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Single-energy partial-wave analysis has often been applied as a way to fit data with minimal
model dependence. However, remaining unconstrained, partial waves at neighboring energies will
vary discontinuously because the overall amplitude phase cannot be determined through single-
channel measurements. This problem can be mitigated through the use of a constraining penalty
function based on an associated energy-dependent fit. However, the weight given to this constraint
results in a biased fit to the data. In this paper, for the first time, we explore a constraining
function which does not influence the fit to data. The constraint comes from the overall phase
found in multi-channel fits which, in the present study, are the Bonn-Gatchina and Jülich-Bonn
multi-channel analyses. The data are well reproduced and weighting of the penalty function does
not influence the result. The method is applied to KΛ photoproduction data and all observables can
be maximally well reproduced. While the employed multi-channel analyses display very different
multipole amplitudes, we show that the major difference between two sets of multipoles can be
related to the different overall phases.
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I. INTRODUCTION

Meson-nucleon scattering and meson photoproduction have been extensively studied over the last decades in a
comprehensive joint program of experiments and theoretical studies principally at ELSA, GRAAL, JLab and MAMI.
Multi-channel theory approaches, attempting a simultaneous fit to the world datasets of dominant open channels,
have been carried out and updated by the Bonn-Gatchina [1], Jülich-Bonn [2], Kent State University [3], and MTZ [4]
groups among others. Some single-channel analyses have also remained active, in particular GWU-SAID [5] and
MAID [6]. No longer active but historically important analyses, focusing on pion-induced reactions, were carried
out by the Karlsruhe-Helsinki group [7] as a single-channel analysis, and Carnegie-Mellon-Berkeley group [8] as a
coupled-channel one. Coupled-channel theoretical models are very powerful as they employ the constraint of multi-
channel unitarity, but may be very computationally intensive and can have very different starting assumptions. This
has made comparisons more difficult. Single-channel energy-independent approaches attempt to reduce theoretical
input to a minimum, and aim to extract partial waves or multipoles directly from the data, using as few assumptions
as possible. However, they all face the well known problem that single-channel single-energy partial-wave analysis,
in the inelastic region, gives discontinuous results due to the invariance of single-channel observables with respect to
an overall phase change (continuum ambiguity, see ref. [9]). Thus, some constraints have to be introduced, and this
introduces model-dependence into the analysis. In this paper we analyze the constraints used to achieve the needed
continuity, and propose to use the minimal constraint which does not change single-channel observables. This also
leads to a way of comparing different multi-channel results.

Before proceeding, we first briefly rephrase the existing problem with single-channel single-energy analyses due
to the overall phase ambiguity. Since the observables can be written in terms of bilinears (such as the real or imagi-
nary part of bib

∗
j , with i, j running from 1 to 4 for pseudo-scalar photoproduction), resulting in real valued functions,

the multiplication of all amplitudes by a common phase has no effect on observables. Hence, only absolute values
and all three relative phase angles of reaction amplitudes are uniquely determined; the overall phase always remains
unknown. This has a profound effect on our results: any of our solutions, whether they be reaction amplitudes or
partial waves, are manifestly non-unique. In fact, we have an infinite number of equivalent solutions with different
overall phase (if our solution is considered to be a set of four reaction amplitudes with four absolute values and four
phase angles). For more details see Tables II and III. To proceed, we need some way of fixing the unmeasurable overall
phase, and that is done by introducing constraints in single-energy partial wave analyses.

Very often the employed constraints come from some theoretical model in the form of theoretical reaction am-
plitudes. However, in that case, single-energy analyses become strongly model dependent, as constraining functions
directly influence the fit to observables. One of the first constraining methods was used by the Karlsruhe - Helsinki
partial wave analysis [7] in the form of fixed-t analyticity. The method consisted in introducing a penalty function
as a constraint which required that, simultaneously with fitting the data, reaction amplitudes had to be very close to
those obtained by a Pietarinen expansion in the t-variable of a single-channel, and this constraint imposed analyticity
of amplitudes in the s-variable. In that way, continuity in phase was automatically achieved, but a much stronger
constraint to the form of constraining amplitudes was also imposed. Obviously, this constraining method influenced
the single-channel observables. A very similar way of constraining single-channel, single energy partial wave analysis
has been used by Zagreb group [10, 11] where analyticity in t-variable has been replaced by analyticity in s-variable.
The method was successful but the main problem with the constraining function influencing observables remained.

Obviously, the main problem of these approaches was that as constraining functions they were using full amplitudes
which influence the observables. The first attempt to use only a phase1 to achieve continuity of single-channel, single-
energy partial wave analysis was introduced by Grushin [12] and used by Bonn group [13]. The method consisted in
fixing the phase of one of the multipoles to zero, usually the E0+ multipole. In practice this was achieved by imposing
Im(E0+) = 0, Re(E0+) > 0. Unfortunately, this method yields a very restrictive form of the chosen multipole. So,
until recently, there existed no general way to constrain a single-channel, single-energy partial wave analysis without
either influencing the fit to observables or fixing the values of some multipoles.

A starting point for the present method was discussed in Ref. [14] for the complete set of observables created
as numeric data with infinite precision in η photoproduction. There it was shown how multipoles explicitly depend on
the overall phase, and that their continuity can be achieved if the overall phase is fixed to some predetermined value
with no influence on any single-channel observable.

In this paper, we apply this finding to experimental data (with uncertainties), in the data base for KΛ photopro-
duction. Our constraining function was chosen to be the overall transversity amplitude phase, and the constraining

1 which has no influence onto observables
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procedure was chosen to be the penalty function technique. In the Appendix, it is shown that fixing the overall
phase is equivalent to fixing the phase of one of the reaction amplitudes, so as a constraining function we take the
transversity amplitude b1 phases from two coupled-channel models, Bonn-Gatchina [1] and Juelich-Bonn [2]. We show
that these phases are significantly different, and thus generate two very different sets of multipoles. However, by
comparing the agreement of calculated observable values with the corresponding experimental ones, for both phase
choices, we find that both sets do similarly well in reproducing the world KΛ photoproduction data base.

II. FORMALISM

The simplest way to fix the phase and obtain a unique SE PWA is to use the penalty function technique to introduce
an additional phase constraint. As it is irrelevant which amplitude phase we fix, we have chosen the phase of amplitude
b1. We name it Φ1, and we fix it to the chosen value Φpen

1 .

χ2(W ) =

Ndata∑
i=1

wi
[
Oexp

i (W,Θi)−Ofit
i

[
Mfit(W ),Θi

]]2
+ P1 (1)

P1 = λph

Ndata∑
i=1

∣∣∣Φfit
1 (W,Θi)− Φpen

1 (W,Θi)
∣∣∣

where O(W,Θ) and M(W ) are the generic names for all observables and multipoles, and wi is a statistical weight. In
practice, we avoid the difficulties associated with fitting a multi-valued phase, instead using normalized amplitudes in
defining the penalty function

χ2(W ) =

Ndata∑
i=1

wi
[
Oexp

i (W,Θi)−Ofit
i

[
Mfit(W ),Θi

]]2
+ P1 (2)

P1 = λph

Ndata∑
i=1

∣∣∣∣∣ bfit1 (W,Θi)

|bfit1 (W,Θi)|
− bpen1 (W,Θi)

|bpen1 (W,Θi)|

∣∣∣∣∣ .
This replaces the fit to a phase with a fit to its sine and cosine, a better-behaved penalty function.

III. ILLUSTRATION OF SINGLE-CHANNEL PWA APPLIED TO KΛ PHOTOPRODUCTION DATA

Single-energy analysis has often been used to search for systematic deviations from an underlying energy-dependent
fit, searching for missing structure. However, this method can bias the single-energy results as a large penalty
function can generate single-energy values arbitrarily close the the energy-dependent input. The idea to use theoretical
constraining amplitudes has already been tried in past [7, 10, 11], but using using the T-matrix as a constraining
function influenced the fit to these observables. Below, we describe a fit to data constrained only by the overall phase
taken from a multi-channel analysis, which cannot be directly measured and so has no effect on the quality of fit to
data.

III. A. The γp → K+Λ Data Base

The γp → K+Λ data base, used in this study, is identical to one fitted in Ref. [11]. In Table I our data base
is summarized. It has been taken, in numerical form, from the Bonn-Gatchina and George-Washington-University
(SAID) web pages [15, 16] and interpolated to produce a grid of common energy/angle points: for general details related
to the 2-dimensional interpolation and its implementation, see Refs. [10, 11]. However, the interpolating/extrapolating
stability in the present study is significantly improved with respect to Refs. [10, 11]. Observe that, in angular range,
not all measured observables overlap, and for some data groups extrapolations are needed. However, this extrapolation
at extreme forward and backward angles can become rather ambiguous if it is completely determined by the fitting
software. Therefore, we have introduced additional kinematical constraints to the measured data at the angular limits:

Σ = P = T = Ox′ = Oz′ = Cx = 0 & Cz = 1 at cos θ = ±1 (3)

For the differential cross section dσ/dΩ, the Bonn-Gatchina theoretical values were used as a constraint at these
extreme angles. This stabilizes the extrapolations at forward and backward angles significantly, and enables us to
increase the angular range from experimentally measured -0.7 < cos θ < 0.8 to a broader -0.9 < cos θ < 0.9, improving
the reliability of a partial wave reconstruction.
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TABLE I: Experimental data from CLAS, and GRAAL used in our PWA. Note that the observables Cx and Cz are
measured in a rotated coordinate frame [17]. They are related to the standard observables Cx′ and Cz′ in the c.m.
frame by an angular rotation: Cx = Cz′ sin(θ) + Cx′ cos(θ), and Cz = Cz′ cos(θ)− Cx′ sin(θ), see Ref. [18].

Obs. N Ec.m. [MeV] NE θcm [deg] Nθ Reference
dσ/dΩ ≡ σ0 3615 1625− 2295 268 28− 152 5− 19 CLAS(2007) [17], CLAS(2010) [19]

Σ 400 1649− 2179 34 35− 143 6− 16 GRAAL(2007) [20], CLAS(2016) [21]
T 408 1645− 2179 34 31− 142 6− 16 GRAAL(2007) [20],CLAS(2016) [21]
P 1597 1625− 2295 78 28− 143 6− 18 CLAS(2010) [19], GRAAL(2007) [20]
Ox′ 415 1645− 2179 34 31− 143 6− 16 GRAAL(2007) [20], CLAS(2016) [21]
Oz′ 415 1645− 2179 34 31− 143 6− 16 GRAAL(2007) [20], CLAS(2016) [21]
Cx 138 1678− 2296 14 31− 139 9 CLAS(2007) [17]
Cz 138 1678− 2296 14 31− 139 9 CLAS(2007) [17]

However, note that in spite of the fact that we have eight measured observables, this set is still not complete (see
Ref. [22]). Namely, observables Ox′ , Oz′ , Cx, andCz are determining the same two relative angles ϕ14 and ϕ23 (see
Table II), while the third relative angle remains undefined. This set, when fitted, produces results with large scatter,
leading us to consider use of an expanded set of observables. To obtain a complete set of observables, we have added
two BT observables (see again Ref. [22]). As they are not measured, we have taken them as pseudo-data from a
theoretical model. We acknowledge that this introduces additional theory dependence, but at this exploratory stage it
appears necessary. Thus, we introduce pseudo-data E and F generated either by the Bonn-Gatchina or the Jülich-Bonn
model. We first generate numeric data from the respective models, then randomize them by 10 %, and attribute to
them a 10 % error. In this way we obtain quasi-realistic data set for two additional observables. The obtained set of ten
observables is beyond that required for a complete experiment. We could drop a pair a pair of connected observables
(either Ox′ andOz′ or Cx and Cz, but we have opted to fit the over-defined set of 10 observables, to the maximize
the link to experiment. Further tests in the direction of self-consistency of the observables Ox′ , Oz′ , Cx, andCz can be
done.

III. B. Exploring the overall phase

As stressed in the Introduction, single-channel, single-energy analyses cannot be made theory independent, as the
overall phase in inelastic channels cannot be measured from data. As described in papers on the continuum ambiguity,
a way to determine this phase is to use multi-channel unitarity.

ImTab =

all channels∑
c=1

T ∗
ac ρc Tcb (4)

where a, b, c are channel indices, Tab is the T-matrix of the reaction a → b and ρc is the phase space for the channel
c. This equation is just the mathematical expression of conservation of probability for multi-channel reactions. This
equation restores the connection between overall phases of analyzed channels.

It is clear that multi-channel unitarity constraints can only be obtained from coupled-channel fits which have
enforced this in the model used. We have chosen to fix the overall phase of the b1 transversity amplitude to the
values obtained in the Bonn-Gatchina and Jülich-Bonn models, and have compared results. A comparison of phases
is given in Fig. 1. Clearly the phases coming from the Bonn-Gatchina and Jülich-Bonn models do not agree, so we
should expect that multipoles will show sizable differences. This is confirmed as we compare results from the two
multi-channel fits in the next section.
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FIG. 1: (Color online) The comparison of BG2017 and JuBo2022 b1 phases.
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III. C. Fitting an over-complete set of observables with BG2017 phase and BG2017 pseudo-data

Below are results for dominant multipoles obtained by fitting the full set of data, consisting of 8 experimentally
measured observables and 2 pseudo-observables, over the energy range 1625 ≤ W ≤ 2179.83 MeV. The agreement
between energy-dependent BG2017 multipoles and our single-energy values is very good in most waves.
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FIG. 2: (Color online) The multipoles for the L = 0, 1 and 2 partial waves. Red discrete symbols correspond to the
single-channel PWA, and the full black line gives the BG2017 energy-dependent solution for comparison.
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Having seen the level of agreement between multipoles, given by BG2017 and by our single-channel single-energy
approach, we compare the two solutions at the level of total χ2 per degree of freedom. The black and red lines connect
total χ2 values from the BG2017 and single-energy fits respectively. The χ2 is a sum of contributions from the set
of observables at each interpolation energy. The single-energy values oscillate around the formally expected value of
unity. The energy-dependent BG2017 values show more scatter and higher values, as should be expected, given that
a different (extended and multi-channel) database was used.
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FIG. 3: (Color online) The obtained total χ2 per degree of freedom. Black color denotes BG2017 values, and red
color denotes our model.
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III. D. Fitting an over-complete set of observables with JB2017 phase and JB2017 pseudo-data

Having applied the single-energy method to BG2017, we next check to see if consistent results follow with the use of a
very different multi-channel technique in constraining the overall phase. Below are the results for dominant multipoles
coming from a fit to the complete set of data consisting of 8 measured observables and 2 pseudo-observables, obtained
from the Jülich-Bonn fit (JB2017) in the energy range 1625 ≤ W ≤ 2179.83 MeV. Again, the comparison between
energy-dependent and single-energy multipoles is reasonable, with the closest agreement away from threshold.
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FIG. 4: (Color online) The multipoles for the L = 0, 1 and 2 partial waves. Red discrete symbols correspond to our
single-channel PWA, and the full black lines give the JB2017 energy-dependent solution for comparison.

As before, we also compare the JB2017 energy-dependent total χ2 values to those obtained in our single-energy fits.
The values of χ2 per degree of freedom show trends very similar to those we found with BG2017; we again find the
single-energy results oscillating around the expected value of unity.
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FIG. 5: (Color online) The obtained χ2 per degree of freedom. Black color denotes JB2017 values, and red color
denotes our model.

IV. DEPENDENCE OF FINAL RESULT UPON CONSTRAINING FUNCTION

We have tested the influence of the weight of the constraining (penalty) function λph upon the result, repeating
the fits from Sections III. C and III. D with increased penalty function weighting factor λph (see Eq. 1). Specifically,
we have increased the employed value λph = 25 to a much larger value value λph = 1000, and established almost
invisible differences in the final result. We attributed small differences to the numerical nature of the procedure. So,
we conclude that the procedure is independent of λph, and that the used constraining function does not influence
observables. And, we believe, this is the closest one can get to theory independent procedure. We have used theory
assumptions in choosing the constraining phase, and we used theory assumptions to generate pseudo-data E and F .
The latter theory dependence can be eliminated by measuring these pseudo-observables. However, the phase issue can
never be eliminated.

V. RESULTS AND DISCUSSION

Summarizing our results, we have made single-channel, single energy fits to a large database of KΛ photoproduction
observables (including some pseudo-data). The continuum ambiguity has been resolved using information from two
elaborate, and quite different, multi-channel analyses. We have shown that using the overall phase from either BG2017
or JB2017, in a penalty function, has little to no effect on the single-energy fit to observables. It does, however, produce
multipoles that are in good agreement with the chosen multi-channel fit. This gives a new way to constrain single-
channel single-energy fits and also a simple way to compare the multipoles produced in different energy-dependent
fits.

In Figs. 2 and 4, for example, we show the multipoles for KΛ photoproduction up to Lmax = 2 for constraints from
the BG2017 and JB2017 models. The single-energy points, with errors, are given for each of the interpolated energies.
In most cases, they closely follow the smooth BG2017 curves. We observe that both sets of solutions (exactly as their
associated theoretical models) are visually very different, but equally well fit the data (see Figs 3 and 5). So, we
can absolutely attribute this difference to the different overall phase. It should be emphasized that the single-energy
multipoles were not constrained to follow BG2017 and JB2017 theoretical amplitudes but rather the constraint was
applied to the phase of the b1 transversity amplitude.
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Appendix A

It has been known for decades that 2 → 2 scattering observables can be represented by complex bilinear expressions
and are thus invariant when each amplitude is multiplied by some energy and angle dependent phase. This is the
continuum ambiguity. Thus, if N amplitudes are involved, they may be expressed in terms of 2N-1 real numbers - the
last parameter remains undetermined (as an overall phase).

For pseudoscalar meson photoproduction this number is N=4, and all observables are in terms of transversity
amplitudes given in the following table:

Observable Group

σ0 = 1
2

(
|b1|2 + |b2|2 + |b3|2 + |b4|2

)
Σ̂ = 1

2

(
− |b1|2 − |b2|2 + |b3|2 + |b4|2

)
S

T̂ = 1
2

(
|b1|2 − |b2|2 − |b3|2 + |b4|2

)
P̂ = 1

2

(
− |b1|2 + |b2|2 − |b3|2 + |b4|2

)
Ê = Re [−b∗3b1 − b∗4b2] = − |b1| |b3| cosϕ13 − |b2| |b4| cosϕ24

F̂ = Im [b∗3b1 − b∗4b2] = |b1| |b3| sinϕ13 − |b2| |b4| sinϕ24 BT
Ĝ = Im [−b∗3b1 − b∗4b2] = − |b1| |b3| sinϕ13 − |b2| |b4| sinϕ24

Ĥ = Re [b∗3b1 − b∗4b2] = |b1| |b3| cosϕ13 − |b2| |b4| cosϕ24

Ĉx′ = Im [−b∗4b1 + b∗3b2] = − |b1| |b4| sinϕ14 + |b2| |b3| sinϕ23

Ĉz′ = Re [−b∗4b1 − b∗3b2] = − |b1| |b4| cosϕ14 − |b2| |b3| cosϕ23 BR
Ôx′ = Re [−b∗4b1 + b∗3b2] = − |b1| |b4| cosϕ14 + |b2| |b3| cosϕ23

Ôz′ = Im [b∗4b1 + b∗3b2] = |b1| |b4| sinϕ14 + |b2| |b3| sinϕ23

L̂x′ = Im [−b∗2b1 − b∗4b3] = − |b1| |b2| sinϕ12 − |b3| |b4| sinϕ34

L̂z′ = Re [−b∗2b1 − b∗4b3] = − |b1| |b2| cosϕ12 − |b3| |b4| cosϕ34 T R
T̂x′ = Re [b∗2b1 − b∗4b3] = |b1| |b2| cosϕ12 − |b3| |b4| cosϕ34

T̂z′ = Im [−b∗2b1 + b∗4b3] = − |b1| |b2| sinϕ12 + |b3| |b4| sinϕ34

TABLE II: The definitions of the 16 polarization observables of pseudoscalar meson photoproduction are given here
in terms of transversity amplitudes b1, . . . , b4 ( sign conventions are consistent with [23]). Expressions are also given
in terms of moduli and relative phases of the amplitudes. Furthermore, the phase-space factor ρ has been suppressed
in the given expressions (i.e. we have set ρ = 1). The four different groups of four observables each are indicated as
well.
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With this definition we see that single-channel observables dσ/dΩ, Σ, T and P actually exactly give four absolute
values, and from the rest of the spin observables another three relative angles are determined. Our experiments give
us absolute values and sines and cosines of all relative angles, so we need more than seven observables to be measured.
We see that by measuring 12 observables we can certainly determine all seven quantities (4 absolute values and 3
relative angles) exactly. Applying discrete symmetries it has been shown that only 8 observables suffice. However,
the overall phase can never be determined. In the present study, we avoid the complete-experiment issue by always
considering cases where more than a sufficient number of observable types is used.

Now we can express transversity amplitudes in terms of 4 absolute and 3 relative angels (measurable quantities),
and separate out the overall phase which cannot be measured. This can be done in at least four different ways:

b1 = |b1| · eiΦ1 b1 = |b1| · eiΦ12 · eiΦ2 b1 = |b1| · eiΦ13 · eiΦ3 b1 = |b1| · eiΦ14 · eiΦ4

b2 = |b2| · eiΦ21 · eiΦ1 or b2 = |b2| · eiΦ2 or b2 = |b2| · eiΦ23 · eiΦ3 or b2 = |b2| · eiΦ24 · eiΦ4

b3 = |b3| · eiΦ31 · eiΦ1 b3 = |b3| · eiΦ32 · eiΦ2 b3 = |b3| · eiΦ3 b3 = |b3| · eiΦ34 · eiΦ4

b4 = |b4| · eiΦ41 · eiΦ1 b4 = |b4| · eiΦ42 · eiΦ2 b4 = |b4| · eiΦ43 · eiΦ3 b4 = |b4| · eiΦ4

TABLE III: Transversity amplitudes in terms of absolute values and relative angles when overall phase is chosen to
be one of the transversity amplitude angles.

In each column a different overall phase is separated (Φ1, Φ2, Φ3, or Φ4) from the rest of the formula which can be
exactly extracted from single-channel measurements. In an ideal case, all four ways are equivalent, and we can chose
the most convenient one. This set of formulas tells us exactly that reaction amplitudes are undetermined without
fixing the overall phase of either of the 4 amplitudes to some chosen, predetermined value.
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