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Abstract
Climate risk assessments must account for a wide range of possible futures, so scientists often
use simulations made by numerous global climate models to explore potential changes in
regional climates and their impacts. Some of the latest-generation models have high effective
climate sensitivities (EffCS). It has been argued these “hot” models are unrealistic and should
therefore be excluded from analyses of climate change impacts. Whether this would improve
regional impact assessments, or make them worse, is unclear. Here we show there is no
universal relationship between EffCS and projected changes in a number of important climatic
drivers of regional impacts. Analysing heavy rainfall events, meteorological drought, and fire
weather in different regions, we find little or no significant correlation with EffCS for most regions
and climatic drivers. Even when a correlation is found, internal variability and processes
unrelated to EffCS have similar effects on projected changes in the climatic drivers as EffCS.
Model selection based solely on EffCS appears to be unjustified and may neglect realistic
impacts, leading to an underestimation of climate risks.

Introduction
The use of climate projections for impact assessment often exploits numerous climate and Earth
system models (ESMs). The Coupled Model Intercomparison Project1 (CMIP) provides
underpinning simulations to the Intergovernmental Panel on Climate Change (IPCC) analysis of
climate projections2, changes in climate impact drivers3, and assessment of impacts and
vulnerability4. Using a diverse set of ESMs, the CMIP ensemble aims to span the uncertainty
range of future projections, including potential high impact, low-likelihood events5. It is important
that CMIP models represent plausible future evolutions of the climate system and thus perform
well against observations6. A range of studies have shown improvement over generations of
models, including from CMIP5 to CMIP67. We therefore expect CMIP6 to represent an advance
for use in impact studies.

One widely discussed change from CMIP5 to CMIP6 is an increased range in model effective
climate sensitivity (EffCS) — the equilibrium increase in global mean surface temperature from a
doubling in atmospheric CO2 — with several CMIP6 models having EffCS above the assessed
likely and very likely ranges in the IPCC’s 6th assessment report (AR6)8. A recent study
(Hausfather et al., ref. 9) suggested such “hot models” warm faster than is realistic, leading to
concern that impact studies which draw from the full CMIP6 ensemble could overestimate the
impacts of climate change. The IPCC tackled this by constraining projections of global mean
temperature based on multiple lines of evidence2. This approach is not yet available for other
quantities. Hausfather et al.9 recommend filtering out models with EffCS outside the assessed
likely range when performing impact assessment. While this may be reasonable for global mean
surface air temperature, it is less clear what it means for assessments of regional change, and
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for quantities other than surface temperature. Projections of regional climate change, especially
related to hydrological processes, often have a greater range than projections of global mean
temperature. While this range is partly related to spread in the magnitude of the warming
response to CO2, changes in circulation patterns and heterogeneous forcings, such as
aerosols10 and land-use change11, also contribute. Furthermore, some studies find high-EffCS
models actually perform better than other models when evaluated for certain regions and
applications12,13,14.

We explore CMIP6-projected changes in regional climate impact drivers of fire, drought, and
monsoon flooding, across a number of important regions, to assess the extent to which
projected changes in these drivers are correlated with model EffCS. A regional climate impact
driver is a measure of climate known to drive an important societal/environmental impact in the
same region; the driver (e.g. extreme monsoon rainfall) can be directly diagnosed from an ESM,
while the impact (e.g. flooding) typically cannot. Calculating changes at the end of the century
relative to the recent past, following the Shared Socio-economic Pathway (SSP) 3-7.0
scenario15 (see Methods), we find only very few examples of a significant correlation between
projected changes in an impact driver and model EffCS. Even for the limited number of cases
where a correlation with EffCS is identified, the spread of future change in a given impact driver
across a single model ensemble (i.e. solely due to different model initial conditions), or between
models with similar EffCS values, is comparable in magnitude to the spread across the full
ensemble. This means that internal variability, as well as processes unrelated to EffCS, play at
least as large a role as EffCS in determining future changes in our three climate impact drivers.
Given the absence of any clear correlation between projected changes in our regional impact
drivers and EffCS, we argue it is not justified to filter out ESMs for impact studies solely based
on EffCS.

Results
To demonstrate the effect of filtering out “hot models”, we separate the CMIP6 ensemble into
two sets: one with EffCS above 4.5K (referred to as high-EffCS hereafter), and another with
EffCS below 4.5K (low-med-EffCS hereafter) and plot frequency distributions of the simulated
change in each climate impact driver (referred to as metric hereafter), for the two model
subsets, for each region of study. Applying such a distinction does not separate the frequency
distributions of projected change in our three metrics, with the two distributions largely
overlapping for the majority of metrics and regions (Fig. 1). In a few cases, the high-EffCS set
includes values not projected by any of the low-med-EffCS models, for instance, large increases
in high fire weather days in the Amazon region (AMZ), or in total rainfall in Central West Africa
(CWAF). Even for these metrics and regions, the overlap between the two distributions is large,
suggesting the projected change is not solely decided by EffCS. Moreover, high-EffCS models
do not always project larger changes in our metrics; in Western North America (WNA), the
high-EffCS set includes more simulations projecting a smaller increase in fire weather than the
low-med-EffCS set. Similar conclusions emerge when just looking at the five CIMP6 models
selected as core models (for the Inter-Sectoral Impact Model Intercomparison project, ISIMIP16)
(see stars in Fig. 1).
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Should the hottest models be filtered out to remove the most extreme projected changes? This
would need a solid justification because filtering out particular models can result in vast ranges
of potential impacts being excluded. For instance, in the five-member ISIMIP ensemble,
removing the hottest model would ignore the upper half of the low-med CMIP6 spread of the
flood metric in the core Indian monsoon (CIM) region, as well as the fire metric in AMZ (cf. red
stars in Fig. 1). A necessary, though not sufficient, condition for constraining a model ensemble
based on EffCS would be a statistically significant, ideally explainable, correlation between the
metric (the projected change in the regional climate impact driver) and EffCS. In the following,
we investigate whether such a correlation exists for our three metrics. We further assess how
the spread in our three metrics, expressed as a function of EffCS, compares with the spread of
the same metric for individual model ensembles, independent of EffCS, and across the full
CMIP6 ensemble.

Table 1 shows, for each metric, the difference between the median value for the high-EffCS set
and the median value for the low-med-EffCS set. It further shows the median and largest spread
in each metric across only low-med-EffCS models. In all cases, except AMZ fire, the largest
spread in the metric across low-med-EffCS models is bigger than the difference in the median of
the metric between high- and low-med-EffCS sets. This is largely still the case when only the
median spread in low-med-EffCS models is considered, although for CIM and CWAF,
differences between the high- and low-med-EffCS ensembles are comparable to the spread in
the low-med-EffCS set. This suggests that internal variability across an individual model or
group of models clustered by EffCS, has a larger (or equivalent) influence on the metric than
does EffCS. EffCS therefore appears to not be the sole cause of changes in our three selected
metrics and thus also in the resultant impacts. We investigate these potential additional controls
in the following subsections.

Flood
We consider projected changes in the 20 most intense, 5-day precipitation accumulations; a
metric indicative of the change in short-term flood risk (Methods). Most ensemble members
show an increase in this metric over both CIM and CWAF regions, and either little change or a
slight reduction over North (NCA) and South Central America (SCA) (Fig. 2). This agrees with
previous studies17, with an increase in the South Asian and West African monsoons attributed to
the northern hemisphere land mass warming more rapidly than adjacent oceans, and more
rapidly than the southern hemisphere due to the different land mass distributions18. In addition,
atmospheric water vapour increases strongly with warming temperatures19,increasing the
availability of water in northern hemisphere monsoon circulations.

To test the relationship between our monsoon metric and EffCS across the full CMIP6
ensemble, we calculate a linear fit between the two quantities for every possible combination of
one member from each model (Methods). For CIM, the relationship is positive and statistically
significant at the 95% level for the majority (~83%) of combinations, while CWAF shows only
~6% of combinations with a significant correlation (Table 2). Both NCA and SCA show no
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significant correlation. In other words, the monsoon metric is correlated with EffCS in CIM,
weakly correlated in CWAF, and not correlated at all in the other two regions. Even for CIM,
some high-EffCS members project a smaller metric change than some of the low-med-EffCS
members (Fig. 2). Moreover, the spread across members of an individual model (with the same
EffCS value) is comparable to the median difference between low-med- and high-EffCS models,
even for the CIM region (Fig. 2 and Table 1).

A study20 evaluating the quality of simulated present-day monsoons (1979-2014) in 24 CMIP6
models found the ten best performing models to have EffCS values between 2.5K and 5.5K; the
five best models are UKESM1-0-LL (EffCS 5.36K), CESM2 (5.16K), CESM2-WACCM (4.68K),
MIROC6 (2.6K) and NorESM2-MM (2.49K). The spread in EffCS across the five models
suggests little relationship between the quality of present-day simulated monsoon and model
EffCS. The similarity of performance for CESM2 and NorESM2-MM is particularly interesting as
these models share largely the same atmosphere and land models, but have very different
ocean models. Their EffCS values, derived from the CMIP6 Abrupt-4xCO2 experiment, are
radically different because of differences in ocean heat uptake in the Southern Ocean21. A
comparably accurate simulation of the present-day monsoon in these two models suggests their
common atmosphere and land models are likely most important, while processes responsible
for the radically different EffCS in the two models are of secondary importance with respect to
representing the present-day monsoon.

Our results suggest the relationship between the monsoon metric and EffCS is weakened by
other drivers. Aerosols are the primary non-EffCS controls on monsoon precipitation22.
Increased aerosol loading increases atmospheric solar reflectivity close to the emission
source23, cooling the land surface more than the adjacent ocean and thereby weakening the
land-ocean thermal gradient that drives the monsoon. Cooling, from the increased solar
reflection, also decreases atmospheric water vapour, while increased absorption of solar
radiation in the lower atmosphere, predominantly over land, increases atmospheric stability23.
Both changes act to decrease monsoon precipitation. Modelling studies24,25 suggest past
observed (decreasing) trends in mean South Asian monsoon precipitation arise from the impact
of anthropogenic aerosol emissions (decreasing precipitation) outweighing the impact of
CO2-forced warming (increasing precipitation). One study26 shows that variations in regional
aerosols are up to 4 times more efficient in impacting South Asian monsoon rainfall than
equivalent variations in atmospheric CO2, with extreme precipitation intensities particularly
impacted by aerosols.

Aerosols also play an important role in the West African monsoon27,28. During the 1950s to
1970s, increasing North American (NA) aerosols induced a drying effect on Sahel rainfall. This
effect was mediated by slower sea surface temperature (SST) responses to regional aerosol
emission trends across the globe, with cooling of the tropical west Pacific driving a remote
wetting signal over the Sahel and cooling of the tropical Atlantic inducing a drying signal. The
combination of these three drivers saw Sahel rainfall decline over the 1950s to 1970s. During
the 1970s to 2000s increasing African aerosol emissions drove a direct drying over the Sahel.
This local effect was balanced by a wetting signal associated with Atlantic warming (due to
decreasing NA aerosols), amplified by a continued remote wetting signal from the west Pacific.
The net result was an increase in precipitation over this period.
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For both the South Asian and West African monsoon, trends in regional aerosols have
significant and competing impacts on precipitation. These impacts are not considered in the
calculation of EffCS, which results solely from an increase in atmospheric CO2 within a constant
pre-industrial aerosol state. Any relationship between model EffCS and projected changes in
monsoon precipitation, derived from more realistic future emission scenarios that include
time-varying CO2, aerosol, and aerosol precursor emissions, will be significantly weakened
because of the confounding influence of aerosols.

Monsoons are also influenced by remote atmospheric teleconnections. The South Asian
monsoon is influenced by the El Niño-Southern Oscillation (ENSO) SST variability29. The West
African monsoon is influenced by multi-decadal Atlantic SST variability30 and by atmospheric
subsidence induced over the Sahara as a remote response to the South Asian monsoon31. In
addition, the NCA and SCA monsoons are heavily impacted by ENSO variability and by
anomalous subsidence forced by the West African and South Asian monsoons32. These impacts
are sufficiently large that neither the NCA nor SCA monsoon metric show any relationship with
EffCS across the CMIP6 ensemble.

In addition to regional aerosols and atmospheric teleconnections, monsoon precipitation also
depends on local convection and atmospheric water availability, which themselves are sensitive
to model representation of local land-vegetation-atmosphere interactions33, the Himalayan
snowpack (for CIM), and meso-convective-scale processes generally not resolved in ESMs34.
The extent to which ESMs capture these mechanisms has little relation with EffCS. For reliable
estimates of future monsoon rainfall, in addition to simulating the impact of increasing CO2 (and
other greenhouse gases), models also need to accurately simulate the impact of regional
aerosol emissions, remote drivers of monsoon variability and small-scale, local processes and
process interactions. All of these demands significantly weaken any link between model EffCS
and projected changes in monsoon precipitation when realistic emission and land-use scenarios
are used.

Drought
Fig. 3 shows the projected change in the number of drought events per year as a function of
EffCS (see methods for more detail). In almost all projections, the number of droughts increases
in the future, consistent with earlier studies using CMIP535 and CMIP6 data36,37. However, for all
regions and cases we fail to find a significant correlation between the drought change metric
and EffCS (Table 2). Furthermore, the difference in the median metric between high- and
low-med-EffCS models is always considerably smaller than the mean of the spread across only
low-med-EffCS members (Table 1).

This is likely because changes in drought are forced by several climate drivers, with only one of
these drivers being the magnitude of global warming. Local land warming, linked but not directly
proportional to global mean warming, leads to increased evapotranspiration and vegetation
water use, increasing drought risk, while higher atmospheric CO2 counters this through
increased plant water-use efficiency38, making drought sensitive to local
land-vegetation-atmosphere feedbacks. Many drought-prone regions today are located at the
poleward edge of the subtropics, under the descending branch of the Hadley Cell, which
induces persistent anticyclonic descending air, with dry conditions and high solar radiation.
Future changes in regional drought will be highly sensitive to any systematic changes in the
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Hadley Cell. While observations indicate the Hadley cell has expanded poleward over recent
decades39 and models suggest a continued expansion in the future40, zonal asymmetries in
ocean warming, as well as differential responses between the ocean and land, lead to regional
variations in projected Hadley cell expansion41 and its impact on drought.

In addition, drought prone regions in the mid-latitudes are influenced by transient weather
systems that propagate along the jet stream. Periodically, these systems are “blocked” by
long-lived meanders in the jet42. Such blocking events are important drivers of drought43,44. The
frequency and duration of such blocking depends on the strength of the jet, with a weaker jet
allowing more and longer meanders (blocking events45). The jet strength is controlled by the
tropical to pole tropospheric temperature gradient, with a stronger gradient resulting in a
stronger and more zonal jet and fewer blocking events. The zonal mean response to increasing
GHGs is warming of the tropical mid to upper troposphere and warming constrained close to the
surface in polar regions, particularly in the Northern Hemisphere. As a result, it is thought that
the jet stream will both strengthen and move poleward in the future46. Such a response would
decrease the number and intensity of blocking meanders and change their preferred location:
poleward and, over the Eurasian sector, eastward47, with important consequences for future
regional drought. While models have improved in simulating blocking, significant biases remain,
even in the latest CMIP6 models48. Nevertheless, models show a consistent reduction in future
blocking events, with a poleward and eastward shift of the main centres of action, potentially
countering the impact of Hadley Cell poleward expansion. In addition to these
dynamical/circulation controls on regional drought, trends in regional aerosol emissions can also
impact atmospheric circulation and drought49.

The competing impacts of increasing CO2, trends in aerosol emissions, changes in regional
circulation features, such as atmospheric blocking and regional land-atmosphere interactions,
all mean accurately simulating past and future drought is a challenge. CMIP6 models reproduce
historical drought with reasonable accuracy37,50, although no single model stands out as best51.
Additionally, while thermodynamic factors are responsible for average changes in the
hydrological cycle, variability across models is governed by the dynamical (circulation) response
to warming52. Based on our results, filtering models solely on EffCS is not justified for drought
assessment.

Fire
Fig. 4 shows that for almost all ensemble members, fire weather days are projected to increase
in the future compared to today as a function of EffCS. However, in Fig. 1, fire metric frequency
distributions for high- and low-med-EffCS models show a high degree of overlap, particularly for
AUS. Over AMZ there is a clear tendency for high-EffCS models to simulate a larger increase in
the number of fire weather days, while over WNA the opposite is the case.

Considering the full CMIP6 ensemble, a statistically significant relationship between EffCS and
our fire metric can be seen for AMZ (Fig. 4a and Table 2). However, this relationship is heavily
influenced by the very lowest and highest EffCS models that simulate the smallest and largest
change in fire metric respectively, while models between these two extremes have a more
nuanced and flatter relationship. For AUS, the relationship with EffCS is only partly significant
(Table 2), and the largest increase in fire weather is simulated by the ACCESS model, which
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has an intermediate EffCS value (Fig. 4b). We also find that the spread within and across the
high-EffCS models is within the range of the low-med-EffCS set (Fig. 1 and Fig. 4b), and
therefore excluding them brings no clear benefit while reducing the sample size, or biasing the
subsample, for impact studies. Similarly, the difference in behaviour between high- and
low-med-EffCS median values is smaller than the average spread across low-med-EffCS
models (Table 1). For WNA, there is no significant correlation with EffCS (Fig 4c and Table 2).
Here, models with an EffCS around 3K project the largest increase, and the model with the
highest EffCS (CanESM) projects the smallest change.

Wildfires pose a significant threat to communities and ecosystems. Climate influences fire
through several mechanisms, such as fuel load, dryness of fuel from water deficit, heat, and
spreading by winds. These factors make fire potentially sensitive to climate change, where
higher temperatures or longer dry spells53 can contribute to increased fire activity. Increased
warming leads to higher evapotranspiration, which dries out fuels including vegetation, soils and
litter, and fires are often linked with periods of drought. A strong relationship might be expected
between projected changes in fire and EffCS, given that temperature is a key driver of fire
weather. Yet our results for three fire-prone regions suggest EffCS is not the leading
determinant of future change in fire. The results show a stronger relationship between EffCS
and our fire metric in AMZ, where historic changes in fire regimes have been attributed to
anthropogenic activity54,55. Yet we find no relationship in WNA, despite already observed
increases in present-day fire weather which have been attributed to climate change56,57. In
Australia, there has been some observed increase in fire weather58 and fires may be becoming
larger and more intense59, although whether this is anthropogenically forced is less clear due to
natural variability from the Indian Ocean Dipole and ENSO60,61). These results indicate that
changes in regional fire weather are generally not directly related to EffCS. In reality, multiple
interacting factors influence fire occurrence, not limited to temperature, but also fuel availability,
dryness, natural fire ignition (e.g. by lightning), and ignition and suppression by humans62,63.
Large scale modes of variability such as ENSO also influence fire weather from year-to-year,
and warming of the Tropical North Atlantic Ocean has been associated with increased drought
and fires in Amazonia64. As with floods and drought, an approach that is more nuanced than
only focussing on EffCS is required before models can be excluded.

Discussion
For ten regions and three climate impact drivers of extreme monsoon rainfall, drought, and fire
we find no universal correlation between projected changes in these drivers and EffCS. For
some regions and drivers, a correlation does exist (e.g. AMZ fire or CIM monsoon rainfall), while
for most there is no clear relationship. Where a correlation is identified, it is not straightforward
to attribute future changes in our regional metric solely to EffCS, with many other factors also
contributing. For all three drivers, even the sign of the correlation depends on the region.
Furthermore, for all drought regions, the majority of monsoon flood, and fire regions, the spread
in projected changes across the full CMIP6 ensemble, or often across a single model ensemble,
is larger than, or of similar magnitude to, the difference in the median value of the metric
between high- and low-med-EffCS models. Considering the variety of regions and drivers, this
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should not be a surprise. All three drivers are influenced by multiple factors. For a few regions
and drivers EffCS may be the most important (though not the only) controlling factor, but for
most drivers and regions it is just one of many controls. While our results are contingent on the
choice of region and driver studied, all regions are known hotspots for their respective impact.
WNA, AMZ and AUS have experienced extreme recent wildfire years; CNA, MED and EAS
strong droughts; and the South Asian monsoon major flood events in 2022 and 202365.
Moreover, here we study the climatic drivers of regional impacts. Impact models themselves (as
well as real-world societal impacts) are more complex, involving numerous interactions between
climatic drivers, biogeophysical and human responses and subsequent societal impact. We
therefore believe the results from impact models will be even less clearly related to EffCS than
the climate impact drivers studied here.

Societal impacts of climate change often occur at small spatial scales. As scales decrease,
uncertainty in the forced climate change signal increases, partly because natural climate
variability also increases. It is therefore even more important that information sampling this
uncertainty is not thrown away without good reason. Thresholds may exist that trigger societal
impacts, considering a broad range of possible regional climate changes is therefore important
for understanding the true risk to society. Rejecting ESM projections for regional impact
assessment, based solely on EffCS, should therefore be avoided in the absence of additional
motivation, especially because it risks ignoring large parts of the range of potential impacts. It is
important to check if there is a statistically significant relationship between the criterion used for
model selection (e.g. EffCS) and the climate drivers of the impacts in question. If this is not the
case, or only partially true, then other factors should be considered before rejecting, or
weighting models66,67. For three impact drivers, over several regions, other factors such as
aerosol forcing, atmospheric circulation and teleconnection changes, as well as local
atmosphere-land-vegetation interactions are often as important as EffCS for determining the
projected change in a regional impact driver. For each driver, it is important to identify the main
processes inducing significant change in the driver and carefully evaluate each model’s
representation of these processes. . It is not sufficient to assume such regional responses
simply scale with model EffCS, as they generally do not.

Our results emphasise the important role of internal (or natural) variability plays in changes in
regional climate drivers and their resultant impacts. For most drivers we studied, the spread
across a single model ensemble is often larger than the difference in the driver between
high-EffCS and low-med-EffCS models. This is also true when a smaller subset of models is
considered, for example those selected for the ISIMIP3 activity (Supplementary Fig. S1).
Sampling a sufficient range of plausible impacts, including possible extreme outcomes, requires
impact model experiments sample the full range of plausible changes in regional climate drivers.
When it is not practical to run an entire CMIP ensemble (including all model members) through
an impact model, analysis of relevant climate impact drivers across the full multi-model
ensemble can help inform the selection of ESMs, and model members, that both spans the
range of plausible future change, and emphasizes the most likely outcomes.
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Selecting ESMs for regional impact studies based solely on EffCS has little (often zero)
justification. Without more careful consideration, any such reduced ensemble used for impact
studies will be unnecessarily biased. In the worst case, this will lead to the exclusion of models
with plausible estimates of regional impact drivers, and the impacts themselves, with negative
consequences for the robustness of scientific support for decision-making.
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Figure 1: Frequency distribution of projected change in our three regional climate drivers
(metrics). Top left: number of model simulations with a given EffCS value below (blue) or above
(red) 4.5K. Other panels show the distribution of projected change in the metrics for - drought,
left; fire, bottom; monsoon flood, right - for each of the two model subsets (vertical axis shows
normalised occurrence, i.e. the area under each curve is equal to 1). The value of 4.5K is
between the upper bounds of the AR6 assessed likely (4K) and very likely (5K) ranges for
EffCS, and provides for a sufficient number of simulations in each of the subsets. Stars indicate
the metric values for five model simulations that are used as input to many impact models16, and
are colour-coded by EffCS (cf. legend of Fig. 2). The map shows the regions over which the
impact drivers are analysed. See Methods section for more detail on how the projected change
in each driver was calculated, model simulations, and statistical methods.
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Figure 2: Change in area-averaged, total cumulative 5-day rainfall of the 20 most intense
rainfall events per 20-year period, versus model EffCS value. Change is calculated as
2081-2100 (under SSP3-7.0) minus 1995-2014. (a) Core West African monsoon region (CWAF),

12



(b) Core Indian monsoon region (CIM), (c) North Central America (NCA), (d) South Central
America (SCA). For each model, individual ensemble members are denoted by stars, and the
ensemble mean value by a circle. Models with a single ensemble member include error bars
indicating the largest (in black) and smallest (in grey, may be hidden behind model symbol)
standard deviations as derived from all models with multiple ensemble members. The yellow
line shows the best fit for the first (in some cases, only) ensemble member for each model. The
grey area is formed from numerous individual lines each showing the best fit to a possible
combination of one ensemble member from each model. The model EffCS value is mapped to
colour and the five model simulations that are used as input to many impact models16 are
highlighted in bold (see legend).

Figure 3: As Fig. 2 but for change in the number of extreme drought events per year. (a)
East Asia (EAS), (b) Central North America (CNA), (c) Mediterranean (MED).
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Figure 4: As Fig. 2 but for change in the number of fire risk days per 20 year period. (a)
Amazon (AMZ), (b), Australia (AUS), (c) Western North America (WNA).

Table 1. Difference in median impact metric values between high-EffCS and low-med-EffCS
models, compared with the spread across members for individual low-med-EffCS models.

Region Difference
between high- and
low-med-EffCS
medians (absolute
value)

Average spread in
low-med-EffCS models
(absolute value)

Largest spread in
low-med-EffCS models
(absolute value)

Flood

14



Core West African
Monsoon (CWAF)

216.80 mm 149.12 mm 219.68 mm

Core Indian
Monsoon (CIM)

329.46 mm 201.96 mm 550.94 mm

North Central
America (NCA)

30.77 mm 119.86 mm 275.63 mm

South Central
America (SCA)

339.18 mm 209.01 mm 657.46 mm

Drought

East Asia (EAS) 0.044692 0.079403 0.118613

Central North
America (CNA)

0.0056226 0.071512 0.127481

Mediterranean
(MED)

0.0074561 0.075394 0.118434

Fire

Amazon (AMZ) 523 days 130 days 278 days

Australia (AUS) 129 days 240 days 450 days

Western North
America (WNA)

-122 days 143 days 230 days

Table 2: Significance of correlation (at 95% significance level) between change in impact drivers
and EffCS.

Region Number of
low-med-EffC
S members
exceeding
high-EffCS
median
(models
contributing
those
members)

Percentage
of statistically
significant
correlations
in
low-med-EffC
S models

Percentage
of significant
correlations
in all models

r1 ensemble
member
correlation

Highest
ensemble
member of
low-med-EffC
S models
correlation
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Flood

Core West
African
Monsoon
(CWAF)

6(2) 0 6.25 Not
significant

Not
significant

Core Indian
Monsoon
(CIM)

5 (3) 42.97 83.54 Significant Significant

North Central
America
(NCA)

18 (9) 0 0.34 Not
significant

Not
significant

South Central
America
(SCA)

41 (11) 0 0 Not
significant

Not
significant

Drought

East Asia
(EAS)

9 (4) 21.09 3.857 Not
significant

Not
significant

Central North
America
(CNA)

21 (7) 0 4.248 Not
significant

Not
significant

Mediterranea
n (MED)

20 (8) 0 4.346 Not
significant

Not
significant

Fire

Amazon
(AMZ)

5 (2) 0 100 Significant Significant

Australia
(AUS)

11 (2) 1.56 43.55 Significant Not
significant

Western
North
America
(WNA)

38 (8) 0 0 Not
significant

Not
significant
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Methods

Climate impact drivers
We use drivers representing three different climate impacts: floods, drought and fire. All three
impacts are clearly associated with climate change and expected to worsen under future
conditions68,69. For each climate impact driver, we identify a measure whose magnitude can be
expected to be representative of the magnitude of the associated impact, and analyse the
change in this measure between a historical period (1995-2014) and a future period
(2081-2100) under the SSP3-7.0 scenario. SSP3-7.0 is a high warming scenario from Tier 1 of
the Scenario Model Intercomparison Project (ScenarioMIP70) that can be expected to inform
many climate impact studies in the near future; it is is part of the current simulation round of the
Inter-Sectoral Impact Model Intercomparison Project (ISIMIP, www.isimip.org).

Flood
As a proxy for pluvial flood risk associated with heavy monsoon rainfall, we calculate the area
averaged cumulative five-day rainfall amounts for a given region for the historical and future
periods. The difference between the total rainfall amounts of the top twenty such rain events
from each period is then calculated as our flood metric.

Drought

Drought is defined as an anomalous condition with respect to local and seasonal characteristics,
rather than an absolute threshold. We use the Standardised Precipitation Evapotranspiration
Index (SPEI)71,72, with the Hargreaves approximation for potential evapotranspiration73 (PE) to
investigate future change in extreme drought occurrence. SPEI is a widely used metric to
characterise atmospheric drought and integrates not only precipitation but also
evapotranspiration, meaning that it accounts for the role of temperature in determining the
amount of water the atmosphere holds, which is important for our study given that we look at the
role of climate sensitivity expressed by temperature.

We follow ref. 74 to calculate the number of drought events per year based on SPEI. For each
ensemble member we calculate the difference in average number of drought events for each
region between the future and historical periods. We use v1.8 of the SPEI.R library75 to calculate
SPEI. Selecting an accumulation period of six months, we use a threshold of months with SPEI
< -2 to identify extreme droughts. SPEI is calculated by fitting a log-logistic distribution to the
difference between precipitation and PE for monthly data. The average SPEI value is 0, which
corresponds to a cumulative probability of 50% for this difference, whilst the standard deviation
is 1. Following a normal distribution, a threshold of < -2 (two standard deviations lower than the
average) will find extreme droughts in 2.3% of all months.
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Fire
Wildfires are key drivers of ecosystem dynamics and carbon cycling76 and, while overall global
burned area is decreasing77, climate change driven increases in frequency and intensity of
wildfires have strong effects on human health78,79 and economic value of land80. We calculate
the number of fire-risk days for each period, using the Canadian Fire Weather Index (FWI). The
FWI integrates effects of local weather conditions and fuel moisture on fire behaviour. It can be
calculated from climatic variables alone (temperature, precipitation, relative humidity and wind
speed) and, because the different sub-indices can be regionally calibrated, has been widely
used across different forest types in the world. Established by81 the FWI has seen some
development82 and is widely used to gauge fire risk. FWI is calculated via a multistep process
taking many factors of forest fire risk into account and culminating in a daily index with arbitrary
units. These numbers are then typically classified according to chosen thresholds into several
classes of risk, such as low, medium, and high; resulting in a risk class for every day at a given
point82. For our purposes of evaluating the impact of climate change as predicted by different
climate models, we employ a simplified scheme with a single threshold. We classify all days at a
given point with a FWI above that threshold as high fire risk days and count the number of such
days in a 20 year period for a given region. By comparing this number for the future period with
the historical period, we obtain a measure for the change in fire risk induced by climate-driven
changes in weather.

Choice of regions
The three climate impact drivers are each evaluated over a set of three (four for flood) regions
where the corresponding impact is known to be large and to affect large numbers of people.
Regions are further selected to cover different continents and both the tropics and temperate
mid-latitudes.

For flood, we looked at four different regions: Core Indian Monsoon (CIM), Central West African
Monsoon (CWAF), North and South Central American Monsoons (NCA and SCA). The CIM
region was defined as the area between 18 – 27 N and 74 – 88 E; the CWAF to be 7.5 – 15 N
and 10 W – 10 E as defined in83 and the NCA and SCA regions as defined in the AR6 WGI
Reference Set of Land and Ocean Regions84,85.

The regions selected for drought are also defined in the AR6 WGI, which are the Mediterranean
(MED), considered a climate change hotspot, and East Asia (EAS) and Central North America
(CNA), which are agriculturally important regions affected by severe droughts in recent years.

For fire, we choose three different regions that are known to suffer from forest fires and that are
at high risk from a future increase in this impact, namely Western North America (WNA) as
given by the IPCC AR6 regions, the Amazon basin (AMZ), here defined as the combination of
two AR6 regions (South-American-Monsoon and Northern South-America), as well as a region
of Australia (AUS), again defined by the combination of two AR6 regions (Eastern Australia and
Southern Australia).
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Statistical Methods
The measure used to define Earth System Model (ESM) sensitivity in our analysis is the
Effective Climate Sensitivity (EffCS) and not the equilibrium climate sensitivity. The true
equilibrium climate sensitivity is rarely assessed for ESMs as this requires very long model
integrations. We use the same EffCS values as ref. 9, calculated as described in ref. 86 and
consistent with what is reported in Chapter 7 of the Sixth IPCC Assessment Report87.

We establish the relationship between our choice of metric for changes in different regional
impacts such as short term flooding events, fire occurrence days or drought indices with the
EffCS of ESMs by calculating a linear fit between the two quantities. In this, we assume that a
linear relationship exists between the two quantities. We then determine the statistical
significance of this relationship using null hypothesis testing based on the Student’s t-test for
significance in the 95% confidence interval. When considering metrics of ensemble projections
from a single model, we use the minimum and maximum ensemble member metric values from
models with ensemble sizes larger than one or just the single ensemble member available and
calculate lines for all possible combinations of these metric values across models (see Figs.
2-4). We then calculate the number of statistically significant lines using null hypothesis testing
as before and report results. Hence, we sample the full range of possible metric values.

Data and Code Availability
Our study used a selection of eighteen different Earth System Models from the Sixth Coupled
Model Intercomparison Project (CMIP6). Our selection criteria were based on maximising
diversity across models and EffCS values of models. For each model that had the requisite
variables for calculating a given metric, we used the first ten or all available ensemble members
(if fewer than ten were available) to represent the spread due to internal variability. All data was
downloaded from Earth System Grid Federation (ESGF) nodes (https://esgf.llnl.gov/) and
preprocessed using the open source software ESMValTool (https://esmvaltool.org/)88]. The list of
models and ensemble members used in our work is provided in Table 3. The r1 member is
always included; this is also the ensemble member that is used in many impact studies relying
on single-member multi-model ensembles89. Not all models had the necessary variables for
every climate impact driver, therefore the set of models differs slightly between Figures 2-4.
Software developed to calculate the three impact metrics, perform statistical analyses and make
our plots has been archived, together with our preprocessed data, at
https://doi.org/10.5281/zenodo.10533860.

Table 3: List of CMIP6 models and ensemble members used for the three climate impact drivers
along with their EffCS values as given in ref. 9.

Model EffC
S

Ensemble
members for

Ensemble
members for

Ensemble
members for
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Monsoon
impacts

Drought
impacts

Fire impacts

ACCESS-ESM1-
5

3.88 r1,r2,r4-10 (9
variants)

r1,r2,r4-10 (9
variants)

r1,r2,r4-10 (9
variants)

AWI-CM-1-1MR 3.16 r1

CESM2-WACC
M

4.68 r1

CMCC-ESM2 3.58 r1 r1 r1

CNRM-ESM2-1 4.79 r1 r1

CanESM5 5.64 r1-10 (10
variants)

r1-10 (10
variants)

r1-10 (10
variants)

EC-Earth3-AerC
hem

3.87 r1, r3 (2
variants)

r1, r3 (2
variants)

FGOALS-g3 2.87 r1,r3-5 (4
variants)

r1,r3-5 (4
variants)

r1,r3-5 (4
variants)

GFDL-ESM4 2.65 r1 r1 r1

INM-CM5-0 1.92 r1-3 (3
variants)

r1-5 (5 variants) r1-5 (5 variants)

IPSL-CM6A-LR 4.7 r(1-9) (9
variants)

r(1-9) (9
variants)

r(1-9) (9
variants)

KACE-1-0-G 4.75 r1-3 (3
variants)

r1, r2 (2
variants)

r1-3 (3 variants)

MIROC-ES2L 2.66 r1-10 (10
variants)

r1-10 (10
variants)

r1-10 (10
variants)

MPI-ESM1-2-HR 2.98 r(1-10) (10
variants)

r(1-10) (10
variants)

r(1-10) (10
variants)

MRI-ESM2-0 3.13 r1-5 (5
variants)

r1-5 (5 variants) r1-5 (5 variants)

NorESM2-MM 2.49 r1 r1

TaiESM1 4.36 r1 r1

UKESM1-0-LL 5.36 r(1,2,3,4,8,9,
10) (7
variants)

r(1,2,3,4,8,9,10)
(7 variants)

r(1,2,3,4,8,9,10)
(7 variants)
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