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We investigate the entanglement generation or harvesting between two identical Unruh-

DeWitt detectors in the cosmological de Sitter spacetime. We consider two comoving two-

level detectors at a coincident spatial position. The detectors are assumed to be unentangled

initially. The detectors are individually coupled to a scalar field, which eventually leads to

coupling between the two detectors. We consider two kinds of scalar fields – conformally

symmetric and massless minimally coupled, for both real and complex cases. By tracing out

the degrees of freedom corresponding to the scalar field, we construct the reduced density

matrix for the two detectors, whose eigenvalues characterise transitions between the energy

levels of the detectors. By using the existing results for the detector response functions per

unit proper time for these fields, we next compute the logarithmic negativity, quantifying the

degree of entanglement generated at late times between the two detectors. The similarities

and differences of these results for different kind of scalar fields have been discussed.
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I. INTRODUCTION

The phenomenon of quantum entanglement is even more counter intuitive compared to the standard

quantum mechanical processes. Experimental observations, for example, of the violation of the Bell

inequalities, which cannot be explained by classical theories based upon local hidden variables,

have placed quantum entanglement on very strong physical grounds [1–4]. One of the defining

characteristics of entangled states is the inability to describe the corresponding Hilbert space

as a product of pure states of subsystems, e.g. [5] and references therein. In addition to its

foundational role in quantum physics, quantum entanglement has found a wide range of applications

in the modern world, from building high-security communication systems by employing quantum

cryptography to futuristic quantum teleportation based devices, e.g. [6–9].

Recently, the research community has also shown considerable interest in studying quantum

entanglement in the context of relativistic quantum field theory [11–21]. An essential focus of this

is to examine the dynamics of quantum particles coupled to a quantum field, particularly using

particle detectors. These investigations encompass studying entanglement dynamics, entanglement

harvesting, and understanding the radiative processes of entangled relativistic particles [22–29].

Entanglement harvesting, in particular, is intriguing as it offers a means to extract additional

quantum information.

The Unruh-DeWitt detectors are very popular in the context of relativistic quantum entangle-

ment. Initially designed for studying Unruh radiation observed by a uniformly accelerated observer

in the Minkowski spacetime, they were also used for studyig Hawking radiation in eternal black hole

spacetimes [30]. In this paper, we wish to examine the conditions under which these detectors be-

come entangled over time in the presence of a coupling with a quantum field. such framework allows

us to explore the potential for entanglement harvesting between initially uncorrelated detectors.

Various earlier investigations show different factors could contribute to this detector entanglement,

including detectors’ trajectories [11, 31–35], the background spacetime geometry [10, 36–45], the

presence of a thermal bath [46–48], and even the transient passage of gravitational waves [49, 50].

In particular, a large number of works have actively engaged in understanding the entanglement

harvesting patterns of Unruh-DeWitt detectors that interact perturbatively with quantum fields.

These works span from inertial detectors in flat spacetime [28, 33, 34, 47] to those following various

trajectories in curved spacetime [10, 12, 13, 36, 51–53]. For various such studies, we further refer

our reader to [11, 31, 32, 35, 46, 48, 50, 54, 55] (also references therein). See [56, 57] for study

of degradation/entanglement generation between two initially correlated Unruh-DeWitt detectors.
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See also [58, 59] for discussion on some non-perturbative effects. We note that studying such fea-

tures of entanglement in the early inflationary background can provide valuable insights about the

geometry as well as the quantum condition at such stage. For instance, entanglement generated

in the early universe could affect cosmological correlation functions or the cosmic microwave back-

ground [60–62]. Researchers are increasingly interested in investigating aspects of entanglement in

the cosmological de Sitter spacetime, for more details readers may refer to [63–70].

In this work, we focus on examining entanglement harvesting between two two-level, identical,

initially unentangled Unruh-DeWitt detectors coupled to real and complex scalar fields in the

cosmological de Sitter spacetime. We take the trajectories of these detectors to be comoving, i.e.,

their spatial positions are fixed. We also assume that the spatial positions of the two detectors

are coincident. We investigate two physically interesting scenarios for both kind of fields : a

conformal scalar in the conformal vacuum and a minimally coupled massless scalar field. We

assume that the detectors are initially at ground state, whereas the initial state of the field is

the vacuum. By constructing the appropriate reduced density matrix at the leading perturbative

order, and using the existing results of the detector response functions per unit proper time, we next

compute the logarithmic negativity for each scenario to quantify the entanglement generated or

harvested between the detectors. Furthermore, we explore how the characteristics of this harvested

entanglement vary with different system parameters.

The rest of this paper is organised as follows. In the next section we briefly review the basic

framework. Section III focuses on the entanglement generation or harvesting for detectors coupled

with real conformal and massless minimal scalar fields, by computing the logarithmic negativity.

Section IV extends this analysis to complex conformal and massless minimal scalar fields. We have

sketched some computations in Appendix A. Finally we conclude in Section V. We shall work with

mostly positive signature of the metric and will set c = 1 = ℏ throughout.

II. THE BASIC SETUP

Following [30, 71, 72], we wish to sketch below the basic setup we will be working in, for the sake

of completeness. The de Sitter metric in expanding cosmological coordinates reads

ds2 = −dt2 + e2Ht
(
dx2 + dy2 + dz2

)
=

1

H2η2
[
−dη2 + dx2 + dy2 + dz2

]
(1)

where H > 0 is the de Sitter Hubble constant, and η = −e−Ht/H, is the conformal time.
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The general action for a real scalar field reads

S = −1

2

∫ √
−g d4x

[
(∇µϕ)(∇µϕ) +m2ϕ2 + ξRϕ2

]
(2)

whereas for a complex scalar field it reads

S = −
∫ √

−g d4x
[
(∇µϕ

†)(∇µϕ) +m2|ϕ|2 + ξR|ϕ|2
]

(3)

We shall be concerned with two scenarios in this paper, viz., a conformally invariant scalar field

(m2 = 0, ξ = 1/6) and a massless minimally coupled scalar field (m2 = 0 = ξ), for both real and

complex scalar field theories.

Let us now quickly review the Unruh-DeWitt particle detector formalism, e.g. [30, 71]. For a real

scalar field, the simplest coupling with a pointlike detector reads

Lint = −gµ(τ)ϕ(x(τ)) (4)

where µ is detector’s monopole moment operator, g is the field-detector coupling constant, and

τ is the proper time along the trajectory of the detector. In the Heisenberg picture, we have

µ(τ) = eiH0τ µ e−iH0τ , where H0 is detector’s free Hamiltonian. In this paper we wish to restrict

ourselves to comoving trajectories, we assume that the spatial position of the detector is fixed.

For a transition from an initial state to a final state |i⟩ → |f⟩ in this system, the first order

transition matrix element reads

Mfi = ig ⟨ωf |µ|ωi⟩
∫ τf

τi

dτe−i(ωf−ωi)τ ⟨ϕf |ϕ(x(τ))|ϕi⟩ (5)

where we have taken |i⟩ = |ωi⟩ ⊗ |ϕi⟩ and |f⟩ = |ωf ⟩ ⊗ |ϕf ⟩, where ω’s are the energy eigenvalues

of the detector. The transition probability is given by

|Mfi|2 = g2 |⟨ωf |µ|ωi⟩|2
∫ τf

τi

dτ1 dτ2 e
−i(ωf−ωi)(τ1−τ2) ⟨ϕi|ϕ(x2(τ2))|ϕf ⟩⟨ϕf |ϕ(x1(τ1))|ϕi⟩ (6)

We next sum over all the final states of the field, using the completeness relation for the field basis,

|ϕf ⟩. Assuming the initial state for the field to be the vacuum, we have the transition probability

F(∆ω) =

∫
Dϕf |Mfi|2 = g2 |⟨ωf |µ|ωi⟩|2

∫ τf

τi

dτ1 dτ2 e
−i(ωf−ωi)(τ1−τ2) ⟨ϕi|ϕ(x2(τ2))ϕ(x1(τ1))|ϕi⟩

(7)

where

⟨ϕi|ϕ(x2(τ2))ϕ(x1(τ1))|ϕi⟩ ≡ iG+(x2(τ2)− x1(τ1))
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is the Wightman function. One then defines two new temporal variables

τ+ =
τ1 + τ2

2
∆τ = τ1 − τ2

with ranges −∞ < τ+ < ∞, −∞ < ∆τ < ∞. However, since the Wightman function usually is

not a function of τ+, Eq. (7) is divergent. In order to thus give it a physical meaning, one defines

transition probability per unit proper time by dividing/differentiating it by τ+ [30]. The resulting

transition probability per unit proper time is known as the response function, given by

dF(∆ω)

dτ+
=

∫ ∞

−∞
d(∆τ) e−i(ωf−ωi)∆τ iG+(∆τ) (8)

where we have abbreviated F := F/(g|⟨ωf |µ|ωi⟩|)2.

For a scalar field moving in Eq. (1) of mass m and non-minimal coupling ξ, the Wightman function

G+(x, x′) reads [72],

iG+(x, x′) =
H2

16π2
Γ

(
3

2
− ν

)
Γ

(
3

2
+ ν

)
2F1

(
3

2
− ν,

3

2
+ ν, 2; 1− y

4

)
(9)

where

ν =

(
9

4
− 12ξ − m2

H2

)1/2

and the de Sitter invariant interval y reads

y(x, x′) =
−(η − η′ − iϵ)2 + |x⃗− x⃗′|2

ηη′

where ϵ = 0+. Rewriting things now in the cosmological time t and setting x⃗ = x⃗′ for a comoving

detector, we have

y(t, t′) = −4

(
sinh

H∆t

2
− iϵ

)2

(10)

Since we have set the comoving spatial separation to zero, the cosmological time t becomes the

proper time along the detector’s trajectory, τ = t.

Finally, for a complex scalar field the simplest field-detector coupling reads,

Lint = −gµ(t)ϕ†(x(t))ϕ(x(t)) (11)

Alike the fermions, e.g. [73], the quadratic coupling is necessary in order to make the interaction

Hamiltonian hermitian. This means that the corresponding response function integrals will contain

a product of two Wightman functions, necessitating renormalisation, as was done in [74]. We shall

address this issue in Section IV.
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III. A REAL SCALAR FIELD COUPLED TO TWO UNRUH-DEWITT DETECTORS

We begin by considering two Unruh-DeWitt detectors coupled to a real scalar field. As of Eq. (4),

the simplest interaction Hamiltonian reads for this composite system as

HI =
∑
j

gjµjϕ(x(τj)) (12)

where the index j runs for both the detectors, labeled as A and B. We explicitly expand the

monopole moment of the detectors (introduced below Eq. (4) in the preceding section) in the

Heisenberg picture as a function of the proper time as [75–77]

µj(τ) = |Ej⟩⟨Gj |eiωjτj + |Gj⟩⟨Ej |e−iωjτj (no summation) (13)

G and E in the above expression stand respectively for the ground and excited levels of the

detectors. For simplicity, we imagine both detectors to be identical so that gj = g and ωj = ω. We

also assume that both the detectors and the scalar field are in their ground state initially

|in⟩ = |0⊗GA ⊗GB⟩ (14)

From now on, we shall suppress the tensor product symbol for the sake of notational brevity. The

time evolution of this initial state in the interaction picture is given by

|out⟩ = U |in⟩ = Te−i
∫
dτjHIj |0GAGB⟩ (15)

where T stands for time ordering. We make the perturbative expansion, U = I+U (1)+U (2)+ · · · ,

with

U (1) = −i

∫ ∞

−∞
dτj HIj(t(τ)) (16)

U (2) = −
∫ ∞

−∞
dτi

∫ τ

−∞
dτ ′j HIi(t(τ))HIj(t

′(τ ′)) (17)

and so on. The density operator corresponding to the out state is given by

ρ = |out⟩⟨out| = ρ(0) + ρ(1) + ρ(2) +O(g3) (18)

where ρ(n) is of the order of gn. Also note that, since the initial state of the field is the vacuum

state, we have ρ(1) = 0 due to the vanishing one point function of the field. The two detectors

interact with each other via the scalar field. The reduced density matrix of the two detectors is
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obtained by tracing out the field ϕ’s degrees of freedom, resulting in the mixed density matrix

ρAB = Trϕρ =


1− PAA − PBB 0 0 E

0 PAA PAB 0

0 PAB PBB 0

E∗ 0 0 0

 (19)

The basis of ρAB is |GAGB⟩, |GAEB⟩, |EAGB⟩ and |EAEB⟩, and the matrix elements read

Pij = g2
∫

dτi

∫
dτ ′j e

−iω(τi−τ ′j)iG+(xi, x
′
j) (i, j = A,B) (20)

E = −g2
∫

dτA

∫
dτB eiω(τA+τB)iGF (xA, xB) (21)

where G+ and GF are respectively the positive frequency Wightmann function and the Feynman

propagator. In Eq. (20), subscripts i and j represent the detectors A and B.

Since we have assumed that the two detectors are identical, we must have PAA = PBB = P .

Eq. (19) then simplifies to

ρAB =


1− 2P 0 0 E

0 P P 0

0 P P 0

E∗ 0 0 0

 (22)

Let us now compute the logarithmic negativity to quantify the entanglement between the two

detectors represented by Eq. (22). The logarithmic negativity of a bipartite state is defined as

LN = log2(2N +1), e.g. [5], where the negativity N is defined as the absolute sum of the negative

eigenvalues of ρTA
AB, where ρTA

AB is the partial transpose of ρAB with respect to the subspace of A,

i.e., (|i⟩A⟨n| ⊗ |j⟩B⟨ℓ|)TA := |n⟩A⟨i| ⊗ |j⟩B⟨ℓ|. The partial transposed density matrix ρAB reads

(ρAB)
TA =


1− 2P 0 0 P

0 P E 0

0 E∗ P 0

P 0 0 0

 (23)

whose eigenvalues are given by

λ1 =
1

2

(
1− 2P +

√
(1− 2P )2 + 4P 2

)
λ2 =

1

2

(
1− 2P −

√
(1− 2P )2 + 4P 2

)
λ3 = P + |E| λ4 = P − |E| (24)
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However, the above eigenvalues turn out to be divergent owing to the double temporal integrals of

Eq. (20) and Eq. (21). Thus in order to associate physical meaning to these eigenvalues, following

the prescription described in Section II ([30, 71]), we take their values per unit proper time.

In other words, we redefine the two temporal variables appearing in Eq. (20) and Eq. (21) as

τ+ = (τi + τ ′j)/2 and δτ = τi − τ ′j . For Eq. (20), we then divide the integral by limτ+→∞ τ+,

in order to obtain a transition probability per unit proper time. For Eq. (21), performing such

integral yields a δ(ω), when the Green function is independent of τ+. However, for any detector

with a gap in the energy levels, which we always assume, we must have ω ̸= 0, yielding a vanishing

contribution from Eq. (21). For massless and minimally coupled scalar field as we shall see, the

two point function contains a ln(a(t)a(t′)) = H(t+ t′) = 2Hτ+ term. Accordingly, this generates a

term ∼ ∂ωδ(ω), which vanishes for ω ̸= 0. We also note that the eigenvalues of the density matrix

basically correspond to some transition probabilities. Thus dividing the probability amplitudes

of Eq. (20), Eq. (21) can be thought of as to correspond to defining these physical quantities or

measurements per unit proper time. Putting everything together, in place of Eq. (24) we thus have

the eigenvalues representing measurement per unit time

λ′
1 = (

√
2− 1)P ′ > 0 λ′

2 = −(
√
2 + 1)P ′ < 0

λ′
3 = P ′ = λ′

4 (25)

The log negativity is then defined as [78–80]

LN = log2(2N + 1) (26)

where the negativity N is defined as the absolute sum of the negative eigenvalues of ρTA
AB. Note in

Eq. (25) that only one eigenvalue is negative for the present case for ω ̸= 0.

Note that we may also tackle the continuum limit ω → 0 (i.e., not strictly ω = 0), as follows. First

of all in this case Eq. (20) has to be estimated for ω → 0. Next for Eq. (21), we also set ω → 0.

Accordingly, the τ+ integral yields a divergence limτ+→∞ τ+, which needs to be tamed as earlier by

defining the transition rate per unit proper time. However, note also that unlike the ω ̸= 0 case, E

(Eq. (21)) will be non-vanishing in Eq. (24), leading to a modification in Eq. (25). The logarithmic

negativity can then be computed in the usual manner. Although in this paper, we shall focus only

on the ω ̸= 0 case, as an example of a two level system.

Before proceeding further, we also note that an alternative way to deal with the divergence of

transition probability integrals discussed above Eq. (25) is to invoke a switching function for the

field detector coupling, e.g. [37, 42, 43, 47, 55], and references therein. Such switching function
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is effectively a modification of the interaction Hamiltonian, Eq. (12), in order to make it ‘short

lived’, so that Eq. (20), Eq. (21) are convergent for large values of the temporal coordinates. A

very popular choice is the Gaussian switching function, in which case, for example, Eq. (20) gets

modified to

PIJ = g2
∫

dτI

∫
dτ ′J e−

τ2I +τ ′2J
2σ2 e−iω(τI−τ ′J )iG+(xI , x

′
J) (27)

where σ−1/2 denotes the effective interaction timescale. In terms of τ+ = (τI + τ ′J)/2 and ∆τ =

τI − τ ′J , the above integral reads

PIJ = g2
∫

dτ+

∫
d∆τ e−∆τ2/4σ2

e−τ2+/σ2
e−iω∆τ iG+(xI , x

′
J) (28)

which has no divergence. This helps us to work with the total probabilities and to define the

entanglement measures with respect to them. However, we are not going to use any such switching

function in this paper. The reason behind this is, that even though such control over interaction can

be arranged in the flat spacetime, any such thing does not seem to be very plausible or realistic

in a cosmological background, where we cannot possibly have any control over the timescale of

interactions between fields. Apart from this, we also note that any such interaction term with

temporal switching cannot obey the de Sitter symmetries.

With these ingredients, we are now ready to go into the computation of entanglement generation

due to field-detectors couplings.

A. Conformally symmetric real scalar field in conformal vacuum

Let us begin with a conformally invariant real scalar field coupled to two Unruh-DeWitt detectors.

The corresponding Wightman function in this case is obtained by setting m = 0 and ξ = 1/6 in

Eq. (9). We have for a comoving detector (x⃗− x⃗′) = 0,

iG+(x, x′) = − H2

16π2
(
sinh H∆τ

2 − iϵ
)2 (29)

where ∆τ = τ − τ ′ as earlier. We also recall that by our assumption, the two comoving detectors

have vanishing comoving spatial separation. Note that if the comoving spatial positions of the two

detectors are coincident at some initial time, it will remain so forever. Substituting thus Eq. (29)

into Eq. (20), we have for any kind of transition

P = −g2
∫

dτ

∫
dτ ′ e−iω∆τ H2

16π2
(
sinh H∆τ

2 − iϵ
)2 (30)
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FIG. 1. The variation of the logarithmic negativity between two Unruh-DeWitt detectors for a real conformal

scalar field in the conformal vacuum with respect to the dimensionless energy parameter p = 2ω/H and the

field-detector coupling g. See main text for discussion.

Introducing as earlier new temporal variables, τ+ = (τ + τ ′)/2 and ∆τ = τ − τ ′, and by dividing

P by limτ+→∞ τ+, we have the transitionb rate per unit proper time

P ′ = −g2H2

16π2

∫ ∞

−∞
d(∆τ)

e−iω∆τ(
sinh H∆τ

2 − iϵ
)2 =

g2Hp

π(eπp − 1)
(31)

where p = 2ω/H is dimensionless. The above integral can be easily evaluated using, e.g., a

semicircular contour [71]. Further extension of it for the de Sitter α-vacua can be seen in [81]. On

the other hand, as we have discussed in the preceding section, the other integral, Eq. (21), yields

a δ(ω) which is vanishing for ω ̸= 0.

The only negative eigenvalue of the partially transposed density matrix is given by Eq. (25), to

yield the logarithmic negativity

LN = log2(2|λ′
2|+ 1) (32)

The variation of the logarithmic negativity with respect to the dimensionless parameter p and the

field-detector coupling has been depicted in Fig. 1. Even though the behaviour is monotonic for

a real conformal scalar, as we shall see in the next section, the same is not true if the conformal

scalar is complex.

B. The minimally coupled massless real scalar

Let us now consider a massless and minimally coupled (m = 0 = ξ) real scalar field. Note that

this makes ν = 3/2 in Eq. (9), making it undefined. The two point function for such a scalar field
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FIG. 2. The variation of the logarithmic negativity for the minimally coupled massless real scalar with

respect to the dimensionless energy gap p, as well as the field-detector coupling.

needs to be obtained separately from its equation of motion, and the Wightman function is given

by [72],

iG+(y) =
H2

4π2

(
1

y
− ln y

2
+

ln
(
a(η)a(η′)

)
2

)
(33)

Thus even though y is de Sitter invariant, the above Wightman function is not, owing the logarith-

mic term of the scale factor. On substituting Eq. (33) in Eq. (20) and dividing by limτ+→∞ τ+ =

(τA + τ ′B)/2, we obtain the response function

P ′ =
dP

dτ+
=

g2H2

4π2

∫ ∞

−∞
d(∆τ) e−iω∆τ

(
1

y
− ln y

2
+

ln
(
a(η)a(η′)

)
2

)
(34)

The above integral was first evaluated in [82], given by

P ′ =
pH

4π

1 + 16/p2

eπp − 1
+

H

4π2
ln(a(t)a(t′))δ(p) (35)

where p = 2∆E/H is dimensionless. We drop the δ-function as earlier, owing to p ̸= 0. Accordingly,

similar to the case of the conformal scalar discussed in the previous section, Eq. (21) shows that

E′ = 0. The logarithmic negativity is formally the same as Eq. (32). Its variation with respect to

parameter p for different g values is shown in Fig. 2.

IV. A COMPLEX SCALAR FIELD COUPLED TO UNRUH-DEWITT DETECTORS

Let us now come to the case of two Unruh-DeWitt detectors coupled to each other via a complex

scalar field. Corresponding to Eq. (11), the interaction Hamiltonian is given by

HI(t(τj)) =
∑
j

gjµj(τj)ϕ
†(x⃗(τj), t(τj))ϕ(x⃗(τj), t(τj)) (36)
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where the index j = A,B runs for both the detectors A and B. We assume as earlier that the

initial state of the scalar field is vacuum, as well as the detectors are in the ground state

|in⟩ = |0GAGB⟩ (37)

where we have suppressed the tensor product symbol. The time evolution operator U gives the

‘out’ state

|out⟩ = U |in⟩ = Te−i
∫
dτjHI(t(τj))|0GAGB⟩ (38)

From the ‘out’ density operator,

ρout = |out⟩⟨out|, (39)

we compute the reduced density matrix corresponding to the two detectors as earlier by tracing

out the field ϕ degrees of freedom, given by

ρAB =


1−NAA −NBB 0 0 M

0 NAA NAB 0

0 N∗
AB NBB 0

M∗ 0 0 0

 (40)

where the matrix elements explicitly read

M = −g2
∫

dτA

∫
dτ ′B e−iω(τA+τ ′B)(iGF (xA, x

′
B))

2 (41)

and

NIJ = g2
∫

dτI

∫
dτ ′J e−iω(τI−τ ′J )(−iG+(xI , x

′
J)))

2 (42)

where G+(xJ , x
′
J) and GF (xJ , x

′
J) are the positive frequency Whitman propagator and the Feyn-

man propagator, respectively. Note that Eq. (41) contains only the cross-detector coupling, whereas

Eq. (42) also contains self coupling, both mediated via the scalar field. For identical detectors,

Eq. (40) simplifies to

ρAB =


1− 2N 0 0 M

0 N N 0

0 N N 0

M∗ 0 0 0

 (43)
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FIG. 3. The variation of the logarithmic negativity for two identical detectors coupled to a conformal

complex scalar field in a conformal vacuum with respect to the dimensionless energy gap p and the coupling

g. We note the qualitative difference compared to the monotonic behaviour of the real scalar field cases,

Fig. 1, Fig. 2.

The above density matrix is formally similar to Eq. (22), although the elements are different,

owing to Eq. (41) and Eq. (42), which contains the square of the propagator as opposed to the real

scalar case. Defining once again measurement per unit proper time (τ+) as earlier, we obtain the

logarithmic negativity for complex scalar field-detector coupling

LN = log2(4N
′(1 +

√
2) + 1) (44)

where compared to the case of the real scalar field, N ′ now contains the square of the Green

function,

N ′ = g2
∫ ∞

−∞
d(∆τ) e−iω∆τ (iG+(∆τ))2 (45)

A. Conformal complex scalar in conformal vacuum

Let us first consider a conformal complex scalar field in the conformal vacuum. Eq. (45) in this

case reads

N ′ =
g2H3

128π4

∫ ∞

−∞
du

e−ipu

(sinhu− iϵ)4
=

g2p3H3

384π3

1

eπp − 1
(46)

where p = 2∆E/H as earlier. On substituting the above into Eq. (44), we obtain the logarithmic

negativity for the two identical detectors coupled to a conformal complex scalar field in the con-

formal vacuum. Its variation with respect to the parameter p for different values of the coupling g

is depicted in Fig. 3. Compared to the earlier cases of real scalar fields, Fig. 1, Fig. 2, we note a

non-monotonic behaviour.
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B. The minimally coupled massless complex scalar

Let us now come to the case of a massless and minimally coupled scalar field. Substituting Eq. (33)

into Eq. (45), we have

N ′ =
g2H3

8π4

∫ ∞

−∞
du e−ipu

[
(y ln y − 2)2

4y2
+ ln(a(t)a(t′))

(
1

y
− 1

2
ln y

)
+

(
1

2
ln(a(t)a(t′))

)2
]

(47)

We rewrite the above equation as (after ignoring a term proportional to δ(p)),

N ′ =
H3

8π4

∫ ∞

−∞
du e−ipu

[[
2(sinhu− iϵ)2 ln(−4(sinhu− iϵ)2) + 1

]2
16(sinhu− iϵ)4

− ln(a(t)a(t′))

4(sinhu− iϵ)2

−
(
1

2
ln(a(t)a(t′))

)
ln(−4(sinhu− iϵ)2)

]
(48)

The above integral was first evaluated in [74], which we wish to outline below and in Appendix A,

very briefly.

The first integral of Eq. (48) splits into three sub-integrals∫ ∞

−∞
du e−ipu

[
1

16(sinhu− iϵ)4
+

ln (−4(sinhu− iϵ)2)

4(sinhu− iϵ)2
+

(
ln
(
−4(sinhu− iϵ)2

))2
4

]
(49)

Note that the first integral in Eq. (49) is the same as that of the conformal complex scalar case

Eq. (46). We now evaluate the second integral of Eq. (49). Expanding the logarithm in order to

avoid the branch cuts, the second integral becomes

−1

2

∞∑
n=1

1

n

∫ ∞

0
du

(
e−(ip+2n)u

(sinhu− iϵ)2
+ c.c.

)
+

i

2

(
∂p +

π

2

)∫ ∞

0
du

(
e−ipu

(sinhu− iϵ)2
− c.c.

)
(50)

where ‘c.c.’ stands for complex conjugation. The above integral shows divergences. We regularise

them by renormalising the off-diagonal matrix elements of the detectors’ monopole operators in

the energy eigenbasis, Appendix A ([74]). The regularised expression reads∫ ∞

−∞
du e−ipu ln (−4(sinhu− iϵ)2)

4(sinhu− iϵ)2

∣∣∣∣∣
Regularised

=
π

2
csch

πp

2
coth

πp

2

∫ π/2

0
dx csc2 x

[
cosh

(π
2
− x
)
p− cosh

πp

2
+ px sinh

πp

2

]
− csch

πp

2

∫ π/2

0
dx csc2 x

[(π
2
− x
)
sinh

(π
2
− x
)
p−

(π
2
− x
)
sinh

πp

2
+

πpx

2
cosh

πp

2

]
− π

eπp − 1

∫ π/2

0
dx csc2 x [epx − 1− px]− csch

πp

2

∫ π/2

0
dxx csc2 x

[
sinh

(π
2
− x
)
p− sinh

πp

2

]
(51)

The third integral of Eq. (47) is given by∫ ∞

−∞
du e−ipu (ln(−4(sinhu− iϵ)2))2

4
= 4

∞∑
n=1

p2 − 4n2

n(p2 + 4n2)2
−

∞∑
n=1

2πp

n(p2 + 4n2)
+8

∞∑
m,n=1

1

n (p2 + 4(m+ n)2)

(52)
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FIG. 4. The variation of the logarithmic negativity for the minimally coupled massless complex scalar field

with respect to the dimensionless energy gap p, for different values of the field-detector coupling g.

Next, the second and third integrals of Eq. (48) can be evaluated in a likewise manner. Putting

things together now, we obtain the regularised expression for the response function integral Eq. (48),

N ′
Regularised =

g2p3H3

384π3

1

eπp − 1
+

pH3

16π3

ln(a(t)a(t′))

eπp − 1

(
1 +

8

p2

)

+
H3

2π4

 ∞∑
n=1

p2 − 4n2

n(p2 + 4n2)2
−

∞∑
n=1

πp

2n(p2 + 4n2)
+ 2

∞∑
m,n=1

1

n (p2 + 4(m+ n)2)


+

H3

16π3
csch

πp

2
coth

πp

2

∫ π/2

0
dx csc2 x

[
cosh

(π
2
− x
)
p− cosh

πp

2
+ px sinh

πp

2

]
−H3

8π4
csch

πp

2

∫ π/2

0
dx csc2 x

[(π
2
− x
)
sinh

(π
2
− x
)
p−

(π
2
− x
)
sinh

πp

2
+

πpx

2
cosh

πp

2

]
−H3

8π4
csch

πp

2

∫ π/2

0
dxx csc2 x

[
sinh

(π
2
− x
)
p− sinh

πp

2

]
− H3

8π3

π

eπp − 1

∫ π/2

0
dx csc2 x [epx − 1− px] (53)

On substituting N ′ from Eq. (53) in Eq. (44), the logarithmic negativity can be computed and its

variation with respect to parameter p for different g values can be seen in Fig. 4.

V. CONCLUSION

Let us summarise our work now. In this paper we have computed the entanglement harvesting for

two identical, two-level, comoving detectors in the cosmological de Sitter spacetime. The detectors

are assumed to have coincident spatial position. We also have assumed that they are un-entangled

initially. We have considered conformally invariant and massless minimally coupled scalar fields,

and have considered both real and complex scalars. The entanglement generated between the

detectors is computed in terms of the logarithmic negativity, depicted in Fig. 1, Fig. 2, Fig. 3,
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FIG. 5. Contours required for the evaluation of integrals.

Fig. 4. We note that the first two and the fourth show monotonic behaviour for the log-negativity.

Intuitively, we may explain this by noting that as the dimensionless energy difference between the

levels of the detector, p, increases, the associated wavelength decreases, decreasing the correlation

between the two detectors. Fig. 3 in this sense is counter-intuitive, for it shows a maximum for

small p values. We also note from Fig. 2 and Fig. 4 that there is more generation of log-negativity

for complex field compared to the real for the massless minimally coupled case, for given values of

the parameters.

Looking into the generation of decoherence between initially entangled detectors seems to be

an interesting task in this context. Extension of the critical slowing down of a detector e.g. [83, 84]

to two initially unentangled or entangled ones seems also to be a very interesting task. We wish

to come back to these issues in our future publications.

Appendix A: Brief sketch of the computation of Eq. (48)

Following [74], we wish to provide below some detail for the evaluation of Eq. (48). For example

for the evaluation of Eq. (50), we use∫ ∞

0
du

e−ipu

(sinhu− iϵ)2
= −i

∂

∂ϵ

∫ ∞

0
du

e−ipu

(sinhu− iϵ)
(A1)

The above trick converts the second order pole to first order, so that we may assign a Cauchy

principal value to the integral. Accordingly, we utilise quarter-circular contours as shown in Fig. 5,

with an infinite number of indentations around the poles

un = i(nπ + (−1)nϵ) n = 0, ±1, ±2, · · ·
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We have ∫ ∞

0
du

e−ipu

(sinhu− iϵ)2
= − πp

eπp − 1
+ i

∫ ∞

0
du

e−pu

(sinu+ ϵ)2

∣∣∣∣∣
poles excluded

(A2)

The above integral on the right hand side can be rewritten after a change of variable as,

csch
πp

2

∫ π/2

0
dx csc2 x cosh p

(π
2
− x
)

By separating the divergence, we rewrite the above as

coth
πp

2

∫ π/2

0
dx csc2 x− p

∫ π/2

0
dxx csc2 x+ csch

πp

2

∫ π/2

0
dx csc2 x

[
cosh

(π
2
− x
)
p− cosh

πp

2
+ px sinh

πp

2

]
(A3)

We also have

−1

2

∞∑
n=1

1

n

∫ ∞

0
du

e−(ip+2n)u

(sinhu− iϵ)2
+ c.c. =

πp

epπ − 1

∞∑
n=1

1

n
+

1

sinh πp
2

∞∑
n=1

1

n

∫ π/2

0
dx csc2 x sin 2nx sinh

(π
2
− x
)
p

(A4)

Using now the formula [85],

∞∑
n=1

sin 2nx

n
=

π − 2x

2
(0 < x < π), (A5)

we rewrite Eq. (A4) as

πp

epπ − 1
ζ(1) +

π

2

∫ π/2

0
dx csc2 x−

(
1 +

πp

2
coth

πp

2

) ∫ π/2

0
dxx csc2 x

+
π

2 sinh πp
2

∫ π/2

0
dx csc2 x

[
sinh

(π
2
− x
)
p− sinh

πp

2
+ px cosh

πp

2

]
− 1

sinh πp
2

∫ π/2

0
dxx csc2 x

[
sinh

(π
2
− x
)
p− sinh

πp

2

]
(A6)

After inserting suitable regulators, we can extract the following divergent part∫ ∞

−∞
du e−ipu ln (−4(sinhu− iϵ)2)

4(sinhu− iϵ)2

∣∣∣∣∣
div.

=
π coth πp

2

eπp − 1

1

ϵ
+

πp

eπp − 1
ln

ϵ

ϵ′
(A7)

In order to regularise the above divergence, we modify the field-detector interaction by adding

another monopole operator that does not couple to the field [74], for any one of the detectors

Lint = gµ(t) : ϕ†(x(t))ϕ(x(t)) : +µ′(t)
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The response function, Eq. (45), after this modification becomes (after ignoring a δ-function as

earlier),

N ′ =
2

H

∫ ∞

−∞
du e−ipu (iG+(u))2 +

2

gH

(
⟨E|µ′|G⟩
⟨E|µ|G⟩

+ c.c.

)∫ ∞

−∞
du e−ipu iG+(u) (A8)

The first term on the right hand side gives the usual response function integral for a massless

minimal complex scalar, Eq. (48), whereas the second term yields the response function for a real

massless minimal scalar field. Here, |G⟩ and |E⟩ are the ground state and the excited state of the

detector, respectively. In order for the above contribution to cancel the divergence of Eq. (A7), we

must set

⟨E|µ′|G⟩ = − gH3

8π2p (1 + 16/p2)

(
coth πp

2

ϵ
+ p ln

ϵ

ϵ′

)
⟨E|µ|G⟩ (A9)

which implies an operator relationship,

µ′ = −gH3

8π2

∑
i,j, i̸=j

Cij |i⟩⟨i|µ|j⟩⟨j| (A10)

Next by denoting |G⟩ and |E⟩, respectively, say, |i = 0⟩ and |i = 1⟩, we obtain

C10(p = 2ω/H) =
1

p(1 + 16/p2)

(
coth πp

2

ϵ
+ p ln

ϵ

ϵ′

)
(A11)

It is clear that, by construction, µ′ will cancel the divergence for any level transition of the detector.

Note also that C10 is even in p, i.e., C01 = C10. On collecting all the finite pieces, the second integral

of Eq. (49) is given by Eq. (51).

We next compute the third integral of Eq. (47). After some algebra, it can be cast into a form

−2
(
∂2
p + π∂p

) ∫ ∞

0
du cos pu−

∞∑
n=1

1

n
(4∂p + 2π)

∫ ∞

0
du sin pu e−2nu

+2
∞∑

m,n=1

1

mn

∫ ∞

0
du cos pu e−2(m+n)u (A12)

By introducing an infinitesimal positive imaginary part in p, we have∫ ∞

0
du cos pu = 0

Using the above result and also integrating by parts, Eq. (A12) is evaluated as

4

∞∑
n=1

p2 − 4n2

n(p2 + 4n2)2
−

∞∑
n=1

2πp

n(p2 + 4n2)
+ 8

∞∑
m,n=1

1

n (p2 + 4(m+ n)2)
(A13)
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Putting everything together, the regularised expression of Eq. (53) follows.
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