
Extinction and survival in inherited sterility

Sonia Velasco1
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Abstract

We introduce an interacting particle system which models the inherited sterility
method. Individuals evolve on Zd according to a contact process with parameter
λ > 0. With probability p ∈ [0, 1] an offspring is fertile and can give birth to other
individuals at rate λ. With probability 1−p, an offspring is sterile and blocks the site
it sits on until it dies. The goal is to prove that at fixed λ, the system survives for
large enough p and dies out for small enough p. The model is not attractive, since an
increase of fertile individuals potentially causes that of sterile ones. However, thanks
to a comparison argument with attractive models, we are able to answer our question.

Keywords: Interacting particle systems, Contact process, Coupling, Comparison Theorem.

1 Introduction

In this paper, we introduce an interacting particle system, suggested to us by Rinaldo
Schinazi [16], to model the ”Inherited Sterility” (IS) method. This method, developed in
the second half of the twentieth century, during the rise of intensive agriculture, is used
in pest control management, in particular to fight against massive crop destruction by
invasive species, see Inherited sterility in Lepidoptera [15]. The IS method is an adaptation
of the Sterile Insect Technique (SIT), developed, among others, by E. Knipling in the
1950s to eradicate New World screw worms. In the SIT, the overall goal is to eradicate
a population of insects through the use of a large number of males sterilized with gamma
rays. They are released over infested areas to mate with fertile individuals, but give rise to
no offspring, so the population eventually becomes extinct. However, for certain types of
species such as Lepidoptera, a high level of radiation is needed to produce total infertility.
This decreases the sexual competitiveness of sterilized individuals - as they carry with
them a repulsive level of radiation - and therefore mitigates the effectiveness of the SIT.
To counterbalance this effect, the species can be partially sterilized so that it produces a
certain proportion of sterile offsprings, and another of fertile ones. The fertile offsprings
themselves then have a certain chance of giving birth to fertile or sterile individuals and
so on. This is what is called Inherited Sterility. We refer to the reference book [5] for a
detailed list of trials and programs regarding the SIT and to Chapter 2.4 of the book for
Inherited Sterility.

For a mathematical analysis of the SIT, an interacting particle system suggested by
Rinaldo Schinazi is introduced in [10] as a toy model. At the microscopic level and in
infinite volume, the author proves a phase transition result: depending on the choice
of parameters for the system, the population survives or not. The macroscopic, out of
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equilibrium study of this particle system is investigated in [11] in infinite volume, and, more
recently in [14], at equilibrium in finite volume with slow reservoirs. Another interacting
particle system for the SIT is introduced in [8] where the study is done at the microscopic
level, and where again the authors derive a phase transition result for survival or extinction
of the population. Both in [10] and [8], the authors strongly rely on the monotonicity
underlying the dynamics of the particle systems. This monotonicity property comes from
the fact that the more fertile individuals are present, the more chances the population has
of surviving. It turns out that for the IS technique, this is no longer the case. Indeed,
having more fertile individuals at a certain time could imply having more sterile individuals
at a later time, given that fertile individuals give rise to a proportion of sterile ones. This
notable fact makes the mathematical analysis of an IS model quite challenging.

In our model, individuals evolve on Zd. They can either be fertile (in state 1) or sterile
(in state −1). Empty sites are said to be in state 0. Furthermore, each site is occupied
by at most one individual. Fertile individuals reproduce at a certain birth rate (or speed
of reproduction) λ > 0. There is a probability p ∈ [0, 1] that the offspring is born fertile
and 1− p that it is born sterile. Our goal here is to investigate the microscopic behavior
of the system when λ > 0 is fixed and p varies. In particular, we show that there is
no monotonicity in p in the system. Nonetheless, we manage to prove the following (see
Theorem 1):

(i) There is a p(λ) ∈ (0, 1) such that for any p ≤ p(λ), the process with birth rate λ
and fertility probability p becomes extinct (all the 1’s die out).

(ii) If λ > 0 is large enough, there is a p̃(λ) ∈ (0, 1) such for any p ≥ p̃(λ), the process
with birth rate λ and fertility probability p survives (there are infinitely often some
1’s).

The strategy pursued is the following: to prove (i) we show that our process is stochastically
dominated by a basic contact process which becomes extinct when p is small enough. To
prove (ii), we introduce a contact process with a dynamic random environment which
survives when λ and p are large enough. We show that our process stochastically dominates
it and therefore survives too. The difficulty relies on proving the survival of the contact
process with dynamic random environment. For that, in the spirit of [9] and [10], we
compare its graphical representation to oriented percolation, and use a renormalization
argument. Our proof simplifies the strategy pursued in [9] and [10], as it weakens the
hypothesis needed to apply the renormalization argument.

The paper is organized as follows. In Section 2, we introduce the models and state all
the results. In Section 3 we define the graphical representation associated to each model
and prove the stochastic dominations. In section 4, we prove the survival of the contact
process with dynamic random environment.

2 Definitions and results

2.1 The inherited sterility model and main result

For d ≥ 1, introduce the state space Ω = {−1, 0, 1}Zd
, so that for η ∈ Ω and x ∈ Zd, η(x)

is the state of site x in η. We say that

η(x) =


1, if there is a fertile individual at site x,
−1, if there is a sterile individual at site x,
0, if site x is empty.

(2.1)
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Two sites x and y are nearest neighbours in Zd if ∥x− y∥1 = 1 and we write x ∼ y.

Introduce η1, η−1, η0 ∈ {0, 1}Zd
as follows:

η1(x) = 1η(x)=1, η−1(x) = 1η(x)=−1, η0(x) = 1η(x)=0. (2.2)

For x ∈ Zd and η ∈ Ω, denote by n1(x, η) =
∑
y∼x

η1(y) the number of neighbours of x in

state 1 in η.

Definition 1. The inherited sterility process with birth rate λ > 0 and fertility probability
p ∈ [0, 1], that we will refer to as IS(λ, p), is the Markov jump process (ηt)t≥0 on the state
space Ω, whose transition rates at x ∈ Zd for a current configuration η are given by:

1,−1 → 0 : at rate 1, 0 → 1 : at rate λpn1(x, η), 0 → −1 : at rate λ(1− p)n1(x, η).
(2.3)

For η ∈ Ω, x ∈ Zd and i ∈ {−1, 0, 1}, denote by σi,xη the configuration obtained from
η after flipping the state of x to i:

σi,xη(y) =

{
i, if y = x
η(y), otherwise.

(2.4)

The infinitesimal generator of an IS(λ, p) process is given by: for any cylinder function f
on Ω and configuration η ∈ Ω,

Lf(η) =
∑
x∈Zd

∑
i∈{−1,0,1}

c(x, η, i)
[
f(σi,xη)− f(η)

]
, (2.5)

with infinitesimal transition rates:

c(x, η, 1) = 1, if η(x) ∈ {−1, 1},
c(x, η, 1) = λpn1(x, η), if η(x) = 0,

c(x, η,−1) = λ(1− p)n1(x, η), if η(x) = 0.

(2.6)

Since all the rates in (2.6) are bounded, by [12, Theorem 3.9], there exists a unique Markov
process whose dynamics is induced by the infinitesimal generator (2.5).

For η ∈ Ω, we will denote by Pλ,p
η the probability measure on the space of continuous

time trajectories on Ω induced by (ηt)t≥0 when η0 = η. We also denote by

A(η) = {x ∈ Zd, η(x) = 1}. (2.7)

An IS(λ, p) process (ηt)t≥0 is said to survive if,

Pλ,p
{0}

(
∀t > 0, A(ηt) ̸= ∅

)
> 0, (2.8)

where, by abuse of notation, {0} is the configuration containing a 1 at site 0 and 0’s
everywhere else. The process is said to become extinct otherwise.

Theorem 1. Fix d ≥ 1 and λ > 0:

(i) If λ ≤ λc(d), for any p ∈ [0, 1], an IS(λ, p) process on Zd almost surely becomes
extinct.

(ii) If λ > λc(d), there exists a p̌(λ) ∈ [λc(d)/λ, 1) such that for any p ≥ p̌(λ), an
IS(λ, p) process on Zd survives.
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In the rest of the paper, if X is a partially ordered set, given two configurations ξ1 and
ξ2 in XZd

, we say that ξ1 ≤ ξ2 if for any x ∈ Zd, ξ1(x) ≤ ξ2(x).

A convenient tool for the proof of extinction and survival in the context of non
conservative particle systems is monotonicity, defined as follows:

Definition 2. Consider X a (partially) ordered set. A process (ζt)t≥0 with values in XZd

and whose dynamics is parametrized by a certain value q is said to be monotone in q if,

when q1 ≤ q2, one can couple (ζ
(1)
t )t≥0 with dynamics parameter q1, and (ζ

(2)
t )t≥0 with

dynamics parameter q2, in such a way that

ζ
(1)
0 ≤ ζ

(2)
0 ⇒ ζ

(1)
t ≤ ζ

(2)
t a.s. for all t > 0.

For our model, there is no monotonicity in p:

Proposition 1. For any ordering of {−1, 0, 1} and any λ > 0, an IS process on Zd with
birth rate λ is not monotonous in the parameter p.

The proof of Proposition 1 is done in Section 3.

Remark 1. It follows that in Theorem 1, one cannot rely on a monotonicity argument
to prove that the phase transition in p is sharp in the sense that: for λ > λc(d), there is
a critical parameter pc(λ) ∈ [λc(d)/λ, 1) such that for any p < pc(λ), an IS(λ, p) process
becomes extinct and for any p > pc(λ), an IS(λ, p) process survives.

2.2 Two other processes

The contact process

Recall that the contact process on Zd with parameter λ is an interacting particle system
on the state space {0, 1}Zd

, whose transition rates at x for a current configuration ζ are
given by:

0 → 1 : at rate λn1(x, ζ), and 1 → 0 : at rate 1. (2.9)

The contact process on Zd exhibits a phase transition in the parameter λ (we refer to [13,
Part 1, section 2]) : there is a λc(d) ∈ (0,∞) such that for any λ ≤ λc(d), the contact
process with parameter λ almost surely reaches the empty configuration (extinction), and
for λ > λc(d), with strictly positive probability, the process never reaches the empty
configuration (survival). We refer to [12] and [13] for detailed reviews on the contact
process.

For η ∈ Ω, we denote by Pλ
ζ the probability measure on the space of continuous time

trajectories on Ω induced by (ζt)t≥0, when ζ0 = ζ.

Remark 2. Note that if p = 1, an IS(λ, p) process starting from a configuration in

{0, 1}Zd
evolves according to a contact process on Zd with parameter λ.

Theorem 2. For any (λ, p) ∈ (0,∞) × [0, 1], and (η0, ζ0) ∈ Ω × {0, 1}Zd
such that η0 ≤

ζ0, there exists a coupling (ηt, ζt)t≥0, on Ω × {0, 1}Zd
, such that (ηt)t≥0 is an IS(λ, p)

process starting from η0, (ζt)t≥0 a contact process with birth rate λp starting from ζ0, and
satisfying:

ηt ≤ ζt a.s. ∀t ≥ 0.

The proof of Theorem 2 is done using the basic coupling on the graphical representation
and we refer to Section 3.2 for more details.
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A contact process with dynamic random environment

Definition 3. For λ > 0 and p ∈ [0, 1], the Spont(λ, p) process is the Markovian jump
process (ξt)t≥0 on the state space Ω whose transition rates at site x ∈ Zd for a current
configuration ξ are given by:

0 → 1 : at rate λpn1(x, ξ), 0 → −1 : at rate 2dλ(1− p) and 1,−1 → 0 : at rate 1.
(2.10)

In other words, the dynamics is that of a contact process with parameter λp, where
empty sites become randomly blocked, i.e., no sites in state 1 can reproduce on neighbouring
blocked sites before they flip back to 0.

The infinitesimal generator of a Spont(λ, p) process is given by: for any cylinder
function f on Ω and configuration ξ ∈ Ω,

Lf(ξ) =
∑
x∈Zd

∑
i∈{−1,0,1}

cspont(x, ξ, i)
[
f(σi,xξ)− f(ξ)

]
, (2.11)

with infinitesimal transition rates:

cspont(x, ξ, 1) = 1, if ξ(x) ∈ {−1, 1},
cspont(x, ξ, 1) = λpn1(x, ξ), if ξ(x) = 0,

cspont(x, ξ,−1) = 2dλ(1− p), if ξ(x) = 0.

(2.12)

Since all the rates in (2.12) are bounded, by [12, Theorem 3.9] there exists a unique Markov
process whose dynamics is induced by the infinitesimal generator (2.11).

For ξ ∈ Ω, we will denote by P̃λ,p
ξ the probability measure on the space of continuous

time trajectories on Ω induced by (ηt)t≥0, when ξ0 = ξ.

The following result tells us that a Spont(λ, p) process is stochatically dominated by
an IS(λ, p) process:

Theorem 3. For any (λ, p) ∈ (0,∞) × [0, 1], and (ξ0, η0) ∈ Ω2 such that η0 ≤ ζ0, there
exists a coupling (ξt, ηt)t≥0, on Ω2 such that (ξt)t≥0 is an Spont(λ, p) process starting from
ξ0, (ηt)t≥0 an IS(λ, p) process starting from η0 and satisfying :

ξt ≤ ηt a.s. ∀t ≥ 0.

The proof of Theorem 3 is done using the basic coupling on the graphical representation
and we refer to Section 3.2 for more details.

The Spont process satisfies the following:

Theorem 4. Phase transition for the Spont process.
Fix λ > λc(d). The Spont process with birth rate λ exhibits a non trivial phase transition
in the parameter p: there exists pspontc (λ) ∈ [λc(d)/λ, 1), such that

(i) For any p < pspontc (λ), the process Spont(λ, p) becomes extinct.

(ii) For any p > pspontc (λ), the process Spont(λ, p) survives.

The proof of Theorem 4 is postponed to Section 4 and relies on the fact that for Spont,
contrary to IS, monotonicity holds.
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2.3 Proof of Theorem 1

Collecting the results stated in Section 2.2, we are in position to prove Theorem 1.

(i) By Theorem 2, we can consider a coupling (ηt, ζt) between an IS(λ, p) process and
a contact process with parameter λp, both starting from the configuration {0}, such
that

A(ηt) ⊂ A(ζt) a.s. ∀t ≥ 0.

Therefore,

Pλ,p
{0}

(
∀t, A(ηt) ̸= ∅

)
≤ Pλp

{0}

(
∀t, A(ζt) ̸= ∅

)
. (2.13)

It follows that for p ≤ λc(d)/λ, a contact process with parameter λp becomes extinct
so the upper bound in (2.13) is zero. Hence, the IS(λ, p) process become extinct.
In particular, this holds for any p ∈ [0, 1], as soon as λ ≤ λc(d).

(ii) As just seen, for λ ≤ λc, for any p ∈ [0, 1], an IS(λ, p) process become extinct. Fix
λ > λc. By Theorem 3 we can consider a coupling (ξt, ηt) between a Spont(λ, p)
process and an IS(λ, p) both starting from the configuration {0}, such that

A(ξt) ⊂ A(ηt) a.s. ∀t ≥ 0.

Therefore,

P̃λ,p
{0}

(
∀t, A(ξt) ̸= ∅

)
≤ Pλ,p

{0}

(
∀t, A(ηt) ̸= ∅

)
.

By Theorem 4, for p > pspontc (λ), the process Spont(λ, p) survives so the lower bound
in (2.3) is strictly positive. It turns out that for any p > pspontc (λ) the IS(λ, p) process
survives and pc(λ) ∈ [λc(d)/λ, 1). Taking p̌(λ) = pc(λ), the result follows.

3 Graphical representations and couplings

The processes introduced in Section 2 can be alternatively described by a graphical
representation, which gives another way of defining their dynamics, through the use
of Poisson point processes. This construction was introduced by Harris, see [7]. The
advantage of the graphical representation is that it allows to build very natural couplings
between processes, and in particular, to prove some monotonicity properties. It also allows
to compare the evolution of the set of occupied sites to that of a percolation cluster on an
oriented percolation graph. This key feature will be central in the following Section.

3.1 Graphical representations

Fix λ > 0 and p ∈ [0, 1]. Consider the diagram Zd × R+. Denote by E(Zd) the set of
oriented edges of Zd. To each element (x, y) ∈ E(Zd) we associate the realization of a
Poisson point process (Nx,y

1 )(x,y)∈Zd of parameter λp, as well as that of a Poisson point
process (Nx,y

2 )(x,y)∈Zd of parameter λ(1 − p). Also, consider two families of realizations
of Poisson point processes (Ux)x∈Zd and (Vx)x∈Zd with rate 1. We suppose that all these
Poisson processes are sampled independently. From them, one can build the IS(λ, p)
process, the Spont(λ, p) process and the contact process with parameter λ as follows:

• For IS(λ, p): at each time event t of Nx,y
1 , draw an arrow

1−→ in Zd × R+ from
(x, t) to (y, t) to indicate that if x is in state 1 and y in state 0, the birth of a fertile
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Figure 1: Graphical representation for a one dimensional IS process. The blue,
resp. red arrows, correspond to births of fertile, resp. sterile individuals. The black
crosses, resp. red dots, correspond to deaths of fertile, resp. sterile individuals. The blue
paths correspond to space-time active paths along which individuals survive. The red
segments correspond to blocked sites due to the presence of a sterile individual, that is,
sites where fertile individuals cannot be born, until the sterile individual blocking the site
dies.

individual occurs in y (it flips to state 1, see blue arrows in Figure 3.1). At each

time event t of Nx,y
2 , draw an arrow

−1−→ in Zd × R+ from (x, t) to (y, t) to indicate
that if x is in state 1 and y in state 0, the birth of a sterile individual occurs in y (it
flips to state −1, see red arrows in Figure 3.1). For each time event t of Ux, resp.
Vx , place a symbol × (black cross in Figure 3.1), resp. o (red dot in Figure 3.1) at
(x, t) to indicate that if x was in state 1 resp. −1, it flips to zero.

• For Spont(λ, p): perform the same steps as for the graphical representation of

IS(λ, p) except that at each time event t of Nx,y
2 , draw an arrow

−1−→ in Zd × R+

from (x, t) to (y, t) to indicate that if y is in state 0, it flips to state −1, regardless
of the state of x.

• For the contact process with parameter λp: perform the same steps as for the
graphical representation of IS(λ, p) and ignore the effects of the Poisson point
processes (N2

x,y)(x,y)∈E(Zd) and (Vx)x∈Zd .

Given a graphical representation, an active path refers to a connected oriented path,
moving along the time lines in the increasing direction of time and passing along arrows
1−→, which crosses neither symbols × nor space-time points that are in state −1. Then,

an IS(λ, p), resp. Spont(λ, p), resp. contact process starting from a configuration η, resp.
ξ, resp. ζ, can be built from the percolation structure described above, following the
indications given by the different space time events. In particular, if the process starts
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with 1’s in a given set A(η), resp. A(ξ), resp. A(ζ), and 0’s everywhere else, the set of 1’s
at time t in (ηt)t≥0, resp. (ξt)t≥0, resp. (ζt)t≥0 is given by:

At(η) =
{
y ∈ Zd, ∃x ∈ A(η) such that there is an active path from (x, 0) to (y, t)

}
,

resp. At(ξ) =
{
y ∈ Zd, ∃x ∈ A(ξ) such that there is an active path from (x, 0) to (y, t)

}
,

resp. At(ζ) =
{
y ∈ Zd, ∃x ∈ A(ζ) such that there is an active path from (x, 0) to (y, t)

}
.

We refer to [4, Section 2] for a proof that the graphical construction in the case of the
contact process is well defined, and it adapts here for the graphical construction of the
IS(λ, p) process. We refer to [7] to check that the dynamics thus defined by the graphical
representation matches the one in Definition 1.

3.2 Couplings

The graphical representations of processes allow to build the so called basic couplings. They
essentially consist in using some common Poisson Processes in their graphical representation.
We use these coupling to prove Theorems 2 and 3.

Proof of Theorem 2. Take λ > 0 and p ∈ [0, 1]. Consider two configurations (η, ζ) ∈
Ω × {0, 1}Zd

such that η ≤ ζ. Sample independent families of Poisson point processes
(N1

x,y)(x,y)∈E(Zd), (N
2
x,y)(x,y)∈E(Zd), (Ux)x∈Zd , (Vx)x∈Zd with respective parameters λp, λ(1−

p) and 1. Deduce the evolution of an IS(λ, p) process (ηt)t≥0 starting from η0, and that
of a contact process (ζt)t≥0 with parameter λp starting from ζ0, by using their graphical
representation and using the same Poisson point processes for that.

When a site x ∈ Zd flips from 0 to 1 in (ηt)t≥0, so does this happen for (ζt)t≥0, if x was
in state 0 in (ζt)t≥0. Indeed, for such a flip to happen at s > 0, there must be a y ∼ x,

such that an arrow
1−→ is produced by N1

y,x for the graphical construction of IS(λ, p), and

such that ηs−(y) = 1. This implies that ζs−(y) = 1, so the arrow
1−→ is also produced

by N1
y,x for the graphical construction of the contact process with parameter λp. Thus,

x flips from 0 to 1 in (ζt)t≥0. Furthermore, as we use the same Poisson point processes
(Vx)x∈Zd for the flippings of 1 to 0, such flips in (ζt)t≥0 happen simultaneously in (ηt)t≥0.
Therefore, flips from 0 to 1 in (ηt)t≥0 and flips from 1 to 0 in ζt can never disrupt the
order, so the basic coupling is order preserving.

In terms of transition rates, the basic coupling between IS(λ, p) and the contact process
with parameter λ goes as follows. At site x ∈ Zd, for a current configuration (η, ζ):

(1, 1) → (0, 0) : 1, (0, 1) →


(0, 0) : 1
(1, 1) : λpn1(x, η)
(−1, 1) : λ(1− p)n1(x, η)

,

(0, 0) →


(1, 1) : λpn1(x, η)
(0, 1) : λpn1(x, ζ)− λpn1(x, η)
(−1, 0) : λ(1− p)n1(x, η)

, (−1, 1) →
{

(0, 1) : 1
(−1, 0) : 1

,

(−1, 0) →
{

(−1, 1) : λpn1(x, ζ)
(0, 0) : 1

,

(3.1)

8



where we recall that n1(x, η), resp. n1(x, ζ), is the number of neighbours of x in state 1 in
η, resp. ζ. Since η ≤ ζ, the rates are positive and the transition rates are well defined.

Proof of Theorem 2. Take λ > 0 and p ∈ [0, 1]. Consider two configurations (η0, ξ0) ∈ Ω2

such that ξ0 ≤ η0. As in the previous proof, sample independent families of Poisson point
processes (N1

x,y)(x,y)∈E(Zd), (N
2
x,y)(x,y)∈E(Z2), (Ux)x∈Zd , (Vx)x∈Zd with respective parameters

λp, λ(1 − p) and 1. Deduce the evolution of an IS(λ, p) process (ηt)t≥0 starting from
η0, and that of a Spont(λ, p) process (ξt)t≥0 starting from ξ0, by using their graphical
representation and using the same Poisson point processes for that.

When a site x ∈ Zd flips from 0 to 1 in (ξt)t≥0, so does this happen for (ηt)t≥0, if

x was in state 0, as this happens under the effect of the same arrows
1−→ produced by

N1
y,x. Furthermore, when a site x ∈ Zd flips from 0 to −1 in (ζt)t≥0, so does this happen

for (ξt)t≥0, if x was in state 0. Indeed, for such a flip to happen at s > 0, there must

be a y ∼ x such that an arrow
−1−→ is produced by N2

y,x for the graphical construction of
IS(λ, p), but this arrow is activated for (ξt)t≥0 at s, whatever the state of y. Finally, as
we use the same processes (Ux)x∈Zd , resp. (Vx)x∈Zd , for the flippings of 1 to 0, resp. −1 to
0 in η and ξ, such flips happen simultaneously. Therefore, flips from 0 to 1 in (ξt)t≥0, from
1 to 0 in (ζt)t≥0, from 0 to −1 in (ηt)t≥0 and from −1 to 0 in (ξt)t≥0, can never disrupt
the order, so the basic coupling is order preserving.

In terms of transition rates, the basic coupling between IS(λ, p) and a Spont(λ, p)
process goes as follows. At site x ∈ Zd, for a current configuration (η, ζ):

(0, 0) →



(1, 1) : λpn1(x, ξ)

(0, 1) : λp
[
n1(x, η)− n1(x, ξ)

]
(−1,−1) : λ(1− p)n1(x, η)

(−1, 0) : λ(1− p)
[
2d− n1(x, η)

]
, (0, 1) →


(0, 0) : 1

(−1, 1) : 2dλ(1− p)

(1, 1) : λpn1(x, ξ)

,

(−1, 1) →


(−1, 0) : 1

(0, 1) : 1
, (−1,−1) → (0, 0) : 1

(−1, 0) →


(0, 0) : 1

(−1, 1) : λpn1(x, η)

(−1,−1) : λ(1− p)n1(x, η)

, and (1, 1) → (0, 0) : 1.

(3.2)

Since ξ0 ≤ η0, the rates are positive and the dynamics is well defined. One can check that
(ξt)t≥0 is a Spont(λ, p) process on Zd and (ηt)t≥0 is an IS(λ, p) process with parameter
λp and that almost surely, for any t ≥ 0, ξt ≤ ηt.
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3.3 Monotonicity for Spont(λ, p), lack of monotonicity for IS(λ, p)

Contrary to IS processes (see Proposition 1 and its proof in this subsection), we have
monotonicity in p at fixed λ for Spont processes:

Proposition 2. Fix λ > 0 and p1 < p2 in [0, 1]. There exists a coupling (ξ
(1)
t , ξ

(2)
t )t≥0 on

Ω2 such that (ξ
(1)
t )t≥0, resp. (ξ

(2)
t )t≥0 is a Spont(λ, p1), resp. Spont(λ, p2) process and

ξ
(1)
0 ≤ ξ

(2)
0 ⇒ ξ

(1)
t ≤ ξ

(2)
t a.s. for all t ≥ 0. (3.3)

Proof. Again, the basic coupling provides an order preserving coupling. For that, consider
Poisson point processes indexed by oriented edges and sites N1

x,y, Ñ
1
x,y, N

2
x,y, Ñ

2
x,y, Ux,

Vx, with respective parameters λp1, λ(p2 − p1), 2dλ(1− p2), 2dλ(p2 − p1), 1 and 1. Then,
build the graphical representation for Spont(λ, p1) by using N1

x,y, N
2
x,y + Ñ2

x,y, Ux and Vx,

and the graphical representation for Spont(λ, p2) by using N1
x,y + Ñ2

x,y, N
2
x,y, Ux and Vx.

As in the proofs in Section 3.2, one can check that this coupled graphical representation
is order preserving.

The rates of this coupling are given as follows. At site x ∈ Zd for a current couple of
configuration (ξ, ξ̃):

(0, 0) →



(1, 1) : λpn1(x, ξ)

(0, 1) : λp2n1(x, ξ̃)− λp1n1(x, ξ)

(−1,−1) : 2dλ(1− p2)

(−1, 0) : 2dλ(p2 − p1)

, (0, 1) →


(0, 0) : 1

(−1, 1) : 2dλ(1− p1)

(1, 1) : λp1n1(x, ξ)

,

(−1, 1) →


(−1, 0) : 1

(0, 1) : 1.
, (−1,−1) → (0, 0) : 1

(−1, 0) →


(0, 0) : 1

(−1, 1) : λp2n1(x, ξ̃)

(−1,−1) : 2dλ(1− p1)

, and (1, 1) → (0, 0) : 1.

(3.4)

Now let us prove Proposition 1, which claims that for any ordering of {−1, 0, 1}, there
is no monotonicity in p for an IS process at fixed λ. First note that the basic coupling,
built as in the proof of Proposition 2, does not provide an order preserving coupling,
whatever the order on {−1, 0, 1}. In fact, hereafter we only consider orders where 1 is the
maximal element of the set, as we are interested in the survival of 1’s.

• For the order −1 < 0 < 1: consider η1, η2 ∈ Ω2 with η1 ≤ η2, such that there is

x ∼ y ∈ Zd with η1(x) = η1(y) = 0, η2(x) = 1 and η2(y) = 0. If an arrow
−1−→ is

produced by N2
x,y, a birth of a −1 happens at y for η2 which breaks the ordering of

η1 and η2.

10



• For the order −1 < 0 < 1 and the partial order 0,−1 < 1 : consider η1, η2 ∈ Ω2 with
η1 ≤ η2, such that there is x ∼ y ∈ Zd with η1(x) = 1, η1(y) = 0, η2(x) = 1 and

η2(y) = −1. If an arrow
1−→ is produced by N1

x,y, a birth of a 1 happens at y for η1

which breaks the ordering of η1 and η2.

This is not enough to conclude with the absence of monotonicity in p as other couplings
could be order preserving. It turns out that in [1], a characterization of the monotinicity
of a process is given in terms of conditions on its transition rates (see [1, Theorem 2.4]).
We use this very convenient characterization here.

Proof of Proposition 1. Again, we discuss according to the ordering.

• For the order −1 < 0 < 1: Using the notation in [1], the birth and death rates are
given by:

R0,1
1,0 = λp, R−1,0

0,1 = λ(1− p), P−1
1 = P 1

1 = 1. (3.5)

Using the same notation as in the statement of Theorem 2.4 in [1], taking (α, β) =
(0, 0), (0, 1) = (γ, δ) and h1 = 0, we have∑

k∈X,k>γ−α

R−k,0
γ,δ = λ(1− p) >

∑
k∈X,k>j1

R−k,0
α,β = 0,

so inequality (2.14) in the characterization of monotonicity in Theorem 2.4 of [1] is
not satisfied.

• For the order 0 < −1 < 1: the birth and death rates are given by:

R0,2
1,0 = λp, R0,1

1,0 = λ(1− p), P−2
1 = P−1

−1 = 1. (3.6)

Now, taking (α, β) = (1, 0), (γ, δ) = (1,−1) and h1 = 0, we have∑
k∈X,k>δ−β

R0,k
α,β = λp >

∑
k∈X,k>0

R0,k
γ,δ = 0,

so inequality (2.13) in the characterization of monotonicity in Theorem 2.4 of [1] is
not satisfied.

• For the partial order 0,−1 < 1 one can take the birth or death rates to be as in (3.5)
or (3.6). In either cases, inequalities (2.13) or (2.14) in [1] are not satisfied and one
does not have monotonicity.

Remark 3. Using [1, Theorem 2.4], one can also show that there is no monotonicity in
λ, at fixed p, for an IS process as well as a Spont process on Zd.

4 Phase transition for the Spont process

4.1 Proof of Theorem 4

From the monotonicity of Spont, stated in Proposition 2, the following holds
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Corollary 1. Suppose that λ > 0 is fixed and consider ξ ∈ Ω. The mapping

p 7→ P̃λ,p
ξ

(
∀t ≥ 0, A(ξt) ̸= ∅

)
is a non decreasing function, where we recall that A(ξt), defined in (2.7), is the set of sites
in state 1 in ξt.

Proof. Let p1 < p2 and consider an order preserving coupling of (ξt, ξ̃t)t≥0 on Ω2 initially
in (ξ, ξ) such that (ξt)t≥0 is a Spont(λ, p1) process and (ξ̃t)t≥0 a Spont(λ, p2) process.
Then for any t ≥ 0, A(ξt) ⊂ A(ξ̃t), hence the result.

Proposition 3. Fix λ > λc(d). For p < 1 large enough, the process Spont(λ, p) survives.

The proof of Proposition 3 is the object of Section 4.2. From Corollary 1 and Proposition
3, we deduce the proof of Theorem 4.

Proof of Theorem 4. Consider λ > λc(Zd) and introduce

pspontc (λ) := inf{ p ∈ [0, 1), Spont(λ, p) survives }.

By Proposition 3, pspontc (λ) < 1. By Corollary 1, for any p > pspontc (λ) a Spont(λ, p)
process survives and, for any p < pspontc (λ) a Spont(λ, p) becomes extinct. Furthermore,
building an order preserving coupling between Spont(λ, p) and a contact process with
birth parameter λp in the same spirit as the coupling (3.1) between an IS(λ, p) and a
contact process, we get that pspontc (λ) ≥ λc(d)/λ.

4.2 Proof of Proposition 3

In order to prove Proposition 3, that is, that for λ > λc(d) and for p ∈ [λc(d)/λ, 1), large
enough, the process Spont(λ, p) survives, we use a comparison with oriented percolation
Theorem. For that, we rely on the graphical construction of our processes (see Section
3). The idea underlying the Comparison Theorem (see Theorem 7), is to show that for
p large enough, the process dominates an oriented percolation configuration containing,
almost surely, an infinite component.

In what follows, we recall the definition of oriented percolation and state the Comparison
Theorem. We also recall some results on the contact process. Then, we apply the
Comparison Theorem to the Spont process in one dimension and explain how to obtain
the result in any dimension.

4.2.1 Comparison Theorem

Let us recall the definition of oriented site percolation in two dimensions. We refer to [4]
and references therein for the proofs of the results on oriented site pecolation stated below.

The underlying graph for oriented site percolation with parameter p ∈ [0, 1] is the
graph with vertices the bi-dimensional even lattice

L =
{
(m,n) ∈ Z2, m+ n is even , n ≥ 0

}
(4.1)

and with edges the oriented bonds

(m,n) → (m+ 1, n+ 1), and (m,n) → (m− 1, n+ 1).

An oriented site percolation graph is obtained by keeping each site (m,n) ∈ L with
probability p and discarding it with probability 1− p (there might be some dependencies
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in the samplings of sites but we will discuss this further). We say that the site is open if
it has been kept after sampling and closed otherwise.

We say that there is an oriented open path from (x, n) to (y,m) and denote this
by (x, n) → (y,m) if there exists a sequence of points x = x1, ..., xk = m such that
(xi, n+ i) ∈ L, |xi − xi+1| = 1 for 1 ≤ i ≤ k − 1 and the sites (xi, n+ i) are all open.

Given an initial set of open sites A0 ⊂ 2Z we denote by An the following set of sites:

An = {y, (x, 0) → (y, n) for some x ∈ A0},

that is, the set of attainable sites at time n, starting from those in A0.

Let A0
n be the set of reachable sites at time n when A0 = {0} and define A0 = ∪

n≥0
An,

that is, the set of points reached by the origin through a connected open oriented path.
We say that percolation occurs when |A0| = ∞.

Theorem 5. Percolation for independent samplings.
Suppose that the samplings of sites are performed independently from one another.

Then, for p ∈ [0, 1) large enough,

P[ |C0| = ∞] > 0.

The proof of this can be obtained thanks to a Peierls argument (or dual contour
argument) and we refer to [6], or [4]. In [4], it is detailed how Theorem 5 can be
extended to the case where samplings are not necessarily independent but with finite
range dependencies (see Definition just below).

Definition 4. Fix M > 0 an integer. We say that the samplings of sites are M -dependent
with intensity at least 1− γ (with γ ∈ [0, 1]) if, whenever (mi, ni)1≤i≤k is a finite sequence
such that ∥(mi, ni)− (mj , nj)∥∞ > M for i ̸= j, then

P
[

∪
1≤i≤k

(ni,mi) is open
]
≥ 1− γk. (4.2)

Theorem 6. Percolation for M -dependent samplings.
Consider an M -dependent percolation process with intensity at least 1 − γ. If γ ≤

6−4(2M+1), then
P[ |C0| = ∞] > 0.

Again, we refer to [4] for a detailed proof of Theorem 6.

Remark 4. Note that in the definition of M -dependence, there is no parameter p. We
just have inequality (4.2) with parameter γ.

The Comparison Theorem gives general conditions which guarantee that an interacting
particle system dominates an oriented site percolation. This domination relation allows
us to infer survival of the process if there is an infinite path starting from the origin in
the oriented percolation. We refer to the seminal paper [2] where this technique is used
for spin systems.

Consider (ξt)t≥0 a translation invariant and finite range process with state space XZ,
which can be constructed from a graphical representation. The idea is to overlap L with
the graphical representation of the process and to use the latter to define a set of wet sites
in L. Then, one shows that in the graphical representation, the wet sites ”propagate”
in some sense within disjoint boxes Rm,n (defined below) of size M in Z2, with a certain
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probability, greater than 1 − γ. This yields that the set of wet sites in L stochastically
dominates the set of open sites in L, when L is subject to M -dependent percolation of
intensity at least 1− γ.

Fix some positive integers L, T, k and j. For (m,n) ∈ L, define the space-time regions

Rm,n = (2mL,nT ) + [−kL, kL]× [0, jT ].

Let M = max(k, j) so that the regions Rm,n and Rm′,n′ are disjoint as soon as ∥(m,n)−
(m′, n′)∥∞ > M . Let H be the set of configurations satisfying a certain property which
only depends on the state of ξ in [−L,L]. We say that (m,n) is wet if τ−2mLξnT belongs
to H, where τx stands for the translation by x. We say that wetness in (m,n) propagates
well if there is an event Gm,n such that:

(1) Gm,n only depends on the graphical representation in Rm,n,

(2) There is γ ∈ [0, 1] (independent of m and n) such that P(Gm,n) ≥ 1− γ,

(3) If (m,n) is wet, then on Gm,n, so are (m+ 1, n+ 1) and (m− 1, n+ 1), that is,

τ−2(m−1)Lξ(n+1)T ∈ H and τ−2(m+1)Lξ(n+1)T ∈ H.

Denote by Xn the set of wet sites in ξ at time nT .

Theorem 7. [4, Section 4] Comparison Theorem.
If (1), (2) and (3) hold, Xn dominates a two dimensional M -dependent oriented site

percolation with initial configuration A0 = X0 and density at least 1− γ, that is,

∀n, An ⊂ Xn a.s.

Again, we refer to [4] for the proof. The idea is to proceed by induction on n.

Remark 5. One could also write a Comparison Theorem with edge oriented percolation
(we keep edges with probability p and discard them with probability 1− p) and compare Xn

to it by matching open arrows with good events happening.

To apply the comparison Theorem, as will be done in Section 4.2.3, one needs to
properly choose the space-time boxes Rm,n as well as the notion of wetness. Then, one is
left to check that points (1), (2) and (3) hold.

4.2.2 Preliminary results on the contact process

In order to apply the Comparison Theorem we state some known results on the one
dimensional contact process and give references for their proofs.

Given a subset A of Z, let (ζAt )t≥0 be a contact process starting with 1’s in each site
of A and 0’s everywhere else. For a configuration ζ ∈ {0, 1}Z, denote by |ζ| ∈ [0,∞] the
number of ones (possibly infinite) in ζ.

The following result comes from (3.2) in [3] and tells us that unless (ζAt )t≥0 is extinct
at time t, it is coupled to (ζZt )t≥0 inside a linearly growing set with rate of growth α.

Proposition 4. [3, (3.2)] Consider a contact process (ζt)t≥0 with parameter λ > 0. There
exists α > 0 such that for any A ⊂ Z, there are CA, γA > 0 such that at time t > 0,

∀x ∈ A+ [−αt, αt], P
(
|ζAt | ≠ 0 ∩ ζAt (x) ̸= ζZt (x)

)
≤ CAe

−γAt.
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If A is finite, denote by

τ = inf{t ≥ 0, |ζAt | = 0} and σ(A) = PA(τ = ∞).

The following result can be found in [12, Theorem 1.9] and implies that the more
spread out the population is initially, the more chances it has of surviving.

Proposition 5. [12, Theorem 1.9] Consider x1 < x2 < ... < xn and y1 < y2 < ... < yn
two finite sequences of integers in Z such that for any 1 ≤ i ≤ n−1, xi+1−xi ≤ yi+1− yi.
Then,

σ({x1, ..., xn}) ≤ σ({y1, ..., yn}).

The following result can be found in [13, Proposition 2.1, Chapter 2] :

Proposition 6. [13, Proposition 2.1, Chapter 2] Fix λ > λc(d) and consider a contact
process with parameter λ. Then,

lim
n→∞

P
(
∀t ≥ 0, |ζ [−n,n]

t | ≠ 0
)
= 1.

Proposition 7. Fix λ > λc(d). There is a ρ ∈ (0, 1) such that for any t ≥ 0,

P
[
lim

N→∞

N∑
x=−N

1ζZt (x)=1 ≥ ⌊(2N + 1)ρ⌋
]
= 1. (4.3)

Proof. Denote by ν the upper invariant measure of the contact process with parameter λ.
Also, denote by ρ := ν(ζ, ζ(x) = 1) > 0 (it does not depend on x because of the translation
invariance of the process). By ergodicity of ν (see Proposition 2.16, p.143 in [12]),

lim
N→∞

1

2N + 1

N∑
x=−N

1ζ(x)=1 = ρ, ν − a.s.

Moreover, at each fixed t > 0, the law of ζZt is stochastically larger than that of ν.
Therefore, considering a coupling P̃ of ζZt and ζ where ζ ∼ ν and such that P̃- a.s, ζZt ≤ ζ,
we have that

P̃
[
lim

N→∞

1

2N + 1

N∑
x=−N

1ζZt (x)=1 ≥
1

2N + 1

N∑
x=−N

1ζ(x)=1

]
= 1.

Therefore,

P
[
lim

N→∞

1

2N + 1

N∑
x=−N

1ζZt (x)=1 ≥ ρ
]
= 1.

4.2.3 Proof of Proposition 3 with the comparison with oriented percolation
Theorem

We are now in position to apply the Comparison Theorem 7, to prove that for p large
enough, the population survives with strictly positive probability. Our proof simplifies the
ones in [9] and [10], as it does not require the use of an estimate on the extinction time
of a finite volume contact process (we refer to Remark 7 for more explanations). We deal
with the case where d = 1 and for d > 1 the proof is essentially the same and relies on
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embedding the one dimensional graphical construction in Zd. We refer to [9] and [10] for
more details.

Fix λ > λc(d) and p ∈ [λc(d)/λ, 1). Consider the even grid L defined in (4.1). Given
an integer N , define the space time boxes

R = (−8N, 8N)× [0, T ], Rm,n = (2mN,nT ) +R,

where (m,n) ∈ L and with T = 3N
α = N

2α +
(
3N
α − N

2α

)
=: T1 + T2, where α depends on λ

and p and is given by Proposition 4.
Also, consider the space intervals:

I = [−2N, 2N ], Im = 2mN + I,

and keep in mind that N and T will be taken large. With the notation introduced in
Section 4.2.1, this corresponds to having k0 = 8 and j0 = ⌊ 3

α⌋ + 1. Denote by M =
max(k0, j0).

We define a certain translation invariant andM -dependent good event, see (4.5), whose
probability can be made large by taking p large enough, and whose realization allows 1’s to
propagate. We then compare the realization of Spont(λ, p) to an M -dependent percolation
with intensity at least γ, with 0 < γ ≤ 6−4(2M+1) so that percolation occurs with strictly
positive probability. This implies that the 1’s propagate to infinity, so the process survives.

Recall that by Proposition 6, we can chooseK such that if (ζ
[−K,K]
t )t≥0 is a supercritical

contact process with parameter λp starting from [−K,K] filled with 1’s and 0’s everywhere
else,

P
[
∀t ≥ 0,

∣∣ζ [−K,K]
t

∣∣ ̸= 0
]
≥ 1− γ/2, (4.4)

where γ is defined by Theorem 6.

Definition 5. We say that (m,n) ∈ L is wet if at time nT , there are no −1’s in Im and
at least 2K + 1 1’s in 2mN + [−N,N ]. Relatively to the notations given in Section 4.2.1,
this is the property that a configuration must satisfy to be in τ2mNH at time nT , and it
only depends on the states of the sites of the configuration in Im = τ2mNI.

The good event Gm,n is then defined by:

Gm,n =
{
If (m,n) is wet, then, so are (m− 1, n+ 1) and (m+ 1, n+ 1)

}
. (4.5)

By definition ofGm,n, the property (3) in the comparison assumption is satisfied. Furthermore,
as k0 = 8, at time (n+1)T , Rm,n contains Im−1 and Im+1. Therefore, Gm,n only relies on
what is happening inside Rm,n and the property (1) in the comparison assumption holds.

Now, we are left to check that (2) holds. For that, we show that for large enough p,
we can take N large so that

P(Gm,n) ≥ 1− γ. (4.6)

The strategy is the following: we prove that with high probability, no −1’s appear in
Rm,n, and, that by time T1, all individuals of type −1 who were present in Rm,n have
died. Conditionally on these two events we then show that with high probability, there
are at least 2K + 1 1’s in Im−1 and Im+1 at time T . For that, we compare the restriction
of the process Spont(λ, p) to Rm,n, to a supercritical contact process which survives with
high probability up to time T , and rely on the following result:
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Lemma 1. Denote by (ξm,n
t )t≥0 the restriction of the process Spont(λ, p) to the space

time region Rm,n, that is, constructed from the graphical representation where only arrival
times of the Poisson processes occurring within Rm,n are taken into account. If

∀x ∈ Rm,n, ξm,n
0 (x) ≤ ξ0(x),

then, a.s. for all t > 0,
∀x ∈ Rm,n, ξm,n

t (x) ≤ ξt(x).

Proof. By construction, deaths produce the same effect for ξm,n
t and ξt. If a −1 clock

rings, at time t on a site x ∈ Rm,n such that ξm,n
t− = 1, that means that we necessarily had

ξt−(x) = 1, so both these sites are already occupied and no −1 appears on x. A birth on
a site x ∈ Rm,n from some site y only occurs for ξm,n

t if y ∈ Rm,n but then it would also
occur for ξt.

Remark 6. Lemma 1 does not hold for the IS model. Indeed, the presence of 1’s just
outside Rm,n can lead to the birth of −1’s inside it. This does not happen for the process
restricted to exponential clocks ringing only inside Rm,n.

By translation invariance of the graphical representation, to prove (4.6), it is enough
to consider the case where (m,n) = (0, 0). Define the following events which only depend
on the graphical representation in R0,0 = R:

• E1 = No −1’s appear in R after time 0.

• E2 = If type −1 individuals are present in (−8N, 8N) \ I, they all die by time T1.

Denote by AN,R(λ, p) the first arrival time of a Poisson process in [−8N, 8N ]× [0, T ] with
rate 2λ(1− p). Then,

P[E1] = P[AN,R(λ, p) > T ] = e−2λ(1−p)(16N+1)T .

Moreover, as type −1’s individuals die at rate 1,

P[E2|E1] =
(
1− exp(−T1)

)12N
.

Therefore,

P[E2 ∩ E1] = e−2λ(1−p)(16N+1)T
(
1− exp(−T1)

)12N
. (4.7)

Denote by (ζKt )0≤t≤T the contact process with birth rate λp > λc(d) starting with 2K +1
sites in state 1 in [−N,N ] which are also in state 1 for ξ0, and evolving according to the
graphical representation of Spont(λ, p) on Z but ignoring the −1 crosses. Introduce the
following events:

• E3 = by time T1, the 1’s in ζKT1
have not reached the boundaries of [−2N, 2N ],

• E4 = for any x ∈ [−2N, 2N ], ζKT (x) = ζZT (x).

By the proof of Proposition 4, which tells us that α is the speed at which the rightmost,
resp. leftmost 1 moves forwards, resp. backwards in (ζKt )t≥0, we have

P[E3] ≥ 1− CKe−γKT1 .
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Figure 2: At time t = 0 there are at least K 1’s in [−N,N ]. At time T1, with high
probability (w.h.p), all −1’s initially present have died and up to time T , no new −1’s
appear. From t = 0 to T , w.h.p, the left most 1 in a supercritical contact process with
parameter λp starting from [−K,K], has reached I1 (red dashed line). From t = 0 to T ,
w.h.p, the rightmost most 1 in a supercritical contact process with parameter λp starting
from [−K,K], has reached I−1 (red dashed line). The density of 1’s is strictly positive in
I1 and I−1 so there must be at least K 1’s in both intervals.

Let us lower bound P[E4]. The position of the rightmost 1 in ζK0 is smaller than N and that
of the leftmost 1 larger than −N so by Propositions 4 and 5, ∀x ∈ [N − αT,−N + αT ] =
[−2N, 2N ],

P
[
E4

]
= 1− P

[
∃x ∈ [−2N, 2N ], ζKT (x) ̸= ζZT (x)

]
≥ 1− P

[(
∃x ∈ [−2N, 2N ], ζKT (x) ̸= ζZT (x)

)
∩
(
|ζKT | ≠ 0

)]
− P

[
|ζKT | = 0

]
≥ 1− (4N + 1)CKe−γKT − P

[
|ζ [−K,K]
T | = 0

]
≥ 1− (4N + 1)CKe−γKT − γ/2,

where the third line is obtained by union bound and Propositions 4 and 5, and the last
line by choice of K in (4.4).

Conditionally on the event E1 ∩ E2 ∩ E3 ∩ E4, by time T the 1’s in ζKT1
have not reached

[−8N, 8N ] with probability greater than 1− CKe−γKT2 . Therefore,

P
[
∀x ∈ [−8N, 8N ], ξm,n

T (x) ≥ ζZT (x)
]

≥ P
[
∀x ∈ [−8N, 8N ], ξm,n

T (x) ≥ ζKT (x)
∣∣E1 ∩ E2 ∩ E3 ∩ E4

]
× P

[
E1 ∩ E2 ∩ E3 ∩ E4

]
≥

(
1− CKe−γKT2

)
e−2λ(1−p)(16N+1)T

(
1− exp(−T1)

)12N(
1− CKe−γKT1

)
×
(
1− (4N + 1)CKe−γKT − γ/2

)
≥

(
1− CKe−γKT

)2
e−2λ(1−p)(16N+1)T

(
1− exp(−T )

)12N(
1− (4N + 1)CKe−γKT − γ/2

)
.

(4.8)

18



By Proposition 7 and translation invariance of ζZT , for large enough N there are almost
surely more than K 1’s in [−3N,−N ] and [N, 3N ] in ζZT therefore,

P
[
G0,0] ≥ P

[
∀x ∈ [−8N, 8N ], ξm,n

T (x) ≥ ηZT (x)
]

≥
(
1− CKe−γKT

)2
e−2λ(1−p)(16N+1)T

(
1− exp(−T )

)12N(
1− (4N + 1)CKe−γKT − γ/2

)
≥

(
1− ε(N)− γ/2

)
e−2λ(1−p)(16N+1)T ,

(4.9)

where ε(N) → 0 when N → ∞. Therefore, taking N large enough so that ε(N) < γ/4
and then p close enough to 1, the result follows.

Remark 7. In [9] and [10], the authors require that initially, there must be of order
k = ⌊

√
N⌋ 1’s in [−N,N ], and that by time T1, at least ⌊

√
k⌋ 1’s. This is done to make

sure that the 1’s survive, and to propagate a strictly positive density of them, so as to have
enough in I−1 and I1. For that, they use an estimate of the extinction time of a finite
volume contact process, see [10, (5.2)]. We manage to get rid of this step by a priori
choosing K large enough so that a contact process starting from 2K + 1 1’s survives with
high enough probability, see (4.4). Therefore, we do not need to condition the evolution of
Spont(λ, p) on R, on having a finite volume contact process surviving.
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