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On SVD and Polar Decomposition in Real
and Complexified Clifford Algebras

Dmitry Shirokov

Abstract. In this paper, we present a natural implementation of singu-
lar value decomposition (SVD) and polar decomposition of an arbitrary
multivector in nondegenerate real and complexified Clifford geometric
algebras of arbitrary dimension and signature. The new theorems in-
volve only operations in geometric algebras and do not involve matrix
operations. We naturally define these and other related structures such
as Hermitian conjugation, Euclidean space, and Lie groups in geometric
algebras. The results can be used in various applications of geometric
algebras in computer science, engineering, and physics.
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1. Introduction

The method of singular value decomposition for matrices was discovered in-
dependently by E. Beltrami in 1873 [4] and C. Jordan in 1874 [11, 12]. This
method is classical and is widely used in various applications – signal and
image processing, least squares fitting of data, process control, computer sci-
ence, engineering, big data, machine learning, physics, etc. A lot of literature
is devoted to SVD, its algorithms, and its applications (see, for example,
the books by G. Golub & C. Van Loan [9] and G. Forsythe, M. Malcolm
& C. Moler [8], the paper [16]). Another generalization of SVD, quaternion
SVD, was invented by F. Zhang in his paper [35]; for quaternion SVD algo-
rithms, see [10, 18]. Applications of quaternion SVD in image processing are
considered in [17]. Another generalization of SVD, hyperbolic SVD, and its
applications are discussed in [6, 20–22, 34]. Polar decomposition of complex-
ified quaternions and octonions is discussed in [19]. See the survey [33] on
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different applications of SVD and its generalizations (in particular, quater-
nion SVD and octonion SVD) in signal and image processing. Note also the
paper [1] on computing SVD of multivectors using the corresponding matrix
representations (an explicit implementation of SVD in Clifford algebras is
not presented, in contrast to our work).

In the present paper, we present a natural implementation of singular
value decomposition (SVD) and polar decomposition of an arbitrary mul-
tivector in nondegenerate real and complexified Clifford geometric algebras
of arbitrary dimension and signature. We naturally define these and other
related structures such as Hermitian conjugation, Euclidean space, and Lie
groups in geometric algebras. “Natural” means that our definitions and state-
ments involve only operations in geometric algebra and do not involve the
corresponding matrix representations. The meaning of SVD in Clifford geo-
metric algebras is the following: after multiplication on the left and on the
right by elements of a fixed Lie group, any multivector can be placed in a real
subspace of lower dimension. Note that we present existing theorems and do
not discuss algorithms in this paper. Theorems 6.1, 8.1, 9.1, and 9.2 are new.

The paper is organized as follows. In Section 2, we recall basic facts
on nondegenerate real Clifford geometric algebras Gp,q. In Section 3, we in-
troduce Hermitian conjugation and Euclidean space in Gp,q. In Section 4, we
present explicit matrix representation of Gp,q and consider several Lie groups,
which are isomorphic to orthogonal, unitary, and symplectic classical matrix
Lie groups. In Section 5, we recall classical theorems on SVD of real, com-
plex, and quaternion matrices. In Section 6, we present SVD of multivectors
in Gp,q and several examples. In Section 7, we recall classical theorems on
polar decomposition of real, complex, and quaternion matrices. In Section 8,
we present polar decomposition of multivectors in Gp,q. In Section 9, we con-
sider the case of complexified Clifford geometric algebras C⊗Gp,q and present
SVD and polar decomposition of multivectors in C⊗Gp,q. Conclusions follow
in Section 10.

This paper is an extended version of the short note (11 pages) in Con-
ference Proceedings [32] (Empowering Novel Geometric Algebra for Graph-
ics & Engineering Workshop within the International Conference Computer
Graphics International 2023). Sections 1, 4, 6, and 10 are extended; Section
9 and Theorems 9.1 and 9.2 are new.

2. Real Clifford geometric algebra

Let us consider the real Clifford geometric algebra (GA) Gp,q [7, 13, 14, 28]
with the identity element e ≡ 1 and the generators ea, a = 1, 2, . . . , n, where
n = p+ q ≥ 1. The generators satisfy the conditions

eaeb + ebea = 2ηabe, η = (ηab) = diag(1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

).
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Consider the subspaces Gk
p,q of grades k = 0, 1, . . . , n, which elements are

linear combinations of the basis elements eA = ea1a2...ak
= ea1ea2 · · · eak

,
1 ≤ a1 < a2 < · · · < ak ≤ n, with ordered multi-indices of length k. An
arbitrary element (multivector) M ∈ Gp,q has the form

M =
∑

A

mAeA ∈ Gp,q, mA ∈ R,

where we have a sum over arbitrary multi-index A of length from 0 to n. The
projection of M onto the subspace Gk

p,q is denoted by 〈M〉k.
The grade involution and reversion of a multivector M ∈ Gp,q are de-

noted by

M̂ =

n∑

k=0

(−1)k〈M〉k, M̃ =

n∑

k=0

(−1)
k(k−1)

2 〈M〉k (2.1)

and have the properties

M̂1M2 = M̂1M̂2, M̃1M2 = M̃2M̃1, ∀M1,M2 ∈ Gp,q. (2.2)

3. Euclidean space on GA

Let us consider an operation of Hermitian conjugation † in Gp,q (see [15,28]):

M † := M |eA→(eA)−1 =
∑

A

mA(eA)
−1, M ∈ Gp,q. (3.1)

We have the following two other equivalent definitions of this operation:

M † =

{
e1...pM̃e−1

1...p, if p is odd,

e1...p
˜̂
Me−1

1...p, if p is even,
(3.2)

M † =

{
ep+1...nM̃e−1

p+1...n, if q is even,

ep+1...n
˜̂
Me−1

p+1...n, if q is odd.
(3.3)

The operation1

(M1,M2) := 〈M †
1M2〉0, M1,M2 ∈ Gp,q

is a (positive definite) scalar product with the properties

(M1,M2) = (M2,M1), (3.4)

(M1 +M2,M3) = (M1,M3) + (M2,M3), (M1, λM2) = λ(M1,M2),(3.5)

(M,M) ≥ 0, ∀M ∈ Gp,q; (M,M) = 0 ⇔ M = 0 (3.6)

for arbitrary multivectors M1,M2,M3 ∈ Gp,q and λ ∈ R.
Using this scalar product we introduce inner product space over the

field of real numbers (Euclidean space) in Gp,q.

1Compare with the well-known operation M1 ∗ M2 := 〈M̃1M2〉0 in the real geometric
algebra Gp,q, which is positive definite only in the case of signature (p, q) = (n, 0).
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We have a norm

||M || :=
√
(M,M) =

√
〈M †M〉0, M ∈ Gp,q (3.7)

with the properties

||M || ≥ 0, ∀M ∈ Gp,q; ||M || = 0 ⇔ M = 0, (3.8)

||M1 +M2|| ≤ ||M1||+ ||M2||, ∀M1,M2 ∈ Gp,q, (3.9)

||λM || = |λ|||M ||, ∀M ∈ Gp,q, ∀λ ∈ R. (3.10)

4. Matrix representation of Gp,q and Lie groups

Let us consider the following faithful representation (isomorphism) of the real
geometric algebra Gp,q

β : Gp,q →





Mat(2
n

2 ,R), if p− q = 0, 2 mod 8,

Mat(2
n−1
2 ,R)⊕Mat(2

n−1
2 ,R), if p− q = 1 mod 8,

Mat(2
n−1
2 ,C), if p− q = 3, 7 mod 8,

Mat(2
n−2
2 ,H), if p− q = 4, 6 mod 8,

Mat(2
n−3
2 ,H)⊕Mat(2

n−3
2 ,H), if p− q = 5 mod 8.

(4.1)

These isomorphisms are known as Cartan–Bott 8-periodicity.
Let us denote the size of the corresponding matrices by

d :=





2
n

2 , if p− q = 0, 2 mod 8,

2
n+1
2 , if p− q = 1 mod 8,

2
n−1
2 , if p− q = 3, 5, 7 mod 8,

2
n−2
2 , if p− q = 4, 6 mod 8.

(4.2)

Note that we use block-diagonal matrices in the cases p− q = 1, 5 mod 8.
Let us present an explicit form of one of these representations of Gp,q (see

also [23, 29–31]). We denote this fixed representation by β′. For the identity
element, we always use the identity matrix β′(e) = I of the corresponding
size d. We always take β′(ea1a2...ak

) = β′(ea1)β
′(ea2) · · ·β′(eak

).
In some particular cases, we construct β′ in the following way:

• In the case G0,1: e1 → i.
• In the case G1,0: e1 → diag(1,−1).
• In the case G0,2: e1 → i, e2 → j.
• In the case G0,3: e1 → diag(i,−i), e2 → diag(j,−j), e3 → diag(k,−k).

Suppose we know β′
a := β′(ea), a = 1, . . . , n for some fixed Gp,q, p + q =

n. Then we construct explicit matrix representation of Gp+1,q+1, Gq+1,p−1,
Gp−4,q−4 in the following way using the matrices β′

a, a = 1, . . . , n.

• In the case Gp+1,q+1: ea → diag(β′
a,−β′

a), a = 1, . . . , p, p+2, . . . , p+q+1.
In the subcase p− q 6= 1 mod 4, we have

ep+1 →
(
0 I

I 0

)
, ep+q+2 →

(
0 −I

I 0

)
.
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In the subcase p− q = 1 mod 4, we have

ep+1 → diag(β1 · · ·βnΩ,−β1 · · ·βnΩ), ep+q+2 → diag(Ω,−Ω),

where

Ω =

(
0 −I

I 0

)
. (4.3)

• In the case Gq+1,p−1: e1 → β′
1, ei → β′

iβ
′
1, i = 2, . . . , n.

• In the case Gp−4,q+4: ei → β′
iβ

′
1β

′
2β

′
3β

′
4, i = 1, 2, 3, 4, ej → β′

j , j =
5, . . . , n.

Using these recurrences and the Cartan–Bott 8-periodicity, we obtain explicit
matrix representation β′ of all Gp,q.

It can be directly verified that for this matrix representation we have

ηaaβ
′(ea) =





(β′(ea))
T, if p− q = 0, 1, 2 mod 8,

(β′(ea))
H, if p− q = 3, 7 mod 8,

(β′(ea))
∗, if p− q = 4, 5, 6 mod 8,

a = 1, . . . , n, (4.4)

where T is transpose of a (real) matrix, H is the Hermitian transpose of a
(complex) matrix, ∗ is the conjugate transpose of a matrix over quaternions.
Using the linearity, we get that these matrix conjugations are consistent with
Hermitian conjugation of the corresponding multivector:

β′(M †) =





(β′(M))T, if p− q = 0, 1, 2 mod 8,

(β′(M))H, if p− q = 3, 7 mod 8,

(β′(M))∗, if p− q = 4, 5, 6 mod 8,

M ∈ Gp,q. (4.5)

Note that the formulas like (4.5) are not valid for an arbitrary matrix
representation β of the form (4.1). They are true for the matrix representa-
tions γ = T−1β′T obtained from β′ by the matrix T such that

• TTT = I in the cases p− q = 0, 1, 2 mod 8,
• THT = I in the cases p− q = 3, 7 mod 8,
• T ∗T = I in the cases p− q = 4, 5, 6 mod 8.

Let us consider the following Lie group in Gp,q

GGp,q = {M ∈ Gp,q : M †M = e}, (4.6)

where † is (3.1). Note that all the basis elements eA of Gp,q belong to this
group by the definition.

Using (4.1) and (4.5), we get the following isomorphisms of this group
to the classical matrix Lie groups:

GGp,q ≃





O(2
n

2 ), if p− q = 0, 2 mod 8,

O(2
n−1
2 )×O(2

n−1
2 ), if p− q = 1 mod 8,

U(2
n−1
2 ), if p− q = 3, 7 mod 8,

Sp(2
n−2
2 ), if p− q = 4, 6 mod 8,

Sp(2
n−3
2 )× Sp(2

n−3
2 ), if p− q = 5 mod 8,

(4.7)
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where we have the following notation for (orthogonal, unitary, and simplectic
correspondingly) classical matrix Lie groups

O(k) = {A ∈ Mat(k,R) : ATA = I}, (4.8)

U(k) = {A ∈ Mat(k,C) : AHA = I}, (4.9)

Sp(k) = {A ∈ Mat(k,H) : A∗A = I}. (4.10)

The group Sp(k) sometimes is called quaternionic unitary group or hyperuni-
tary group. Note that this group also has the following realization in terms
of complex matrices:

Sp(k) ≃ {A ∈ Mat(2k,C) : ATΩA = Ω, AHA = I},
where Ω is (4.3).

The Lie algebra of the Lie group GGp,q is

gGp,q = {M ∈ Gp,q : M † = −M}.
The basis of the Lie algebra gGp,q consists of anti-Hermitian basis elements

ep+1, . . . , en, e12, . . . , ep−1p, . . .

The number of such elements can be calculated (see Theorem 7 in [28]); we
get the dimension of the Lie group GGp,q and the Lie algebra gGp,q (also we
can calculate the dimension of the matrix Lie groups (4.7)):

dim(GGp,q) = dim(gGp,q) = 2n−1 − 2
n−1
2 sin

π(p− q + 1)

4
(4.11)

=





2n−1 − 2
n−2
2 , if p− q = 0, 2 mod 8,

2n−1 − 2
n−1
2 , if p− q = 1 mod 8,

2n−1, if p− q = 3, 7 mod 8,

2n−1 + 2
n−2
2 , if p− q = 4, 6 mod 8,

2n−1 + 2
n−1
2 , if p− q = 5 mod 8.

(4.12)

5. On the classical SVD of real, complex, and quaternion
matrices

We have the following well-known theorems on singular value decomposition
of an arbitrary real, complex, and quaternion matrices (see, for example,
[8, 9, 35]).

Theorem 5.1. For an arbitrary A ∈ Rn×m, there exist matrices U ∈ O(n)
and V ∈ O(m) such that

A = UΣV T, (5.1)

where

Σ = diag(λ1, λ2, . . . , λk), k = min(n,m), R ∋ λ1, λ2, . . . , λk ≥ 0.

Note that choosing matrices U ∈ O(n) and V ∈ O(m), we can always arrange
diagonal elements of the matrix Σ in decreasing order λ1 ≥ λ2 ≥ · · · ≥ λk ≥
0.
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Diagonal elements of the matrix Σ are called singular values, they are
square roots of eigenvalues of the matrices AAT or ATA. Columns of the
matrices U and V are eigenvectors of the matricesAAT and ATA respectively.

Theorem 5.2. For an arbitrary A ∈ Cn×m, there exist matrices U ∈ U(n)
and V ∈ U(m) such that

A = UΣV H, (5.2)

where

Σ = diag(λ1, λ2, . . . , λk), k = min(n,m), R ∋ λ1, λ2, . . . , λk ≥ 0.

Note that choosing matrices U ∈ U(n) and V ∈ U(m), we can always arrange
diagonal elements of the matrix Σ in decreasing order λ1 ≥ λ2 ≥ · · · ≥ λk ≥
0.

Diagonal elements of the matrix Σ are called singular values, they are
square roots of eigenvalues of the matrices AAH or AHA. Columns of the
matrices U and V are eigenvectors of the matricesAAH and AHA respectively.

Theorem 5.3. For an arbitrary A ∈ Hn×m, there exist matrices U ∈ Sp(n)
and V ∈ Sp(m) such that

A = UΣV ∗, (5.3)

where

Σ = diag(λ1, λ2, . . . , λk), k = min(n,m), R ∋ λ1, λ2, . . . , λk ≥ 0.

Diagonal elements of the matrix Σ are called singular values.

6. SVD in GA

In the following theorem, we present singular value decomposition of an arbi-
trary multivector in geometric algebra Gp,q. Note that the statement involves
only operations in Gp,q.

Theorem 6.1 (SVD in GA). For an arbitrary multivector M ∈ Gp,q, there
exist multivectors U, V ∈ GGp,q, where

GGp,q = {U ∈ Gp,q : U †U = e}, U † :=
∑

A

uA(eA)
−1,

such that

M = UΣV †, (6.1)

where multivector Σ belongs to the subspace K of Gp,q, which is real span of a
set of d (4.2) fixed basis elements (always including the identity element e):

Σ ∈ K := span({eBi
, i = 1, . . . , d}) = {

d∑

i=1

λieBi
, λi ∈ R}. (6.2)
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Proof. Let us use the matrix representation β′ of Gp,q from Section 4. Then
we use the isomorphisms (4.7) and SVD of matrices (see Section 5). In the
cases p − q = 1, 5 mod 8, the matrix representation is block-diagonal and
we use SVD for each of two blocks. The singular values are always real and
we get a real span of d basis elements of Gp,q with real diagonal matrix
representation. �

Thus, the meaning of SVD in real Clifford geometric algebra is the
following: after multiplication on the left and on the right by elements of the
group GGp,q (4.6), any multivectorM ∈ Gp,q can be placed in a d-dimensional
subspace K of Gp,q, where d is (4.2).

Note that the subspace K from Theorem 6.1 is not unique. By changing
the matrix representation, we can change the subspace K. But it always has
dimension d and contains the identity element e. For convenience, in the
examples below we use the representation β′ from Section 4.

Using (4.2) and (4.12), we get (see the right-hand part of (6.1))

dim(K) + 2 dim(GGp,q) =





2n, if p− q = 0, 1, 2 mod 8,

2n + 2
n−1
2 , if p− q = 3, 7 mod 8,

2n + 3 · 2n−2
2 , if p− q = 4, 6 mod 8,

2n + 3 · 2n−1
2 , if p− q = 5 mod 8,

(6.3)

which is greater than or equal to dim(Gp,q) = 2n, i.e. the number of indepen-
dent coefficients of an arbitrary multivector M ∈ Gp,q. The equality holds in
the cases p− q = 0, 1, 2 mod 8 of real matrix representations.

Example. In the case G2,0
∼= Mat(2,R), we have

β′(e) =

(
1 0
0 1

)
, β′(e1) =

(
0 1
1 0

)
, (6.4)

β′(e2) =

(
−1 0
0 1

)
, β′(e12) =

(
0 1
−1 0

)
.

The matrices β′(e) and β′(e2) are real and diagonal, we get the 2-dimensional
subspace

K = span(e, e2). (6.5)

Note that if we change the matrix representation so that the matrices for e1
and e2 are swapped, then the subspace K will be a real span of e and e1.
Thus, K is not unique. For convenience, we choose (6.5) in this example.

Consider the multivector

M = 5e+ 4e1 + 3e2 ∈ G2,0.

We can choose

U = V =
1√
5
(e − 2e12) ∈ GG2,0

with the properties

U †U = V †V =
1√
5
(e+ 2e12)

1√
5
(e− 2e12) = e
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such that

M = UΣV †

with the element

Σ = 5(e− e2) ∈ K = span(e, e2).

The decomposition

5e+ 4e1 + 3e2 =
1√
5
(e− 2e12) 5(e− e2)

1√
5
(e− 2e12)

is equivalent to the matrix decomposition

(
2 4
4 8

)
=

(
1√
5

− 2√
5

2√
5

1√
5

)(
10 0
0 0

)( 1√
5

2√
5

− 2√
5

1√
5

)

using the matrix representation (6.4).

Following the comment of one of the anonymous reviewers, let us also
present an explicit example for a defective multivector (the corresponding
matrix representation is not diagonalizable). Consider the multivector

M =
1

2
(e1 + e12) ∈ G2,0.

We can choose

U = e, V = e1 ∈ GG2,0

with the properties

U †U = V †V = e

such that

M = UΣV †

with the element

Σ =
1

2
(e − e2) ∈ K = span(e, e2).

The decomposition

1

2
(e1 + e12) = e

1

2
(e− e2) e1

is equivalent to the matrix decomposition

(
0 1
0 0

)
=

(
1 0
0 1

)(
1 0
0 0

)(
0 1
1 0

)

using the matrix representation (6.4).
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Example. In the case G1,3
∼= Mat(2,H), we have

β′(e) =

(
1 0
0 1

)
, β′(e1) =

(
0 1
1 0

)
, β′(e2) =

(
i 0
0 −i

)
, (6.6)

β′(e3) =

(
j 0
0 −j

)
, β′(e4) =

(
0 −1
1 0

)
, β′(e12) =

(
0 −i

i 0

)
,

β′(e13) =

(
0 −j

j 0

)
, β′(e14) =

(
1 0
0 −1

)
, β′(e23) =

(
k 0
0 k

)
,

β′(e24) =

(
0 −i

−i 0

)
, β′(e34) =

(
0 −j

−j 0

)
, β′(e123) =

(
0 k

k 0

)
,

β′(e124) =

(
−i 0
0 −i

)
, β′(e134) =

(
−j 0
0 −j

)
,

β′(e234) =

(
0 −k

k 0

)
, β′(e1234) =

(
k 0
0 −k

)
.

The matrices β′(e), β′(e14) are real and diagonal. We get the 2-dimensional
subspace

K = span(e, e14).

Thus, an arbitrary multivector M ∈ G1,3 with 16 independent coefficients can
be placed in the 2-dimensional subspace span(e, e14) after multiplication on
the left and on the right by two elements of the group GG1,3.

Example. In the case G2,1
∼= Mat(2,R)⊕Mat(2,R), the matrices β′(e), β′(e1),

β′(e23), and β′(e123) are real and diagonal. We get the 4-dimensional subspace

K = span(e, e1, e23, e123).

7. On the classical polar decomposition of real, complex, and
quaternion matrices

Let us consider a classical polar decomposition (right and left) of arbitrary
square real, complex, and quaternion matrices (for quaternion case, see [35]).

Theorem 7.1. For an arbitrary A ∈ Rn×n, there exist positive semi-definite
symmetric matrices P and S ∈ Rn×n (i.e. PT = P and zTPz ≥ 0, ∀z ∈ Rn;
ST = S and zTSz ≥ 0, ∀z ∈ Rn) and matrix W ∈ O(n) such that

A = WP = SW. (7.1)

Given a real symmetric matrix P , the following statements are equiva-
lent:

• P is positive semi-definite,
• all the eigenvalues of P are non-negative,
• there exists a matrix B such that P = BTB.

If we have SVD of the real matrix A = UΣV T, then we can take

W = UV T, P = VΣV T, and S = UΣUT. Note that P =
√
ATA and

S = WPWT =
√
AAT.
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Theorem 7.2. For an arbitrary A ∈ Cn×n, there exist positive semi-definite
Hermitian matrices P and S ∈ Cn×n (i.e. PH = P and zHPz ≥ 0, ∀z ∈ Cn;
SH = S and zHSz ≥ 0, ∀z ∈ Cn) and matrix W ∈ U(n) such that

A = WP = SW. (7.2)

Given a complex Hermitian matrix P , the following statements are
equivalent:

• P is positive semi-definite,
• all the eigenvalues of P are non-negative,
• there exists a matrix B such that P = BHB.

If we have SVD of the complex matrix A = UΣV H, then we can take

W = UV H, P = V ΣV H, and S = UΣUH. Note that P =
√
AHA and

S = WPWH =
√
AAH.

Theorem 7.3. For an arbitrary A ∈ Hn×n, there exist quaternion positive
semi-definite Hermitian matrices P and S ∈ Hn×n (i.e. P ∗ = P and z∗Pz ≥
0, ∀z ∈ Hn; S∗ = S and z∗Sz ≥ 0, ∀z ∈ Hn) and matrix W ∈ Sp(n) such
that

A = WP = SW. (7.3)

Given a quaternion Hermitian matrix P , the following statements are
equivalent:

• P is positive semi-definite,
• all the eigenvalues of P are non-negative,
• there exists a matrix B such that P = B∗B.

If we have SVD of the quaternion matrix A = UΣV ∗, then we can
take W = UV ∗, P = V ΣV ∗, and S = UΣU∗. Note that P =

√
A∗A and

S = WPW ∗ =
√
AA∗.

8. Polar decomposition in GA

In the following theorem, we present polar decomposition of an arbitrary
multivector in geometric algebra Gp,q. Note that the statement involves only
operations in Gp,q.

Theorem 8.1 (Left and right polar decomposition in GA). For an arbitrary
multivector M ∈ Gp,q, there exist multivectors P, S ∈ Gp,q such that

P † = P, S† = S, U † :=
∑

A

uA(eA)
−1, (8.1)

P = B†B, S = C†C for some multivectors B,C ∈ Gp,q,, (8.2)

and multivector

W ∈ GGp,q = {U ∈ Gp,q : U †U = e}
such that

M = WP = SW.
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Proof. The statement follows from the results of the previous sections of this
paper. Namely, we use the matrix representation β′ of Gp,q from Section 4, the
relation (4.5) between matrix operations and Hermitian conjugation in geo-
metric algebras, and the classical polar decomposition of matrices discussed
in Section 7. �

Note that

P =
√
M †M, S = WPW † =

√
MM †. (8.3)

If we have the SVD of multivector M = UΣV † (6.1), then

W = UV †, P = V ΣV †, S = UΣU †. (8.4)

9. The case of complexified Clifford geometric algebras

Let us consider the complexified Clifford geometric algebra (CGA) GC
p,q :=

C⊗ Gp,q [14,28]. The complexified Clifford algebra is important for different
applications, in particular the complexified geometric algebra GC

1,3 is widely
used in physics (see [5, 15, 28]).

An arbitrary element (multivector) M ∈ GC
p,q has the form

M =
∑

A

mAeA ∈ GC

p,q, mA ∈ C,

where eA are basis elements of the real Clifford geometric algebra Gp,q (see
Section 2). Note that GC

p,q has the following basis of 2n+1 elements:

e, ie, e1, ie1, e2, ie2, . . . , e1...n, ie1...n. (9.1)

In addition to the grade involution and reversion (2.1), we use the op-
eration of complex conjugation, which takes complex conjugation only from
the coordinates mA and does not change the basis elements eA:

M =
∑

A

mAeA ∈ GC

p,q, mA ∈ C, M ∈ GC

p,q. (9.2)

We have

M1M2 = M1 M2, ∀M1,M2 ∈ GC

p,q. (9.3)

Let us consider an operation of Hermitian conjugation † in GC
p,q (see

[15, 28]):

M † := M |eA→(eA)−1, mA→mA
=
∑

A

mA(eA)
−1, M ∈ GC

p,q. (9.4)
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We have the following two equivalent definitions of this operation:

M † =




e1...pM̃e−1

1...p, if p is odd,

e1...p
˜̂
Me−1

1...p, if p is even,
(9.5)

M † =




ep+1...nM̃e−1

p+1...n, if q is even,

ep+1...n
˜̂
Me−1

p+1...n, if q is odd.
(9.6)

The operation

(M1,M2) := 〈M †
1M2〉0, M1,M2 ∈ GC

p,q

is a (positive definite) scalar product with the properties

(M1,M2) = (M2,M1), (9.7)

(M1 +M2,M3) = (M1,M3) + (M2,M3), (M1, λM2) = λ(M1,M2),(9.8)

(M,M) ≥ 0, ∀M ∈ GC

p,q; (M,M) = 0 ⇔ M = 0 (9.9)

for arbitrary multivectors M1,M2,M3 ∈ GC
p,q and λ ∈ C.

Using this scalar product we introduce inner product space over the
field of complex numbers (unitary space) in GC

p,q.
We have a norm

||M || :=
√
(M,M) =

√
〈M †M〉0, M ∈ GC

p,q. (9.10)

with the properties

||M || ≥ 0, ∀M ∈ GC

p,q; ||M || = 0 ⇔ M = 0, (9.11)

||M1 +M2|| ≤ ||M1||+ ||M2||, ∀M1,M2 ∈ GC

p,q, (9.12)

||λM || = |λ|||M ||, ∀M ∈ GC

p,q, ∀λ ∈ C. (9.13)

Let us consider the following faithful representation (isomorphism) of
the complexified geometric algebra

β : GC

p,q →
{
Mat(2

n

2 ,C), if n is even,

Mat(2
n−1
2 ,C)⊕Mat(2

n−1
2 ,C), if n is odd.

(9.14)

Let us denote the size of the corresponding matrices by

N := 2[
n+1
2 ], (9.15)

where square brackets mean taking the integer part.
Let us present an explicit form of one of these representations of GC

p,q

(we use it also for Gp,q in [23] and for GC
p,q in [31]). We denote this fixed

representation by β′. Let us consider the case p = n, q = 0. To obtain the
matrix representation for another signature with q 6= 0, we should multiply
matrices β′(ea), a = p+1, . . . , n by imaginary unit i. For the identity element,
we always use the identity matrix β′(e) = IN of the corresponding dimension
N . We always take β′(ea1a2...ak

) = β′(ea1)β
′(ea2) · · ·β′(eak

). In the case n =
1, we take β′(e1) = diag(1,−1). Suppose we know β′

a := β′(ea), a = 1, . . . , n
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for some fixed odd n = 2k+1. Then for n = 2k+2, we take the same β′(ea),
a = 1, . . . , 2k + 1, and

β′(e2k+2) =

(
0 IN

2

IN

2
0

)
.

For n = 2k + 3, we take

β′(ea) =

(
β′
a 0
0 −β′

a

)
, a = 1, . . . , 2k + 2,

and

β′(e2k+3) =

(
ik+1β′

1 · · ·β′
2k+2 0

0 −ik+1β′
1 · · ·β′

2k+2

)
.

This recursive method gives us an explicit form of the matrix representation
β′ for all n.

Note that for this matrix representation we have

(β′(ea))
H = ηaaβ

′(ea), a = 1, . . . , n,

where H is the Hermitian transpose of a matrix. Using the linearity, we get
that Hermitian conjugation of the matrix is consistent with Hermitian con-
jugation of the corresponding multivector:

β′(M †) = (β′(M))H, M ∈ GC

p,q. (9.16)

Note that the same is not true for an arbitrary matrix representations β of
the form (9.14). It is true the matrix representations γ = T−1β′T obtained
from β′ using the matrix T such that THT = I.

Let us consider the group

GGC

p,q = {M ∈ GC

p,q : M †M = e}, (9.17)

which we call a unitary group in GC
p,q. Note that all the basis elements eA

and ieA of GC
p,q belong to this group by the definition.

Using (9.14) and (9.16), we get the following isomorphisms to the clas-
sical matrix unitary groups:

GGC

p,q ≃
{
U(2

n

2 ), if n is even,

U(2
n−1
2 )×U(2

n−1
2 ), if n is odd.

(9.18)

The Lie algebra of the Lie group GGC
p,q is

gGC

p,q = {M ∈ GC

p,q : M † = −M}.
The basis of the Lie algebra gGC

p,q consists of anti-Hermitian basis elements

ie1, ie2, . . . , iep, ep+1, . . . en, e12, . . . , ep−1p, iep+1p+2, . . .

The number of such elements is equal to 2n; we get the dimension of the Lie
group GGC

p,q and the Lie algebra gGC
p,q (also we can calculate the dimension

of the matrix Lie groups (9.18)):

dim(GGC

p,q) = dim(gGC

p,q) = 2n. (9.19)
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Theorem 9.1 (SVD in CGA). For an arbitrary multivector M ∈ GC
p,q, there

exist multivectors U, V ∈ GGC
p,q, where

GGC

p,q = {U ∈ GC

p,q : U †U = e}, U † :=
∑

A

uA(eA)
−1,

such that

M = UΣV †, (9.20)

where multivector Σ belongs to the subspace K ∈ GC
p,q, which is a real span of

a set of N = 2[
n+1
2 ] fixed basis elements (9.1) of GC

p,q including the identity
element e.

Proof. Let us use the matrix representation β′ of GC
p,q discussed above. We

have the isomorphisms (4.7) and use SVD of matrices. In the case of odd n,
the matrix representation is block-diagonal and we use SVD for each of two
blocks. The singular values are always real and we get a real span of N basis
elements of C⊗ Gp,q with real diagonal matrix representation. �

Thus the meaning of SVD in complexified Clifford geometric algebra is
the following: after multiplication on the left and on the right by elements
of the group GGC

p,q (9.17), any multivector M ∈ GC
p,q can be placed in a

N -dimensional subspace K ∈ C⊗ Gp,q.
Note that the subspace K from Theorem 9.1 is not unique. By changing

the matrix representation, we can change the subspace K. But it always has
dimension N and contains the identity element e. For convenience, in the
examples below we use the representation β′ from this section.

Using (9.15) and (9.19), we get (see the right-hand part of (9.20))

2 dim(GGC

p,q) + dim(K) = 2n+1 + 2[
n+1
2 ], (9.21)

which is always greater than dim(GC
p,q) = 2n+1, i.e. the number of independent

real coefficients of an arbitrary multivector M ∈ GC
p,q.

Example. In the case GC
2,0

∼= Mat(2,C), we have

β′(e) =

(
1 0
0 1

)
, β′(e1) =

(
1 0
0 −1

)
, (9.22)

β′(e2) =

(
0 1
1 0

)
, β′(e12) =

(
0 1
−1 0

)
.

The matrices β′(e) and β′(e1) are real and diagonal, we get the 2-dimensional
subspace

K = span(e, e1). (9.23)

Note that if we change the matrix representation so that the matrices for e1
and e2 are swapped, then the subspace K will be a real span of e and e2.
Thus, K is not unique. For convenience, we choose (9.23) in this example.

Consider the multivector

M = (1 + i)e+ (1− i)e1 + (1 + i)e2 + (−1 + i)e12 ∈ GC

2,0. (9.24)
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We can choose

U =
1 + i

2
√
2
e+

−1 + i

2
√
2

e1 +
−1 + i

2
√
2

e2 +
−1− i

2
√
2

e12 ∈ GGC

2,0, (9.25)

V =
1 + i

2
√
2
e+

−1 + i

2
√
2

e1 +
1− i

2
√
2
e2 +

−1− i

2
√
2

e12 ∈ GGC

2,0, (9.26)

with the properties

U †U = V †V = e (9.27)

such that

M = UΣV † (9.28)

with the element

Σ = 2(e+ e1) ∈ K = span(e, e1). (9.29)

The decomposition (9.28) is equivalent to the matrix decomposition

(
2 2i
2 2i

)
=

(
i√
2

−1√
2

i√
2

1√
2

)(
4 0
0 0

)( i√
2

−i√
2

1√
2

1√
2

)H

(9.30)

using the matrix representation (9.22).

Example. In the case GC
3,0

∼= Mat(2,C)⊕Mat(2,C), the matrices β′(e), β′(e1),
β′(ie23) and β′(ie123) are diagonal and real. We get

K = span(e, e1, ie23, ie123).

Thus, an arbitrary multivectorM ∈ GC
3,0 with 16 independent real coefficients

can be placed in the 4-dimensional real span(e, e1, ie23, ie123) after multipli-
cation on the left and on the right by two elements of the group GGC

3,0.

Theorem 9.2 (Polar decomposition in CGA). For an arbitrary multivector
M ∈ GC

p,q, there exist multivectors P, S ∈ GC
p,q such that

P † = P, S† = S, U † :=
∑

A

uA(eA)
−1, (9.31)

P = B†B, S = C†C for some multivectors B,C ∈ GC
p,q,(9.32)

and multivector
W ∈ GGC

p,q = {U ∈ GC

p,q : U †U = e}
such that

M = WP = SW.

Proof. We use polar decomposition for matrices and results of the first part
of this section about relation between complex matrices and multivectors in
GC
p,q. �

Note that

P =
√
M †M, S = WPW † =

√
MM †. (9.33)

If we have the SVD of multivector M = UΣV † (9.20), then

W = UV †, P = V ΣV †, S = UΣU †. (9.34)



On SVD and Polar Decomposition in Clifford Algebras 17

Example. Let us continue the example discussed above with the multivector
(9.24):

M = (1 + i)e+ (1− i)e1 + (1 + i)e2 + (−1 + i)e12 ∈ GC

2,0.

Using (9.25), (9.26), and (9.29), we get the elements

W = UV † =
1

2
(e − ie1 + ie2 − e12), (9.35)

P = V ΣV † = 2(e+ ie12), (9.36)

S = UΣU † = 2(e+ e2) (9.37)

with the properties

W †W = e, P † = P, S† = S. (9.38)

We get the equalities

M = WP = SW. (9.39)

The decompositions (9.39) are equivalent to the matrix right and left polar
decompositions
(

2 2i
2 2i

)
=

(
1−i
2

−1+i
2

1+i
2

1+i
2

)(
2 2i

−2i 2

)
=

(
2 2
2 2

)(
1−i
2

−1+i
2

1+i
2

1+i
2

)

using the matrix representation (9.22).

10. Conclusions

In this paper, we naturally implement SVD and polar decomposition in real
and complexified Clifford geometric algebras without using the corresponding
matrix representations. Note that we use matrix representations in the proofs,
namely, we use the classical SVD and polar decomposition of real, complex,
and quaternion matrices. Theorems 6.1, 8.1, 9.1, and 9.2 involve only op-
erations in geometric algebras. The theorem on SVD in geometric algebras
states that after left and right multiplication by elements of the group GGp,q

in the real case (and the group GGC
p,q in the complex case), any multivectorM

can be placed in d-dimensional subspace in the real case (and N -dimensional
subspace in the complex case), where d is equal to (4.2) (and N is equal to
(9.15)). The polar decomposition is a consequence of the SVD. We expect the
use of these theorems in different applications of real and complexified geo-
metric algebras in computer science, engineering, physics, big data, machine
learning, etc. This paper continues our previous research [2, 3, 24–27] on the
extension of matrix methods to geometric algebras, presented at previous EN-
GAGE (Empowering Novel Geometric Algebra for Graphics & Engineering)
workshops within the CGI 2020–2022 conferences.

Note that despite the statements of Theorems 6.1, 8.1, 9.1, and 9.2
involve only operations in a geometric algebra, their proofs use matrix repre-
sentation; it could be interesting to investigate, in a future work, alternative
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and more direct proofs involving only operations in the corresponding geo-
metric algebra. Also note that we do not present a method (algorithm) to find
the SVD in this paper. We present existing theorems. How to find elements
Σ, U , and V in (6.1) and (9.20) using only the methods of geometric algebra
and without using the corresponding matrix representations is a good and
important task for further research. The problems of numerical accuracy and
computation speed can also be studied.
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