
Redefining the Shortest Path Problem Formulation of the
Linear Non-Gaussian Acyclic Model: Pairwise Likelihood
Ratios, Prior Knowledge, and Path Enumeration

HANS JARETT J. ONG, Nara Institute of Science and Technology, Japan
BRIAN GODWIN S. LIM, Nara Institute of Science and Technology, Japan

Effective causal discovery is essential for learning the causal graph from observational data. The linear
non-Gaussian acyclic model (LiNGAM), a causal discovery technique, operates under the assumption of a
linear data generating process with non-Gaussian noise in determining the causal graph. Its assumption of
unmeasured confounders being absent, however, poses practical limitations. In response, empirical research
has shown that the reformulation of LiNGAM as a shortest path problem (LiNGAM-SPP) addresses this
limitation. Within LiNGAM-SPP, mutual information is chosen to serve as the measure of independence. A
challenge is introduced – parameter tuning is now needed due to its reliance on 𝑘-nearest neighbors (𝑘NN)
mutual information estimators. The paper proposes a threefold enhancement to the LiNGAM-SPP framework.

First, the need for parameter tuning is eliminated by using the pairwise likelihood ratio in lieu of 𝑘NN-based
mutual information. This substitution is validated on a general data generating process and benchmark
real-world data sets, outperforming existing methods especially when given a larger set of features. The
incorporation of prior knowledge is then enabled by a node-skipping strategy implemented on the graph
representation of all causal orderings to eliminate violations based on the provided input of relative orderings.
Flexibility relative to existing approaches is achieved. Last among the three enhancements is the utilization of
the distribution of paths in the graph representation of all causal orderings. From this, crucial properties of
the true causal graph such as the presence of unmeasured confounders and sparsity may be inferred. To some
extent, the expected performance of the causal discovery algorithm may be predicted. The aforementioned
refinements advance the practicality and performance of LiNGAM-SPP, showcasing the potential of graph-
search-based methodologies in advancing causal discovery.

CCS Concepts: • Computing methodologies→ Causal reasoning and diagnostics; •Mathematics of
computing → Causal networks; • Information systems→ Data mining.

Additional Key Words and Phrases: Causal discovery, shortest path problem, linear non-Gaussian acyclic
model, unmeasured confounders.

ACM Reference Format:
Hans Jarett J. Ong and Brian Godwin S. Lim. yyyy. Redefining the Shortest Path Problem Formulation of the
Linear Non-Gaussian Acyclic Model: Pairwise Likelihood Ratios, Prior Knowledge, and Path Enumeration.ACM
Trans. Knowl. Discov. Data. vv, n, Article aaa (January yyyy), 18 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Machine learning has achieved significant success by its ability to identify patterns in large sets of
independent and identically distributed data. However, many of these techniques face difficulty with

Authors’ addresses: Hans Jarett J. Ong, ong.hans_jarett.ol5@naist.ac.jp, Nara Institute of Science and Technology, Nara,
Japan, 630-0192; Brian Godwin S. Lim, lim.brian_godwin_sy.la6@is.naist.jp, Nara Institute of Science and Technology, Nara,
Japan, 630-0192.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© yyyy Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1556-4681/yyyy/01-ARTaaa
https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Knowl. Discov. Data., Vol. vv, No. n, Article aaa. Publication date: January yyyy.

ar
X

iv
:2

40
4.

11
92

2v
1

 [
cs

.L
G

]
 1

8
A

pr
 2

02
4

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

aaa:2 Hans Jarett J. Ong and Brian Godwin S. Lim

out-of-distribution generalization because they tend to disregard important information such as
interventions in the world, domain shifts, and temporal structure [28]. Causal models, particularly
graphical causal models [21, 22, 25], offer a solution to this problem by modeling the data generating
process itself using causal graphs. This enables causal models to generalize out of distribution and
to make interventional and counterfactual predictions. Aside from graphical causality, another
well-established framework for causal inference is the potential outcomes framework [26, 38]. This
paper, nonetheless, focuses solely on graphical causality.
While there are methods for estimating interventions and counterfactuals such as Pearl’s do-

calculus and structural causal models (SCMs) [21–23], these require knowing the causal graph
which is often unknown in practice. A straightforward approach to obtaining the causal graph is to
construct it from domain knowledge. This process is often tedious and time-consuming, especially
in settings with many features. Causal discovery methods resolve this by attempting to learn the
causal structure from data. One such causal discovery method is the Linear Non-Gaussian Acyclic
Model (LiNGAM) [29–31], which assumes a linear data generating process and noise terms with
non-Gaussian distributions.

LiNGAM also assumes the absence of unmeasured confounders [30], which can be a significant
limitation in practice. Several improvements to LiNGAM have been proposed in order to address this
issue, one of which is the formulation of LiNGAM as a shortest path problem (LiNGAM-SPP) [34, 35].
LiNGAM-SPP identifies the causal ordering of the features by selecting the path that minimizes the
mutual information of the noise terms. Although LiNGAM-SPP presents a promising solution to
the challenge of unmeasured confounders, a notable drawback is its reliance on parameter tuning.
This proves impractical in real-world scenarios where access to the underlying data generating
process is unavailable.

In light of this, we introduce an enhanced version of LiNGAM-SPP that eliminates the need for
parameter tuning and at the same time demonstrates superior performance and computational
efficiency. In addition to its primary objective of addressing unmeasured confounders, the LiNGAM-
SPP offers a unique perspective on the causal ordering problem. It allows us to view this problem
as a path search problem, where each path corresponds to a potential causal ordering. This paper
also explores other ways to leverage this path formulation beyond its initial purpose.

While the original LiNGAM-SPP papers [34, 35] have established that each possible path corre-
sponds to a causal ordering and that the shortest path corresponds to the most likely true causal
ordering, we ask: “Can we exploit other features of this path search space?” The answer is af-
firmative. We show that constrained searches where certain nodes are excluded correspond to
incorporating prior knowledge and that this method of integrating knowledge is more flexible than
those employed by LiNGAM [30] as it only imposes relative orderings.
Furthermore, we delve into another property of the path search space – the distribution of the

measure of independence from all possible causal orderings. We demonstrate that this distribution
can be used to infer key graph properties such as the presence of unmeasured confounders, graph
sparsity, and even the potential performance of causal discovery algorithms.

In summary, our contribution is threefold.

(1) Improving LiNGAM-SPP:We modify LiNGAM-SPP to eliminate the need for parameter
tuning while yielding enhanced performance and computational efficiency.

(2) Incorporating Known Relative Ordering: We expand LiNGAM-SPP to incorporate prior
knowledge, requiring only relative ordering for better adaptability.

(3) Predicting Causal Graph Properties: We develop predictive models using features de-
rived from the path distributions of LiNGAM-SPP, specifically for predicting presence of
unmeasured confounders, graph sparsity, and causal discovery algorithm performance.

ACM Trans. Knowl. Discov. Data., Vol. vv, No. n, Article aaa. Publication date: January yyyy.

Redefining the Shortest Path Problem Formulation of the Linear Non-Gaussian Acyclic Model: Pairwise Likelihood Ratios,
Prior Knowledge, and Path Enumeration aaa:3

2 PRELIMINARIES
In this section, we begin by briefly introducing graphical causality to provide context to the problem.
Next, we review LiNGAM. Finally, we discuss LiNGAM-SPP and how it generalizes LiNGAM by
framing it as a shortest path problem.

2.1 Graphical Causality
Graphical causality [21, 22, 25] uses directed acyclic graphs (DAGs) to represent causal relationships
between variables. A DAG G can represent a joint probability distribution 𝑃𝑋 either as a factorized
probability distribution or as an SCM.

The joint probability distribution 𝑃𝑋 can be represented by a factorized probability distribution
according to the Markov factorization property [25]. Using G,

𝑃 (𝑋1, . . . , 𝑋𝑛) =
𝑛∏
𝑖=1

𝑃 (𝑋𝑖 |PAG
𝑖
), (1)

where each variable 𝑋𝑖 corresponds to a node 𝑖 in G and PAG
𝑖
denotes the variables corresponding

to the parents of node 𝑖 . When the edges of G are causal, it is referred to as a causal graph.
SCMs, on the other hand, represent 𝑃𝑋 in a slightly different way. In SCMs, each node 𝑖 corre-

sponds to a variable 𝑋𝑖 , a deterministic function 𝑓𝑖 , an exogenous variable or noise term𝑈𝑖 which
are assumed to be jointly independent, and the probability distribution of 𝑈𝑖 which capture the
stochasticity of 𝑃𝑋 [22, 28]. This is given by

𝑋𝑖 := 𝑓𝑖 (PA𝑖 ,𝑈𝑖). (2)

SCMs provide a more expressive representation than causal graphs by explicitly modeling the
causal relationships using deterministic functions. In Pearl’s Ladder of Causation [23], SCMs are
placed at a higher level than causal graphs. While both can represent interventions, only SCMs can
capture counterfactual reasoning. Regardless, both of these representations require knowing the
structure of the underlying DAG G, which can be obtained through causal discovery methods. One
of such methods is LiNGAM, which is discussed in the following section.

2.2 LiNGAM
LiNGAM [29–31] assumes an SCM with linear functions, non-Gaussian noise terms, and no un-
measured confounders. Specifically, this is represented as linear equations in matrix form

x = Bx + e, (3)

where B is a strictly lower triangular adjacency matrix and the elements of e are continuous
non-Gaussian distributions with zero mean and nonzero variance. The strictly lower triangular
adjacency matrix implies that each variable is expressed as the linear combination of the variables
that precede it plus the noise term. In effect, LiNGAM aims to discover the causal ordering of the
variables. Once the causal ordering is obtained, it is possible to determine which connections are
zero using sparse regression methods [29, 39].
The original LiNGAM paper [30] uses independent components analysis (ICA) to estimate Eq.

(3), which is why it is often called ICA-LiNGAM in literature [7, 29, 31, 33]. A shortcoming of
ICA-LiNGAM, however, is that it does not guarantee convergence to a correct solution in a finite
number of steps. To address this, DirectLiNGAM [31] was proposed.

DirectLiNGAM provides a causal ordering in the same number of steps as the number of variables.
In each step, DirectLiNGAM selects the variable that is the most independent – with the smallest
mutual information – from the least squares residuals of the remaining unselected variables. Subse-
quently, DirectLiNGAM removes the effect of the selected variable by reassigning the remaining

ACM Trans. Knowl. Discov. Data., Vol. vv, No. n, Article aaa. Publication date: January yyyy.

aaa:4 Hans Jarett J. Ong and Brian Godwin S. Lim

variables with the residuals from the least squares. This process iterates until the causal order is
obtained [31].
DirectLiNGAM allows for various measures of independence [31]. While the original imple-

mentation uses a kernel-based mutual information estimator [31], it also discusses alternative
measures such as the Hilbert-Schmidt independence criterion (HSIC) [8], a 𝑘NN-based mutual
information estimator [16], and single nonlinear correlation [10]. Moreover, a measure known as
the pairwise likelihood ratio (PLR) is introduced, with its efficacy as an independence measure for
DirectLiNGAM demonstrated [12]. Despite its computational simplicity, PLR performs at least as
well and sometimes even better than ICA-LiNGAM and kernel-based DirectLiNGAM, especially
in cases with a limited number of data points relative to the data dimension or when the data is
noisy. The computational efficiency of PLR also renders it significantly faster than the kernel-based
DirectLiNGAM [12]. As of writing, the official lingam package [13] defaults to using PLR in its
implementation of DirectLiNGAM.

2.3 LiNGAM-SPP
LiNGAM-SPP was introduced as a generalization of DirectLiNGAM [34]. Unlike DirectLiNGAM,
which determines variable ordering by selecting themost independent feature at each step, LiNGAM-
SPP seeks the ordering that minimizes the total mutual information across all steps. The authors of
LiNGAM-SPP made the assumption, supported through simulations, asserting that LiNGAM-SPP
can accurately determine the causal order even in the presence of unmeasured confounders [34].
This characteristic makes LiNGAM-SPP a generalization of DirectLiNGAM, as the latter assumes
the absence of unmeasured confounders.

Fig. 1. LiNGAM-SPP: A shortest-path formulation of the causal ordering problem. Adapted from the LiNGAM-
SPP paper [34] with slight changes in notation.

LiNGAM-SPP formulates the causal ordering problem as a graph search problem [34]. Figure 1
shows an example of how this is done for the three-variable case. In this graph, nodes represent
candidate variables, edges represent some measure of independence, and the goal is to find a path
from the starting node {𝑥1, 𝑥2, 𝑥3} to the goal node {}. The selected variable and its independence can
be inferred from the subscripts of candidate variables. For instance, the edge between {𝑥1, 𝑥2, 𝑥3} →
{𝑟 (1)2 , 𝑟

(1)
3 } represents the mutual information if 𝑥1 were selected as the first variable and its edge

weight is the independence of 𝑥1 vis-à-vis the residuals. Mathematically, this mutual information is
denoted by 𝐼 (𝑥1, {𝑟 (1)2 , 𝑟

(1)
3 }), where the residual is defined as

𝑟
(𝑗)
𝑖

= 𝑥𝑖 −
𝑐𝑜𝑣 (𝑥𝑖 , 𝑥 𝑗)
𝑣𝑎𝑟 (𝑥 𝑗)

𝑥 𝑗 . (4)

ACM Trans. Knowl. Discov. Data., Vol. vv, No. n, Article aaa. Publication date: January yyyy.

Redefining the Shortest Path Problem Formulation of the Linear Non-Gaussian Acyclic Model: Pairwise Likelihood Ratios,
Prior Knowledge, and Path Enumeration aaa:5

Here, 𝑟 (𝑗)
𝑖

represents the residual when 𝑥𝑖 is regressed on 𝑥 𝑗 . Similar to DirectLiNGAM, these
residuals are stored for use in the next stage. For example, the edge {𝑟 (1)2 , 𝑟

(1)
3 } → {𝑟 (1,2)3 } has an

edge weight of 𝐼 (𝑟 (1)2 , 𝑟
(1,2)
3), the mutual information if 𝑥2 were the second variable chosen after 𝑥1,

where 𝑟 (1,2)3 is the residual when 𝑟
(1)
3 is regressed on 𝑟

(1)
2 .

The path formulation is made possible by the additive property of mutual information [16]. In
notation,

𝐼 (𝑋,𝑌, 𝑍) = 𝐼 ({𝑋,𝑌 }, 𝑍) + 𝐼 (𝑋,𝑌). (5)
This property facilitates the step-wise decomposition and calculation of mutual information to
obtain the total mutual information. In the context of LiNGAM-SPP, we use this property to
minimize 𝐼 (𝜖1, 𝜖2, . . . , 𝜖𝑝), where 𝜖𝑖 represents the noise terms of the variables according to Eq. 3.
We minimize this to satisfy the SCM property that the noise terms should be jointly independent
[22, 28]. Referring to the example from Figure 1, if the causal order is 𝑥1, 𝑥2, 𝑥3, then the total mutual
information is

𝐼 (𝜖1, 𝜖2, 𝜖3) = 𝐼 (𝑥1, {𝑟 (1)2 , 𝑟
(1)
3 }) + 𝐼 (𝑟 (1)2 , 𝑟

(1,2)
3) + 0. (6)

This is the sum of the edge weights along the path {𝑥1, 𝑥2, 𝑥3} → {𝑟 (1)2 , 𝑟
(1)
3 } → {𝑟 (1,2)3 } → {},

assuming all edges connecting to the {} node have a value of 0, i.e., 𝐼 (𝑟 (𝑗)
𝑖

, {}) = 0.
Finally, in order to look for the shortest path, LiNGAM-SPP uses Dijkstra’s algorithm with lazy

evaluation. The mutual information or the edge weights are only computed when needed. Please
refer to either LiNGAM-SPP paper [34, 35] for a more detailed description of the algorithm.

3 METHODS
In this section, we present the implementation details of our contributions. We begin by discussing
the enhancement of LiNGAM-SPP by using PLR as its mutual information estimator. Subsequently,
we show how a constrained path search, which involves skipping certain nodes, can be used to
incorporate prior knowledge of relative orderings. Finally, we discuss our approach for predicting
causal graph properties from the path distribution.

3.1 Improving LiNGAM-SPP with PLR
The initial LiNGAM-SPP paper [34] demonstrated that using the 𝑘NN-based mutual information
estimator [16] with LiNGAM-SPP led to superior performance compared to the HSIC-based Di-
rectLiNGAM. However, a limitation was that the parameter 𝑘 had to be tuned to achieve optimal
performance. A subsequent study by the same authors [35] used copula entropy [18] as the mutual
information estimator for LiNGAM-SPP, which, while achieving commendable performance, still
relied on the 𝑘NN-based mutual information estimator [16]. In this study, we propose using the
PLR as an alternative to the 𝑘NN-based mutual information estimator. Notably, PLR eliminates
the need for parameter tuning, demonstrates superior performance, and is computationally more
efficient.
PLR uses the likelihood ratio, or the difference between the log-likelihoods, to determine the

causal direction between two non-Gaussian variables. For instance, in determining the causal
direction between 𝑥 and 𝑦, both standardized to have a mean of 0 and a variance of 1, PLR computes
the difference between the log-likelihoods of both causal directions:

𝑅 =
1
𝑇
log𝐿(𝑥 → 𝑦) − 1

𝑇
log𝐿(𝑦 → 𝑥) (7)

Here, the log-likelihoods are normalized by the sample size 𝑇 . Given 𝑅, we can infer the correct
direction: if 𝑅 is positive, then 𝑥 → 𝑦; otherwise, 𝑦 → 𝑥 . If 𝑥 → 𝑦, the SCM is 𝑦 = 𝜌𝑥 + 𝑑 ,
where 𝑑 ⊥⊥ 𝑥 . On the other hand, if 𝑦 → 𝑥 , then the SCM is 𝑥 = 𝜌𝑦 + 𝑒 , where 𝑒 ⊥⊥ 𝑦. Note

ACM Trans. Knowl. Discov. Data., Vol. vv, No. n, Article aaa. Publication date: January yyyy.

aaa:6 Hans Jarett J. Ong and Brian Godwin S. Lim

that the coefficient 𝜌 is the same for both directions as it represents the correlation coefficient.
Normally, computing R requires knowing the distributions of 𝑥,𝑦, 𝑑, 𝑒 . However, Hyvärinen (2013)
[12] derived a practical approximation to compute this without prior knowledge of the distributions
using differential entropy:

𝑅 −→ −𝐻 (𝑥) − 𝐻 (𝑑/𝜎𝑑) + 𝐻 (𝑦) + 𝐻 (𝑒/𝜎𝑒) (8)

Here, 𝑑 = 𝑦 − 𝜌𝑥 and 𝑒 = 𝑥 − 𝜌𝑦 represent the estimated residuals, and 𝜎𝑑 and 𝜎𝑒 denote their
standard deviations. 𝐻 represents the differential entropy, whose closed-form can be approximated
using the approach by Hyvärinen (1998) [11]:

�̂� (𝑢) = 𝐻 (𝑣) − 𝑘1 [𝐸{log cosh𝑢} − 𝛾]2 − 𝑘2 [𝐸{𝑢 exp(−𝑢2/2)}]2 (9)

where 𝐻 (𝑣) = 1
2 (1 + log 2𝜋), and the constants have numerical values 𝑘1 ≈ 79.047, 𝑘2 ≈ 7.4129, and

𝛾 ≈ 0.37457. This closed-form approximation contributes significantly to the efficiency of PLR.
In our implementation, we incorporated code from the lingam package [13], which currently

defaults to using PLR in its DirectLiNGAM implementation. We adapted the relevant portions of
this code to integrate the PLR measure into the LiNGAM-SPP framework with slight modifications.
Specifically, the original implementation calculated the PLR independence measure𝑚𝑖 for each
feature 𝑖 as follows:

𝑚𝑖 = −
∑︁
𝑗

min(0, [𝑀]𝑖 𝑗)2 (10)

where [𝑀]𝑖 𝑗 is the PLR between feature 𝑖 and 𝑗 [12]. We introduce two modifications to adapt
it to the shortest-path framework: First, we removed the negative sign and reformulated it as a
minimization problem rather than a maximization one. Second, we normalized 𝑚𝑖 by dividing
it by the number of terms in the summation. This adjustment is crucial because failing to do so
could result in earlier steps having larger values of𝑚𝑖 because they involve more terms. Such an
imbalance in path measurements might pose challenges in identifying the shortest path.

3.2 Incorporating Known Relative Ordering
One notable feature of DirectLiNGAM is its capability to incorporate prior knowledge to enhance
overall results by allowing users to specify which directed edges are required, forbidden, or unknown
[31]. In this study, we introduce an enhancement to LiNGAM-SPP to allow for integrating prior
knowledge. Unlike DirectLiNGAM, where the exact edges need to be specified, our implementation
only requires specifying the relative order. In practical terms, this means we can assert that one
feature causes another while still allowing for the possibility of having intermediary features, or
mediators, between them.

To implement this, we modify the shortest path algorithm to selectively skip nodes that violate
the specified order. The path formulation of LiNGAM-SPP naturally lends itself to this task. Each
node in the graph (e.g., Figure 1) contains information about relative ordering, indicating which
features have been selected and which are yet to be explored. Specifically, if a feature is absent
from the subscripts, it is positioned earlier in the causal order. For instance, referencing the same
graph (Figure 1), if we assert that 𝑥1 precedes 𝑥2, then nodes with subscript 1 but not 2—such as
{𝑟 (2)3 , 𝑟

(2)
1 } and {𝑟 (2,3)1 }—should be skipped. This is because they imply that 𝑥2 comes before 𝑥1,

which violates the known ordering.

3.3 Predicting Causal Graph Properties from Path Distributions
The utility of the path formulation extends beyond finding the shortest path. We discovered that
path enumeration, representing the distribution of total path lengths of all possible orderings,
reveals crucial insights into graph properties. Specifically, we observed and will demonstrate that

ACM Trans. Knowl. Discov. Data., Vol. vv, No. n, Article aaa. Publication date: January yyyy.

Redefining the Shortest Path Problem Formulation of the Linear Non-Gaussian Acyclic Model: Pairwise Likelihood Ratios,
Prior Knowledge, and Path Enumeration aaa:7

the path distribution can be used to infer graph properties such as the presence of unmeasured
confounders (an essential assumption to verify, especially for LiNGAM), the sparsity of the graph,
and, to some extent, the reliability of PLR DirectLiNGAM and PLR LiNGAM-SPP.
We have observed, and will show in the results section, that clear patterns emerge in the path

distributions in different cases, i.e. whether or not there are unmeasured confounders and differing
graph sparsity. To take advantage of this insight – that the path distribution informs us about graph
properties – we extract standardized moments to capture the shape of the distribution. Specifically,
we compute the standardized moments of the log-transformed path lengths. These standardized
moments will then serve as features in models trained to predict the various graph properties. The
standardized moment is defined as follows:

�̃�𝑘 =
E[(𝑋 − 𝜇)𝑘]

(Var[𝑋 − 𝜇])𝑘/2
(11)

Here, �̃�𝑘 denotes the 𝑘-th standardized moment, and 𝑋 represents the log-transformed path lengths.
After extracting the standardized moments, we train the following models using various popular

machine learning algorithms (𝑘NN [24], Random Forest [24], XGBoost [3], CatBoost [5], and
AdaBoost [24]):

(1) Confounder Detector - a classifier to detect the presence of unmeasured confounders
(2) Sparsity Estimator - a classifier and a regression model to estimate graph sparsity
(3) DirectLiNGAM and LiNGAM-SPP Performance Predictors - classifier and regression

models to predict the reliability of these methods

Although enumerating all possible paths can be done through brute force, we opted for a more
efficient approach using Zero-Suppressed Binary Decision Diagrams (ZDDs). ZDDs are compact
data structures that efficiently represent a family (or set) of sparse subsets from a finite ordered
universe 𝑈 [19, 37]. In the context of graph theory, the diagram may also represent a family of
subgraphs 𝐺 ′ ⊆ 𝐺 for a graph 𝐺 = (𝑉 , 𝐸). The frontier-based search algorithm provides a way to
construct the diagram representing subgraphs, particularly paths, in a graph by setting the universe
as the set of edges𝑈 = 𝐸 [15].
While the TdZdd library is commonly used for ZDD construction and set operations, its C++

implementation posed compatibility issues with our Python pipeline. Hence, we adopted the
graphillion library instead, which offers a Python interface for ZDD operations. Although the
standardized moments were calculated post hoc in our implementation, direct computation using
ZDD operations, as demonstrated by [17], is also possible.

4 RESULTS
4.1 Improving LiNGAM-SPP with PLR
As previously discussed, we propose using PLRs as the mutual information estimator for LiNGAM-
SPP, which we refer to as PLR LiNGAM-SPP. To evaluate the performance of PLR LiNGAM-SPP,
we conducted experiments on a data generating process adapted from the DirectLiNGAM paper
[31], with modifications to incorporate simulated unmeasured confounders. This data generating
process differs from, but is more comprehensive than, the one utilized in the original LiNGAM-SPP
studies [34, 35], so the results here may be different from these studies. Furthermore, we assessed
the method’s efficacy in practical settings by testing it on real-world datasets, comparing the results
with those obtained from DirectLiNGAM. This validation demonstrates the method’s utility beyond
simulated scenarios.

ACM Trans. Knowl. Discov. Data., Vol. vv, No. n, Article aaa. Publication date: January yyyy.

aaa:8 Hans Jarett J. Ong and Brian Godwin S. Lim

4.1.1 Data Generating Process. Our data generating process was adapted from [31], which we
extended to incorporate cases with unmeasured confounders, following the framework outlined in
[9, 36], where LiNGAM with unmeasured confounders can be represented as:

x = Bx + 𝚲f + e (12)
In this equation, x represents the observed data, B is a 𝑝 × 𝑝 matrix where 𝑝 is the number of

features, f is the latent confounder vector, and e is the non-Gaussian noise. The matrix 𝚲, with
elements 𝜆𝑖 𝑗 , denotes the connection strength between 𝑓𝑗 and 𝑥𝑖 . Additionally, each unmeasured
confounder should have at least 2 children, and the matrix 𝚲 should be of full column rank [9, 36].
To implement this, we performed the following steps:

(1) We initialized the matrix B by creating a 𝑝×𝑝 lower triangular matrix with elements randomly
drawn from a uniform distribution in the interval [−1.5,−0.5] ∪ [0.5, 1.5], following [31, 32].

(2) To introduce sparsity into the graph, we applied an element-wise product with a Bernoulli
distribution matrix, following the approach of [14, 31]. The success probability parameter of
this Bernoulli distribution determines the sparsity of the graph.

(3) For modeling non-Gaussian noise and confounders, we used the set of 18 non-Gaussian
distributions used in [1, 31]. Each noise term and confounder were randomly sampled from
this set. Moreover, we scaled these distributions to ensure their variances fell within the
interval [1, 3], as in [31, 32]. In addition, we included a scaling parameter for the confounders
called "confounding strength".

(4) To construct 𝚲, we generated its columns sequentially. For each column to be added, we
first selected two variables to be influenced. Subsequently, we created a binary column
vector by sampling it from a Bernoulli distribution, where the probability of success, an
adjustable parameter, may be interpreted as the "confoundedness" of the graph. The two
selected variables and the binary vector are combined to create a vector determining which
features are to be confounded. In effect, each column of𝚲will have at least 2 nonzero elements,
even if "confoundedness" is set to 0. Finally, before appending the column to 𝚲, we make sure
that it is not equal to any of the existing columns, ensuring that 𝚲 remains full rank.

In summary, our data generating process is designed to capture a broad range of linear non-
Gaussian processes. It allows us to control various parameters such as the number of features 𝑝 ,
sample size 𝑁 , sparsity, confoundedness, confounding strength, and the number of confounders.
In the following sections where we present results of simulations, the simulations used sparsity
drawn from a uniform distribution U(0, 1), confounding strength 10𝑠 with 𝑠 drawn from U(1, 2),
the number of confounders (if present) is randomly selected from {1, 2, 3}, and confoundedness is
drawn from U(0, 1).

4.1.2 Comparing PLR LiNGAM-SPP with Existing Methods. To showcase the effectiveness of this
enhancement, we compare our proposed method, PLR LiNGAM-SPP, with other existing methods:
PLR DirectLiNGAM [12], 𝑘NN LiNGAM-SPP [34], and copent (copula entropy) LiNGAM-SPP [35].
Following the methodology in the original 𝑘NN LiNGAM-SPP paper [34], we used the following
definition for the 𝑘NN-based mutual information estimator [16]:

𝐼 (𝑋,𝑌) = 𝜓 (𝑘) −
〈
𝜓 (𝑛𝑥 + 1) +𝜓 (𝑛𝑦 + 1)

〉
+𝜓 (𝑁) (13)

where𝜓 (.) represents the digamma function. To implement this, we adapted code from the feature
selection module of the sklearn [24] library, extending it to accomodate a one-to-many variable
setting, i.e. 𝐼 ((𝑋1, 𝑋2, . . . , 𝑋𝑚−1), 𝑋𝑚), by redefining 𝑛𝑥 in Eq. 13 to represent the number of points
in the (𝑚 − 1)-dimensional space, as outlined by [16]. Meanwhile, we use the Python package
copent [18] for computing the copula entropy in copent LiNGAM-SPP. Finally, performance was

ACM Trans. Knowl. Discov. Data., Vol. vv, No. n, Article aaa. Publication date: January yyyy.

Redefining the Shortest Path Problem Formulation of the Linear Non-Gaussian Acyclic Model: Pairwise Likelihood Ratios,
Prior Knowledge, and Path Enumeration aaa:9

Table 1. Comparison of Average Ordering Errors (𝐸𝑜) Across Various Methods and Scenarios

Without Confounders With Confounders
Sample Size (N) 100 250 500 1000 100 250 500 1000

p Method

5 PWLR LiNGAM-SPP 0.29 0.28 0.23 0.21 0.46 0.45 0.42 0.39
PWLR DirectLiNGAM 0.29 0.28 0.23 0.22 0.46 0.45 0.42 0.40
Copent LiNGAM-SPP 0.40 0.41 0.38 0.39 0.43 0.40 0.43 0.42

kNN LiNGAM-SPP 0.29 0.23 0.22 0.18 0.40 0.37 0.35 0.33
10 PWLR LiNGAM-SPP 0.33 0.24 0.21 0.18 0.44 0.40 0.37 0.34

PWLR DirectLiNGAM 0.32 0.25 0.22 0.19 0.44 0.41 0.37 0.36
Copent LiNGAM-SPP 0.49 0.48 0.50 0.49 0.46 0.46 0.45 0.46

kNN LiNGAM-SPP 0.48 0.40 0.35 0.30 0.49 0.43 0.39 0.35
15 PWLR LiNGAM-SPP 0.33 0.24 0.19 0.16 0.41 0.36 0.35 0.29

PWLR DirectLiNGAM 0.32 0.25 0.21 0.18 0.42 0.37 0.33 0.32
Copent LiNGAM-SPP 0.51 0.50 0.51 0.52 0.48 0.48 0.49 0.49

kNN LiNGAM-SPP 0.56 0.51 0.45 0.38 0.54 0.49 0.46 0.40

evaluated using the same error metric as previous LiNGAM-SPP papers [34, 35], where the ordering
error, denoted as 𝐸𝑜 , is defined by:

𝐸𝑜 =
2𝑟

𝑝 (𝑝 − 1) , (14)

where 𝑝 represents the number of features, and 𝑟 is the count of pairs in the wrong order. This
essentially counts the fraction pairs in the incorrect order.
As previously mentioned, both 𝑘NN and copent LiNGAM-SPP require the tuning of the 𝑘

parameter, which is not possible in practical settings. However, for the purpose of comparison,
instead of parameter tuning, we set 𝑘 to 5%, 10%, and the square root of the sample size (𝑁), then
selected the best-performing configuration. Table 1 presents results for various scenarios. The
reported values represent the average ordering errors, 𝐸𝑜 , across 250 trials for each scenario. The
results and conclusions drawn from this comparison may differ from the previous LiNGAM-SPP
studies, since a different, albeit more general, data generating process was used for the simulations.
While 𝑘NN LiNGAM-SPP excels for 𝑝 = 5, PLR LiNGAM-SPP outperforms in most cases for

larger 𝑝 , with DirectLiNGAM closely trailing. A paired t-test reveals that, overall, PLR LiNGAM-SPP
shows a statistically significant improvement over DirectLiNGAM with a p-value of 5.22 × 10−5.

Interestingly, the performance disparity between PLR LiNGAM-SPP and DirectLiNGAM widens
as the number of features (𝑝) increases. We hypothesize that LiNGAM-SPP demonstrates greater
robustness, particularly with longer sequences, owing to its ability for backtracking and correction.
In contrast to DirectLiNGAM, which is prone to error propagation—wherein a mistake in one step
compromises subsequent steps—LiNGAM-SPP, utilizing Dijkstra’s algorithm, exhibits a mechanism
for error correction: If an incorrect feature is selected in one step, subsequent steps are more likely
to yield large mutual information values. In such instances, Dijkstra’s algorithm can backtrack to
explore alternative paths with smaller overall values.
Furthermore, Table 2 presents the average run times for the same cases. As expected, Di-

rectLiNGAM, being a greedy algorithm, exhibits the fastest runtimes. Meanwhile, the runtimes of
copent and 𝑘NN LiNGAM-SPP, both of which rely on the 𝑘NN mutual information estimator, tend
to increase with sample size (𝑁). Despite this trend, copent LiNGAM-SPP has the smallest runtimes

ACM Trans. Knowl. Discov. Data., Vol. vv, No. n, Article aaa. Publication date: January yyyy.

aaa:10 Hans Jarett J. Ong and Brian Godwin S. Lim

Table 2. Average Runtime Comparison Across Various Methods and Scenarios (Note: m represents minutes)

Without Confounders With Confounders
Sample Size (𝑁) 100 250 500 1000 100 250 500 1000

p MI Estimator

5 PWLR LiNGAM-SPP 0.44s 0.44s 0.45s 0.46s 0.43s 0.45s 0.44s 0.46s
PWLR DirectLiNGAM 0.04s 0.04s 0.04s 0.05s 0.04s 0.04s 0.04s 0.05s
Copent LiNGAM-SPP 0.06s 0.11s 0.3s 1.1s 0.07s 0.13s 0.35s 1.3s

kNN LiNGAM-SPP 0.27s 0.39s 0.72s 1.8s 0.26s 0.37s 0.65s 1.7s
10 PWLR LiNGAM-SPP 6.8s 6.9s 6.9s 6.1s 6.4s 7.2s 7s 7.6s

PWLR DirectLiNGAM 0.26s 0.27s 0.3s 0.36s 0.26s 0.27s 0.31s 0.36s
Copent LiNGAM-SPP 0.4s 0.6s 1.3s 4.6s 0.48s 0.7s 1.6s 5.5s

kNN LiNGAM-SPP 32s 45s 1.4m 3.5m 32s 44s 1.3m 3.4m
15 PWLR LiNGAM-SPP 2.2m 1.6m 1.2m 1.5m 1.4m 3.6m 2.8m 3.2m

PWLR DirectLiNGAM 0.83s 0.9s 0.98s 1.2s 0.84s 0.92s 1s 1.2s
Copent LiNGAM-SPP 1.3s 1.8s 3.4s 11s 1.6s 2.1s 4.3s 14s

kNN LiNGAM-SPP 37m 48m 84m 206m 36m 49m 85m 205m

Table 3. Performance Comparison of PLR DirectLiNGAM and PLR LiNGAM-SPP on Real-World Datasets

Known Edges DirectLiNGAM LiNGAM-MMI
Dataset p Req. Forb. Req. Forb. Req. Forb.

sachs [27] 11 20 0 10 0 10 0
yacht-hydrodynamics [6] 7 1 15 0 2 0 2

abalone [20] 8 0 17 0 4 0 4
airfoil-self-noise [2] 6 0 11 0 6 0 6
wine-quality-red [4] 12 2 11 1 7 2 2

wine-quality-white [4] 12 2 11 2 4 2 1

out of all LiNGAM-SPP methods. On the other hand, 𝑘NN LiNGAM-SPP runs notably slower; for
instance, at 𝑝 = 15, the runtime can extend to hours. However, while copent LiNGAM-SPP is faster,
its performance remains subpar. Overall, PLR LiNGAM-SPP presents the most favorable compro-
mise between runtime efficiency and performance, with the added advantage of not requiring
parameter tuning.

4.1.3 Testing on Real-world Data. To evaluate PLR LiNGAM-SPP on real-world data, we sourced
datasets from the CMU-CLeaR (Carnegie Melon University Causal Learning and Reasoning Group)
list of benchmarks, accessible on GitHub: https://github.com/cmu-phil/example-causal-datasets.
Our criteria for selection included datasets with continuous features and known ground truth.
Additionally, we restricted our choices to datasets with 𝑝 ≤ 20 due to the computational demands
of the LiNGAM-SPP method for larger values of 𝑝 .

To derive the causal graph from LiNGAM-SPP, we adapted code from the lingam package [13].
Specifically, after getting the causal order, we used the same sparse regression as DirectLiNGAM to
identify which edges are zero [31, 39]. Table 3 provides the ground truth for each dataset, indicating
required and forbidden edges, along with the edges captured by PLR DirectLiNGAM and PLR
LiNGAM-SPP. The ground truth originally included tiers, which we converted into forbidden edges,

ACM Trans. Knowl. Discov. Data., Vol. vv, No. n, Article aaa. Publication date: January yyyy.

https://github.com/cmu-phil/example-causal-datasets

Redefining the Shortest Path Problem Formulation of the Linear Non-Gaussian Acyclic Model: Pairwise Likelihood Ratios,
Prior Knowledge, and Path Enumeration aaa:11

Table 4. Computed Edges with Prior Knowledge

Without Confounders With Confounders
Prior Knowledge 0% 25% 50% 75% 0% 25% 50% 75%

p

4 9 9 8 6 9 9 8 6
8 35 34 27 18 39 40 37 22
12 107 99 81 42 184 198 174 74

given that later tiers cannot cause earlier ones. For more details about the datasets and the provided
ground truth, please refer to the GitHub repository.

The results in Table 3 reveal that for the wine-quality (red and white) datasets, PLR LiNGAM-SPP
outperforms PLR DirectLiNGAM, capturing fewer forbidden edges and more required edges. For
the other datasets, both methods yield identical results. This observation aligns with the findings
in Table 1, indicating that PLR LiNGAM-SPP is more robust for longer sequences. Moreover, this
suggests that, in most cases, PLR LiNGAM-SPP performs at least as well as PLR DirectLiNGAM.

4.2 Incorporating Known Relative Ordering

Fig. 2. Performance Impact of Prior Knowledge: Combined results for 𝑝 = 4, 8, 12.

We demonstrate the impact of incorporating prior knowledge on performance in Figure 2 and
Table 4. To quantify the extent of prior knowledge, we express it as a percentage of variables with
specified orderings. For example, if 𝑝 = 8, 50% knowledge means that the relative ordering of 4
variables is given. In this demonstration, the input is the relative ordering of 2 or more variables,
which we then convert to variable pairs, e.g., (1, 2, 3) implies (1, 2), (2, 3), (1, 3). However, it is also
possible to manually specify pairs. As expected, incorporating more prior knowledge improves
performance (Figure 2) and generally reduces the traversed number of edges (Table 4).
Relative ordering provides a more flexible way of incorporating prior knowledge, which is

valuable because we do not always know the exact edges. It is more common for us to know the

ACM Trans. Knowl. Discov. Data., Vol. vv, No. n, Article aaa. Publication date: January yyyy.

aaa:12 Hans Jarett J. Ong and Brian Godwin S. Lim

relative ordering rather than the exact edges. For instance, in most applications, it is known that
nothing can affect a person’s age, sex, and other background variables, so these must be positioned
earlier in the ordering relative to other variables. Another example is incorporating temporal
information, where features with time-related attributes may exist, and we only know the temporal
order but not necessarily the ordering among the features within the same time slice.

4.3 Predicting Causal Graph Properties from Path Distributions

Fig. 3. Log-transformed Path Distributions for Various Scenarios

Our motivation for predicting causal graph properties from path distributions is drawn from
the observations depicted in Figure 3. These histograms show the combined log-transformed
PLR path distributions for 𝑝 = 4, 5, 6 (where 𝑝 represents the number of features), using the
same data generating process and simulation configurations as detailed in preceding sections.
Notably, discernible patterns emerge in the path distributions across different scenarios: More
complex scenarios, characterized by the presence of confounders or higher graph sparsity, exhibit
an increased frequency of shorter paths. This observation suggests that determining the correct
order becomes more challenging and ambiguous under such conditions.

4.3.1 Confounder Detector. Detecting unmeasured confounders is crucial, especially for LiNGAM,
which assume the absence of unmeasured confounders. In this section, we developed a confounder
detector—a classifier for detecting the presence of unmeasured confounders. The features used
were the 3rd to the 30th standard moments of the log-transformed path distribution, and the target
is binary: 1 if there are confounders and 0 if none. We then trained different classifier models, as
shown in Table 5. Note that, for demonstration purposes, these models were not fine-tuned, so there
is still room for improving these results. Regardless, the models demonstrate good performance,
with CatBoost achieving the highest AUC of 0.78, indicating good discrimination between the
classes.

Figure 4 shows the ROC curve and the confusion matrix from CatBoost evaluated on the test set.
The optimal threshold is determined using Youden’s J statistic, which selects the threshold that
maximizes the difference between the true positive and false positive rates. This threshold can be

ACM Trans. Knowl. Discov. Data., Vol. vv, No. n, Article aaa. Publication date: January yyyy.

Redefining the Shortest Path Problem Formulation of the Linear Non-Gaussian Acyclic Model: Pairwise Likelihood Ratios,
Prior Knowledge, and Path Enumeration aaa:13

Table 5. Comparison of Confounder Detectors Trained with Various Classifiers

Model AUC Precision Recall Accuracy Optimal Threshold

𝑘NN 0.6537 0.5918 0.7365 0.6142 0.4000
Random Forest 0.7608 0.6883 0.7465 0.7042 0.3300

XGBoost 0.7665 0.6955 0.7400 0.7080 0.3278
CatBoost 0.7829 0.6957 0.7740 0.7178 0.3271
AdaBoost 0.6997 0.6557 0.7540 0.6790 0.4972

changed depending on the precision and sensitivity requirements of the use case. However, for the
optimal threshold, we see that the CatBoost model exhibited good sensitivity (77.4% recall) and
precision (69.6%).

Fig. 4. ROC Curve and Confusion Matrix of the Confounder Detector (CatBoost)

Thus, we have demonstrated that it is possible to detect unmeasured confounders with reasonable
performance using information from the shape of the path distribution captured through the
standardized moments.

4.3.2 Sparsity Estimator. Another task we explore is predicting graph sparsity using standard
moments. Using the same features as the confounder detector, we initially create a classifier
predicting whether sparsity is greater than 0.5. Table 6 presents the results from different models.
Similar to the confounder detector, CatBoost achieved the highest AUC of 0.77. While CatBoost’s
precision and recall are remarkable, AdaBoost offers slightly better precision, and XGBoost provides
slightly better recall—choosing between them depends on the specific use case. Figure 5 displays the
ROC curve and confusion matrix for CatBoost. Once again, it demonstrates good AUC, precision,
and recall, indicating the model’s effective discrimination.
In addition to the classifier, we explored creating a regression model using the same features,

with the target being the actual sparsity (ranging from 0 to 1). Table 7 compares results from
different models. Among them, AdaBoost delivered the best coefficient of determination 𝑅2 of 0.16,

ACM Trans. Knowl. Discov. Data., Vol. vv, No. n, Article aaa. Publication date: January yyyy.

aaa:14 Hans Jarett J. Ong and Brian Godwin S. Lim

Table 6. Comparison of Sparsity Estimators Trained with Various Classifiers

Model AUC Precision Recall Accuracy Optimal Threshold

𝑘NN 0.6262 0.5949 0.6054 0.5905 0.4000
Random Forest 0.7286 0.7174 0.5640 0.6660 0.3400

XGBoost 0.7551 0.6773 0.7443 0.6902 0.2161
CatBoost 0.7744 0.7043 0.7217 0.7050 0.2647
AdaBoost 0.7579 0.7285 0.6438 0.6975 0.4958

Fig. 5. ROC Curve and Confusion Matrix of the Sparsity Estimator (CatBoost)

Table 7. Regression Results for Graph Sparsity Prediction

Model 𝑅2 RMSE MAE

𝑘NN -0.0804 0.3002 0.2460
Random Forest 0.0824 0.2766 0.2240

XGBoost 0.0645 0.2793 0.2269
CatBoost 0.1027 0.2736 0.2229

AdaBoost 0.1568 0.2652 0.2252

indicating that the shape of the distribution (i.e., the standard moments) can explain some of the
variance in sparsity. AdaBoost also yields an RMSE of 0.27, reasonably estimating sparsity.

4.3.3 Performance Predictors. Thus far, we have created models for detecting confounders and
graph sparsity. These two properties are crucial for evaluating the performance of DirectLiNGAM
and LiNGAM-SPP, as cases involving confounders or sparse graphs tend to pose greater challenges
and lead to poorer performance for these methods. However, we wanted to test if it were pos-
sible to directly predict the performance of these methods, so we developed classifiers for PLR
DirectLiNGAM and PLR LiNGAM-SPP to predict whether they would produce the correct causal

ACM Trans. Knowl. Discov. Data., Vol. vv, No. n, Article aaa. Publication date: January yyyy.

Redefining the Shortest Path Problem Formulation of the Linear Non-Gaussian Acyclic Model: Pairwise Likelihood Ratios,
Prior Knowledge, and Path Enumeration aaa:15

Table 8. Comparison of Performance Predictors Trained with Various Classifiers

LiNGAM-SPP DirectLiNGAM
Model AUC Precision Recall Accuracy AUC Precision Recall Accuracy

𝑘NN 0.641 0.155 0.613 0.617 0.638 0.147 0.594 0.615
Random Forest 0.822 0.272 0.752 0.768 0.821 0.239 0.801 0.725

XGBoost 0.799 0.237 0.774 0.721 0.800 0.311 0.648 0.821
CatBoost 0.822 0.333 0.698 0.826 0.821 0.306 0.711 0.809
AdaBoost 0.790 0.292 0.672 0.799 0.789 0.269 0.711 0.777

Table 9. Regression Results for Performance Prediction

LiNGAM-SPP DirectLiNGAM
Model 𝑅2 RMSE MAE 𝑅2 RMSE MAE

𝑘NN -0.1012 0.2150 0.1674 -0.0853 0.2149 0.1672
Random Forest 0.0836 0.1961 0.1472 0.0853 0.1973 0.1487

XGBoost 0.0388 0.2008 0.1499 0.0319 0.2030 0.1521
CatBoost 0.1162 0.1926 0.1441 0.1009 0.1956 0.1465
AdaBoost 0.2109 0.1820 0.1436 0.2096 0.1834 0.1449

ordering. In other words, the target is 1 if the predicted causal order is entirely correct. Table 8
showcases the results. For the LiNGAM-SPP performance predictor, CatBoost delivered the best
AUC of 0.82. However, given the relatively small number of instances with exact correct ordering
(as it is more likely to get some of the ordering wrong than to get everything right), while sensitivity
(recall) is reasonable at 0.70, precision is not very high (0.33), indicating a significant number of
false positives.
Meanwhile, for the DirectLiNGAM performance predictor, both Random Forest and CatBoost

provided similar AUCs of 0.82, with Random Forest having the best recall at 0.80, while another
model, XGBoost, exhibited the highest precision at 0.31. Similar to the LiNGAM-SPP case, sensitivity
of themodels is good, but precision is not as high, suggesting a notable presence of false positives.We
also explored fitting regression models to the ordering score of LiNGAM-SPP and DirectLiNGAM,
with the results shown in Table 9. For the LiNGAM-SPP case, AdaBoost emerged as the best model,
achieving the highest 𝑅2 of 0.21, indicating its ability to explain some variance in the ordering
score. AdaBoost also boasted the lowest RMSE of 0.18, reasonably pinpointing the ordering score
within a reasonable range. Similarly, for DirectLiNGAM, AdaBoost also outperformed other models,
achieving an 𝑅2 of 0.21 and an RMSE of 0.18.

4.3.4 Path Sampling. One drawback of path enumeration is the factorial increase of the number
of edges with the number of features. To address the impracticality of using the entire path
distribution (especially in cases with large 𝑝), we opt for a more practical solution—sampling from
the path distribution to compute the standardized moments. As mentioned earlier, ZDDs provide
this functionality by sampling from the subset of graphs it represents. Here, we demonstrate
the tradeoff between path sample size and model performance (AUC), revealing that sufficiently
good performance for the models discussed earlier can still be achieved without resorting to the
entire path distribution. Table 10 presents the performance of the models under various path
sampling sizes. In this demonstration, we limit the training and testing to 𝑝 = 7 since 7! = 5040,

ACM Trans. Knowl. Discov. Data., Vol. vv, No. n, Article aaa. Publication date: January yyyy.

aaa:16 Hans Jarett J. Ong and Brian Godwin S. Lim

Table 10. Model Performance Under Different Path Sampling Sizes

Path Sample Confounder Sparseness Performance Predictors
Size Detector Estimator LiNGAM-SPP DirectLiNGAM

100 0.7453 0.7317 0.6811 0.6880
250 0.7498 0.7553 0.7436 0.7241
500 0.7824 0.7734 0.7772 0.7792
1000 0.7979 0.7856 0.7980 0.7969
2500 0.8183 0.7932 0.8140 0.8075

All Paths (5040) 0.8204 0.7939 0.8480 0.8538

which is sufficiently large for our evaluation. The table illustrates that the models’ AUC generally
increases with the path sample size, approaching the performance of the full path distribution.
For instance, even at a path sample size of 2500, the confounder detector and sparsity estimator
already achieved AUCs that are sufficiently close to those obtained using the full path distribution.
While the performance predictors for the same path sample size still have a slightly larger gap, the
performance is already acceptable. This demonstrates the trade-off between path sample size and
model performance. For larger values of 𝑝 , even a fraction of the possible paths may already yield
satisfactory performance.

5 CONCLUSION
In this study, we addressed a critical limitation of LiNGAM-SPP by eliminating the need for param-
eter tuning. Our modification, using the PLR [12] in place of the 𝑘NN-based mutual information
estimators from earlier LiNGAM-SPP studies [34, 35], not only eliminated the need for fine-tuning
but also demonstrated superior performance and computational efficiency on simulated data. Fur-
thermore, the modified LiNGAM-SPP we propose, PLR LiNGAM-SPP, proves to be more stable
than DirectLiNGAM, significantly outperforming it specially in simulations with more features.
Our method performs at least as well as DirectLiNGAM on real-world data and, in some cases,
outperforms it by capturing more required edges and fewer forbidden edges.

Additionally, we introduced a functionality to LiNGAM-SPP for incorporating prior knowledge.
Notably, our approach allows for specifying relative orderings rather than exact edges, offering
increased flexibility. The integration of prior knowledge improved the method’s performance and
reduced the number of edges traversed.

Furthermore, we extended the LiNGAM-SPP method by leveraging the entire path distribution.
Specifically, the standardizedmoments of the path distributionwere used as features to createmodels
that estimate certain properties of the causal graph. We created a confounder detector, a sparsity
estimator, and predictors for DirectLiNGAM and PLR LiNGAM-SPP performance. The confounder
detector and sparsity estimator showed robust performance, achieving high AUCs of 0.783 and 0.774
respectively. Meanwhile, although the DirectLiNGAM and LiNGAM-SPP performance predictors
achieved AUCs of 0.822 and 0.821 respectively, they exhibited a higher rate of false positives due to
the inherent challenge in getting the exact causal ordering.

We also acknowledge the limitations of our study, such as the intractability of path enumeration
for large 𝑝 , which led us to limit our demonstration to a small number of features. This limitation is
somewhat addressed using the sampling feature of ZDDs, but constructing the ZDD itself becomes
more difficult (requiring more memory) as 𝑝 increases.

ACM Trans. Knowl. Discov. Data., Vol. vv, No. n, Article aaa. Publication date: January yyyy.

Redefining the Shortest Path Problem Formulation of the Linear Non-Gaussian Acyclic Model: Pairwise Likelihood Ratios,
Prior Knowledge, and Path Enumeration aaa:17

In conclusion, our study proposed an enhancement to the current LiNGAM-SPP and demonstrated
other ways to leverage the path search formulation of the causal ordering problem. While further
research is needed to address limitations and provide theoretical grounding, our results offer a
promising direction for inferring properties of the causal graph from observational data.

REFERENCES
[1] Francis R. Bach and Michael I. Jordan. 2003. Kernel Independent Component Analysis. J. Mach. Learn. Res. 3, null (mar

2003), 1–48. https://doi.org/10.1162/153244303768966085
[2] Thomas Brooks, D. Pope, and Michael Marcolini. 2014. Airfoil Self-Noise. UCI Machine Learning Repository. DOI:

https://doi.org/10.24432/C5VW2C.
[3] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. 785–794. https://doi.org/10.1145/2939672.
2939785 arXiv:1603.02754 [cs].

[4] Paulo Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. 2009. Wine Quality. UCI Machine Learning Repository.
DOI: https://doi.org/10.24432/C56S3T.

[5] Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. 2018. CatBoost: gradient boosting with categorical features
support. arXiv:1810.11363 [cs.LG]

[6] J. Gerritsma, R. Onnink, and A. Versluis. 2013. Yacht Hydrodynamics. UCI Machine Learning Repository. DOI:
https://doi.org/10.24432/C5XG7R.

[7] Clark Glymour, Kun Zhang, and Peter Spirtes. 2019. Review of Causal Discovery Methods Based on Graphical Models.
Frontiers in Genetics 10 (2019). https://www.frontiersin.org/articles/10.3389/fgene.2019.00524

[8] Arthur Gretton, Kenji Fukumizu, Choon Teo, Le Song, Bernhard Schölkopf, and Alex Smola. 2007. A Kernel Sta-
tistical Test of Independence. In Advances in Neural Information Processing Systems, J. Platt, D. Koller, Y. Singer,
and S. Roweis (Eds.), Vol. 20. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2007/file/
d5cfead94f5350c12c322b5b664544c1-Paper.pdf

[9] Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. 2008. Nonlinear causal discovery
with additive noise models. In Advances in Neural Information Processing Systems, Vol. 21. Curran Associates, Inc.
https://proceedings.neurips.cc/paper/2008/hash/f7664060cc52bc6f3d620bcedc94a4b6-Abstract.html

[10] Aapo Hyvärinen. 1997. New Approximations of Differential Entropy for Independent Component Analysis and
Projection Pursuit. InAdvances in Neural Information Processing Systems, M. Jordan, M. Kearns, and S. Solla (Eds.), Vol. 10.
MIT Press. https://proceedings.neurips.cc/paper_files/paper/1997/file/6d9c547cf146054a5a720606a7694467-Paper.pdf

[11] A. Hyvärinen. 1998. New Approximations of Differential Entropy for Independent Component Analysis and Projection
Pursuit. WorkingPaper. MIT Press. 273–279 pages.

[12] Aapo Hyvärinen and Stephen M. Smith. 2013. Pairwise Likelihood Ratios for Estimation of Non-Gaussian Structural
Equation Models. Journal of Machine Learning Research 14, 4 (2013), 111–152. http://jmlr.org/papers/v14/hyvarinen13a.
html

[13] Takashi Ikeuchi, Mayumi Ide, Yan Zeng, Takashi Nicholas Maeda, and Shohei Shimizu. 2023. Python package for causal
discovery based on LiNGAM. Journal of Machine Learning Research 24, 14 (2023), 1–8. http://jmlr.org/papers/v24/21-
0321.html

[14] Markus Kalisch and Peter Bühlmann. 2007. Estimating High-Dimensional Directed Acyclic Graphs with the PC-
Algorithm. Journal of Machine Learning Research 8, 22 (2007), 613–636. http://jmlr.org/papers/v8/kalisch07a.html

[15] Jun Kawahara, Takeru Inoue, Hiroaki Iwashita, and Shin ichi Minato. 2017. Frontier-based Search for Enumerating
All Constrained Subgraphs with Compressed Representation. IEICE Transactions on Fundamentals of Electronics,
Communications, and Computer Sciences Vol. E100-A No. 9 (2017), 1773–1784.

[16] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. 2004. Estimating mutual information. Phys. Rev. E 69, 6
(June 2004), 066138. https://doi.org/10.1103/PhysRevE.69.066138 Publisher: American Physical Society.

[17] Brian Godwin Lim, Renzo Roel Tan, Jun Kawahara, Shin ichi Minato, and Kazushi Ikeda. Submitted. A Recursive
Framework for Evaluating Moments Using Zero-Suppressed Binary Decision Diagrams. IEEE Access (Submitted).

[18] Jian Ma and Zengqi Sun. 2011. Mutual information is copula entropy. Tsinghua Science and Technology 16, 1 (2011),
51–54. https://doi.org/10.1016/S1007-0214(11)70008-6

[19] Shinichi Minato. 1993. Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems. Proceedings of the
30th International Design Automation Conference (1993), 272–277.

[20] Warwick Nash, Tracy Sellers, Simon Talbot, Andrew Cawthorn, and Wes Ford. 1995. Abalone. UCI Machine Learning
Repository. DOI: https://doi.org/10.24432/C55C7W.

[21] Judea Pearl. 2000. Causality: models, reasoning, and inference. Cambridge University Press, Cambridge, U.K. ; New
York.

ACM Trans. Knowl. Discov. Data., Vol. vv, No. n, Article aaa. Publication date: January yyyy.

https://doi.org/10.1162/153244303768966085
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://arxiv.org/abs/1810.11363
https://www.frontiersin.org/articles/10.3389/fgene.2019.00524
https://proceedings.neurips.cc/paper_files/paper/2007/file/d5cfead94f5350c12c322b5b664544c1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/d5cfead94f5350c12c322b5b664544c1-Paper.pdf
https://proceedings.neurips.cc/paper/2008/hash/f7664060cc52bc6f3d620bcedc94a4b6-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/1997/file/6d9c547cf146054a5a720606a7694467-Paper.pdf
http://jmlr.org/papers/v14/hyvarinen13a.html
http://jmlr.org/papers/v14/hyvarinen13a.html
http://jmlr.org/papers/v24/21-0321.html
http://jmlr.org/papers/v24/21-0321.html
http://jmlr.org/papers/v8/kalisch07a.html
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1016/S1007-0214(11)70008-6

aaa:18 Hans Jarett J. Ong and Brian Godwin S. Lim

[22] Judea Pearl, Madelyn Glymour, and Nicholas P. Jewell. 2016. Causal inference in statistics: a primer. Wiley, Chichester,
West Sussex.

[23] Judea Pearl and Dana Mackenzie. 2018. The book of why: the new science of cause and effect. Basic Books, New York.
[24] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu

Blondel, Peter Prettenhofer, RonWeiss, Vincent Dubourg, et al. 2011. Scikit-learn: Machine Learning in Python. Journal
of Machine Learning Research 12 (2011), 2825–2830.

[25] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. 2017. Elements of causal inference: foundations and learning
algorithms. The MIT Press, Cambridge, Massachuestts.

[26] Donald B Rubin. 2005. Causal Inference Using Potential Outcomes: Design, Modeling, Decisions. J. Amer. Statist. Assoc.
100, 469 (March 2005), 322–331. https://doi.org/10.1198/016214504000001880

[27] Karen Sachs, Omar Perez, Dana Pe’er, Douglas A. Lauffenburger, and Garry P. Nolan. 2005. Causal Protein-Signaling
Networks Derived from Multiparameter Single-Cell Data. Science 308, 5721 (2005), 523–529. https://doi.org/10.1126/
science.1105809 arXiv:https://www.science.org/doi/pdf/10.1126/science.1105809

[28] Bernhard Scholkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal, and
Yoshua Bengio. 2021. Toward Causal Representation Learning. Proc. IEEE 109, 5 (May 2021), 612–634. https:
//doi.org/10.1109/JPROC.2021.3058954

[29] Shohei Shimizu. 2014. Lingam: Non-Gaussian Methods for Estimating Causal Structures. Behaviormetrika 41, 1 (Jan.
2014), 65–98. https://doi.org/10.2333/bhmk.41.65

[30] Shohei Shimizu, Patrik O Hoyer, Aapo Hyvarinen, and Antti Kerminen. 2006. A Linear Non-Gaussian Acyclic Model
for Causal Discovery. (2006), 28.

[31] Shohei Shimizu, Takanori Inazumi, Yasuhiro Sogawa, Aapo Hyvarinen, Yoshinobu Kawahara, Takashi Washio, Patrik O
Hoyer, and Kenneth Bollen. 2011. DirectLiNGAM: A Direct Method for Learning a Linear Non-Gaussian Structural
Equation Model. (2011), 24.

[32] Ricardo Silva, Richard Scheine, Clark Glymour, and Peter Spirtes. 2006. Learning the Structure of Linear Latent Variable
Models. Journal of Machine Learning Research 7, 8 (2006), 191–246. http://jmlr.org/papers/v7/silva06a.html

[33] Peter Spirtes and Kun Zhang. 2016. Causal discovery and inference: concepts and recent methodological advances.
Applied Informatics 3, 1 (Feb. 2016), 3. https://doi.org/10.1186/s40535-016-0018-x

[34] Joe Suzuki and Tianle Yang. 2022. An Genenalized LiNGAM when confunder is present. (2022).
[35] Joe Suzuki and Tian-Le Yang. 2024. Generalization of LiNGAM that allows confounding. arXiv:2401.16661 [cs.LG]
[36] Tatsuya Tashiro, Shohei Shimizu, Aapo Hyvarinen, and Takashi Washio. 2013. ParceLiNGAM: A causal ordering

method robust against latent confounders. arXiv:1303.7410 [stat.ML]
[37] Takahisa Toda, Toshiki Saitoh, Hiroaki Iwashita, Jun Kawahara, and Shin ichi Minato. 2017. ZDDs and Enumeration

Problems: State-of-the-Art Techniques and Programming Tool. Computer Software Vol. 34 No. 3 (2017), 97–120.
[38] Liuyi Yao, Zhixuan Chu, Sheng Li, Yaliang Li, Jing Gao, and Aidong Zhang. 2021. A Survey on Causal Inference. ACM

Trans. Knowl. Discov. Data 15, 5, Article 74 (may 2021), 46 pages. https://doi.org/10.1145/3444944
[39] Hui Zou. 2006. The Adaptive Lasso and Its Oracle Properties. J. Amer. Statist. Assoc. 101, 476 (2006), 1418–1429.

https://doi.org/10.1198/016214506000000735 arXiv:https://doi.org/10.1198/016214506000000735

Received xx Month 20xx; revised xx Month 20xx; accepted xx Month 20xx

ACM Trans. Knowl. Discov. Data., Vol. vv, No. n, Article aaa. Publication date: January yyyy.

https://doi.org/10.1198/016214504000001880
https://doi.org/10.1126/science.1105809
https://doi.org/10.1126/science.1105809
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1105809
https://doi.org/10.1109/JPROC.2021.3058954
https://doi.org/10.1109/JPROC.2021.3058954
https://doi.org/10.2333/bhmk.41.65
http://jmlr.org/papers/v7/silva06a.html
https://doi.org/10.1186/s40535-016-0018-x
https://arxiv.org/abs/2401.16661
https://arxiv.org/abs/1303.7410
https://doi.org/10.1145/3444944
https://doi.org/10.1198/016214506000000735
https://arxiv.org/abs/https://doi.org/10.1198/016214506000000735

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graphical Causality
	2.2 LiNGAM
	2.3 LiNGAM-SPP

	3 Methods
	3.1 Improving LiNGAM-SPP with PLR
	3.2 Incorporating Known Relative Ordering
	3.3 Predicting Causal Graph Properties from Path Distributions

	4 Results
	4.1 Improving LiNGAM-SPP with PLR
	4.2 Incorporating Known Relative Ordering
	4.3 Predicting Causal Graph Properties from Path Distributions

	5 Conclusion
	References

