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Observational entropy – a quantity that unifies Boltzmann’s entropy, Gibbs’ entropy, von Neu-
mann’s macroscopic entropy, and the diagonal entropy – has recently been argued to play a key
role in a modern formulation of statistical mechanics. Here, relying on algebraic techniques taken
from Petz’s theory of statistical sufficiency and on a Lévy-type concentration bound, we prove rig-
orous theorems showing how the observational entropy of a system undergoing a unitary evolution
chosen at random tends to increase with overwhelming probability and to reach its maximum very
quickly. More precisely, we show that for any observation that is sufficiently coarse with respect to
the size of the system, regardless of the initial state of the system (be it pure or mixed), random
evolution renders its state practically indistinguishable from the microcanonical distribution with a
probability approaching one as the size of the system grows. The same conclusion holds not only
for random evolutions sampled according to the unitarily invariant Haar distribution, but also for
approximate 2-designs, which are thought to provide a more physically reasonable way to model
random evolutions.

John von Neumann, in his book on the mathemati-
cal foundations of quantum theory [1], immediately af-
ter having introduced and operationally motivated the
quantity that is now known as von Neumann entropy,
notices however that such a quantity is not the right one
to consider in the context of statistical mechanics. This
is because, as he writes,

[von Neumann entropy] is invariant in the
normal [i.e., Hamiltonian] evolution in time
of the system, and only increases with mea-
surements – in the classical theory (where the
measurements in general played no role) it in-
creased as a rule even with the ordinary me-
chanical evolution in time of the system [1].
(Square brackets added for clarity.)

In the above passage, von Neumann presumably refers
to the free expansion of an ideal gas, in which there is a
strict increase in the (macroscopic) thermodynamic en-
tropy, although the (microscopic) von Neumann entropy
associated with the state of the gas does not change as
the gas undergoes Hamiltonian evolution.

To meet this challenge, von Neumann proposes the
concept of macroscopic entropy, which takes into account
not only the intrinsic uncertainty associated with the mi-
croscopic state of the system, but also the additional un-
certainty associated with the coarse-grained, macroscopic
observation with which the system is being monitored.
As the gas expands, it is this latter aspect of uncertainty,
arising from the limited capabilities of a macroscopic ob-
server, that increases while the microscopic degrees of
freedom evolve undisturbed.

Since von Neumann’s proposal, macroscopic entropy
has been largely overshadowed by its more famous – and
eponymous – sibling. A notable exception is Wehrl’s re-
view paper [2], where macroscopic entropy (therein re-
ferred to as coarse-grained entropy) plays an important
role. Nevertheless, von Neumann’s macroscopic entropy

and a generalization of it called observational entropy
have recently been the subject of renewed interest [3–
7], in connection with the mathematical and conceptual
foundations of statistical mechanics [8] and various ap-
plications [9–21].
von Neumann brings the idea of macroscopic entropy

to fruition by proving for it a powerful H-theorem [22–
24], showing that macroscopic entropy tends to increase,
even in Hamiltonian systems, and typically grows to its
maximum value, regardless of the initial state of the sys-
tem [25]. In the same spirit, in this paper we study the
change of observational entropy in unitarily evolving sys-
tems, focusing in particular on its generic behavior when
the evolution of the system is chosen at random. Mo-
tivated by Ref. [8], which shows that the observational
entropy of an isolated1 system initialized in a state fully
known to the observer cannot decrease, we first provide
an explicit characterization of all situations in which the
observational entropy undergoes a strict increase with
time. Such a characterization relies on Petz’s theory of
statistical sufficiency [26–29].
We then move to the case of arbitrary initial states, for

which, based on a Lévy-type concentration bound [30, 31]
that we prove for the observational entropy, we arrive at a
statement similar to von Neumann’s H-theorem: for any
observation that is “sufficiently coarse-grained” with re-
spect to the size of the system, under the action of Haar-
random evolution, the observational entropy approaches
its maximum, i.e., the state of the system becomes prac-
tically indistinguishable from the microcanonical distri-
bution, regardless of the state it started from. Finally,
by specializing several derandomization techniques [32–
35], we show that the same conclusion holds when the

1 Here we follow Ref. [8] and call a system isolated if it can only
exchange work – its evolution is therefore unitary, but not nec-
essarily energy conserving.
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Haar distribution is replaced by an approximate 2-design,
which represents a more reasonable model, both physi-
cally and computationally, for random evolutions.

Background.—Following the standard conventions in
quantum information theory [36, 37], in this paper we
consider a finite d-dimensional quantum system, with
Hilbert space H, whose states are represented by den-
sity operators ρ ≥ 0, Tr[ρ] = 1. The maximally mixed
(i.e., uniform) state, corresponding to the microcanoni-
cal ensemble, is denoted u = 1/d. The von Neumann
entropy, i.e., the microscopic entropy, is defined by the
formula S(ρ) = −Tr[ρ log ρ], which is zero if and only
if the state ρ is pure, i.e., a rank-one projector on some
unit vector |φ⟩ ∈ H. Another central quantity is the
Umegaki quantum relative entropy [38, 39], defined as
D(ρ∥σ) = Tr[ρ(log ρ− log σ)], where σ > 0 is an in-
vertible reference (or prior) state. Whenever ρ and σ
commute, the Umegaki relative entropy coincides with
the Kullback–Leibler divergence [40]. An observation
(measurement) on the system is mathematically repre-
sented by a positive operator-valued measure (POVM),
i.e., a family P = {Px}x of positive semi-definite op-
erators Px ≥ 0, labeled by a finite set X = {x} (the
outcome set), and normalized so that

∑
x Px = 1: given

the state of the system ρ, the expected probability of ob-
serving outcome x is computed as px = Tr[Px ρ]. When-
ever all the elements of a POVM are projections, i.e.,
PxPx′ = δxx′Px, we speak of a projection-valued mea-
sure, or PVM. A PVM is trivial if one of its elements
is the identity operator 1 (and all the remaining ele-
ments are null). In what follows, as very often done in
the literature, it will be convenient to think of an ob-
servation as a quantum-to-classical channel, i.e., a map
P(·) =

∑
x Tr[Px ·] |x⟩⟨x|, where |x⟩ are orthonormal vec-

tors in an auxiliary Hilbert space with dimension equal
to the size of the outcome set X . Finally, we recall
the idea of POVM post-processing [41, 42]: given two
POVMs P = {Px}x∈X and Q = {Qy}y∈Y , defined on
the same Hilbert space H but with possibly different
outcome sets, we write Q ⪯ P whenever there exists
a conditional probability distribution p(y|x) such that
Qy =

∑
x p(y|x)Px, for all y ∈ Y.

Observational entropy.—The observational entropy
(OE) of a microscopic state ρ with respect to a POVM
P = {Px}x∈X is defined as [3–8]

SP (ρ) = −
∑
x

px log
px
Vx

= log d−D(P(ρ)∥P(u)) ,

where px = Tr[Px ρ] and Vx = Tr[Px]. Since Vx = 0
implies Px = 0 and hence, in particular, px = 0, with-
out loss of generality we can consider only POVMs with
Vx > 0 for all x ∈ X , so that the OE is always finite.
The presence of both the probabilities px and the volume

terms Vx suggests that OE somehow “interpolates” be-
tween Boltzmann’s and Gibbs’ entropies. Indeed, when
there exists one particular x̄ such that px̄ = 1, OE re-
covers the Boltzmann entropy log Vx̄, whereas when the
volume terms are all equal to one, OE coincides with
the Gibbs entropy −

∑
x px log px. In the latter case, in

particular, if the POVM consists of the orthogonal pro-
jectors on the energy eigenbasis, then OE recovers what
is known as diagonal entropy [43].
The fundamental bound of OE, which is a consequence

of the data-processing property of the Umegaki relative
entropy, is SP (ρ) ≥ S(ρ), which holds for any choice of
ρ and P [6]. States that saturate the bound, i.e., states
ρ such that SP (ρ) = S(ρ) are called macroscopic for P .
The reason for such a name comes from the fact that the
condition SP (ρ) = S(ρ) holds if and only if [6]

ρ =
∑
x

Tr[Px ρ]
Px

Vx
, (1)

which means that the state ρ can be perfectly retrod-
icted [44–46] only from the knowledge of the measure-
ment P and its outcomes’ statistics px, i.e., information
all available to the macroscopic observer [6]. Notice that
the maximally mixed state u is always macroscopic, for
any choice of POVM P . Moreover, u always achieves the
maximum value of OE, that is, SP (u) = log d.

OE increase in macroscopic states.—As anticipated in
the introduction, one of the main reasons to consider OE
is that it can increase even in isolated systems, in con-
trast to von Neumann entropy, which instead remains
constant. Motivated by Ref. [8], we begin our study by
considering the behavior of OE when the initial state of
the system is macroscopic. Such an assumption will be
lifted in the rest of the paper.
Let us thus consider an isolated system evolving in

time from t = t0 to t = t1 > t0. Let ρ0 be the initial
state of the system, U describe the time evolution from
t0 to t1, and ρ1 = Uρ0U

† be the state of the system at
t1. Let us also assume that, at time t0, the system’s state
is macroscopic for P . While the von Neumann entropy
S(ρt) of the system remains constant (as a consequence
of the fact that the von Neumann entropy only depends
on the spectrum of the density operator, which does not
change under unitary transformations), for the OE we
have:

SP (ρ1) = −
∑
x

Tr[Px ρ1] log
Tr[Px ρ1]

Tr[Px]

=
∑
x

Tr
[
U†PxU ρ0

]
log

Tr
[
U†PxU ρ0

]
Tr[U†PxU ]

= SU†PU (ρ0)

≥ S(ρ0) = SP (ρ0) = S(ρ1) . (2)

The final inequality holds because ρ0 is macroscopic for
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P , but may not be so for U†PU . Thus, from the above,
we immediately see that:

i) the OE of an isolated system starting in a macro-
scopic state never decreases (cfr. Lemma 5 in [8]);

ii) it remains constant if and only if ρ1 is also macro-
scopic for the same P as ρ0.

Given that, the question that we want to consider now is:
when does the OE strictly increase? In order to answer
this question, we first need to provide a characterization
of all macroscopic states associated with a given POVM
P = {Px}. While Eq. (1) provides an implicit character-
ization, the following theorem provides it explicitly.

Theorem 1 (Macroscopic states). Given a POVM P =
{Px}, a state m is macroscopic for P , i.e., satisfies
Eq. (1), if and only if there exists a PVM Π = {Πy}y,
with Π ⪯ P , together with coefficients cy ≥ 0, such that

m =
∑
y

cyΠy . (3)

The full proof of Theorem 1, which is based on the
theory of statistical sufficiency [28, 29], can be found in
the Supplemental Material; here we only comment on
its consequences. We first note that, since the maxi-
mally mixed state u is macroscopic for any POVM but
remains invariant, the interesting situations, i.e., those
in which a strict increase of OE can occur, may arise
only if non-uniform macroscopic states exist. As a con-
sequence of Theorem 1, a necessary condition for a state
m to be macroscopic for a POVM P = {Px}x∈X , is that
[m, Px] = 0 for all x ∈ X . This fact, whose proof can be
found in the Supplemental Material, immediately tells
us that, in the case of an isolated system initially pre-
pared in a non-uniform macroscopic state, only a very
restricted set of unitary operators, i.e., those that satisfy
the conservation-like relation

[UmU†, Px] = 0 , ∀x ,

can preserve the observer’s information about the sys-
tem, whereas a generic evolution, such as one uniformly
sampled from the entire set of unitary operators, will
necessarily cause a strict increase in OE. In such cases,
although the microscopic evolution is perfectly reversible,
from the macroscopic observer’s point of view, informa-
tion is irreversibly lost.

OE increase in arbitrary states.—In the above discus-
sion, we used algebraic arguments to treat the case of iso-
lated systems that are initially prepared in non-uniform
macroscopic states. In what follows, we instead apply
measure-theoretic ideas, in particular Lévy-type concen-
tration bounds, to show that, under appropriate assump-
tions, no matter what the initial state of the system is
(macroscopic or not, pure or mixed), if the observation

is “sufficiently coarse” with respect to the size of the sys-
tem, the probability that a random unitary evolution will
bring the OE of the system close to its maximum value
log d, so that the state of the system becomes macroscop-
ically indistinguishable from the microcanonical distribu-
tion, is close to one.
In order to formalize this intuition we begin with the

simplest, although highly idealized, case of a random evo-
lution sampled from the Haar (unitarily invariant) distri-
bution. (Proof in the Supplemental Material.)

Theorem 2 (Haar-random case). Let us consider a d-
dimensional system in an arbitrary (but fixed) state ρ,
a POVM P = {Px} with finite outcomes, and a value
δ > 0. For a unitary operator U sampled at random
according to the Haar (unitarily invariant) distribution,
the probability that the system’s observational entropy
SP (UρU†) is δ-far from the maximum value log d can
be bounded as follows:

PH

{
SP (UρU†) ≤ (1− δ) log d

}
≤ 4

κ(P )
e−Cδκ(P )2d log d , (4)

where κ(P ) = minx Tr[Px u] is an “effective coarseness”
parameter and C = 1

18π3 ≈ 0.0018 > 2−10.

In other words, after a random unitary evolution, un-
der any sufficiently coarse observation, the system will
essentially look as if it were in the microcanonical (i.e.,
maximally mixed) state, no matter what its actual initial
state was. Looking at Eq. (4), the parameter that decides
whether the POVM is sufficiently coarse with respect to
given dimension d and tolerance δ is the effective coarse-
ness parameter κ(P ). For the probability to be small,
κ(P ) has to be large enough to compensate for C and δ.
This also puts a bound on the number of outcomesN(P ),
since N(P )κ(P ) ≤

∑
x Tr[Px u] = 1. This condition is

reminiscent of von Neumann’s condition on the minimum
size of the phase cells in his proof of the H-theorem [22]:

The number of states (quantum orbits) in
each phase cell has to be not only very large,
but also on average quite large compared to
the number of phase cells.

In our notation, the role of the “number of states in each
phase cell” is played by minx Tr[Px] = dκ(P ), while the
“number of phase cells” isN(P ). We can thus summarize
von Neumann’s condition as

N(P )

dκ(P )
≪ 1 . (5)

But how restrictive is it? As the following back-of-the-
envelope calculation shows, the above condition is not
difficult to meet, even for systems of moderate size: for
example, in a system comprising 128 qubits, i.e., d =



4

2128, with δ = 2−5 and minx Tr[Px] = 290 ≪ 2128, the
exponent is bounded as

Cδκ(P )2d log d > 2−102−5 2
180

2128
27 = 244 ,

so that the probability that the OE, after a Haar-random
evolution, does not exceed (1− 2−5)× 128 = 124 bits is

less than 250 × exp[−244] ≈ 10−1012 . This means that
there is an overwhelming probability that the OE will
be greater than 124 bits, regardless of its value before
random evolution took place.

Taking the limit.—Theorem 2 above provides a bound
on the probability of large deviations when all parameters
are fixed. In what follows, following a common approach,
we want to consider also the asymptotic behavior of OE
in a sequence of systems and observations, in the limit of
d (i.e., the system’s Hilbert space dimension) tending to
infinity. To do this, we must first define exactly what it
means for a sequence of observations to be “asymptoti-
cally coarse”.

Definition 1 (Asymptotic coarseness). Consider a se-
quence of systems with increasing dimension d and, in

each system, a POVM P (d) = {P (d)
xd }xd

. For each d, de-

fine κ(d) ≡ κ(P (d)) = minxd
Tr
[
P

(d)
xd u

]
. The sequence

of POVMs {P (d)}d∈N is said to be asymptotically coarse
whenever there exists τ > 0 such that

κ(d) = Ω(d−
1
2+τ ) , (6)

i.e., whenever ∃M > 0 and ∃d0 such that

κ(d) ≥ M · d− 1
2+τ , ∀d > d0 . (7)

The above definition can be justified starting from von
Neumann’s condition (5) as follows. Let us assume that,
in the limit d → ∞, von Neumann’s condition becomes
N(P (d))/dκ(P (d)) → 0. For κ(d) ∼ dα, we obtain

N(P (d))

dκ(P (d))
≤ 1

d[κ(P (d))]2

∼ d−2α−1 ,

where for the first inequality we used the fact that the
POVM is normalized, i.e., N(P (d))κ(P (d)) ≤ 1. The
above then goes to zero if and only if α > −1/2, in agree-
ment with Definition 1.

An alternative justification for Definition 1 can be de-
rived from Theorem 2. For an asymptotically coarse
sequence {P (d)}d∈N of POVM, i.e., such that κ(d) =

Ω(d−
1
2+τ ), the right-hand side of Eq. (4) is of order

d
1
2−τe−Cδd2τ log d, which goes to zero for any δ > 0 in the

limit of d → ∞. Therefore, for a system of sufficiently
large dimension d, it holds that

PH{SP (d)(UρU†) ≈ log d} ≈ 1 , (8)

in line with what would be expected from a typical
macroscopic observation.

Physical random evolutions.—The Haar distribution,
while mathematically convenient, is often considered an
unphysical model for random evolutions, because the
amount of randomness required to sample from it grows
exponentially with the dimension of the system. In what
follows, we derive an alternative law of OE increase that
also holds for generic, but now physically reasonable, ran-
dom evolutions.
As is now common practice in theoretical condensed

matter physics, in what follows we replace the contin-
uous Haar distribution by ε-approximate 2-designs, i.e.
finite sets E of unitary operators which, if chosen at ran-
dom, are able to reproduce, up to an error ε, many fea-
tures of the Haar distribution that are of physical inter-
est [32, 33]. The relevance of approximate 2-designs lies
in the fact that it has recently been shown, using rigor-
ous complexity-theoretic arguments [34, 35], that indeed
ε-approximate 2-designs and, more generally, k-designs
can be efficiently implemented as short random circuits,
thus justifying them as a physically reasonable model for
random evolutions. As shown in the Supplemental Ma-
terial, we obtain the following theorem.

Theorem 3 (Approximate 2-design case). For a unitary
operator U sampled at random from an ε-approximate
2-design E, regardless of the initial state ρ of the d-
dimensional system at hand, we have

PE
{
SP (UρU†) ≤ (1− δ) log d

}
≤ 1

κ(P )3d log d

4(1 + ε)

δ
, (9)

for any value δ > 0.

The upper bound given in Eq. (9) is weaker with re-
spect to that given in Eq. (4), since the negative expo-
nential rate in d that was present in (4) is now lost, re-
placed by (d log d)−1. This is due to the fact that the as-
sumptions in Theorem 3 are weaker, in the sense that an
ε-approximate 2 design is only an approximation of the
ideal, but unphysical, Haar distribution. Again, we em-
phasize that while ε-approximate 2-designs are physically
reasonable because they can be implemented efficiently
with little randomness [34, 35], the Haar distribution is
more of a mathematical abstraction.
Nevertheless, the right-hand side of Eq. (9) is still very

small in a large window of parameter values. For exam-
ple, using the same values of the parameters that we used
in the back-of-the-envelope calculation that we did for
the Haar-random case, the probability that the OE, after
an evolution sampled at random from an ε-approximate
2-design (ε < 1), does not exceed 124 bits (when the
maximum is 128) is again quite small:

1

κ(P )3d log d

4(1 + ε)

δ
<

2258

2277
× 28 = 2−11 .
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Crucially, the only parameter that depends on the POVM
is again the effective coarseness κ(P ).

More importantly, Eq. (9) still allows us to prove an
asymptotic result, although the notion of asymptotic
coarseness given in Definition 1 must be modified with
respect to that obtained before using Eq. (4). Now,
in the case of ε-approximate 2-designs, we require that
κ(d) = Ω(d−

1
3+τ ) for some τ > 0, which means that

the number of states in the smallest cell has to grow
with d as d

2
3+τ . In other words, asymptotic coarseness

for ε-approximate 2-designs is coarser than in Defini-
tion 1, which was introduced having in mind the case
of Haar-random unitaries. But if the stricter require-
ment is satisfied, the right-hand side of Eq. (9) is of order
4(1 + ε)/(δd3τ log d), which goes to zero for any ε, δ > 0
in the limit of d → ∞. Therefore, for any sufficiently
large d, even in the case where U is sampled from a ε-
approximate 2-design E , it holds that

PE{SP (UρU†) ≈ log d} ≈ 1 . (10)

Conclusions.—In this paper we have demonstrated
three ways in which observational entropy tends to in-
crease and reach its maximum in isolated systems un-
dergoing a generic unitary evolution. First, we showed
that if the system starts in a non-uniform macroscopic
state, only unitary operators belonging to a subvariety
of zero volume in the set of all unitaries keep OE in-
variant, otherwise OE strictly increases. Our proofs here
were entirely algebraic, relying on Petz’s theory of sta-
tistical sufficiency. We then moved on to the problem of
showing that the increase of OE, in sufficiently large sys-
tems and for sufficiently coarse observations, is a generic
phenomenon, independent of the initial state of the sys-
tem. We considered both Haar-random evolutions, which
give better bounds but are not physically reasonable, and
ε-approximate 2-designs, which give looser bounds but
provide a realistic model of random physical evolutions.
In both cases, we found that for sufficiently large systems
and sufficiently coarse observations, the state of the sys-
tem quickly becomes indistinguishable from the micro-
canonical one.

An important open question is whether it is possible to
show OE concentration inequalities for concrete Hamilto-
nians, such as the free-fermion chain [47]. Another possi-
bility is to show an increase of the OE for random matrix
product states and their long time averages [48].
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[11] J. M. Deutsch, D. Šafránek, and A. Aguirre, Probabilistic
bound on extreme fluctuations in isolated quantum sys-
tems, Phys. Rev. E 101, 032112 (2020), arXiv:1806.08897
[gr-qc].
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APPENDIX

Characterization of the macroscopic states (Proof of Theorem 1)

Lemma 1. Suppose that Q = {Qy} is sharp, i.e., there exists a unit vector |ϕy⟩ such that Qy|ϕy⟩ = |ϕy⟩ for all
y ∈ Y [49]. Suppose also that there exists another POVM P = {Px} such that Q ⪯ P . Then, the post-processing
transforming P into Q is deterministic, i.e., p(y|x) ∈ {0, 1} for all x and y.

Proof. Let us choose and fix some ȳ ∈ Y and let |ϕȳ⟩ be such that ⟨ϕȳ|Qȳ|ϕȳ⟩ = 1. Such a vector exists because Q is
assumed to be sharp. Then,

1 = ⟨ϕȳ|Qȳ|ϕȳ⟩ (S.1)

=
∑

x:p(ȳ|x)>0

p(ȳ|x)⟨ϕȳ|Px|ϕȳ⟩ (S.2)

≤
∑

x:p(ȳ|x)>0

⟨ϕȳ|Px|ϕȳ⟩ (S.3)

≤ 1 . (S.4)

Therefore, for all x ∈ X , the probabilities p(ȳ|x) must be either one or zero. Since the same holds for any choice of
ȳ, the statement is proved.

Proof of Theorem 1. By definition, m is a macroscopic state if and only if

D (m∥u) = D (P(m)∥P(u)) . (S.5)

As proved in [6], the above condition is equivalent to

m =
∑
x

Tr[Px m]
Px

Vx
. (S.6)

The condition (S.6) is satisfied for m′ :=
∑

y cyΠy. Indeed, we have

∑
x

Tr[Px m′]
Px

Vx
=
∑
y

cy
∑
x

Tr[PxΠy]
Px

Vx
(S.7)

=
∑
y

cy
∑

x:suppPx⊂suppΠy

Tr[Px]
Px

Vx
(S.8)

=
∑
y

cyΠy (S.9)

= m′ , (S.10)

where the second and the third line follows from Lemma 1.
Conversely, suppose that m satisfies Eq. (S.5) and let {|ek⟩}k be an eigenbasis of m. Correspondingly, let us define

the map

diagm(X) :=
∑
k

|ek⟩⟨ek|X|ek⟩⟨ek| .

As shown in [28, Section 4.2], Eq. (S.5) implies that

mΠy = cyΠy , (S.11)

where Πy :=
∑

x∈Xy
diagm(Px), for some partition of X into disjoint subsets as X = X1 ∪ X2 ∪ · · · ∪ Xℓ, such that

diagm(Px) diagm(Px′) = 0 whenever x and x′ do not belong to the same subset. Notice that, in general, such a
partition is not uniquely defined.
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It is easy to see that the operators Πy are, by construction, positive semi-definite and orthogonal to each other.
Moreover, since 1 = diagm(1) = diagm(

∑
x Px) =

∑
x diagm(Px), the set Π = {Πy}y in fact constitutes a PVM. Thus,

by summing (S.11) over y, we immediately obtain Eq. (3) in the main text, i.e.,

m =
∑
y

cyΠy .

We still need to show that, for any such a partition, the corresponding PVM Π satisfies Π ⪯ P . This is due to
the fact that, since Supp diagm(Px) ⊇ SuppPx, two POVM elements Px and Px′ must have orthogonal supports,
whenever x and x′ belong to different subsets. Thus, not only Πy =

∑
x∈Xy

diagm(Px), but in fact Πy =
∑

x∈Xy
Px,

that is Π ⪯ P .

In particular, if m is macroscopic for P = {Px}, then

[m, Px] = 0 ,

for all Px ∈ P . In order to show this, for any PVM Π = {Πy} such that Π ⪯ P , as a consequence of Lemma 1 we
have Πy :=

∑
x∈Xy

Px, where Xy are disjoint subsets covering X . Then, SuppΠy ⊇ SuppPx for all x ∈ Xy, and being
Πy a projection, we see that Πy acts as the identity operator on the supports of all the Px’s it comprises. Moreover,
it acts as the null operator on the support of all remaining Px’s. Thus, any Πy commutes with any Px, though we
notice that the operators Px need not commute with each other. As a consequence, since macroscopic states are just
linear combinations of Πy’s, they all commute with all Px’s.

Concentration of observational entropy

The proof strategy that we use here is to show that, for a unitary sampled at random, the probability that
Tr
[
UρU† P

]
is “close” to Tr[u P ], for any density matrix ρ and any non-null effect 0 ≤ P ≤ 1, is “high”. We then

use this fact to bound the probability of large deviations in observational entropy.

From probability to observational entropy

Lemma 2. Let ρ be a density operator and P = {Px}x∈X a POVM such that |X | < +∞. Let ν denote a measure
on the d-dimensional unitary group Ud and Pν the corresponding probability of an event. Suppose that there exists a
real-valued non-increasing function g such that

Pν

{∣∣Tr[UρU†Px]− Tr[uPx]
∣∣ ≥ ξ

}
≤ g(ξ) , (S.12)

for all x ∈ X and ξ > 0. Then, it holds that

Pν

{
SP (UρU†) ≤ (1− δ) log d

}
≤ 1

κ(P )
g
(
κ(P )

√
δ log d

)
, (S.13)

where κ(P ) := minx∈X Tr[uPx].

Proof. Define probability distributions p = {px}x and q = {qx}x by px = Tr[UρU†Px] and qx = Tr[uPx]. By the
definition of the observational entropy, we have

log d− SP (UρU†) = DKL(p∥q) , (S.14)

where DKL is the Kullback-Leibler divergence for classical probability distributions defined by DKL(p∥q) =∑
x px log (px/qx). The condition SP (UρU†) ≤ (1 − δ) log d is thus equivalent to DKL(p∥q) ≥ δ log d. We will

invoke the following upper bound on DKL:

DKL(p∥q) ≤
∑
x

(px − qx)
2

qx
≤ |X |maxx(px − qx)

2

minx qx
, (S.15)
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where the first inequality was proved in [50] (see Lemma A.3 therein). The condition DKL(p∥q) ≥ δ log d then implies

|X |maxx(px − qx)
2

κ(P )
≥ δ log d, (S.16)

which is equivalent to

max
x

∣∣Tr[UρU†Px]− Tr[uPx]
∣∣ ≥√κ(P )δ log d

|X |
. (S.17)

Thus, we have

Pν

{
SP (UρU†) ≤ (1− δ) log d

}
≤ Pν

{
max

x

∣∣Tr[UρU†Px]− Tr[uPx]
∣∣ ≥√κ(P )δ log d

|X |

}
(S.18)

≤
∑
x

Pν

{∣∣Tr[UρU†Px]− Tr[uPx]
∣∣ ≥√κ(P )δ log d

|X |

}
(S.19)

≤ |X | g

(√
κ(P )δ log d

|X |

)
(S.20)

≤ 1

κ(P )
g
(
κ(P )

√
δ log d

)
, (S.21)

where the last line is due to |X |κ(P ) ≤ 1.

Concentration with Haar-random unitaries (Proof of Theorem 2)

Lemma 3. (Lemma 3.2 in [33], see also [30, 51]) Let f be a Lipschitz function on Ud, with the Lipschitz constant η
defined by

η = sup
U1 ̸=U2∈Ud

|f(U1)− f(U2)|
∥U1 − U2∥2

. (S.22)

Then

PH(|f − EH [f ]| ≥ ξ) ≤ 4 exp

(
− 2d

9π3η2
ξ2
)
, (S.23)

where PH denotes the probability computed with respect to the Haar (unitarily invariant) measure on Ud, and EH [f ]
denotes the corresponding mean of f .

Lemma 4. Let ρ be a density operator and let P be a positive semidefinite operator such that P ≤ 1. For a Haar-
distributed random unitary, it holds that

PH

{∣∣Tr[UρU†P
]
− Tr[uP ]

∣∣ ≥ ξ
}
≤ 4 exp

(
− dξ2

18π3

)
. (S.24)

Proof. Due to Lemma 3, it suffices to prove that the Lipschitz constant of the function f : U 7→ Tr[UρU†P ] is bounded
above by 2. By the triangle inequality and the Cauchy–Schwarz inequality, we have∣∣∣Tr[U1ρU

†
1P ]− Tr[U2ρU

†
2P ]

∣∣∣ = ∣∣∣∣12Tr[(U1 + U2)ρ(U1 − U2)
†P ] +

1

2
Tr[(U1 − U2)ρ(U1 + U2)

†P ]

∣∣∣∣ (S.25)

≤ 1

2

∣∣Tr[(U1 + U2)ρ(U1 − U2)
†P ]
∣∣+ 1

2

∣∣Tr[(U1 − U2)ρ(U1 + U2)
†P ]
∣∣ (S.26)

≤ ∥U1 − U2∥2 · ∥P (U1 + U2)ρ∥2 . (S.27)
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Taking a diagonal decomposition ρ =
∑

i λi|ei⟩⟨ei|, the second term in the last line can be bounded as

∥P (U1 + U2)ρ∥22 = Tr
[
ρ(U1 + U2)

†P 2(U1 + U2)ρ
]

(S.28)

≤ Tr
[
ρ(U1 + U2)

†(U1 + U2)ρ
]

(S.29)

=

d∑
i=1

λ2
i ⟨ei|(U1 + U2)

†(U1 + U2)|ei⟩ (S.30)

≤
d∑

i=1

λ2
i ∥(U1 + U2)∥2∞ (S.31)

≤ 4Tr
[
ρ2
]
. (S.32)

This implies ∣∣∣Tr[U1ρU
†
1P ]− Tr[U2ρU

†
2P ]

∣∣∣
∥U1 − U2∥2

≤ 2
√

Tr[ρ2] ≤ 2 , (S.33)

and completes the proof.

Proof of Theorem 2. It follows from Lemma 4 that

PH

{∣∣Tr[UρU†Px

]
− Tr[uPx]

∣∣ ≥ ξ
}
≤ 4 exp

(
− dξ2

18π3

)
(S.34)

for all x. Applying Lemma 2, we obtain

PH

{
SP (UρU†) ≤ (1− δ) log d

}
≤ 4

κ(P )
exp

(
− δ

18π3
κ(P )2d log d

)
, (S.35)

where κ(P ) := minx∈X Tr[uPx].

Concentration with approximate unitary designs (Proof of Theorem 3)

Next, we consider the concentration of observational entropy by approximate designs. Various definitions of ap-
proximate unitary designs have been proposed, depending on what measure is used to define “approximate”. We
adopt the following version proposed in [34]:

Definition 2. (Definition 4 in [34]) Fix ε > 0 and t ∈ N. A unitary ensemble E := {pi, Ui}Ni=1 is an ε-approximate
(unitary) t-design in the diamond distance if ∥∥∥M (t)

E −M
(t)
H

∥∥∥
⋄
≤ t!

d2t
ε . (S.36)

Here, M
(t)
E (X) :=

∑n
i=1 piU

⊗t
i X(U†

i )
⊗t and M

(t)
H (X) := E[U⊗tX(U†)⊗t].

Lemma 5. Let ρ be a density operator and let P be a positive semidefinite operator such that P ≤ 1. It holds that

PE
{∣∣Tr[UρU†P

]
− Tr[uP ]

∣∣ ≥ ξ
}
≤ 1

ξt
(1 + ε)

(
t2

d

) t
2

. (S.37)

Here, U is sampled from an ε-approximate t-design in the diamond distance.

Proof. By Markov’s inequality, we have

PE
{∣∣Tr[UρU†P

]
− Tr[uP ]

∣∣ ≥ ξ
}
= PE

{∣∣Tr[UρU†P
]
− Tr[uP ]

∣∣t ≥ ξt
}

(S.38)

≤ 1

ξt
EE

[∣∣Tr[UρU†P
]
− Tr[uP ]

∣∣t] . (S.39)
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Due to the convexity of f(z) = |z|t, with
∑r

i=1 λi|i⟩⟨i| be the spectral decomposition of ρ, we have

EE

[∣∣Tr[UρU†P
]
− Tr[u P ]

∣∣t] = EE

∣∣∣∣∣
r∑

i=1

λi(Tr
[
U |i⟩⟨i|U†P

]
− Tr[uP ])

∣∣∣∣∣
t
 (S.40)

≤
r∑

i=1

λiEE

[∣∣Tr[U |i⟩⟨i|U†P
]
− Tr[uP ]

∣∣t] . (S.41)

We will invoke Corollary 24 in [34]: Given a pure state |ϕ⟩ and a positive semidefinite operator P ≤ 1, it holds

EE

[∣∣Tr[U |ϕ⟩⟨ϕ|U†P
]
− Tr[uP ]

∣∣t] ≤ (1 + ε)

(
t2

d

) t
2

, (S.42)

where U is sampled from an ε-approximate (in the diamond measure) t-design E . Applying this to each term in (S.41),
we complete the proof.

Proof of Theorem 3. It follows from Lemma 2 and Lemma 5 that

PE
{
SP (UρU†) ≤ (1− δ) log d

}
≤ 1 + ε

κ(P )

(
t2

κ(P )2δd log d

) t
2

, (S.43)

with U being randomly sampled from an ε-approximate t-design E in the diamond distance. Substituting t = 2 yields
Ineq. (9).

Remark 4. It was proved in [35] that approximate unitary designs can be implemented on D-dimensional lattices
by a local random quantum circuit of depth polynomial in the lattice size. Though the measures adopted in [35] to
define “ε-approximate” are different from Definition 2 above, it affects the circuit depth only polynomially. Hence, we
conclude that the concentration of observational entropy occurs even under random unitaries generated by random
polynomial-depth quantum circuits, which is often regarded as a physically more realistic model of local quantum
chaotic dynamics.
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