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4 Finite-zone PT -potentials ∗

I.A. Taimanov †

Abstract

We give a description of finite-zone PT -potentials in terms of ex-
plicit theta functional formulas.

1 Introduction

In the mid-1990s, Bessis and Zinn-Justin conjectured that the spectrum of
the Schrödinger operator with potential u(x) = ix3 is real. Later, in the
works of Bender and his colleagues, there was started a systematic application
to physical problems of differential operators that were PT -symmetric, i.e.
invariant under simultaneous revearsal of time (T ) and orientation (P) [2, 3,
4].

For one-dimensional Schrödinger operators (periodic or on the line) this
means that the following condition on the potential is met:

u(−x) = u(x). (1)

We will not discuss the applications of PT -symmetric operators in physics,
but will proceed from the fact that the fulfillment of this condition allows
us to develop a substantive spectral theory, including the theory of inverse
problems.

In [5, 12] some questions of scattering theory for rapidly decreasing po-
tentials were discussed.

In this work we will consider the inverse problem for periodic potentials
[7]. In contrast to the real case considered in [6, 7, 9], the Bloch spectrum

∗The work was supported by RSCF (project 24-11-00281).
†Novosibirsk State University, 630090 Novosibirsk, Russia; e-mail:

taimanov@math.nsc.ru

1

http://arxiv.org/abs/2404.11971v1


is very complicated. We will characterize finite-zone PT -potentials in terms
of algebraic-geometric spectral data (Theorem 1), using theta functional for-
mulas [7, 9].

As shown in §5 using the example of a single-zone case, the family of
smooth PT -potentials is much richer than the family of smooth real poten-
tials.

2 Finite-zone potentials: preliminaries

2.1 Floquet–Bloch functions

Let

L = − d2

dx2
+ u(x)

be a one-dimensional Schrödinger operator with periodic potential:

u(x+ T ) = u(x) for all x ∈ R; T > 0.

We assume that the potential is continuous. For each E ∈ C, consider the
solutions c(x, E) and s(x, E) of the equation

Lψ = Eψ, (2)

satisfying the initial data

c(0, E) = 1, c′(0, E) = 0, s(0, E) = 0, s′(0, E) = 1.

They form a fundamental system of solutions to the equation (2), and for
each given x they are entire functions of E ∈ C. The translation operator is
defined on solutions of the equation (2):

(T̂ f)(x) = f(x+ T ),

which in the basis c, s is given by the matrix T̂ (E) = (αjk(E)), the coefficients
of which are entire functions of E. Since, for a given E, for any pair f, g of
solutions to the equation (2) the Wronskian W (f, g) = fg′−f ′g is preserved,
then det T̂ (E) =1. Consequently, the characteristic polynomial of the matrix
T̂ (E) has the form

det(T̂ (E)− λ) = λ2 − 2r(E)λ+ 1,
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where

r(E) =
1

2
TrA(E) =

1

2
(α11(E) + α22(E)).

The eigenvalues of the operator T̂ (E) are

λ± = r(E)±
√
r2(E)− 1.

They are defined on the Riemann surface Γ given by the equation

w2 = r2(E)− 1,

which is called the spectral curve of the operator L. The common eigen-
functions of the operators L and T̂ are also defined as functions on the
surface

ψ(x, P ), x ∈ R, P = (λ,E) ∈ Γ.

They are presented in the form

ψ(x, P ) = eiµ(P )xϕ(x, P ), where ϕ(x) = ϕ(x+ T ).

Such functions for one-dimensional operators were introduced by Floquet,
and in the multidimensional case they were considered by Bloch. In quantum
theory they are called Bloch eigenfunctions.

2.2 Finite-zone Schrödinger operators

The zeros of the function r2(E) − 1 can be either single or double. In the
first case, the translation operator is not reduced to diagonal form and the
point E corresponds to the branch point of the surface Γ; in the second
case, the operator T̂ has the form ±1 and the space of eigenfunctions is
two-dimensional.

An operator L is called finite-zone if the function r2(E) − 1 has a finite

number of single zeros. For E → ∞ the eigenfunctions tend to ei
√
Ex and

therefore the surface Γ is compactified by a single point at infinity. It follows
that in the finite-zone case the number of zeros is odd. Let us denote them
by E1, . . . , E2g+1. The Riemann surface

Γ = {w2 = P2g+1(E) = (E − E1) . . . (E − E2g+1)}, (3)

3



completed by the point E = ∞ is called the spectral curve of the one-
dimensional finite-zone potential of the Schrödinger operator. Let us recall
that

Ej 6= Ek for j 6= k.

For a finite-zone potential, the Bloch eigenfunctions are glued together into
a function ψ(x, P ) such that

1) the function
ψ(x, P ), P ∈ Γ,

is meromorphic on Γ\{∞} and has constant (in x) poles at points P1, . . . , Pg,
where g is the genus of Γ,

2) for E → ∞ the asymptotics holds

ψ(x, P ) ∼ ei
√
Ex

(
1 +O

(
1√
E

))
.

Conditions 1) and 2) uniquely determine the function ψ from spectral
data E1, . . . , E2g+1, P1, . . . , Pg.

The inverse problem for finite-zone potentials consists in reconstructing
the operator L from these data.

2.3 Theta functions of hyperelliptic Riemann surfaces

The genus of the surface Γ of the form (3) is equal to g and on it one
can (ambiguously) choose a canonical basis of 1-cycles a1, . . . , ag, b1, . . . , bg.
Recall that a basis is called canonical if its intersection form is

aj ∩ bk = −bk ∩ bj = 1, aj ∩ ak = 0, bj ∩ bk = 0 for all j, k.

Holomorphic differentials of (1-forms) have the form

ω =
c0 + c1E + · · ·+ cg−1E

g−1

√
P2g+1(E)

,

where c0, . . . , cg−1 are arbitrary complex constants. They form a g-dimensional
linear space over C and in it one can choose a basis ω1, . . . , ωg, which is
uniquely specified by the condition

∮

aj

ωk = δjk.
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The Riemann matrix B is determined by the formula

Bjk =

∮

bj

ωk.

This matrix is symmetric and its imaginary part is negative definite:

Bjk = Bkj for all j, k, ImB < 0.

Using the Riemann matrix, the theta function of the g variables z1, . . . , zg
is defined:

θ(z) =
∑

n∈Zg

eπi〈Bn,n〉+2pii〈n,z〉,

where 〈u, v〉 =
∑g

k+1 ukvk is the standard scalar product of vectors from Cg.
The quotient space

J(Γ) = C
g/{Zg +BZ

g}

is called the Jacobi variety (Jacobian) of the Riemann surface Γ. Formula

Ak(P ) =

∫ P

P0

ωk, k = 1, . . . , g,

determines the Abel map
A : Γ → J(Γ).

As the initial point P0 of the Abel map, we can take any point on the surface,
but in what follows, unless otherwise stated, we will assume

P0 = ∞.

Remark. Sometimes the basis of holomorphic differentials is normalized
differently:

∮
aj
ω̃k = 2πiδjk. In this case, the matrix of b-periods B̃ = 2πiB,

the Jacobi variety and the theta function take the form J̃(Γ) = Cg/{2πiZg+

B̃Zg} and θ̃(u) = ∑
n∈Zg exp

(
1
2
〈B̃n, n〉+ 〈n, z〉

)
. Obviously, θ̃(2πiz) = θ(z).

This convention is accepted, for instance, in [7].
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2.4 Inverse problem for finite-zone Schrödinger oper-

ators

2.4.1 The Its–Matveev formula

In [7, 9], from the spectral data of the inverse problem for periodic potentials:
1) Riemann surface Γ of the form (3) with the branch point E = ∞ and

the local parameter k = 1√
E
near this point,

2) the divisor D = P1 + · · ·+ Pg of poles (a set of g points on Γ \ {∞},
where g is the genus of the surface Γ,
in terms of the theta function of the surface, the finite-zone Schrödinger
operator and the corresponding Bloch function were constructed. Let us
briefly present the results we need from these articles.

Take a meromorphic differential Ω with a single pole at E = ∞ such that

Ω ∼ d
√
E

and uniquely normalized by the conditions
∮

ak

Ω = 0 for k = 1, . . . , g. (4)

Let us define the vector U by the formula

Uk =
1

2π

∮
Ω, k = 1, . . . , g. (5)

Then for each given generic value z0 function

ψ(x, P ) = eix
∫ P

∞
Ω θ(A(P ) + xU + z0)

θ(A(P ) + z0)
(6)

at each point P ∈ Γ \ {∞} satisfies the equation

Lψ = Eψ,

where P = (w,E) ∈ Γ and the potential u(x) of the Schrödinger operator is
expressed by the Its–Matveev formula

u(x) = −2
d2

dx2
log θ(Ux+ z0)− 2

g∑

j=1

∮

aj

Eωj +

2g+1∑

k=1

Ek. (7)
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Wherein
z0 = −A(D)−K, (8)

where D = P1 + · · ·+ Pg is the divisor of poles of ψ, P1, . . . , Pg ∈ Γ, and K
is the Riemann constant vector.

This result is a consequence of algebraic-geometric identities that are true
for any hyperelliptic Riemann surface, i.e. for any branch points E1, . . . , E2g+1.
In this case, the formula (8) follows from the general formula for inverting
the Abel map. In the case of an arbitrary Riemann surface, if the function
F (P ) = θ(A(P ) + z0) is not identically zero, then it has g zeros P1, . . . , Pg,
where g is the genus of the surface. Wherein

A(P1) + · · ·+ A(Pg) = −z0 −K,

Kj =
1 +Bjj

2
+
∑

k 6=j

∫

al

(ωl(P )Aj(P )) .
(9)

For a generic point z0 ∈ J(Γ) these formulas are given by the inversion of
the Abel map A from the gth symmetric power Γ to J(Γ):

A : SgΓ → J(Γ), A(P1, . . . , Pg) = A(P1) + · · ·+ A(Pg).

In the proofreading note to [9] it is mentioned that this solution to the
inverse problem is applicable to complex-valued potentials.

2.4.2 The Dubrovin equations

In [6] a solution to the inverse problem was given in terms of zeros of the
function ψ.

For each given value x, the function ψ has g zeros of the form Q1 =
(λ1(x), γ1(x)), . . . , Qg(λg(x), γg(x)). When x = 0 they coincide with the poles
(see, for example, (6)). Let R(E) denote the polynomial

R(E) = (E − E1) . . . (E − E2g+1).

The projections γj(x) of the zeros of the function ψ onto the E-plane satisfy
the Dubrovin equations

dγj(x)

dx
= − 2i

√
R(E)

Πj 6=k(γj(x)− γk(x))
, j = 1, . . . , g, (10)
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with initial data

γj(0) = γ0j , Pj = (λ0j , γ
0
j ), j = 1, . . . , g.

The potential u(x) of the operator L takes the form

u(x) = −2

g∑

j=1

γj(x) +

2g+1∑

k=1

Ek. (11)

Although in [6] it is talked about real potentials, what was said above, as
can be verified, is also true for complex-valued potentials.

In the case when the potential is real:

u(x) = ū(x),

the overall picture becomes much clearer. All branch points are real. Without
loss of generality, we order them as follows:

E1 < E2 < · · · < E2g+1, Ej ∈ R, j = 1, . . . , 2g + 1.

At
E ∈ (−∞, E1) ∪ (E2, E3) ∪ . . . (E2g, E2g+1), E ∈ R,

we have
r2(E) < 1,

from which it follows that the corresponding Bloch functions are not bounded
(in modulus). The complement to these intervals consists of a finite number
of stability zones for which the Bloch functions are bounded. The intervals

(−∞, E1), (E2, E3), . . . , (E2g, E2g+1)

are called lacunae. The poles Pj , j = 1, . . . , g, lie one above the closure of
each lacuna. The equations (10) describe the motion of the poles over the
lacunae.

3 Spectral curves of Schrödinger PT -operators

as real Riemann surfaces

Let the T -periodic potential u(x) of the Schrödinger operator L satisfy (1),
i.e. is PT -potential. Obviously, if

(
− d2

dx2
+ u(x)

)
ψ = Eψ,
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then (
− d2

dx2
+ u(−x)

)
ψτ = Ēψτ ,

where
ψτ (x) = ψ(−x).

If ψ(x) is a Bloch function corresponding to the energy value E and the
eigenvalue λ of the translation operator T̂ :

Lψ = Eψ, ψ(x+ T ) = λψ(x),

then
Lψτ = Ēψτ

and
ψτ (x+ T ) = ψ(−x− T ) = λ̄−1ψ(−x) = λ̄−1ψτ (x).

We have the following result.

Proposition 1 Spectral curve Γ = {(λ,E)} of a periodic Schrödinger PT -
operator admits theantiholomorphic involution

τ : Γ → Γ, τ(λ,E) = (λ̄−1, Ē).

Note that for a periodic real Schrödinger operator a similar antiinvolution
has the form

η : ψ → ψ̄, η(λ,E) = (λ̄, Ē).

At the same time, the spectral curve of the Schrödinger operator has a
natural hyperelliptic involution σ, which swaps the branches of the covering
of the E-plane:

(w,E) → (−w,E), w2 = r2(E)− 1,

which, since λ± = 1, takes on the multipliers a simple form

σ(λ,E) = (λ−1, E).

It follows from this that the same groups of involutions Z2 ⊕ Z2, generated
by the involutions τ = ση and σ, act on the spectral curves of real and
PT -operators. The actions they induced on Bloch functions are different.
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Corollary 1 If the PT -operator is finite-zone, then its spectral curve

w2 = P2g+1(E)

is real: invariant under antiinvolution

τ : (w,E) → (w̄, Ē). (12)

In particular, all zeros of the polynomial P2g+1(E) split into real ones E1, . . . ,
E2k+1 and pairs of complex conjugates E2k+2, E2k+3 = Ē2k+2, . . . , E2g+1 =
Ē2g.

The following facts are well-known.

Proposition 2 Let the hyperelliptic surface Γ = {w2 = P2g+1(E)}, where
P2g+1 is a polynomial of degree 2g+1 without multiple roots, be real, i.e. the
involution (12) is defined on it. Then

1) if all zeros of the polynomial F (E) are real, then the fixed ovals of the
antiinvolution τ divide the surface into two components (the surface is an
M-curve) and on it one can choose a canonical basis of cycles a1, . . . , bg such
that

τaj = aj, τbj = −bj , j = 1, . . . , g, (13)

and the Riemann matrix B(Γ) constructed from this basis is purely imaginary:

B̄ = −B;

2) if the anti-involution τ is non-separating and has n fixed ovals, 1 ≤
n ≤ g, i.e. the polynomial has exactly 2n−1 = 2k+1 real zeros, then on the
surface Γ we can choose such a canonical basis of cycles a1, . . . , ag, b1, . . . , bg,
that under the action of τ these cycles are transformed as follows

τaj = aj, j = 1, . . . , g,

τbj =

{
a− bj , 1 ≤ j ≤ n,

a+ aj − bj , n + 1 ≤ j ≤ g,

(14)

where a =
∑g

j=1 aj;
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3) the Riemann matrix B(Γ) of Γ, constructed from a canonical basis
satisfying (14), has symmetry

B̄ =




1 1 . . . 1 1 . . . 1
...

...
...

...
1 . . . 1 1 . . . 1
1 . . . 1 2 1 . . . 1
! . . . 1 1 2 . . . 1
...

...
...

...
1 . . . 1 1 . . . 2




− B, (15)

where the square blocks lying diagonally have dimensions n×n and (g−n)×
(g − n);

4) constructed from a matrix B satisfying (15) (0 ≤ n < g) or purely
imaginary, the theta function θ(z) has symmetry

θ(z) = θ(z̄ + µ), µ =
1

2
(1, . . . , 1, 0, . . . , 0), (16)

where in the expression for the half-period µ units are in the first n places in
the case of (15) and µ = 0 for B = −B̄.

A basis of the form (14) is constructed explicitly and can be found, for
example, in [8]. The formulas (15) and (16) are derived from (14) and the
definitions of the Riemann matrix and theta function by direct calculations.
For all details we refer to [8].

4 PT -potentials

To describe finite-zone PT -potentials, we will use the Its–Matveev formula
(11).

First of all, consider a vector U of the form (5). It is a vector of periods
of the form Ω, which is holomorphic on Γ and has the asymptotic behavior

Ω ∼ d
√
E at E → ∞

and is normalized by conditions
∮

aj

Ω = 0, j = 1, . . . , g.
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Proposition 3 If the antiinvolution (12) acts on the spectral curve Γ and
the canonical basis of cycles is transformed according to (13) or (14), then

τ ∗Ω = Ω̄.

Proof. Consider the holomorphic differential Ω+ = τ ∗Ω. It’s obvious
that

Ω+ ∼ d
√
E at E → ∞.

Its periods over a-cycles are equal to
∮

aj

τ ∗Ω =

∮

τaj

Ω =

∮

aj

Ω = 0.

Therefore, Ω+ = Ω, which implies the equality τ ∗Ω = Ω̄. The proposition
has been proven.

Proposition 4 Under the conditions of Propositionl 3 the vector of periods
U , where Uj =

1
2π

∮
bj
Ω, j = 1, . . . , g, is purely imaginary:

Uj = iVj , Vj ∈ R, j = 1, . . . , g.

Proof. By definition of the vector of periods and Proposition 3

Ūj =
1

2π

∮

bj

Ω̄ =
1

2π

∮

bj

τ ∗Ω =
1

2π

∮

τbj

Ω =
1

2π

∮

ã−bj

Ω =

=
1

2π

∮

−bj

Ω = −Uj , j = 1, . . . , g,

where ã denotes linear combination of vectors ak corresponding to the type
of antiinvolution. Hence,

Ūj = −Uj , j = 1, . . . , g.

The proposition has been proven.
The Its–Matveev formula (7) for a finite-zone potential has the form

u(x) = −2
d2

dx2
log θ(Ux + z0) + C,

where the constant C is equal to

C = −2

g∑

j=1

∮

aj

Eωj +

2g+1∑

l=1

El. (17)
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Proposition 5 Under the conditions of Proposition 3, the constant C of the
form (17) is real.

Proof. Since the branch points E1, . . . , E2g+1 of the hyperelliptic cov-
ering Γ → C, (w,E) → E, are invariant under the complex conjugation
E → Ē, then

∑2g+1
l=1 El ∈ R.

Note that from the form of τ it immediately follows that τ ∗(Eωj) = Eωj .
We have ∮

aj

Eωj =

∮

aj

τ ∗(Eωj) =

∮

τaj

Eωj =

∫

aj

Eωj ∈ R.

Therefore,
∑

j

∮
aj
Eωj ∈ R, which implies C ∈ R. The proposition has been

proven.
We found that under the conditions of Proposition 3, which are satisfied

for real and PT -potentials, the Itsa–Matveev form takes the form

u(x) = −2
d2

dx2
log θ(iV x+ z0) + C, V ∈ R

g, C ∈ R.

The case of real potentials, u(x) = u(x), has been well studied [6, 7]. For
subsequent comparison, let us recall the known facts. Since the constant C is
real, the reality of u(x) follows from the reality of the expression θ(iV x+z0).
From (16) and the symmetry of the function θ(z) = θ(−z) it follows that

θ(iV x+ z0) = θ(−iV x+ z̄0 + µ) = θ(iV x− z̄0 − µ).

notice, that when translated by periods, the theta function behaves like

θ(z + ek) = θ(z), θ(z +Bek) = e−πiBkk−2πizkθ(z).

Therefore the function

−2
d2

dz2
log θ(z)

is a periodic function with respect to the lattice Λ = {Zg+BZ
g} and descends

to a periodic meromorphic function on the Jacobi variety.
Therefore, from (16) the condition for the potential to be real is derived:

z0 + z̄0 ≡ µ, (18)

where by ≡ we mean the equality of the corresponding points of the Jacobi
variety:

u ≡ v ⇔ u− v ∈ Λ = Z
g +BZ

g.

13



For PT -potentials, similar reasoning leads to another condition on z0.
The condition (1) is satisfied when

d2

dx2
log θ(−iV x+ z0) =

d2

dx2
log θ(iV x+ z0),

But
θ(−iV x+ z0) = θ(iV x+ z̄0 + µ),

which entails a condition guaranteeing PT -symmetry of the potential:

z0 ≡ z̄0 + µ. (19)

We arrive at the main result.

Theorem 1 Let a finite-zone one-dimensional Schrödinger operator be const-
ructed from such spectral data that its spectral curve Γ is real (has the form
(3), where the polynomial P2g+1(E) has real coefficients) and the divisor of
poles D = P1+ · · ·+Pg is such that its image z0 = A(D) under the Abel map
satisfies (19) (we mean that, according to the proposal 2, a canonical basis of
cycles is chosen on Γ). Then u(x) is a PT -potential.

According to Corollary 1, the spectral curve of PT -potential always has
the form specified in the Theorem 1. Apparently the divisor of poles D
always satisfies (19). In the case of real potentials, a similar condition (18)
was derived from the direct problem and the study of the Bloch spectrum,
which is much more complicated for complex PT -potentials (see Remark 3
in §6).

5 Examples

1) Smooth real PT -potentials.
In this case, all roots E1 < · · · < E2g+1 of the equation P2g+1(Y ) = 0 lie

on the real axis. The simultaneous fulfillment of the conditions (18) and (19)
entails

z0 ≡ z̄0, 2z0 ≡ 0.

It follows that the divisor of poles consists of points P1, . . . , Pg, which are
fixed under the antiholomorphic involution τ and each of them is a branch
point of the hyperelliptic covering Γ → C. We obtain Akhiezer’s condition

14



[1]: for each finite closed gap [E2, E3], . . . , [E2g, E2g+1] one of the extreme
points has the form Pj , j = 1, . . . , g.

2) One-zone potentials.
Case 1. All points E1, E2, E3 are real. For such a Riemann surface,

the Riemann matrix B has the form

B = C/{Z+ iαZ}, α ∈ R,

and the theta function vanishes at the points

z ≡ 1

2
+
iα

2
. (20)

1.1. Real potentials. The reality condition (18) implies

Re z0 = 0mod 1 or Re z0 =
1

2
mod 1.

In the first case, the line ixV + z0, V ∈ R, does not pass through the zero of
the theta function and the solution is smooth. It corresponds to the solution
of the Dubrovin equation (10) when the point γ1(x) lies inside the closure of
a finite lacuna and, at the same time, R(E) ≤ 0. The cycle on Γ lying above
this lacuna is not fixed with respect to τ .

In the second case, the solution is singular: the line ixV + z0 passes
through the point (20). It corresponds to the situation when γ1(x) lies in the
closure of an infinite lacuna.

We have one smooth real potential, defined up to a translation and cor-
responding to the line ixV .

1.2. PT -potentials. The condition (19) for µ = 0 implies

Im z0 = 0modα either Im z0 =
α

2
,modα.

If

Re z0 6=
1

2
mod 1, (21)

then the lines ixV + z0 do not pass through the point (20) and the corre-
sponding potentials are smooth.

It follows that we have a one-parameter family of different smooth PT -
potentials.

15



Case 2. E1 ∈ R, E2 = Ē3, ImE2 6= 0. In this case, in the cycle basis
sgiven in Proposition 2, the Riemann matrix B has the form

B = C/{Z+

(
1

2
+ iα

)
Z}, α ∈ R,

and the theta function vanishes at the points

z ≡ 3

4
+
iα

2
. (22)

Condition (18) takes the form

z0 + z̄0 ≡
1

2
,

it identifies two straight lines 1
4
+ ixV and 3

4
+ ixV , each of which will pass

through a point of the form (22). Consequently, there are no smooth real
potentials in this case, which, however, follows from the direct construction
of the Bloch spectrum [7].

The condition (19) is written as

z0 ≡ z̄0 +
1

2
.

It sets a constraint on the imaginary part of z0:

Im z0 =
α

2

(up to a translation of z0 by vectors from the period lattice). The line z0+ixV
does not pass through the point (22), exactly, if

Re z0 6=
1

4
mod

1

2
, (23)

and in these cases the potential is smooth, i.e. we again have a one-parameter
family of different smooth potentials.

We will not consider two-zone potentials, which could be done by sepa-
rately distinguishing the case of symmetric curves, for which the theta func-
tion is reduced to a function of one variable. But let uss make a few remarks:

A). Families of smooth potentials can be deformed into singular potentials
(see (21) and (23)). The conditions for the singularity of the potential take
the form of arithmetic conditions on the divisor D.

16



B). In the one-zone case, smooth real PT -potentials correspond exactly
to

z0 = 0, z0 =
iα

2
.

They admit smooth deformations in the class of PT -potentials. This is
obviously also true for the case of multi-zone real PT -potentials.

6 Final remarks

1) It would be interesting to apply Theorem 1 to the systematic algebraic-
geometric construction of elliptic PT -potentials of the Verdier–Treibich type
[17, 16]. Note that some analogues of Lamé PT -potentials were studied in
[10].

2) Among real potentials with period T , finite-zone potentials are dense
in L2[0, T ] [11]. For PT -potentials, it is not clear whether an analogue of
this result is true.

3) The Bloch spectrum of the operator consists of values E ∈ C such that
the corresponding multipliers are equal in modulus to one:

σ(L) = {E : |λ±(E)| = 1}.

For a real potential, it lies entirely on the real line [7]. For PT -potentials it
is symmetric with respect to R, but can be arranged in a very complicated
manner [14, 18, 19]. Exact formulas for Bloch functions of finite-zone op-
erators give analytical formulas for it. For symmetric spectral curves they
should lead to fairly simple examples.
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