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Purpose: In this paper we investigated emission of bremsstrahlung photons in the scattering of
protons off deuterons within the microscopic cluster models in a wide region of the beam energy
from low energies up to 1.5 GeV. Methods: Three-cluster model of bremsstrahlung is constructed
for such a reaction. Formalism of the model includes form factor of deuteron which characterizes
dependence of bremsstrahlung cross sections on structure of deuteron. This gives possibility to
investigate the structure of nuclei from analysis of bremsstrahlung cross sections. Results: We
studied dependence of the bremsstrahlung cross section on the structure of deuteron. We use three
different shapes of the deuteron wave functions. Besides, we also calculate the cross section by
neglecting internal structure of deuteron. Analysis of dependence of the cross section on such
a parameter shows the following. (1) At beam energies 145 and 195 MeV used in experiments
bremsstrahlung cross section is not sensitive visibly on variations of the shape of the deuteron wave
functions. (2) Stable difference between cross sections calculated with and without internal structure
of deuteron is observed at higher energy of beam (larger 500 MeV). (3) The spectrum is increased
as we pass from structureless deuteron (the oscillator length b=0) to the deuteron discribed by the
shell-model wave function (the realistic oscillator length) inside the full energy region of the emitted
photons. Conclusion: Our cluster model is a suitable tool to study the structure of deuteron
with high enough precision from bremsstrahlung analysis. We propose new experiments for such an
investigation.

Keywords: proton deuteron scattering, bremsstrahlung, cluster model, photon, coherent emission, form

factor of deuteron, oscillator basis, tunneling

I. INTRODUCTION

The bremsstrahlung emission of photons accompanying nuclear reactions is an important topic of nuclear physics
and has been attracted a significant interest of many researchers for a long time (see reviews [1–4]). This is explained by
that the spectra of bremsstrahlung photons are calculated on the basis of nuclear models which include mechanisms
of reactions, interactions between nuclei, dynamics, and many other physical issues. A lot of aspects of nuclear
processes, such as dynamics of nucleons in the nuclear scattering, interactions between nucleons, mechanisms of
reactions, quantum effects, deformations of nuclei, properties of hypernuclei in reactions, etc. can be included to
the model describing the bremsstrahlung emission (for example, see Refs. [5, 6] for general properties of α decay
from bremsstrahlung analysis, Ref. [7] for extraction of information about deformation of nuclei in the α decay from
experimental bremsstrahlung data, Ref. [8] for bremsstrahlung in the nuclear radioactivity with emission of protons,
Ref. [9] for bremsstrahlung in the spontaneous fission of 252Cf, Ref. [10] for bremsstrahlung in the ternary fission of
252Cf, Ref. [11] for bremsstrahlung in the pion-nucleus scattering from our research, there are many investigations of
other researchers). Note perspectives on studying electromagnetic observables of light nuclei based on chiral effective
field theory [12]. The measurements of photons with analysis provide important information on these phenomena.
Analysis of bremsstrahlung photons accompanying nuclear reactions gives possibility to extract additional infor-

mation on structure of nuclei. Study of the structure of nuclei on the basis of bremsstrahlung analysis is one of the
most ambitious aims in nuclear physics. Analyzing formalism of models, option to investigate structure of nuclei
exists, in principle, and understandable. Study of structure of nuclei is one of the most promising research directions,
taking into account that photons can be measured in experiments. However, during long period of investigations of
bremsstrahlung photons in nuclear physics, systematic study of structure of nuclei has not been realized yet. One
can explain that by difficulty in development of mathematical formalism of models, importance to reach stability of
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numerical calculations that is possible at high precision. Moreover, it turns out that not all available experimen-
tal bremsstrahlung data are well sensitive to structure of nuclei. In this regards, one can remind investigations of
bremsstrahlung emission in reactions with light nuclei within microscopic two-cluster models [13–27].
Summarizing all issues mentioned above, we see perspective problem on realization of such an idea, that is a main aim

of this paper. We would like to understand, which parameters of nuclear structure are more effective to realize such an
investigation. Of course, the best way is to construct this model on the fully quantum basis, with inclusion of realistic
nuclear interactions which were well tested experimentally. A promising way is cluster formalism for description of
structure of nuclei and nuclear process. So, as a basis of this research we will develop the fully cluster model in
combination of bremsstrahlung formalism. The most effective process for such study is proton-deuteron scattering.
We focus on construction of such a unified cluster formalism, analysis of available experimental information about
bremsstrahlung for proton-deuteron scattering. This paper is continuation of our previous research [28], where we
developed cluster model in the folding approximation in study of bremsstrahlung emission in the scattering of nuclei
with the small number of nucleons and we did not analyze possibility to extract information about structure of nuclei
from bremsstrahlung cross sections.
The paper is organized in the following way. In Sec. II cluster models of emission of the bremsstrahlung photons

in the proton-deuteron scattering is formulated. Here, we give an explicit form of the operator of the bremsstrahlung
emission, define wave functions of p + d system, calculate matrix elements of bremsstrahlung emission, define form
factors of deuteron (characterizing its structure), apply the multiple expansion approach for calculation of matrix
elements. In Sec. IV matrix elements of bremsstrahlung emission in folding approximation are reviewed (following to
formalism in Ref. [28]). In Sec. V cross section of the bremsstrahlung emission of photons is determined and resulting
formulas are summarized. In Sec. VI emission of the bremsstrahlung photons for the proton-deuteron scattering
is studied on the basis of the model above. We analyze role of the deuteron wave function and its form factor in
calculations of the cross section at different energies of relative motions between the scattered proton and deuteron.
We also describe the experimental bremsstrahlung data for the proton-deuteron scattering on the basis of the model.
Conclusions and perspectives are summarized in Sec. VII. Operator of bremsstrahlung emission in three-cluster model
is calculated in App. A. Useful details of calculation of integrals are presented in App. B. Form factor of deuteron in
three-cluster approach is derived in App. C.

II. MATRIX ELEMENTS OF BREMSSTRAHLUNG EMISSION IN THREE-CLUSTER MODEL

A. Operator of bremsstrahlung emission in three-cluster model

Consider the translationally invariant interaction of photon with three-nucleon system

Ĥe

(
kγ , ε

(α)
)
=

1

2

eh̄

mNc

A=3∑

i=1

1

2
(1 + τ̂iz) [π̂

∗
i A

∗ (i) +A∗ (i) π̂∗
i ] (1)

where

A∗ (i) = ε(α) exp {−i (kγρi)} , π̂∗
i = i∇ρi

, ρi = ri −Rcm,

Rcm =
1

A

A∑

i=1

ri, π̂i = p̂i − P̂cm, P̂cm =
1

A

A∑

i=1

p̂i.
(2)

Here, ε(α) are unit vectors of linear polarization of the photon emitted (ε(α),∗ = ε(α)), kγ is wave vector of the

photon and wγ = kγc =
∣∣kγ

∣∣c. Vectors ε(α) are perpendicular to kγ in Coulomb gauge. We have two independent

polarizations ε(1) and ε(2) for the photon with impulse kγ (α = 1, 2). Also we have properties:

[
kγ × ε(1)

]
= kγ ε

(2),
[
kγ × ε(2)

]
= − kγ ε

(1),
[
kγ × ε(3)

]
= 0,

∑

α=1,2,3

[
kγ × ε(α)

]
= kγ (ε

(2) − ε(1)). (3)

Let us introduce new variables, namely Jacobi vectors r and q

r =
1√
2
(ρ1 − ρ2) =

1√
2
(r1 − r2) , q =

√
2

3

(
ρ3 −

ρ1 + ρ2
2

)
=

√
2

3

(
r3 −

r1 + r2

2

)
,

qA =

√
1

3
(r1 + r2 + r3) =

√
3Rcm.
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Inverse relations are

r1 =
1√
2
r− 1√

6
q+

1√
3
qA, r2 = − 1√

2
r− 1√

6
q+

1√
3
qA, r3 =

√
2

3
q+

1√
3
qA. (4)

Similar relations can be written for momenta

πr =
1√
2
(π1 − π2) ,

πq =

√
2

3

(
π3 −

π1 + π2
2

)
,

πA =

√
1

3
(π1 + π2 + π3) .

Inverse relations

π1 =
1√
2
πr−

1√
6
πq+

1√
3
πA,

π2 = − 1√
2
πr−

1√
6
πq+

1√
3
πA,

π3 =

√
2

3
πq+

1√
3
πA.

Now we fix position of nucleons. We assume that vector r measures the distance between proton and neutron which
form a deuteron. We also assume that r1 is a coordinate of the first proton and r2 is a coordinate of a neutron. Vector

r3 determines the location of the second proton. With such definitions, the operator Ĥe

(
kγ , ε

(α)
)
is [see App. A for

details, also we take into account that
(
ε(α),kγ

)
= 0]

Ĥe

(
kγ , ε

(α)
)

=
1

2

eh̄

mNc

{
2√
2
exp

{
−i 1√

2
(kγr)

}(
ε(α), π∗

r

)
exp

{
i
1√
6
(kγq)

}
−

−
√

2

3
exp

{
−i 1√

2
(kγr)

}
exp

{
i
1√
6
(kγq)

}(
ε(α), π∗

q

)
+ 2

√
2

3
exp

{
−i
√

2

3
(kγq)

}(
ε(α), π∗

q

)}
.

(5)

This is the universal and model-independent form of the operator of bremsstrahlung emission for a system comprising
from two protons and one neutron. To calculated cross section of bremsstrahlung emission in the process of a proton
scattering from a deuteron, we need to formulate model which provides a realistic description of the p+d scattering in
economical way, i.e. with minimum of computations but with a reliable output. As the output, we need to determine
wave functions of the p+ d scattering at selected energies of initial and final states of bremsstrahlung emission. For
this aim, we select the resonating group method (RGM), which is the most rigorous and self-consistent realization
of a cluster model. Actually, we will use three different variants of the RGM: two- and three-cluster variants and
so-called the folding approximation. These three variants of the RGM are explained in detail in next Section.

III. TWO AND THREE-CLUSTER MODELS OF p+ d SYSTEM

Three-nucleon system 3He and its decay channel p + d will be studied in the framework of two- and three-cluster
models. In a two-cluster model, wave function of the system is

Ψ = Â
{
φ(S) (d, r)φ (p)ψE (q)

}
, (6)

where φ(S) (d, r) is the deuteron wave function from the oscillator shell-model, φ (p) is a wave function of proton
represented by its spin and isospin parts, and ψE (q) is a wave function of relative motion of proton and deuteron.

The antisymmetrization operator Â makes wave functions of the p + d system fully antisymmetric. Three-cluster
model suggests the following form for three-nucleon system

Ψ = Â {φ (n)φ (p1)φ (p2) f (r,q)} , (7)
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Wave function φ (p2) f (r,q) of relative motion of nucleons has to be determined by solving the Schrödinger equation
or the Faddeev equations.
By assuming that the shape of a deuteron does not change when proton is approaching, then three-particle wave

function can be represented as

Ψ = Â {φ (d, r)φ (p)ψE (q)} , (8)

where φ (d, r) is a wave function of the bound state of deuteron. The wave function φ (d, r) is a solution of two-body
Schrödinger equation with selected nucleon-nucleon potential.
Note that in both models, in two-cluster and three-cluster, the wave function of deuteron is assumed to be an-

tisymmetric, than the antisymmetrization operator Â in Eqs. (6) and (8) consists of the unit operator and two

permutation operators. As the results, the antisymmetrization operator Â creates in Eqs. (6) and (8) three terms
which are similar to the terms in curly brackets.

If one ignores the full antisymmetrization in Eqs. (6) and (8) by omitting the operator Â, one obtains a simple
version of the two- and three-cluster models which is called a folding approximation or folding model. In order to

avoid bulky expressions, we will use this approximation to present matrix elements of the Ĥe (kγ , εµ) between the
initial and final states of the p+ d system.
To construct wave functions of the system p+ d in different approximations (models), we need to solve the appro-

priate Schrödinger equations. For this aim we employ the algebraic version of the resonating group method (RGM),
formulated in Refs. [30], [31]. This version of the RGM uses the full basis of oscillator functions to expand wave
functions of the relative motion of clusters. As the results, the Schrödinger equation is reduced to a system of linear
algebraic equation for expansion coefficients. Besides, the algebraic version implements proper boundary conditions
in discrete, oscillator representation.
To study p+ d system in three-cluster approximation, we will employ a three-cluster model developed in Ref. [32].

A. Wave functions of p+ d system in the cluster formalism

To calculate matrix elements of the operator Ĥe

(
kγ , ε

(α)
)
we need to construct wave functions of the system p+ d.

If we neglect the Pauli principle and employ an adiabatic approximation, then wave function of the system can be
constructed in a separable form

Ψ (r,q) = φ (r)ψ (q) , (9)

where wave function of deuteron φ (r) is a solution of the two-body Schrödinger equation

(
Ĥd − Ed

)
φ (r) = 0, (10)

Ĥd = − h̄2

2m

d2

dr2
+ V̂NN (r) (11)

where m is a mass of nucleon. If the nucleon-nucleon potential VNN (r) is used in the form

V̂NN (r) =
∑

S=0,1

∑

T=0,1

V2S+1,2T+1 (r) P̂S P̂T , (12)

where P̂S (P̂T ) is the projection operator projecting onto the spin S (the isospin T ) of two-nucleon system, then in

Eq. (11) V̂NN (r) should be replace with the even component V31 (r), as deuteron has the spin S=1 and the isospin
T=1.
The wave function describing interaction of proton with deuteron obeys the following equations

(
Ĥp − Ep

)
ψ (q) = 0, (13)

where

Ĥp = − h̄2

2m

d2

dq2
+ V̂pd (q)
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and the potential energy V̂pd (q) equals

V̂pd (q) =

〈
φ (r)

∣∣∣∣∣∣

∑

i=1,2

V̂NN (r3 − ri) +
∑

i=1,2

V̂C (r3 − ri)

∣∣∣∣∣∣
φ (r)

〉
.

Here, integration is performed over vector r, and nucleon-nucleon V̂NN and Coulomb V̂C potentials are involved in

definition of V̂pd (q). Equation (13) determines both initial ψEi
(q) and final ψEf

(q) wave functions of the p + d
system.

B. Matrix elements of bremsstrahlung emission in the cluster formalism

Based on assumptions made, we have got matrix element of transition from initial to final states
〈
φ (r)ψEf

(q)
∣∣∣Ĥe

(
kγ , ε

(α)
)∣∣∣φ (r)ψEi

(q)
〉
.

One suggest to calculate this matrix elements on two steps. On the first step, we calculate the matrix element

Ĥe (q) =
〈
φ (r)

∣∣∣Ĥe

(
kγ , ε

(α)
)∣∣∣φ (r)

〉

by integrating over vector r. By using Eq. (5), we obtain

Ĥe (q) =
〈
φ (r)

∣∣∣Ĥe

(
kγ , ε

(α)
)∣∣∣φ (r)

〉
(14)

=
1

2

eh̄

mNc

{
2√
2

〈
φ (r)

∣∣∣∣exp
{
−i 1√

2
(kγr)

}(
ε(α), π∗

r

)∣∣∣∣φ (r)
〉
exp

{
i
1√
6
(kγq)

}

−
√

2

3

〈
φ (r)

∣∣∣∣exp
{
−i 1√

2
(kγr)

}∣∣∣∣φ (r)
〉
exp

{
i
1√
6
(kγq)

}(
ε(α), π∗

q

)

+ 2

√
2

3
exp

{
−i
√

2

3
(kγq)

}(
ε(α), π∗

q

)}

and then
〈
φ (r)ψEf

(q)
∣∣∣Ĥe

(
kγ , ε

(α)
)∣∣∣φ (r)ψEi

(q)
〉
= (15)

=
1

2

eh̄

mNc

{
2√
2

〈
φ (r)

∣∣∣∣exp
{
− i√

2
(kγr)

}(
ε(α), π∗

r

)∣∣∣∣φ (r)
〉〈

ψEf
(q)

∣∣∣∣exp
{

i√
6
(kγq)

}∣∣∣∣ψEi
(q)

〉

−
√

2

3

〈
φ (r)

∣∣∣∣exp
{
− i√

2
(kγr)

}∣∣∣∣φ (r)
〉〈

ψEf
(q)

∣∣∣∣exp
{

i√
6
(kγq)

}(
ε(α), π∗

q

)∣∣∣∣ψEi
(q)

〉

+ 2

√
2

3

〈
ψEf

(q)

∣∣∣∣∣exp
{
−i
√

2

3
(kγq)

}(
ε(α), π∗

q

)∣∣∣∣∣ψEi
(q)

〉}
.

Thus we need to calculate few basic integrals
〈
φ (r)

∣∣∣∣exp
{
− i√

2
(kγr)

}∣∣∣∣φ (r)
〉
, (16)

〈
φ (r)

∣∣∣∣exp
{
− i√

2
(kγr)

}(
ε(α), π∗

r

)∣∣∣∣φ (r)
〉
,

〈
ψEf

(q)

∣∣∣∣exp
{

i√
6
(kγq)

}∣∣∣∣ψEi
(q)

〉
,

〈
ψEf

(q)

∣∣∣∣exp
{

i√
6
(kγq)

}(
ε(α), π∗

q

)∣∣∣∣ψEi
(q)

〉
.

Note that with such definition of coordinates (4), the wave vectors of initial and final states are defined as ki =√
2mEi / h̄

2, kf =
√
2mEf / h̄

2, where Ei and Ef energies are in MeV and in the center of mass motion.
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C. Introduction of form factors

Introduce the following definitions of form factors of deuteron (in formalism of three-cluster model):

F1(kγ) =
〈
φ(r)

∣∣∣ exp
{
− i√

2
(kγr)

}∣∣∣φ(r)
〉
,

F2, α(kγ) =
〈
φ(r)

∣∣∣ exp
{
− i√

2
(kγr)

}
(ε(α), π∗

r )
∣∣∣φ(r)

〉
.

(17)

Then, the matrix element of emission in Eq. (15) is rewritten as
〈
ΨEf

(r,q)
∣∣∣ Ĥγ(kγ , ε

(α))
∣∣∣ΨEi

(r,q)
〉

=

=
1

2

e h̄

mNc

{ 2√
2

〈
ψEf

(q)
∣∣∣ exp

{ i√
6
(kγq)

}∣∣∣φEi
(q)
〉
· F2, α −

−
√

2

3

〈
ψEf

(q)
∣∣∣ exp

{ i√
6
(kγq)

}
(ε(α), π∗

q)
∣∣∣ψEi

(q)
〉
· F1 +

+ 2

√
2

3

〈
ϕEf

(q)
∣∣∣ exp

{
−i
√

2

3
(kγq)

}
(ε(α), π∗

q)
∣∣∣ϕEi

(q)
〉}
,

(18)

where

ΨEi
(r,q) = φ (r)ψEi

(q) , (19)

ΨEf
(r,q) = φ (r)ψEf

(q) . (20)

We introduce the following notations for matrix elements as

I1(α) =

〈
ϕEf

(q)

∣∣∣∣ e−iαkγq
∂

∂q

∣∣∣∣ϕEi
(q)

〉

q

, I2(α) =
〈
ϕEf

(q)
∣∣∣ e−iαkγq

∣∣∣ϕEi
(q)
〉
q
. (21)

Then, the full matrix element (18) can be rewritten as
〈
ΨEf

(r,q)
∣∣∣ Ĥγ(kγ , ε

(α))
∣∣∣ΨEi

(r,q)
〉

=

=
1

2

e h̄

mNc

{ 2√
2
· I2
(−1√

6

)
· F2, α −

√
2

3

〈
ψEf

(q)
∣∣∣ exp

{ i√
6
(kγq)

}
(ε(α), π∗

q)
∣∣∣ψEi

(q)
〉
· F1 +

+ 2

√
2

3

〈
ϕEf

(q)
∣∣∣ exp

{
−i
√

2

3
(kγq)

}
(ε(α), π∗

q)
∣∣∣ϕEi

(q)
〉}
.

(22)

Taking into account

πq = −ih̄ d

dq
, π∗

q = ih̄
d

dq
, (23)

we rewrite
〈
ψEf

(q)
∣∣∣ exp

{
±i α′ (kγq)

}
(ε(α), π∗

q)
∣∣∣ψEi

(q)
〉
= ih̄ ε(α) I1(∓α′). (24)

So, the full matrix element (22) obtains the following form as
〈
ΨEf

(r,q)
∣∣∣ Ĥγ(kγ , ε

(α))
∣∣∣ΨEi

(r,q)
〉

=

= − 1

2

e h̄

mNc

{ 2√
2
F2, α · I2

(−1√
6

)
− ih̄

√
2

3
F1 ε

(α) I1

(
− 1√

6

)
+ 2 ih̄

√
2

3
ε(α) I1

(√2

3

)}
.

(25)

Note that vectors ε(α) are perpendicular to kγ in Coulomb gauge. Taking this property into account, we obtain

(ε(α),kγ) = 0. (26)

In the case of zero form factor F2, α = 0, the matrix element is simplified as

〈
ΨEf

(r,q)
∣∣∣ Ĥγ(kγ , ε

(α))
∣∣∣ΨEi

(r,q)
〉

= − i
1

2

√
2

3

e h̄2

mNc

{
F1 εµ I1

(
− 1√

6

)
− 2 ε(α) I1

(√2

3

)}
. (27)
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D. Multipole expansion

In further calculation of Eq. (27) it needs to find integrals (21). Applying the multipolar expansion, these integrals
obtain form [see App. B, Eqs. (B3), (B6)]

I1(α) =

〈
ϕEf

(q)

∣∣∣∣ e−iαkγq
∂

∂q

∣∣∣∣ϕEi
(q)

〉

q

=

√
π

2

∑

lγ=1

(−i)lγ
√
2lγ + 1

∑

µ=±1

ξµ µ ×
[
pMlγµ(α) − iµ pElγµ(α)

]
,

I2(α) =
〈
ϕEf

(q)
∣∣∣ e−iαkγq

∣∣∣ϕEi
(q)
〉
q
=

√
π

2

∑

lγ=1

(−i)lγ
√
2lγ + 1

∑

µ=±1

[
µ p̃Mlγµ(α)− i p̃Elγµ(α)

]
,

(28)

where [see Eqs. (B4), (B7)]

pMlγµ(α) = −IM (0, lf , lγ , 1, µ) · J1(α, 0, lf , lγ),

pElγµ(α) =

√
lC + 1

2lγ + 1
· IE(0, lf , lγ , 1, lγ − 1, µ) · J1(α, 0, lf , lγ − 1) −

−
√

lγ
2lγ + 1

· IE(0, lf , lγ , 1, lγ + 1, µ) · J1(α, 0, lf , lγ + 1),

(29)

p̃Mlγµ(α) = Ĩ (0, lf , lγ , lγ , µ) · J̃ (α, 0, lf , lγ),

p̃Elγµ(α) =

√
lγ + 1

2lγ + 1
Ĩ (0, lf , lγ , lγ − 1, µ) · J̃ (α, 0, lf , lγ − 1) −

√
lγ

2lγ + 1
Ĩ (0, lf , lγ , lγ + 1, µ) · J̃ (α, 0, lf , lγ + 1),

(30)
and [see Eqs. (B5), (B8)]

J1(α, li, lf , n) =

+∞∫

0

dRi(r, li)

dr
R∗

f (lf , r) jn(α kr) r
2dr,

J̃ (α, li, lf , n) =

+∞∫

0

Ri(r)R
∗
f (l, r) jn(αkγr) r

2dr.

(31)

Here, ξµ are vectors of circular polarization with opposite directions of rotation (see Ref. [33], (2.39), p. 42). Also we
have the following properties [see App. B, Eqs. (B20), (B21)]

∑

α=1,2

ε(α) · I1 =

√
π

2

∑

lγ=1

(−i)lγ
√
2lγ + 1

∑

µ=±1

µhµ
(
pMlγ ,µ + pElγ ,−µ

)
,

(εx + εz)
∑

α=1,2

[
I1 × ε(α)

]
=

√
π

2

∑

lγ=1

(−i)lγ
√
2lγ + 1

∑

µ=±1

µhµ
(
pMlγ ,µ − pElγ ,−µ

)
,

(32)

where [see App. B, Eqs. (B10)]

h± = ∓1± i√
2
, h− + h+ = −i

√
2,

∑

µ=±1

µhµ = −h− + h+ = −
√
2,

∑

α=1,2

ε(α),∗ = h−1ξ
∗
−1 + h+1ξ

∗
+1. (33)

E. Case of li = 0, lf = 1, lγ = 1

In a case of li = 0, lf = 1, lγ = 1 integrals (28) are simplified to [see App. B, Eqs. (B22)]

I1 = −i
√

3π

2

∑

µ=±1

ξµ µ ×
[
pMlγ=1, µ − iµ pElγ=1, µ

]
,

I2 = −i
√

3π

2

∑

µ=±1

[
µ p̃Mlγ=1, µ − i p̃Elγ=1, µ

]
,

(34)
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where matrix elements are simplified to [see details in App. B, Eqs. (B25)]

pMlγµ = 0, pElγµ =
1

6

√
1

π
· J1(0, 1, 0)−

47

240

√
1

2π
· J1(0, 1, 2),

p̃M1µ(c) =
µ

2
√
2π

· J̃ (c, 0, 1, 1), p̃E1µ(c) = 0.

(35)

We substitute these solutions to Eq. (34) and obtain [see App. B, Eqs. (B25), (B26)]:

I1 = −1

6
·
√

3

2

∑

µ=±1

ξµ ·
(
J1(0, 1, 0)−

47

40

√
1

2
· J1(0, 1, 2)

)
. (36)

Integrals do not depend on vectors of polarization. So, we simplify further:

I1 = −1

6
·
√

3

2

(
J1(0, 1, 0)−

47

40

√
1

2
· J1(0, 1, 2)

)
·
(
ξµ=+1 + ξµ=−1

)
. (37)

Also from Eqs. (34) we find

I2(α) = −i
√
3

2
J̃ (α, 0, 1, 1). (38)

F. Action on vectors of polarization

Now we calculate summation over vectors of polarization. We use definition of vectors of polarizations as in
Eqs. (57)–(58) in Ref. [28] (see App. C in that paper for details):

ε(1) =
1√
2

(
ξ−1 − ξ+1

)
, ε(2) =

i√
2

(
ξ−1 + ξ+1

)
, (39)

and

ε(1) ·
(
ξµ=+1 + ξµ=−1

)
= 0, ε(2) ·

(
ξµ=+1 + ξµ=−1

)
= − i

√
2. (40)

On such a basis, from Eq. (37) we find:

ε(1) · I1 = 0, ε(2) · I1(α) = i

√
3

6
·
(
J1(α, 0, 1, 0)−

47

40

√
1

2
· J1(α, 0, 1, 2)

)
. (41)

Now we can recalculate the matrix element (27) as (at µ = 1 it equals to zero)

〈
ΨEf

(r,q)
∣∣∣ Ĥγ(kγ , ε

(α=2))
∣∣∣ΨEi

(r,q)
〉

=

√
2 e h̄2

12mNc

{
F1

[
J1

(
− 1√

6
, 0, 1, 0

)
− 47

40

√
1

2
· J1

(
− 1√

6
, 0, 1, 2

)]
−

− 2
[
J1

(√2

3
, 0, 1, 0

)
− 47

40

√
1

2
· J1

(√2

3
, 0, 1, 2

)]}
,

(42)

where integrals are defined in Eqs. (31).

G. Resonating group method

To study structure of two- and -three-cluster systems, we use the algebraic version of the resonating group method,
which was formulated in Refs. [30], [31]. Two main merits (advantages) of the algebraic version of the RGM are: (i)
it employ a full set of oscillator functions to expand wave functions of relative motion of clusters and, thus, reduces
the many-particle Schrödinger equation a set of linear algebraic equations, and (ii) it implements proper boundary
conditions for bound and continuous-spectrum states in discrete, oscillator space.
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FIG. 1: (Color online) Wave function of deuteron as a function of coordinate r

H. Wave function of deuteron

Wave function of the bound state of deuteron was obtained with the Minnesota NN potential [29]. This potential
creates the bound state at Ed = −2.202 MeV, which has to be compared with experimental value Ed = −2.225 MeV.
Wave function of deuteron is shown in Fig. 1.
It has a long exponential tail

φEd,L=0 (r) ≈ exp {−κr} /r,
where

κ =

√
2m |Ed|
h̄2

=

√
2× 2.202

41.47
= 0.325879 fm−1.

Recall that the vector Jacobi r is measured in fm.
It is interesting to note that the function (16) is an exact solution of two-body problem with the contact interaction

V (r) = V0δ (r) .

This interaction is also called as the zero-range interaction and is widely used in atomic and nuclear physics (for
more details see Ref. [34]). We will use the normalized to unity function

φ (r) =
√
2κ exp {−κr} /r, (43)

to approximate correct wave function of deuteron.
To solve the Schrödinger equations (10) and (13) for deuteron and p + d system, wave functions φEd,l (r) and

ψE,L (q) are expanded over basis of oscillator functions

φEd,l (r) =

N max∑

n=0

C(Ed,l)
n Φnl (r, b) , (44)

ψE,L (q) =

N max∑

n=0

C(E,L)
n ΦnL (q, b) , (45)
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where Φn (r, b) is an oscillator function

ΦnL (r, b) = (−1)
n
NnL b−3/2ρLe−

1

2
ρ2

LL+1/2
n

(
ρ2
)
, ρ =

r

b
(46)

and b is the oscillator length, and

NnL =

√
2Γ (n+ 1)

Γ (n+ L+ 3/2)
.

A set of expansion coefficients {Cn} can be considered as deuteron wave function in oscillator representation. In Fig. 2
we show deuteron wave function in oscillator representation. This wave function was constructed with 200 oscillator

FIG. 2: (Color online) Wave function of deuteron in oscillator representation

functions (N max = 199), however as one can see that only a small number of basis functions (0≤ n ≤25) give a
noticeable contribution.
In the shell-model approximation, the wave function of the deuteron bound state is a Gaussian function

φ (r) =
1

b3/2
exp

{
−1

2

(r
b

)2}
. (47)

Form factor of deuteron is then
〈
φ (r)

∣∣∣∣exp
{
− i√

2
(kγr)

}∣∣∣∣φ (r)
〉

= exp

{
−1

8
(kγb)

2

}
. (48)

If we take the deuteron wave function in the form

φ (r) =
√
2κ exp {−κr} /r, (49)

then we obtain deuteron form factor

〈
φ (r)

∣∣∣∣exp
{
− i√

2
(kγr)

}∣∣∣∣φ (r)
〉

=
2
√
2κ

kγ
arctan

(
kγ

2
√
2κ

)
. (50)

Form factor from Eq. (50) as function of kγ demonstrates slower decreasing comparing to the form factor of the
shell mode (50)
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IV. MATRIX ELEMENTS IN THE FOLDING APPROXIMATION

Matrix element of bremsstrahlung emission of photons for two s-clusters (i.e., for clusters with 1 ≤ Aα ≤ 4 or for
n, p, d, 3H, 3He, 4He) can be written down as [see Ref. [28], for details]

〈
ΨEf lf

∣∣∣Ĥγ(kγ , ε
(α))
∣∣∣ΨEili

〉
fold

=

=
eh̄

mNc

{√
A2

A1A

〈
REf lf (r)Ylfmf

(r̂i)

∣∣∣∣exp
{
−i
√

A2

A1A
(kγ , r)

}
(ε(α), π̂)

∣∣∣∣REili(r)Ylimi
(r̂i)

〉
F1−

−
√

A1

A2 A

〈
REf lf (r)Ylfmf

(r̂i)

∣∣∣∣exp
{
i

√
A1

A2A
(kγ , r)

}
(ε(α), π̂)

∣∣∣∣REili(r)Ylimi
(r̂i)

〉
F2

}
.

(51)

In the standard approximation of resonating group method, form factor Fn equals (n = 1, 2)

Fn =
〈
Φn(An)

∣∣∣F (n)
0

∣∣∣Φn(An)
〉
= Zn exp

{
−1

4

An − 1

An
(k, b)2

}
, (52)

with b is oscillator length. Using property (24):
〈
ψEf

(q)
∣∣∣ exp

{
±i α′ (kγq)

}
(ε(α), π∗

q)
∣∣∣ψEi

(q)
〉
= ih̄ ε(α) I1(∓α′), (53)

matrix element is rewritten as
〈
ΨEf lf

∣∣∣Ĥγ(kγ , ε(α))
∣∣∣ΨEili

〉
fold

= i
eh̄2

mNc
ε(α)

{√
A2

A1A
I1

(√ A2

A1 A

)
F1 −

√
A1

A2 A
I1

(
−
√

A1

A2A

)
F2

}
. (54)

Now we take into account property (41)

ε(1) · I1 = 0, ε(2) · I1(α) = i

√
3

6
·
(
J1(α, 0, 1, 0)−

47

40

√
1

2
· J1(α, 0, 1, 2)

)
,

and obtain
〈
ΨEf lf

∣∣∣Ĥγ(kγ , ε
(α))
∣∣∣ΨEili

〉
fold

=

√
3 eh̄2

6mNc

{√ A2

A1 A

[
J1

(√ A2

A1A
, 0, 1, 0

)
− 47

40

√
1

2
J1

(√ A2

A1 A
, 0, 1, 2

)]
F1 −

−
√

A1

A2A

[
J1

(
−
√

A1

A2A
, 0, 1, 0

)
− 47

40

√
1

2
J1

(
−
√

A1

A2A
, 0, 1, 2

)]
F2

}
.

(55)
In particular, for proton-deuteron scattering we have (we choose the first index — for proton: A1 = 1, F1 = Fp, the
second index — for deuteron: A2 = 2, F2 = FD):

〈
ΨEf lf

∣∣∣Ĥγ(kγ , ε
(α))
∣∣∣ΨEili

〉
fold

=

√
3 eh̄2

6mNc

{√2

3

[
J1

(√2

3
, 0, 1, 0

)
− 47

40

√
1

2
J1

(√2

3
, 0, 1, 2

)]
Fp −

−
√

1

6

[
J1

(
−
√

1

6
, 0, 1, 0

)
− 47

40

√
1

2
J1

(
−
√

1

6
, 0, 1, 2

)]
FD

}
.

(56)

For further analysis it is more convenient to rewrite this solution as

〈
ΨEf lf

∣∣∣Ĥγ(kγ , ε
(α))
∣∣∣ΨEili

〉
fold

=

√
2 eh̄2

12mNc

{[
J1

(
−
√

1

6
, 0, 1, 0

)
− 47

40

√
1

2
J1

(
−
√

1

6
, 0, 1, 2

)]
FD −

− 2
[
J1

(√2

3
, 0, 1, 0

)
− 47

40

√
1

2
J1

(√2

3
, 0, 1, 2

)]
Fp

}
.

(57)

V. DEFINITION OF CROSS SECTION OF BREMSSTRAHLUNG EMISSION OF PHOTONS AND

RESULTING FORMULAS

Cross-section of bremsstrahlung emission of photons is [28]

d σ(1)

dΩA1
dΩA2

dΩγ
=

Eγ

(2πh̄)4

(p1f
h̄c

) sin2 θ1 sin2 θ2
sin5(θ1 + θ2)

× 1

2J + 1

∑

µMi

∣∣∣
〈
ΨẼL̃

∣∣∣Ĥγ(kγ , ε
(α))
∣∣∣ΨEL

〉∣∣∣
2

, (58)
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where p1 is the momentum of the incident nucleus (cluster) A1, θ1 and θ2 are scattering angels of the first and second
clusters in laboratory frame.
We write down final formulas of matrix elements of bremsstrahlung emission in the proton-deuteron scattering. It

turn out that in first approach [we will call it as the three-cluster model, see Eq. (27)] and in the second approach [we
will call it as the folding model, see Eq. (57)] matrix elements are the same:

〈
ΨEf

(r,q)
∣∣∣ Ĥγ(kγ , ε

(α=2))
∣∣∣ΨEi

(r,q)
〉

=

√
2 e h̄2

12mNc

{[
J1

(
− 1√

6
, 0, 1, 0

)
− 47

40

√
1

2
· J1

(
− 1√

6
, 0, 1, 2

)]
F1 −

− 2
[
J1

(√2

3
, 0, 1, 0

)
− 47

40

√
1

2
· J1

(√2

3
, 0, 1, 2

)]}
.

(59)

Integrals are [see Eqs. (31)]

J1(α, li, lf , n) =

+∞∫

0

dRi(r, li)

dr
R∗

f (lf , r) jn(α kγr) r
2dr. (60)

VI. ANALYSIS, NUMERICAL CALCULATIONS

To understand the role of the deuteron structure, we are going to perform three (four) types of calculations. They
are distinguished by the wave function of the deuteron and are labeled by indexes 0, (C), S, and R. The index 0
means that the deuteron is considered as a structureless particle and, thus, its internal structure is ignored. (If the
wave function of deuteron is approximated by the case of the contact interaction (43), we will use the index C). The
index S stands for the shell-model approximation (47) of the wave function of deuteron, and the last case R means
that the realistic wave function (45) of deuteron is involved in calculations.

A. Deuteron wave functions and form factor

The key element of our model is a wave function of the deuteron bound state. This function will determine the
interaction of proton and deuteron. Thus we start our analysis from deuteron wave functions in different model and
approximations. In Figs. 3 and 4 we display wave functions of deuteron obtained with the Minnesota potential.
The shell model (SM) and cluster model (CM) visually are very similar. However, displaying wave functions in a
logarithmic scale, we see that they have quite different asymptotic behavior.
Deuteron form factors calculated within the shell model and cluster model are shown in Figs. 5 and 6.
If the zero-range interaction is used to determine wave function of deuteron (43), then the deuteron form factor is

(see App. C)

F1(kkkγ) =
2
√
2κ

kγ
arctan

(
kγ

2
√
2κ

)
. (61)

This form factor is shown in Figs. 7.

B. Wave functions of p+ d system

In Fig. 8 we display phase shifts of the elastic p + d scattering. One can see that the strongest interaction is
observed in the 1/2+ state, where the nucleus 3He has a bound state. For energy E >100 MeV, all displayed phase
shifts are very close to zero. This is an additional indication that potential of the p+ d interaction is weak and that
the Born approximation can be used for this energy range.
We constructed wave functions of the continuous spectrum states using diagonalization procedure of the 100×100

matrix of Hamiltonian. Details and justification of this procedure can be found, for example, in Refs. [38], [39].
Fig. 9 shows wave functions of 1/2+ states as a function of distance between proton and deuteron. In Fig. 10 we
display wave functions for the 1/2− state. Note that the states 1/2+ and 1/2− can be connected by dipole transition
operator. General features of the displayed wave functions are that they have large amplitude at relatively small
distances between clusters (r <5 fm) and that they slowly decreasing as 1/r.
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FIG. 3: Wave functions of deuteron obtained in the shell model (SM) and cluster model (CM).

C. Different NN potentials

In this section we consider how the shape of nucleon-nucleon potential affects phase shifts of the elastic p + d
scattering. For this aim we involved in our calculations two new NN potentials. They are the Volkov potential
(VP) [35] and modified Hasegawa-Nagata potential (MHNP) [36, 37]. These potentials alongside with the Minnesota
potential are often used in different cluster models. It is demonstrated in Fig. 11, where the even components V31 and
V13 of three nucleon-nucleon potentials are displayed, that the MHNP has the largest repulsive core at small distance
between nucleons, the VP has smallest repulsive core and the MP represents intermediate case among three selected
potentials.
In Fig. 12 we display phase shifts of the elastic p+ d scattering in the 1/2+ state. We can see that the phase shifts

slightly depend on the shape of the nucleon-nucleon potentials especially at the energy region E <50 MeV. At the
energy range 150< E <200 differences of phase shifts for different potentials are less than 20 degrees.
As a results, wave functions of the elastic p + d scattering obtained with different NN potentials are very close to

one other. In Fig. 13 we display wave functions of p+ d system for the energy 147 MeV. The noticeable difference of
wave functions is observed at small distances r < 1 fm.
Let us consider the 1/2− states in 3He and in the p + d elastic scattering. The 1/2− states can be connected to

the 1/2+ states by the dipole transition operator. In Fig. 14 we display phase shifts of p+ d elastic scattering in the
1/2− states, calculated with three nucleon-nucleon potentials. At low energy range, phase shifts exhibit resonance-like
behavior, when phase shifts rapidly growing with increasing of energy E. However, amplitudes of growing are small,
besides we estimate that the widths of such resonance states are larger than 20 MeV and their energies are less then
8 MeV. Thus, such states cannot be considered as resonance states.
This conclusion can be partially confirmed by behavior of wave functions in the 1/2− states. In Fig. 15 we display

wave functions obtained with three nucleon-nucleon potentials at the energy E=12.7 MeV and in Fig. 16 are shown
wave functions for larger value of the energy E=147 MeV. As we can see, the wave functions at relatively small and
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FIG. 4: Asymptotic form of the deuteron wave functions constructed in the shell model (SM) and cluster model (CM).

large energies have noticeable maxima at relatively small distances (0.8< r <2.5 fm) between proton and deuteron.
We may conclude that maxima of wave functions in the 1/2− state at small distances are due to interplay between
effects of nucleon-nucleon and Coulomb interactions from one side and effects of the Pauli principle from another side.

D. Dependence of the bremsstrahlung cross section on the structure of deuteron

We are interesting in question if the bremsstrahlung cross section is dependent on the structure of deuteron. In
the previous section we have discussed several forms of the deuteron wave functions. Two of them are presented in
analytic form, and one of them is obtained numerically by solving two-body Schrödinger equation with the Minnesota
potential. The deuteron wave function of the oscillator shell model, displayed in Eq. (47), allows us in a simple way
to study effects of the deuteron structure on the bremsstrahlung cross section. Indeed, this wave function depends on
the oscillator length b. Recall, that the oscillator length is selected to minimize the ground state energy of deuteron
with selected potential. If in Eq. (47) put b=0, then we obtain structureless deuteron or, in other words, we disregard
of the internal structure of deuteron.
If to suppose existence of such a dependence, it can be small or even not visible for analysis. If this is correct, then

it is unclear, if this is not so at other energies. In particular, we would like to find energies, where the spectra are
already dependent visibly on the internal structure of deuteron.
Some information about the internal structure of deuteron is included in its form factor, which is presented in the

folding and cluster approaches. The matrix element of bremsstrahlung emission in both approaches is defined by
Eq. (59) as (Fp = 1), where we will consider form factor of deuteron in folding approach given by Eq. (52) [ZD = 1,
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FIG. 5: Form factors of deuteron determined in the shell and cluster models

AD = 2 for deuteron]

FD = ZD exp

{
−1

4

AD − 1

AD
(k, b)2

}
= exp

{
−1

8
(k, b)2

}
(62)

with the oscillator length b.
Results of such calculations at different energies of beam are presented in Fig. 17. From such results we conclude

the following.

1. Difference between cross sections calculated with included structure of deuteron and without it at the same
beam energy becomes visible and stable at higher energy of beam (larger 500 MeV).

2. Calculation with realistic wave functions (with included structure of deuteron) gives larger cross section of
bremsstrahlung than cross section without inclusion of structure of deuteron.

3. Experiment [40] at used beam energy of 145 MeV is not effective for such a study (it is demonstrated by cross
sections at 1.5 GeV in comparison with cross section at 145 MeV in this figure). At the same time, possible
new measurement of bremsstrahlung cross sections but at higher energies (about 0.5–1.5 GeV of beam energy)
will allow to extract information about structure of deuteron (realistic oscillator length, and wave function).

4. More precise information about structure of deuteron can be obtained if to organize unified experiments in
measurement of bremsstrahlung cross section at two different energies of beam (for example, at 145 MeV and
500 MeV). Then, our model will estimate ratio between two bremsstrahlung cross sections at such energies and
provide value about realistic oscillator length with high precision.
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FIG. 6: Form factors of deuteron in logarithmic scale calculated in the shell and cluster models
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FIG. 7: Form factor F1 (in left panel) and square of this form factor F 2
1 (in right panel) at κ = 0.325879 fm-1.

E. Dependence of bremsstrahlung cross section on new form factor of deuteron

Now we will analyze how much the spectrum is changed if to use new form factor of deuteron instead of previous
calculations. So, we have the matrix element in form (59) as with form factor of deuteron given by Eq. (61). Note
that this form factor of deuteron does not include the oscillator length. Results of such calculations with new form



17

FIG. 8: Phase shifts of the elastic p+ d scattering, obtained with the MP for different Jπ states

factor are presented in Fig. 18. From these calculations one can see that inclusion of new form factor reduces full
cross section a little. But, general dependence of the cross section on this form of form factor is observed at higher
energies.

VII. CONCLUSIONS AND PERSPECTIVES

In this paper we investigated emission of bremsstrahlung photons in the scattering of protons off deuterons on the
fully cluster basis in a wide region of the beam energy from low energies till 1.5 GeV. To realize this investigations,
we developed a new model. On the basis of such a model we obtain the following results:

• It is demonstrated that the matrix elements of bremsstrahlung emission in the deuteron-proton scattering in the
three-cluster formalism coincides with the corresponding matrix elements in the folding approximation given in
Ref. [28].

• Formalism of the model includes form factor of a deuteron which affects behavior of bremsstrahlung cross
sections and reflects the structure of deuteron and influence of parameters of nucleon-nucleon interactions. This
gives possibility to investigate structure of nuclei and properties of interactions from analysis of bremsstrahlung
cross sections.

• We studied dependence of the bremsstrahlung cross section on structure of deuteron. We find that the oscillator
length b, related to the shell-model description of the deuteron, is convenient parameter for such a study.
Analysis of dependence of the cross section on such a parameter shows the following. At beam energies used at
experiment [40] the cross section is not sensitive visibly on variations of oscillator length, i.e. on the internal
structure of deuteron. However, stable difference between cross sections calculated at zero and non-zero oscillator
lengths at the same beam energy is observed at higher energy of beam (larger 500 MeV). The spectrum is
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FIG. 9: Wave functions of continuous spectrum states in the 1/2+ state of p+ d system

increased at increasing of the oscillator length inside the full energy region of the emitted photons. However,
the usage of new the deuteron form factor in the cluster formalism [see Eq. (61)] reduces the bremsstrahlung
cross section a little.

• More precise information about structure of deuteron can be obtained if to organize unified new experiments in
measurement of bremsstrahlung cross section at two different energies of beam (for example, at 145 MeV and
500 MeV or above). Then, our model will estimate ratio between two bremsstrahlung cross sections at such
energies and provide information about realistic value of the oscillator length with high precision.

As a perspective, we see that formalism of our model provides strict basis for description of the deuteron-proton
scattering and emission of virtual photons in study of dilepton productions in the deuteron-proton scattering (see, for
example, Refs. [42, 43]). This can be interesting for further investigations and applications.
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FIG. 10: Wave functions of relative motion of proton with respect to deuteron in the 1/2− state

Appendix A: Calculation of operator of bremsstrahlung emission in three-cluster model

In this Appendix we will calculate operator of emission of bremsstrahlung photons in three-cluster formalism. We
fix position of nucleons. We assume that vector r measures the distance between proton and neutron which form a
deuteron. We also assume that r1 is a coordinate of the first proton and r2 is a coordinate of a neutron. Vector r3
determines the location of the second proton. Starting from Eq. (1), this operator is obtained the following form:

Ĥe

(
kγ , ε

(α)
)
=

1

2

eh̄

mNc
[π̂∗

1A
∗ (1) +A∗ (1) π̂∗

1 + π̂∗
3A

∗ (3) +A∗ (3) π̂∗
3 ]

=
1

2

eh̄

mNc

{
π̂∗
1ε

(α) exp {−i (kγρ1)}+ ε(α) exp {−i (kγρ1)} π̂∗
1

+ π̂∗
3ε

(α) exp {−i (kγρ3)}+ ε(α) exp {−i (kγρ3)} π̂∗
3

}

=
1

2

eh̄

mNc

{(
ε(α)π̂∗

1

)
exp

{
−i 1√

2
(kγr) +i

1√
6
(kγq)

}

+ exp

{
−i 1√

2
(kγr) +i

1√
6
(kγq)

}(
ε(α)π̂∗

1

)

+
(
ε(α)π̂∗

3

)
exp

{
−i
√

2

3
(kγq)

}
+ exp

{
−i
√

2

3
(kγq)

}(
ε(α)π̂∗

3

)}
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FIG. 11: The even components V31 and V13 of the MHNP, MP and VP nucleon-nucleon potentials as a function of distance
between nucleons

and then

Ĥe

(
kγ , ε

(α)
)

=
1

2

eh̄

mNc

{(
ε(α),

1√
2
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1√
6
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q
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+
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+
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Collecting similar terms we obtain
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=
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2
(kγr) + i
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+
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√
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}

+ 2

√
2

3
exp

{
−i
√

2

3
(kγq)

}(
ε(α)π∗

q

)}



21

FIG. 12: Phase shifts of the p+ d scattering in the 1/2+ state calculated with three nucleon-nucleon potentials

or
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=
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(kγr) +i

1√
6
(kγq)

}(
ε(α),

1√
2
π∗
r−

1√
6
π∗
q

)

+ 2

√
2

3
exp

{
−i
√

2

3
(kγq)

}(
ε(α), π∗

q

)}



22

FIG. 13: Wave functions of the p+ d system at energy 147 MeV obtained with three different nucleon-nucleon potentials

Final form of the operator
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√

2

3
(kγq)

}

−
√
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FIG. 14: Phase shifts of the elastic p+ d scattering in the 1/2− state obtained with the MP, MHNP and VP

or by taking into account that
(
ε(α),kγ

)
= 0, we obtain
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√
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.
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FIG. 15: Wave functions of relative motion of proton and deuteron with energy E=12.7 MeV and the total angular momentum
Jπ =1/2−

Appendix B: Calculations of integrals

1. A general case

In this Appendix we calculate integrals (21):

I1 =

〈
Φf (r)

∣∣∣∣ e−ikγr
d

dr

∣∣∣∣ Φi(r)

〉

r

,

I2 =
〈
Φf (r)

∣∣∣ ei cp kγr

∣∣∣Φi(r)
〉
r
,

I3 =
〈
Φf (r)

∣∣∣ e−i cA kγr

∣∣∣Φi(r)
〉
r
,

I4 =
〈
Φf (r)

∣∣∣ e−i cA kγr V (r)
∣∣∣Φi(r)

〉
r
.

(B1)

Here, to two integrals in Eqs. (21) we have added two new types of integrals else, which are used in calculations in
other problems of bremsstrahlung emission. V (r) is arbitrary potential function.
We apply multipole expansion of wave function of photons, following to formalism in Sect. D in Ref. [44] [see

Eqs. (29)–(31) and (24)–(28) in that paper]. Here, we obtain the following formulas for matrix elements:

〈
kf

∣∣∣ e−ikγr

∣∣∣ ki
〉
r
=

√
π

2

∑

lγ=1

(−i)lγ
√
2lγ + 1

∑

µ=±1

[
µ p̃Mlγµ − i p̃Elγµ

]
,

〈
kf

∣∣∣∣ e−ikγr
∂

∂r

∣∣∣∣ ki
〉

r

=

√
π

2

∑

lγ=1

(−i)lγ
√
2lγ + 1

∑

µ=±1

ξµ µ ×
[
pMlγµ − iµ pElγµ

]
.

(B2)
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FIG. 16: Wave functions of relative motion of proton and deuteron with energy E=147 MeV and the total angular momentum
Jπ =1/2−

On the basis of these formulas, we write solutions for integrals (for simplicity, we study case of li = 0).

According to the second formula in Eqs. (B2), the first integral is

I1 =

〈
Φf

∣∣∣∣ e−ikγr
∂

∂r

∣∣∣∣Φi

〉

r

=

√
π

2

∑

lγ=1

(−i)lγ
√
2lγ + 1

∑

µ=±1

ξµ µ ×
[
pMlγµ − iµ pElγµ

]
, (B3)

where [see Eqs. (38) at li = 0 in Ref. [44]]

pMlγµ = −IM (0, lf , lγ , 1, µ) · J1(0, lf , lγ),

pElγµ =

√
lγ + 1

2lγ + 1
· IE(0, lf , lγ , 1, lγ − 1, µ) · J1(0, lf , lγ − 1) −

−
√

lγ
2lγ + 1

· IE(0, lf , lγ , 1, lγ + 1, µ) · J1(0, lf , lγ + 1)

(B4)

and [see Eqs. (39) in Ref. [44]]

J1(li, lf , n) =

+∞∫

0

dRi(r, li)

dr
R∗

f (lf , r) jn(kγr) r
2dr. (B5)

For the other integrals from Eqs. (B1) one can get similar solutions [those are directly derived from the first
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FIG. 17: (Color online) Cross sections of bremsstrahlung emission for p+ 2H with included structure of deuteron and without
it calculated at energies of beam of 145 MeV (Ekin = 98 MeV ), 500 MeV (Ekin = 333 MeV ) and 1.5 GeV (Ekin = 1.0 GeV )
[Parameters of calculations: cross section is defined in Eq. (58) and then averaged over all angles with exception of photon
emission angle θ used in experiments (θ = 60◦, see also Ref. [45], Fig. 5), as non-zero oscillator length for deuteron we choose
b = 1.3 fm, Rmax = 20000 fm and 2500000 intervals are used in the numerical integration; time of computer calculations is
2–4 min for 40 points of each calculated spectrum, kinetic energy Ekin of relative motion of proton and deuteron is used in
calculations of bremsstrahlung matrix elements, which is Ekin = 2/3 · Ebeam]. Here, experimental data at 145 MeV of beam
energy given by black triangles are extracted from Ref. [40].
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FIG. 18: (Color online) Cross sections of bremsstrahlung emission for p + 2H with included new form factor calculated at
energies of beam of 145 MeV (Ekin = 98 MeV ), 500 MeV (Ekin = 333 MeV ) and 1.5 GeV (Ekin = 1.0 GeV ) [Parameters
of calculations: cross section is defined in Eq. (58), matrix element is defined in Eq. (59), as non-zero oscillator length for
deuteron we choose b = 1.3 fm, Rmax = 20000 fm and 2500000 intervals are used in the numerical integration; time of computer
calculations is 2–4 min for 40 points of each calculated spectrum, kinetic energy Ekin of relative motion of proton and deuteron
is used in calculations of bremsstrahlung matrix elements, which is Ekin = 2/3 · Ebeam]. Here, experimental data at 145 MeV
of beam energy given by black triangles are extracted from Ref. [40].
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expansion in Eqs. (B2), where the other corresponding radial integrals should be used]:

I2 =
〈
Φf

∣∣∣ ei cp kγr

∣∣∣Φi

〉
r
=

√
π

2

∑

lγ=1

(−i)lγ
√
2lγ + 1

∑

µ=±1

[
µ p̃Mlγµ(−cp)− i p̃Elγµ(−cp)

]
,

I3 =
〈
Φf

∣∣∣ e−i cA kγr

∣∣∣Φi

〉
r
=

√
π

2

∑

lγ=1

(−i)lγ
√
2lγ + 1

∑

µ=±1

[
µ p̃Mlγµ(cA)− i p̃Elγµ(cA)

]
,

I4 =
〈
Φf

∣∣∣ e−i cA kγr V (r)
∣∣∣Φi

〉
r
=

√
π

2

∑

lγ=1

(−i)lγ
√
2lγ + 1

∑

µ=±1

[
µ p̆Mlγµ(cA)− i p̆Elγµ(cA)

]
,

(B6)

where [see solutions (40) at li = 0 in Ref. [44] for p̃Mlγµ, p̃
E
lγµ

, Eqs. (F14) and (F26) in Ref. [46] for all matrix elements]

p̃Mlγµ(c) = Ĩ (0, lf , lγ , lγ , µ) · J̃ (c, 0, lf , lγ),

p̃Elγµ(c) =

√
lγ + 1

2lγ + 1
Ĩ (0, lf , lγ , lγ − 1, µ) · J̃ (c, 0, lf , lγ − 1) −

√
lγ

2lγ + 1
Ĩ (0, lf , lγ , lγ + 1, µ) · J̃ (c, 0, lf , lγ + 1),

p̆Mlγµ(cA) = Ĩ (0, lf , lγ , lγ , µ) · J̆ (cA, 0, lf , lγ),

p̆Elγµ(cA) =

√
lγ + 1

2lγ + 1
Ĩ (0, lf , lγ , lγ − 1, µ) · J̆ (cA, 0, lf , lγ − 1) −

√
lγ

2lγ + 1
Ĩ (0, lf , lγ , lγ + 1, µ) · J̆ (cA, 0, lf , lγ + 1)

(B7)

and [see solutions (41) in Ref. [44] for J̃ and corresponding angular integral, Eqs. (F13) and (F21) in Ref. [46] for all
matrix elements]

J̃ (c, li, lf , n) =

+∞∫

0

Ri(r)R
∗
f (l, r) jn(c kγr) r

2dr,

J̆ (cA, li, lf , n) =

+∞∫

0

Ri(r)R
∗
l,f (r)V (r) jn(cA kr) r

2dr.

(B8)

2. Linear and circular polarizations of the photon emitted

Rewrite vectors of linear polarization ε(α) through vectors of circular polarization ξµ with opposite directions of
rotation (see Ref. [33], (2.39), p. 42):

ξ−1 =
1√
2

(
ε(1) − iε(2)

)
, ξ+1 = − 1√

2

(
ε(1) + iε(2)

)
, ξ0 = ε(3). (B9)

where

h± = ∓1± i√
2
, h−1 + h+1 = −i

√
2,

∑
α=1,2

ε(α),∗ = h−1ξ
∗
−1 + h+1ξ

∗
+1. (B10)

We have (in Coulomb gauge at ε(3) = 0)

ε(1) =
1√
2

(
ξ−1 − ξ+1

)
, ε(2) =

i√
2

(
ξ−1 + ξ+1

)
, (B11)

∑

µ=±1

ξ∗µ · ξµ =
1

2

(
ε(1) − iε(2)

) (
ε(1) − iε(2)

)∗
+

1

2

(
ε(1) + iε(2)

) (
ε(1) + iε(2)

)∗
= 2. (B12)

Also we will find vectorial products of vectors ξ±1. From Eqs. (B9) we obtain

ξ∗−1 = −ξ+1, ξ∗+1 = −ξ−1. (B13)
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From here we obtain vector multiplications as
[
ξ−1 × ξ+1

]
= −i

[
ε(1) × ε(2)

]
= −i εz, (B14)

[
ξ∗−1 × ξ+1

]
= −

[
ξ+1 × ξ+1

]
= 0,

[
ξ∗−1 × ξ−1

]
= −

[
ξ+1 × ξ−1

]
= i εz,

[
ξ∗+1 × ξ−1

]
= −

[
ξ−1 × ξ−1

]
= 0,

[
ξ∗+1 × ξ+1

]
= −

[
ξ−1 × ξ+1

]
= −i εz.

(B15)

3. Summation over vectors of polarizations

In this section we will calculate multiplications of integrals on vectors of polarizations. Let’ consider the first integral
I1 which has form [see Eqs. (B3)]

I1 =

〈
Φf

∣∣∣∣ e−ikγr
∂

∂r

∣∣∣∣Φi

〉

r

=

√
π

2

∑

lγ=1

(−i)lγ
√
2lγ + 1

∑

µ=±1

ξµ µ ×
[
pMlγµ − iµ pElγµ

]
. (B16)

We calculate

ε(1) · I1 = −
√
π

2

∑

lγ=1

(−i)lγ
√
2lγ + 1

1√
2

∑

µ=±1

[
pMlγµ − i µ pElγµ

]
,

ε(2) · I1 = −
√
π

2

∑

lγ=1

(−i)lγ
√
2lγ + 1

i√
2

∑

µ=±1

[
µ pMlγµ − i pElγµ

]
,

(B17)

and summation over vectors of polarization is

∑

α=1,2

ε(α) · I1 = −
√
π

2

∑

lγ=1

(−i)lγ
√
2lγ+1

∑

µ=±1

[1 + i µ√
2

pMlγµ +
1− i µ√

2
pElγµ

]
. (B18)

There is property

∑

µ=±1

[1− i µ√
2

pElγµ

]
=
∑

µ=±1

[1 + i µ√
2

pElγ ,−µ

]
,

∑

µ=±1

[1 + i µ√
2

pMlγµ +
1− i µ√

2
pElγµ

]
=
∑

µ=±1

[1 + i µ√
2

pMlγµ +
1 + i µ√

2
pElγ ,−µ

]
=
∑

µ=±1

1 + i µ√
2

[
pMlγµ + pElγ ,−µ

]
.

(B19)

Then one can write Eq. (B18) as

∑

α=1,2

ε(α) · I1 =

√
π

2

∑

lγ=1

(−i)lγ
√
2lγ + 1

∑

µ=±1

µhµ
(
pMlγ ,µ + pElγ ,−µ

)
. (B20)

We calculate properties

(εx + εz)
∑

α=1,2

[
I1 × ε(α)

]
=

√
π

2

∑

lγ=1

(−i)lγ
√
2lγ + 1

∑

µ=±1

µhµ
(
pMlγ ,µ − pElγ ,−µ

)
. (B21)

4. Case of li = 0, lf = 1, lγ = 1

In a case of li = 0, lf = 1, lγ = 1 integrals (B4), (B7) are simplified to

I1 = −i
√

3π

2

∑

µ=±1

ξµ µ ×
[
pMlγµ − iµ pElγµ

]
, I3 = −i

√
3π

2

∑

µ=±1

[
µ p̃Mlγµ(cA)− i p̃Elγµ(cA)

]
,

I2 = −i
√

3π

2

∑

µ=±1

[
µ p̃Mlγµ(−cp)− i p̃Elγµ(−cp)

]
, I4 = −i

√
3π

2

∑

µ=±1

[
µ p̆Mlγµ(cA)− i p̆Elγµ(cA)

]
,

(B22)
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where [see from Eqs. (B4), (B7)]

pMlγµ = −IM (0, 1, 1, 1, µ) · J1(0, 1, 1),

pElγµ =

√
2

3
IE(0, 1, 1, 1, 0, µ) · J1(0, 1, 0)−

√
1

3
IE(0, 1, 1, 1, 2, µ) · J1(0, 1, 2),

p̃Mlγµ(c) = Ĩ (0, 1, 1, 1, µ) · J̃ (c, 0, 1, 1),

p̃Elγµ(c) =

√
2

3
Ĩ (0, 1, 1, 0, µ) · J̃ (c, 0, 1, 0)−

√
1

3
Ĩ (0, 1, 1, 2, µ) · J̃ (c, 0, 1, 2),

p̆Mlγµ(cA) = Ĩ (0, 1, 1, 1, µ) · J̆ (cA, 0, 1, 1),

p̆Elγµ(cA) =

√
2

3
Ĩ (0, 1, 1, 0, µ) · J̆ (cA, 0, 1, 0)−

√
1

3
Ĩ (0, 1, 1, 2, µ) · J̆ (cA, 0, 1, 2).

(B23)

The angular integrals are calculated in Appendix B in Ref. [44] [see Eqs. (B1)–(B10) in that paper]. Results of
calculation of angular integrals are

IE (0, 1, 1, 1, 0, µ) =

√
1

24π
, IM (0, 1, 1, 1, µ) = 0, IE (0, 1, 1, 1, 2, µ) =

47

240

√
3

2π
,

Ĩ (0, 1, 1, 0, µ) = 0, Ĩ (0, 1, 1, 1, µ) =
µ

2
√
2π
, Ĩ (0, 1, 1, 2, µ) = 0,

(B24)

and matrix elements (B23) are simplified to

pMlγµ = 0, pElγµ =
1

6

√
1

π
· J1(0, 1, 0)−

47

240

√
1

2π
· J1(0, 1, 2),

p̃M1µ(c) =
µ

2
√
2π

· J̃ (c, 0, 1, 1), p̃E1µ(c) = 0,

p̆M1µ(cA) =
µ

2
√
2π

· J̆ (cA, 0, 1, 1), p̆
E
1µ(cA) = 0.

(B25)

Now we calculate integrals in Eqs. (B25). For pMlγ=1,µ and pElγ=1,µ we obtain:

I1 = −i
√

3π

2

∑

µ=±1

ξµ µ ×
[
−iµ pElγ=1, µ

]
= −

√
3π

2
pElγ=1, µ (ξ−1 + ξ+1). (B26)

Taking into account summation of vectors of polarizations (B9)

ξ−1 =
1√
2

(
ε(1) − iε(2)

)
, ξ+1 = − 1√

2

(
ε(1) + iε(2)

)
, ξ0 = ε(3),

we simplify Eq. (B26) as

I1 = −
√

3π

2
pElγ=1, µ ·

(
−i

√
2 ε(2)

)
= i

√
3π pElγ=1, µ · ε(2). (B27)

From Eqs. (B17) we calculate products of integrals on vectors of polarizations:

ε(1) · I1 =
{
−
√
π

2

∑

lγ=1

(−i)lγ
√
2lγ + 1

1√
2

∑

µ=±1

[
pMlγµ − i µ pElγµ

]}
lγ=1

=

= i

√
π

2

√
3

2

∑

µ=±1

[
pMlγ=1,µ − i µ pElγ=1,µ

]
= i

√
3π

2
pElγ=1,µ

∑

µ=±1

(−i µ ) = 0,

(B28)

ε(2) · I1 =
{
−
√
π

2

∑

lγ=1

(−i)lγ
√
2lγ + 1

i√
2

∑

µ=±1

[
µ pMlγµ − i pElγµ

]}
lγ=1

=

= −
√
π

2

√
3

2

∑

µ=±1

[
µ pMlγ=1,µ − i pElγ=1,µ

]
= −

√
3π

2

∑

µ=±1

[
−i pElγ=1,µ

]
= i

√
3π pElγ=1,µ.

(B29)



30

Therefore, we write down the final solutions:

ε(1) · I1 = 0, ε(2) · I1 =
∑

α=1,2

ε(α) · I1 = i
√
3π pElγ=1,µ. (B30)

We obtain property

I1 = i
√
3π pElγ=1, µ · ε(2) =

[ ∑

α=1,2

ε(α) · I1
]
· ε(2). (B31)

Taking solution (B25) into account, rewritten via raadial integrals:

pElγµ =
1

6

√
1

π
· J1(0, 1, 0)−

47

240

√
1

2π
· J1(0, 1, 2),

we obtain

I1 = ε(2) · i
√
3

6

{
J1(0, 1, 0)−

47

40

√
1

2
· J1(0, 1, 2)

}
,

ε(1) · I1 = 0,

ε(2) · I1 =
∑

α=1,2

ε(α) · I1 = i

√
3

6

{
J1(0, 1, 0)−

47

40

√
1

2
· J1(0, 1, 2)

}
.

(B32)

Appendix C: Form factor of deuteron in cluster approach

1. Normalization of the deuteron wave function

The deuteron wave function

φ(rrr) = A
e−κr

r
Ylm(θ, ϕ). (C1)

where κ =

√
2m|Ed|
h̄2

and rrr - Jacobi vector of the relative position of the nucleons inside deuteron.

Normalization condition:
∫

|φ(rrr)|2dV = 1, A2

∫
e−2κr

r2
Y ∗
l′m′(θ, ϕ)Ylm(θ, ϕ)dV = 1, (C2)

A2

∫ ∞

0

e−2κr

r2
r2dr

∫
Y ∗
l′m′(θ, ϕ)Ylm(θ, ϕ)dΩ = 1, δl,l′δm,m′A2

∫ ∞

0

e−2κrdr = 1, (C3)

−A
2

2κ
e−2κr

∣∣∣∣
r→∞

r=0

= 1, A2

2κ = 1. (C4)

Thus we have the normalization multiplier:

A =
√
2κ, (C5)

and the final form of the deuteron wave function:

φ(rrr) =
√
2κ
e−κr

r
Yl,m(θ, ϕ) =

√
κ

2π

e−κr

r
, (C6)

where we have chosen l = 0.
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2. Calculation of the form factors

We have to calculate the following form factors :

F1(kkkγ) =

〈
φ(rrr)

∣∣∣∣exp
{
− i√

2
(kkkγrrr)

}∣∣∣∣φ(rrr)
〉
,

F2(kkkγ) =

〈
φ(rrr)

∣∣∣∣exp
{
− i√

2
(kkkγrrr)

}
(ε(α), π∗

rrr )

∣∣∣∣φ(rrr)
〉
.

(C7)

We calculate the first form factor as

F1(kkkγ) =

∫
φ∗(rrr) exp

{
− i√

2
(kkkγrrr)

}
φ(rrr)drrr =

κ

2π

∫
e−2κr

r2
e−i/

√
2kkkγrrrr2drdΩ. (C8)

Now we use the following expansion

eikkkrrr =

∞∑

l=0

iljl(kr)

m=l∑

m=−l

Y ∗
lm(θk, ϕk)Ylm(θr, ϕr),

e−i/
√
2kkkγrrr =

∞∑

l=0

(il)∗jl

(
kγr√
2

) m=l∑

m=−l

Y ∗
lm(θk, ϕk)Ylm(θr, ϕr).

(C9)

We will have for our integral

F1(kkkγ) =
κ

2π

∞∑

l′=0

(
il

′)∗
∫ ∞

0

jl′
(
kγr/

√
2
)e−2κr

r2
r2dr

∫
dΩ

m=l′∑

m′=−l′

Yl′m′(θ, ϕ)Y ∗
l′m′(θ, ϕ) =

=
κ

2π

∫ ∞

0

j0
(
kγr/

√
2
)
e−2κrdr.

(C10)

and for the Bessel spherical functions we have j0(x) = sin(x)/x:

F1(kkkγ) =

√
2κ

2πkγ

∫ ∞

0

sin
(
kγr/

√
2
)

r
e−2κrdr, (C11)

Let us focus on the integral itself

I =

∫ ∞

0

sin
(
kγr/

√
2
)

r
e−2κrdr =

∫ ∞

0

sin at

t
e−tdt, (C12)

where t = 2κr, a = kγ/2
√
2κ.

I(a) =

∫ ∞

0

sin at

t
e−tdt,

dI

da
=

d

da

[∫ ∞

0

sin at

t
e−tdt

]
,
dI

da
=

∫ ∞

0

cos at e−tdt = I1. (C13)

For the integral I1 we have

I1 =

∫ ∞

0

cos at e−tdt = −
∫ ∞

0

cos at d(e−t),

I1 = − cos at e−t

∣∣∣∣
t→∞

t=0

+

∫ ∞

0

e−td(cos at) = 1− a

∫ ∞

0

sin at e−tdt,

I1 = 1 + a

∫ ∞

0

sin at d(e−t), I1 = 1 + a

[
sinat e−t

∣∣∣∣
t→∞

t=0

−
∫ ∞

0

e−td(sin at)

]
,

I1 = 1− a2
∫ ∞

0

cos at e−tdt = 1− a2I1,

I1 + a2I1 = 1.

(C14)
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Finally, we have the following equation for the integral I1

I1 =
1

1 + a2
, (C15)

so for the I we have the following equation

dI

da
=

1

1 + a2
,

∫
dI =

∫
da

1 + a2
,

I = arctana+ C.

(C16)

Let us come back to the form factor and write down the following

F1(kkkγ) =
2
√
2κ

kγ
arctan

(
kγ

2
√
2κ

)
+ C1, (C17)

to find out C we will use

F1(0) = 1, limkγ→0

√
2κ

2πkγ
arctan

(
kγ

2
√
2κ

)
+ C1 = 1,

limkγ→0
2
√
2κ

kγ
arctan

(
kγ

2
√
2κ

)
+ C1 = 1, 1 + C1 = 1,

C1 = 0.

(C18)

The final result

F1(kkkγ) =
2
√
2κ

kγ
arctan

(
kγ

2
√
2κ

)
. (C19)
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