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Toroidal vortex, a topological structure commonly observed in nature, exist in various types such as bubbles produced by 
dolphins and the air flow surrounding a flying dandelion. A toroidal vortex corresponds to a spatiotemporal wave packet 
in the shape of a donut that propagates in the direction perpendicular to the plane of the ring. In this work, we propose a 
circular asymmetric grating to generate vortex rings. A cylindrical vector wave packet is transformed by the device into a 
transmitted toroidal vortex pulse. Such a compact toroidal vortex generator may find applications in optical topology 
research and high-dimensional optical communications. 

 

The pioneering work of Allen and his colleagues[1] discovered that 
light with a spiral phase structure ile   possess an orbital angular 
momentum (OAM) of l  for each photon, where l is the topological 
charge, ħ is the Dirac constant, and   is the azimuthal angle. Due to 
this unique azimuthal phase structure, vortex beams with different 
topological charges are mutually orthogonal, introducing a new 
dimension l which is unbounded in theory. Consequently, vortex 
beams have found a wide range of applications in high-capacity 
optical communication systems[2-4], optical tweezers[5, 6],optical 
holographic encryption[7-10] and high-dimensional quantum 
systems[11, 12]. 

Contrary to vortex beams that have a spiral phase in the cross 
section, spatiotemporal optical vortices (STOVs) feature a spiral 
phase structure situated in the spatiotemporal plane, thereby 
possessing transverse orbital angular momentum perpendicular to 
the propagation direction[13, 14]. STOVs can be generated with a 
two-dimensional pulse shaper or metasurface and characterized by 
scanning or single-shot methods[15-21].  

The toroidal vortex can be considered as a high-dimensional 
STOV. Slicing in any radial direction will always obtain a cross 
section 0( , )r r t  that represents a STOV. A toroidal vortex can be 

generated through wrapping an elongated STOV into a ring shape 
using optical conformal mapping[22].    

In this work, we propose a scheme based on a circular and 
asymmetric grating structure for the generation of optical toroidal 
vortex in a compact way. Numerical simulations demonstrate that 
this structure is capable of transforming a normal incident 
cylindrical vector wave packet into a toroidal vortex. The device is 
designed for the C-band, holding potentials for applications in high-
dimensional optical communications as well as quantum key 
distributions. 

The toroidal vortex of light, a three-dimensional spatiotemporal 
structure, can be represented in the reference frame as: 
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where ( , )x y  represents the Cartesian coordinates of the spatial 

plane, 2 2r x y   is the radius of the spatial plane,   is the 

normalized retarded time, 0w  is a constant representing the size of 

the vortex ring in the spatiotemporal plane.  

 

Fig. 1. (a) Iso-intensity and (b) phase distribution of a toroidal vortex. 

The arrow indicates the local OAM density ( OAMj


) in Fig. 1(b). The 

colorbar indicates the phase range in Fig. 1(b). 

The iso-intensity surface and phase distribution of a toroidal 
vortex is shown in Fig. 1. Due to the spiral phase in the 
spatiotemporal plane 0( - , )r r  , the direction of local OAM density 



OAMj


 is always perpendicular to the propagation direction and 

circulates in the cross-section plane. The phase singularities form a 
circular singularity line at 0r r . The production of a vortex ring 

relies on the custom generation of this circular phase singularity 
line in the spatiotemporal domain. 

Breaking the mirror symmetry is the key to introducing a phase 
singularity in the spatiotemporal plane[16]. Without loss of 
generality, one considers a one-dimensional periodic grating 
structure with the plane 0x  serving as the mirror-symmetric 
mirror.  For a normal incident pulse with Gaussian distributions in 
the ( , )x t  plane, the phase distribution of the transmitted pulse 

must also be symmetric about the 0x  plane due to the 
symmetry of the grating structure, i.e., phase singularities cannot be 
generated. Therefore, in order to generate STOVs, the mirror 
symmetry about 0x   of the structure must be broken. The 
proposed structure should not have mirror symmetry in any 
direction. 

The toroidal vortex can be seen as a log-polar to Cartesian 
transformation from an elongated STOV. To generate a toroidal 
vortex, a one-dimensional asymmetric periodic grating can be 
extended in the direction perpendicular to the grating vector and 
wraps around into a circular shape. As shown in Fig. 2, nano rings 
with different radii are densely arranged into a disk. In any radial 
direction, the structure is a one-dimensional asymmetric periodic 
grating. This device is composed of a material with a relative 
permittivity of 12 at 1550 nm, a value similar to silicon's relative 
permittivity in this wavelength range. The distance between the 
inner and outer radii of each ring is 1291.2 nmdr  . N rings are 
assembled to form a large circular disc. If the initial ring radius is 0r , 

then the inner radius of each ring is 0 ( 1)nr r n dr    where 

1,2,3, ,n N  . In each ring, to break spatial mirror symmetry, 
three concentric grooves are etched on a ring-shaped base with a 
width of dr , creating two non-identical concentric ridges with 
widths 1 206.6 nmw  , 2 557.8 nmw  , and thicknesses 

1 501 nmh  , 2 206.6 nmh  . The spacing between the two 

concentric ridges is 82.6 nmg  . The thickness of the substrate is 

100 nmt  .  

 

Fig. 2. Device Schematic: (a) Overall schematic diagram of the device. (b) 
Schematic diagram of the device unit. (c) Cross-sectional schematic 
diagram of the device, with dimensions annotated. 

For a normal incident, azimuthally polarized, cylindrical vector 
wave packet, the electric field can be expressed as:  
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  is the center frequency, 0 1550 nm  , and ( , )inA r t  is 

the envelope of the incident electric field. 
We decompose the envelope of the input pulse into a series of 

plane waves via Fourier transformation:  
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where  ( , )in rA k   is the angular spectrum of envelope, 0    

is the sideband angular frequency with respect to the center 
frequency 0 , and rk  is the radial wavevector. The transmission 

spectrum function is determined by 
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 ( , )out rA k   is the angular spectrum of output envelope. Since 
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 , 0  is the wavelength in vacuum, the circular 

asymmetric grating generates only zero-order diffracted pulse. 
Therefore, the transmission spectrum function of zero-order 
diffracted pulse is derived.  

Fig. 3(a) and 3(b) show the amplitude and phase distributions of 
the transmission spectrum function with respect to radial 
wavevector 0/rk k  and local frequency 0/   with the help of 

COMSOL. It can be seen that the amplitude of the transmission 
spectrum function ( ( , ))rAbs H k   exhibits a good linear 

relationship with rk  and   around 00.15 0.15rk k    and 

0 0.0.01 10    . The transmission spectrum function is 

assumed to take the following form: 

 ( , )r r r tH k C k C   , (4) 

where rC and tC  are two constants. Then, the output pulse reads: 

 

 1( , ) ( , ) ( , )

( , ) ( , )

inout r r

in in
r t

A r t FT A k H k

A r t A r t
iC iC

r t



       









, (5) 



where  1FT  represents the inverse Fourier transform. This 

indicates that the output pulse will be the first-order differentiation 
of the input pulse in spatial and temporal domains.  

 

Fig. 3. Transmission spectrum function of circular asymmetric grating. 
The amplitudes and phase function along (a) 0 and  (b) 0rk  ; (c) 

Amplitude and (d) phase distribution of the  transmission spectrum 
function with respect to rk  and  . 

From Fig. 3(d), it can be seen that the phase of the transmission 
spectrum function exhibits a typical spiral phase form with a 
topological charge equal to -1 and the amplitude varies only radially. 
Therefore, the angular spectrum of the output envelope can be 
expressed as: 

    ( , ) ( ') ( , )expout inr rA k g r A k i  , (6) 
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()abs  denotes the absolute value. For a normal incident cylindrical 

vector Gaussian pulse, the envelope distribution in the ( , )r   plane 

is independent of the azimuthal angle, thus  ( , ) ( ')in inrA k A r .  

After the Fourier transformation, the envelope of the output pulse 
can be written as[23]: 
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 are the polar coordinates in spatiotemporal 

plane ( , )r  .  From Eq.(7), one can observe that the transmitted 

pulse possess a spiral phase in the spatiotemporal plane, with phase 
singularities located at 0r r , i.e., a distinctive toroidal topological 

structure is generated.  

 

Fig. 4. (a) Amplitudes and (b) Phase distribution of the output pulse in 
spatiotemporal domain ( , )r  . (c) Iso-intensity and (d) phase 
distribution of in three-dimensional space ( , , )x y  . The arrow 

indicates the local OAM density ( OAMj


) in Fig. 4(d). The colorbar 

indicates the intensity range and phase range respectively. 

As shown in Fig. 4(a) and 4(b), the amplitude and phase 
distributions of the output pulse in spatiotemporal plane ( , )r   are 

depicted. It can be observed that in the spatiotemporal plane ( , )r  , 

the intensity distribution of the output pulse exhibits a hollow 
"doughnut" shape, while the phase varies uniformly along the 
azimuthal direction  . These are typical characteristics of STOVs. 
In three-dimensional space ( , , )x y  , it can be seen in Fig. 4(a) and 

4(b) that the output pulse exhibits a zero-intensity point at 0r r , 

and the direction of local OAM density OAMj


 is perpendicular to the 

propagation direction and rotates along the circular ring 0r r , 

displaying the unique features of a toroidal vortex.   
Finally, we analyzed the feasibility of fabricating the toroidal 

vortex generator. Since it is impractical to fabricate perfect circular 
ring devices, in practice, each unit will be rotated by a certain angle 
and connected to form a circular ring, as shown in Fig. 5(a) and 5(b). 
To address this, we analogize the concept of duty factor in one-
dimensional grating devices and propose an equivalent duty factor 
parameter   to quantify the difference between the practical 

device and the ideal circular ring. The parameter   can be 
expressed as: 

 2 1

2

2S S

S
  , (8) 

where 1S  is the area of a single unit in the ( , )x y  plane, and 2S  is 

the area corresponding to the ideal sector region after connecting 
two units.  



 

Fig. 5. The (a) plan view and (b) three-dimensional view of two units 
fitting the sector region. The amplitudes and phase function of 
transmission spectrum function along 0rk   for equivalent duty 

factor   equal to (c) 0
005  and (d) 0

002 . 

As shown in Fig. 5(c) and 5(d), at 0
005  and 0

002 , both 

the lowest points of the amplitude and the discontinuity points of 
the phase in the transmission spectrum function will shift. This 
implies that the central wavelength of the toroidal vortex generator 
will change. However, when 0 5r dr , the parameter 0

002 . At 

this point, the change in the central wavelength is rather small. As to 
the device we designed, 0 200r dr , thus the change in the central 

wavelength caused by fabrication is negligible. 
In conclusion, we propose a circular asymmetric grating to 

generate the toroidal vortex of light at 1550 nm. We utilized 
COMSOL to calculate the transmission spectrum function and 
obtained the intensity and phase distribution of the transmitted 
pulse. For a normal incident cylindrical vector Gaussian wave 
packet, this device is capable of producing a toroidal vortex of light 
with phase singularities located at 0r r . The feasibility of 

fabrication is analyzed . We believe this device provides a platform 
for studying spatiotemporal topology in optics  and may find 
applications in high-dimensional optical communications. 
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