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Using ete™

collision data, corresponding to an integrated luminosity of 892pb~' collected at

center-of-mass energies from 4.84 to 4.95 GeV with the BESIII detector, we search for the process
ete” — KT K™ (3770) by reconstructing two charged kaons and one D meson from (3770). No
significant signal of e"e™ — KK~ (3770) is found and the upper limits of the Born cross sections

are reported at 90% confidence level.

I. INTRODUCTION

The charmonium states (c¢) provide an excellent
experimental laboratory for understanding the non-
perturbative mechanism of quantum chromodynamics
(QCD). The conventional charmonium states, like J/,
¥(25), and (3770), have played a significant role
in studying the behavior of quarks and gluons. In
recent years, more vector states have been observed in
the charmonium energy region, which challenges the
conventional charmonium states predicted by the quark
potential model [1]. Some of them, such as 1(4040),
1 (4160) and 1)(4415), have been observed by analyzing
the line shape of the cross sections of electron-positron
annihilating into inclusive hadron states [2] that are
dominated by open-charm processes; others, such as
Y (4230), Y (4390), and Y (4660), have been discovered
via hidden-charm final states [3-6]. According to the
quark potential model [7], the masses of the 5S and
6S vector charmonium states are around 4.6 GeV and

5.2 GeV, respectively. In the mass region of 4.7 GeV to
4.95 GeV, there should be only one vector charmonium
43D, state with mass about 4.8 GeV. For the exotic
states, there are different theoretical predictions based
on various hypotheses.  For example, in Ref. [8],
a vector Z.Z. molecule is predicted, whereas lattice
QCD does not expect such a state [9]. To resolve
this controversial situation, further experimental and
theoretical investigations are required.

Recently, BESIII reported a new structure around
4.79 GeV in the line shape of the cross sections of
the process ete™ — DItD*~ [10]. This structure
appears to be consistent with the structure observed
around 4.71 GeV in BESIII’s previous measurement of
ete” — KtK~J/v [11] and is also evident in ete™ —
K2K?%J/y [12], considering the large uncertainties of
both mass and width. These new observations inspire us
to search for a new process ete™ — KT K~(3770). The
process ete” — wTw1)(3770) has been studied in the
BESIII experiment [14-16]. Searching for new high-mass



vector states involving both (3770) and kaons would
provide valuable information to determine the nature
of these new structures. Although there is no definite
theoretical prediction for efe™ — KTK (3770)
(Ref. [17] only predicts the inclusive width of Y (4710)
decays into J/i¢ or (3686)), a naive presumption
suggests that this process would be suppressed in
conventional charmonium [18] or [cs][¢5] tetraquark
assumptions [19], while an enhancement is expected in
the f5(980)1(2S5/1D) molecule model [20].

In this paper, for the first time we search for the
process eTe”™ — KT K™ (3770) by using an integrated
luminosity of 892pb~! eTe™ collision data collected at
center-of-mass (CM) energies from 4.84 to 4.95GeV
with the BESIII detector [21]. The CM energy and
corresponding luminosities are listed in Table 1.

II. BESIII DETECTOR AND MONTE CARLO

The BESIII detector [22] records symmetric ete™
collisions provided by the BEPCII storage ring [23] in
the center-of-mass energy range from 2.0 to 4.95 GeV,
with a peak luminosity of 1 x 103 cm=2s~! achieved
at /s = 3.77 GeV. The cylindrical core of the BESIII
detector covers 93% of the full solid angle and consists
of a helium-based multilayer drift chamber (MDC), a
plastic scintillator time-of-flight system (TOF), and a
CsI(T1) electromagnetic calorimeter (EMC), which are
all enclosed in a superconducting solenoidal magnet
providing a 1.0 T magnetic field. The solenoid is
supported by an octagonal flux-return yoke with resistive
plate counter muon identifier modules interleaved with
steel. The charged-particle momentum resolution at
1 GeV is 0.5%, and the specific energy loss (dE/dx)
resolution is 6% for the electrons from Bhabha scattering.
The EMC measures photon energies with a resolution of
2.5% (5%) at 1 GeV in the barrel (end cap) region. The
time resolution of the TOF barrel part is 68 ps, while
the end cap TOF system is upgraded in 2015 with multi-
gap resistive plate chamber technology, providing a time
resolution of 60 ps [24, 25].

Simulated samples produced with a GEANT4-
based [26] Monte Carlo (MC) package, which includes
the geometric description [27] of the BESIII detector
and the detector response, are used to determine the
detection efficiency and to estimate backgrounds. The
simulation includes the beam energy spread and initial
state radiation (ISR) in the e™e™ annihilations modeled
with the generator KKMC [28]. The inclusive MC sample
includes the production of open charm processes, the
ISR production of vector charmonium(-like) states, and
the continuum processes incorporated in KKMC [28]. All
particle decays are modelled with EVTGEN [29] using
branching fractions either taken from the Particle Data
Group [30], when available, or otherwise estimated with
LUNDCHARM [31]. Final state radiation (FSR) from
charged final state particles is incorporated using the

PHOTOS package [32].

IIT. EVENT SELECTION

The dominant decay channel of (3770) is
¥(3770) — DD.  For the signal process ete” —
KTK=(3770), we only reconstruct two charged kaons
and one D meson, the presence of D mesons is inferred
by the recoiling mass of K+ K ~D. To reconstruct the D
mesons, we select nine decay modes with large BF and
clean backgrounds, including three modes D — K+7—,
DY - Ktn=n% and D° — K*ntn~n~ with a summed
up to a total 26.6% branching fraction of D® decays;
six modes D~ — Ktr—n~, D — Ktr a9,
D™ = Kln=, D™ = K3r 7% D~ — Klr 7n m", and
D~ — KTK~ 7~ with a summed up to 27.2% branching
fraction of D~ decays. Throughout the whole text,
charge conjugated decays are always implied.

Charged tracks detected in the MDC are required to
be within a polar angle (6) range of |cosf| < 0.93,
where 0 is defined with respect to the z-axis, which
is the symmetry axis of the MDC. For charged tracks
not originating from K2 decays, the distance of closest
approach to the interaction point (IP) must be less than
10cm along the z-axis, |V,|, and less than 1cm in the
transverse plane, |V,,|. Particle identification (PID) for
charged tracks combines measurements of the energy
deposited in the MDC (dE/dx) and the flight time in
the TOF to form likelihoods L£(h) (h = p,K,n) for
each hadron h hypothesis. Charged kaons and pions
are identified by comparing the likelihoods for the kaon
and pion hypotheses, L(K) > L(n) and L(7) > L(K),
respectively.

Each Kg candidate is reconstructed from two
oppositely charged tracks satisfying [V, < 20 cm.
The two charged tracks are assigned as 777~ without
imposing further PID criteria. They are constrained to
originate from a common vertex and are required to have
an invariant mass within (0.486,0.510) GeV/c?. This
mass window corresponds to about three times the mass
resolution. The decay length of the Kg candidate is
required to be greater than twice the vertex resolution
away from the IP.

The 7° candidates are reconstructed via 7% — ~7.
Here, photon candidates are identified using showers in
the EMC. The deposited energy of each shower must be
more than 25 MeV in the barrel region (| cosf| < 0.80)
and more than 50 MeV in the end cap region (0.86 <
[cosf| < 0.92). To exclude showers that originate
from charged tracks, the angle subtended by the EMC
shower and the position of the closest charged track at
the EMC must be greater than 10 degrees as measured
from the IP. To suppress electronic noise and showers
unrelated to the event, the difference between the EMC
time and the event start time is required to be within [0,
700] ns. A one-constraint (1C) kinematic fit is performed
to constrain the invariant mass of photon pair to the

0



nominal mass of 7° [30], and and a list of 7° candidates
is prepared for subsequent event selection.

If there are multiple reconstructed D candidates, the
one with the closest mass to the nominal D mass [30]
is selected. A 1C kinematic fit is then carried out with
the D meson’s nominal mass constraint to improve the
resolution of the recoiling mass spectrum and to reduce
the background. The y? value of the 1C kinematic
fit is set to be less than 13. This selection criterion
is optimized by maximizing the Punzi figure of merit,

\/Ei&/? [35], where S is the number of signal from the

signal MC sample, B is the estimated background yield
from the inclusive MC samples, and «, set at 3, is the
expected significance. The K* candidates, which meet
the particle identification criteria and possess the lowest
momentum among those not utilized in D reconstruction,
are assumed to be the bachelor kaons unrelated to D or
D decays.

Even though the process ete™ — ¢1)(3770) is highly
suppressed in a electron-positron collision experiment
due to C-parity violation, we require the |Mpg+x- —
M| > 0.02 GeV/c? to reduce the backgrounds including
¢ meson in the final states, in which the Mg+ -
and M, denote the invariant mass of KTK~ and
¢ mnominal mass, respectively.  After imposing all
event selection criteria, we compare the recoiling mass
distributions, R(KTK~D) and R(K*K~), between
data and inclusive MC sample, as shown in Fig 1.
Here, R(IK*K~D) = \/(Ps+e- — Pg+ — P — Pp)?
and R(KTK™) = \/(Pote- — Pg+ — Pg-)? are the
recoil mass of the K*K~D and KTK~, respectively,
where P,+,-, Px+ and Pp are the 4-momenta of the
initial ete™ system, the K* and D, respectively. In
general, the data can be well described by the inclusive
MC sample.

IV. DATA ANALYSIS

To extract the signal yields, a two-dimensional
(2D) unbinned maximum likelihood fit is performed to
the recoiling mass distributions RM (KK ~D) versus
RM(K*TK™). The 2D probability density function
(PDF) for the signal is taken from the signal MC
simulation. ~The PDFs of background contributions
are extracted from the inclusive MC samples. The
dominant backgrounds come from KTK~DDz® and
K*tK~DDn%° processes. Neither unexpected structure
nor peaking background is found from the inclusive MC
in the fitting region. To further test the reliability
of background shape, we compare the RM(K+K~D)
and RM(K+K™) distributions (include signal region
and non-signal region) between data and MC simulation
without any requirement on the x? of D kinematic
fit. No significant difference between data and inclusive
MC sample is found. Since no significant signal of
ete” — KTK~DD is observed and the DD invariant
mass distribution of ete™ — K+ K~ DD is similar with

that of 1(3770) because of the limited phase space, this
component is ignored in the fits. Figure 1 shows the
RM(K*K~D) versus RM (K K~) fitting results at CM
energies /s = 4.84, 4.91, and 4.95 GeV.

In the fits at each energy points, the cross sections
of ete™ — KT K~4(3770) with (3770) — D°D° and
¥(3770) — DtD~ are constrained to be the same.
Therefore, after considering the detection efficiency and
BF of D decays, the ratios of the signal yields in the
charged mode relative to the neutral modes are fixed to
fa.8a = 0.46, f1.91 = 0.53, and f4.95 = 0.54 for the three
energy points, respectively.

The Born cross section is calculated as,

Nsig

2»Cim(l + 6(5))ﬁ§€singub

(1)
where N is the number of signal events in the data,
Lint is the integrated luminosity of data measured by
Bhabha events [21], eqg is the detection efficiency, Bgup
is aggregate of the BFs of 1/(3770) — DD and subsequent
D decays across the nine tag modes, ﬁ is the vacuum

oPete” = KT K 4(3770)) =

polarization factor [36], and 1 + d(s) is the radiative
correction factor defined as

1+4(s) =

where F(z,s) is radiator function calculated by QED
with accuracy 0.1% [37]. o is the cross section.

No obvious signal is found for the process
ete™ — KTK~(3770). Utilizing the Bayesian
approach [38] and incorporating the systematic

uncertainties, that will be discussed in Sec. V, we
estimate the upper limits on the Born cross sections
for eTe™ — KTK¢(3770) at 90% confidence level at
these three energy points. The corresponding likelihood
distributions are shown in Fig. 2, and the upper limit
results are listed in Table 1.

V. SYSTEMATIC UNCRTAINTY

In the measurements of the Born cross sections, the
systematic uncertainties are categorized into additive and
multiplicative uncertainties. The additive uncertainties
originate from the fit to the RM(K+TK~D) versus
RM(KTK™), that directly affects the fitting results.
The multiplicative uncertainties are associated with the
efficiencies, and will affect the cross section calculation.

The additive uncertainties originate from the 2D fits,
which are primarily influenced by the uncertainty in
the signal and background shapes. The uncertainty
associated with the signal shape is negligible. In
the nominal determination of the upper limits, the
background shape is derived from the inclusive MC
simulation. To assess the corresponding systematic
uncertainty, a 2D polynomial function is utilized as
an alternate option. The 2D polynomial function is
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Fig. 1. The recoiling mass distributions of KK~ D (left panel) and KK~ (middle panel), and their 2D scatter plot (right
panel) at /s = 4.84, 4.91, and 4.95 GeV. In the left two columns, the dots with error bars are data, the blue solid lines
represent the fitted curve, the green dotted lines represent signal shapes, the pink dashed lines present backgrounds. Notice at
\/s = 4.84, the signals are too tiny to be visible.

Table 1. Related quantities at each energy point. Here /s is the CM energy, Lin is the integrated luminosity, Nsig is the
number of signal events by the best fit, € is the efficiency including the BFs of ¥(3770) and D decays, (1 + d(s)) is the
radiative correction factor, W is the vacuum polarization, and o2 is the upper limit of the Born cross section, and NUPPe*

is the upper limit of the signal yield after considering systematic uncertainties.

V5 (GeV)| Line(Pb™!) | Neig  |[N"PPY|  eig(%) | (1+6(s))| iz | (D)
4.84  [525.16+2.78/0.00T0 %S| <4.7 [0.48740.015] 0.727 |1.056 | <1.2
4.91  |207.8241.10| 3.07%3 | <14.6 [1.47340.027| 0.757 |1.056 | <3.0
4.95 [159.284+0.84| 0.8 | <14.2(1.736+0.028| 0.772 |1.056 | <3.1
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Fig. 2. Normalized likelihood (L/Lma-) as a function of

the number of signal events. The red and blue solid curves
are the likelihood distributions before and after involving
the multiplicative systematic uncertainties, respectively. The
black arrow shows the upper limit of the number of events
at 90% confidence level after considering the systematic
uncertainties.

formed by the product of two polynomial functions
corresponding to RM(K+K~D) and RM(K+K~). For
the RM(K+K~D) dimension, we have experimented
with a constant and a lst-order polynomial function,
whereas for the RM(KTK™) dimension, we have
explored 2nd and 3rd-order polynomial functions. The
resulting upper limits based on these two background
shapes are detailed in Table 1, and the larger values are
selected for conservation.

The multiplicative uncertainties include luminosity
(Lint), K * and 7% tracking and PID, 7° reconstruction,
radiative correction factor (1+4(s)), K2 reconstruction,
1C kinematic fit, MC statistics, and quoted BFs. The
integrated luminosity is measured using Bhabha events,
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the uncertainty is about 0.6% [21]. The K tracking and
PID efficiencies are estimated by double tag hadronic
DD events [33]. The data/MC efficiency differences
are weighted by the corresponding momentum spectra
from signal MC events. The K¥* tracking and PID
systematic uncertainties are determined to be 8.5% and
2.9%, respectively. The systematic uncertainties of 7+
tracking and PID are cited from previous work, the
systematic uncertainty is 1.6% for both tracking and
PID [39]. In this work, the 7% selection criteria are
the same as those used in Ref. [40]. We assign 1.0% as
the systematic uncertainty per 7% reconstruction, which
includes the effect of photon selection, mass window
and 1C kinematic fit. The systematic uncertainty of
radiative correction factor is estimated by comparing the
difference between factors obtained by the phase space
line shape and flat line shape, and is determined to
be 10.0%, 10.5%, and 11.0% for /s = 4.84, 4.91, and
4.95 GeV, respectively. The systematic uncertainty of
quoted BFs is 10%, including the v(3770) — DD and
D subsequent decays [30]. The systematic uncertainty
of K% reconstruction is 0.2%, quoting from Ref. [33].
For the uncertainty of kinematic fit, we try to correct
the track helix parameters in the MC simulation so as
to describe the data better. The correction factors are
obtained by using control sample J/¢ — ¢f,(980) [41].
The efficiency difference before and after the correction,
1%, is taken as the systematic uncertainty of the
kinematic fit. The uncertainties of MC statistics are
31%, 1.8%, and 1.6% for /s = 4.84, 491, and
4.95 GeV, respectively. The uncertainties associated
with the physics model are estimated by comparing
the detection efficiencies with those of phase space and
ete™ — f0(980)1(3770) — KK~ 4(3770). The relative
differences, which are 15.6%, 17.6%, and 20.0% for /s =
4.84, 4.91, and 4.95 GeV, respectively, are reported as
the corresponding systematic uncertainties. Adding each
systematic uncertainty in quadrature, we obtain the total
systematic uncertainties for each energy point. All the
multiplicative systematic uncertainties are summarized
in Table 2. The blue and red lines in Fig. 2 show with and
without considering the systematic uncertainty likelihood
distribution.

VI. SUMMARY

In this paper, we search for the process ete™ —
K+tK~(3770) using 896 pb~' of ete~ annihilation
data taken at CM energies from 4.84 to 4.95 GeV. No
significant signal for ete™ — KT K ~1(3770) is observed.
Therefore, we determine the upper limits of the Born
cross sections at 90% confidence level to be 1 ~ 3 pb. We
also notice that the upper limits reported in this paper
are obviously smaller than the cross sections measured
in the process ete™ — 77~ DT D~ [16], which could
be attributed to a combination of factors, including the
suppressed phase space and strange quark production



Table 2.  Multiplicative systematic uncertainties (%) in the
measurements of the Born cross sections.

Uncertainty 4.84 GeV|4.91 GeV [4.95 GeV
Luminosity 0.6 0.6 0.6
K7 tracking 8.5 8.5 8.5
K* PID 2.9 2.9 2.9
7F tracking 1.6 1.6 1.6
7% PID 1.6 1.6 1.6
Radiative correction factor 10.0 10.5 11.0
Quoted B 10.0 10.0 10.0
K2 reconstruction 0.2 0.2 0.2
Kinematic fit 1.0 1.0 1.0
MC statistics 3.1 1.8 1.6
Physics model 15.6 17.6 20.0
Total 23.2 24.7 26.7

in efe™ — KTK9(3770). But we don’t know which
factor is dominant at present. Further measurements
based on additional data samples within and beyond this
energy region, that will be collected at BESIII in the
future, may help to clarify this matter.
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