posterior sample k. We
employ a minimum frequency of 20Hz. The total Bayes
factor for GWTC-3 is simply

BFtot
mem =

N∏
i=1

BFi
mem. (4)

‡ https://gwosc.org/eventapi/html/GWTC/

0 20 40 60 80

number of events

−0.04

−0.02

0.00

0.02

0.04

cu
m

u
la

ti
ve

ln
B

F
m

em

Figure 1. Cumulative natural log Bayes factor lnBFtot
mem as

a function of the number of binary black hole mergers. Large
positive values indicate support for the existence of memory
while large negative values indicate support for the no-memory
hypothesis. The current data are inadequate to differentiate
between these two hypotheses.

We consider lnBFtot
mem ≥ 8 to be a detection of memory

[26].
In Fig. 1, we plot the cumulative Bayes factor

as a function of the chronological event number.
Some events are more informative than others causing
comparatively large jumps. The final value is
lnBFtot

mem = −0.01, which is too small to favour
one hypothesis over the other. This is expected as
O(2000) events are needed before we expect to have
the statistical power to distinguish between these two
hypotheses [22]. The uncertainty from the reweighting
method is < 0.01, much less than the threshold of
detection of 8, see bottom panel of Fig. 1 of [23].

The Bayes factors for individual events are
displayed in Fig. A1 of the Appendix A, which includes
a comparison with previous results and an explanation
for differences between this work and Ref. [22]. We
omit event GW190424 from our analysis, as it was
not deemed a significant event for inclusion in GWTC-
2.1 [14], despite being present in previous searches for
memory [22].

3. Search for new physics with non-standard
memory

In order to search for new physics, and following
Refs. [35, 18], we allow the amplitude of the memory
to vary by a multiplicative factor A so that the
gravitational-wave signal is

htotal = hosc(t) +Ahmem(t). (5)

By construction, general relativity predicts A =
1. However, in this framework, we speculate that
new physics—perhaps related to Bondi-Metzner-Sachs
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(BMS) symmetry [9, 34]—leads to a waveform with
A ̸= 1. We assume that A is the same for each event
and calculate the posterior for A given the events in
GWTC-3:

p(A|d⃗) ∝ π(A)

N∏
i

∫
dθL(di|A, θi)π(θi). (6)

We take the prior π(A) to be uniform on the interval
(0,400).

The posterior distribution for A (calculated with
all of the events in GWTC-3) is shown in Fig. 2. It
is consistent with the general relativity prediction of
A = 1. We set a 95% upper limit of A = 23. Again,
we employ a minimum frequency of 20Hz.
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Figure 2. The posterior for A given the 88 events in our
analysis (blue). The posterior is consistent with A = 1 (dashed
line) predicted by general relativity. The 95% credible interval
(dark blue) yields an upper limit of A = 23. To better constrain
A, we remove 3 events most affected by non-stationary noise
(GW170104, GW170818, GW200128) from the posterior (green),
with an upper limit of A = 15.

In the course of carrying out this analysis, we
noticed that, for some events, the posterior favours
large values of A. The blue distribution in Fig. 3 shows
this behaviour for one such event (GW170818), which
favours A ≈ 300 over A = 1 with a likelihood ratio of ≈
20. While it is expected that some events will produce
posteriors peaked away from A = 1 due to noise
fluctuations, we do not observe such large fluctuations
when we repeat the analysis using simulated Gaussian
noise.

We confirm that this behaviour is not due to
real A = 300 memory by analyzing “off-source” data
where no oscillatory gravitational-wave signal has been
detected. We add a gravitational-wave signal to the
data with standard A = 1 memory and calculate the
posterior for A with the same procedure. We observe
a similar pattern with ≈ 3/88 fake events exhibiting
large fluctuations away from A = 1. We conclude that
unmodeled non-Gaussian noise in the LIGO–Virgo

data is affecting our posterior for A.§ In hindsight,
this is perhaps not surprising as non-stationary noise
is known to lurk at low frequencies where memory is
most pronounced [1, 12].

In Fig. 4 we provide a visualisation to show how
non-Gaussian noise can yield high likelihood values
for large values of A. Each panel is a time series
of whitened strain. Blue is Livingston L1 data
for GW170818. The expected memory waveform is
in green. Since we include only frequencies within
the LIGO–Virgo observing band (above of minimum
frequency of 20Hz), the memory does not induce a
DC offset, but instead produces a short-duration wave
packet; see also [26]. The expected oscillatory +
memory waveform is in orange.

The top panel shows the expected A = 1 waveform
predicted by general relativity. For this particular
event, the memory is negligible. However, the
oscillatory + memory waveform is not well-matched
to the data at the moment of peak strain. This
discrepancy can be plausibly explained as a noise
fluctuation since this deviation between orange and
blue is not unusual compared to the fluctuations in
the noise at late times after the gravitational-wave
signal has passed. The second and third panels show
the same plot with A = 100 and A = 300. By
increasing the memory amplitude, the waveform better
fits the noise fluctuation. Since the memory signal is
so short in duration, this does not spoil the fit with the
earlier inspiral phase. Viewed in the time domain, it is
apparent that the short, memory impulses are similar
to broadband, low-frequency non-Gaussian noise.

Next, we carried out an investigation in order to
identify the frequency band where this non-stationary
noise is most pronounced. We create a distribution
of strain of different frequency bins from 100 random
segments of data and fit each distribution with a
Gaussian function. We expect that all frequency bins
contain some non-Gaussian noise. However, we find the
20Hz frequency bin to be especially non-Gaussian with
reduced chi-squared value of χ̄2 = 2× 105 whereas the
50Hz frequency bin χ̄2 = 1.6 is more consistent with
a Gaussian noise. Testing regularly spaced frequency
bins, we conclude that the non-Gaussian noise is most
pronounced in the band: 20–50Hz. This motivates us
to see how the results change when we increase the
minimum frequency from 20Hz to 50Hz.

§ We consider two other hypotheses that might explain why
the posterior prefers large values of A for some events. First,
we do not take into account uncertainty in our estimation of
the noise power spectral density [39, 8]. Second, we do not
take into account correlations between frequency bins that arise
from so-called finite-duration effects [41]. Thus, our likelihood is
slightly misspecified due to approximations we make about the
noise. However, we rule out these explanations because we do
not see posteriors that favour large values of A when we analyse
Gaussian noise with the same slightly misspecified likelihood.
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Figure 3. The posterior of A for GW170818. The posterior
calculated from a 20Hz (50Hz) high-passed data is shown in
blue (green). The 50Hz high-passed posterior has a stronger
support for A = 0 and A = 1 and favours a smaller A.

In Fig. 3 we compare the posterior for A for
GW170818 calculated using fmin = 20Hz (blue) and
fmin = 50Hz (green). The posterior calculated with
fmin = 50Hz is consistent with A = 1. This is
consistent with our hypothesis that the A posterior is
biased by non-Gaussian noise in the 20–50Hz band.
We recalculate the posterior distribution by removing
the three events that appear to suffer from non-
stationary noise the most (GW170104, GW170818 and
GW200128) and obtain the green curve in Fig. 2. The
resulting upper limit on A is reduced to A = 15.
Although removing the low-frequency data removes the
non-Gaussian noise, it also removes part the memory
signal, reducing the optimal SNR by 10 − 66%. This
reduces our ability to detect memory and to constrain
A.

We consider various solutions to deal with the
non-Gaussian noise at low frequencies. Instead of
throwing out the 20–50Hz, one could model the non-
Gaussian noise by developing a more sophisticated
likelihood function. In this approach the likelihood
down-weights the data affected by the non-Gaussian
noise as it is less trustworthy. The disadvantage of this
approach is that the the down-weighting still reduces
the sensitivity of the search, though, not as much
as removing the low-frequency data entirely. The
best solution is to reduce non-stationary noise with
commissioning. Investigating this possibility is a goal
for future research.

4. Conclusion

With LIGO-Virgo-KAGRA’s fourth observation run
already underway and the fifth observation run is
planned to start in 2027, the number of gravitational-
wave events will greatly increase. It is expected

we will reach the ≈ 2000 events needed to detect
memory during the fifth observing run. Non-Gaussian
noise between 10–50Hz needs to be better understood,
otherwise the required number of events to detect
memory may be larger. We suggest mitigating the non-
Gaussian noise either through detector commissioning
or by developing a model for non-Gaussian noise.
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Appendix A. Bayes factors for individual
events

We compare our lnBFmem values for GWTC-1 [2]
and GWTC-2 [4] with the previous search of memory
in [22], as shown in Figure A1. For most events,
our Bayes factor computed using IMRPhenomXPHM
(blue dots in Figure A1) is very close to [22], computed
using IMRPhenomXHM andNRSur7dq4, hence are
in agreement within waveform systematics.

However, there are a few individual events
where the Bayes factors are noticeably different.
The differences in our results can be attributed
to several factors. The largest factor is the
changes made in the gwmemory package between
the time of [22] and now. The most significant
change was switching to an analytic version of the
mode amplitudes using Clebsch-Gordan coefficients,
aligning memory to the SXS memory prediction. A
second factor may be due to systematic difference
between the different waveform approximants. To
find the difference between waveforms, we run
parameter estimation on GW190924, which has the
greatest difference in Bayes factor, using the same
waveform as [22], IMRPhenomXHM. The difference
between our Bayes factor forIMRPhenomXHM and
IMRPhenomXPHM is ≈ 0.01.
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Figure 4. A plot of the full (osc+mem) and memory (mem) waveform with the whitened Livingston (L1) data for GW170818. As
the A increases, the full waveform fits increasingly well to the whitened data.
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