
SPECTRAL DETERMINANT FOR THE WAVE EQUATION ON AN

INTERVAL WITH DIRAC DAMPING

DAVID KREJČIŘÍK AND JIŘÍ LIPOVSKÝ

Abstract. A closed formula for the spectral determinant for the wave equation on a
bounded interval, subject to Dirichlet boundary conditions and an α-multiple of the Dirac
δ-type damping, is derived. Depending on the choice of the branch cut of the logarithm
used in its definition, the spectral determinant diverges either for α = 2 or α = −2.

1. Introduction

A string instrument is classically modelled by the wave equation on an interval (0, L)
of length L > 0, subject to Dirichlet boundary conditions. In 1982 Bamberger, Rauch,
and Taylor [BRT82] suggested explaining the playing of harmonics by modelling the finger
pressure at a point a ∈ (0, L) by a strongly localised frictional resistance around a. More
specifically, their mathematical model is the damped wave equation

∂ttu+ αδa∂tu− ∂xxu = 0 ,(1)

in space-time variables (x, t) ∈ (0, L) × (0,∞), where δa is the Dirac delta distribution
centered at a and α is a positive number. In this paper, motivated by relativistic quantum
mechanics [KR23, Sec. 7], we allow α to be an arbitrary complex number.

It turns out that there is an abrupt change in time-evolution properties of (1) when the
complex parameter α takes values ±2. In fact, α = 2 is the optimal friction of [BRT82].
To see it, the strategy of [BRT82] is to make a careful spectral analysis of the associated
damped wave operator (to be properly introduced in Section 2)

Hα =

(
−αδa

∂2

∂x2

I 0

)
.(2)

This spectral analysis was continued by Cox and Henrot in [CH08] by studying basis
properties of the eigenfunctions. In particular, they show that the root vectors form the
Riesz basis if α ̸= ±2. While the opposite implication is not established in [CH08], it is
true that the root vectors do not form the Riesz basis anymore if α = ±2. In fact, some
of the eigenvalues of this operator diverge to complex infinity when α approaches the two
critical values ±2, losing thus even completeness.

Wild spectral properties of the damped wave operator for α = ±2 appear on unbounded
geometries too, see [KK20, Rem. 1] and [KR23]. What is more, the “magical” value 2 is
explained in [KR23] by considering the damped wave equation on non-compact star graphs.
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It turns out, that the abrupt change in spectral properties happens precisely at ±α equal
the number of edges emanating from the vertex where the distributional damping is placed.

The objective of this paper is to quantify the transition at α = ±2 by considering yet
another spectral quantity – the spectral determinant. This generalisation of the notion
of the determinant of a matrix for possibly unbounded operators was introduced by Ray
and Singer in 1971 [RS71]. The spectral determinants were particularly studied for the
Sturm–Liouville operators [LS77, GK19], Laplacians in various domains [AS94], harmonic
and anharmonic oscillators [Fre18] or used in string theory or quantum field theory, see,
[Dun08] and references therein. The present paper points out another class of operators
for which the spectral determinant can be computed in a closed form.

To avoid the fact that the product of eigenvalues λj of an operator H with compact
resolvent may not be convergent, the spectral determinant of H is defined through the
spectral zeta function

ζ(s) =
∞∑
j=1

λ−s
j with λ−s

j = e−s log λj .(3)

This sum is usually convergent in the half-plane Re s > s0 > 0. To give a proper meaning to
the derivative of the zeta function at zero, the zeta function is meromorphically continued
from the set where the sum converges to the rest of the complex plane in s. Since this
continuation is unique, the value of ζ ′(0) is properly defined and the determinant can be
introduced as

det(H) = exp (−ζ ′(0)) .(4)

However, the power of the eigenvalues in the definition of the zeta function (3) depends
on how we introduce the complex natural logarithm. One can choose different branches
of the logarithm and the branch cut determines from which interval the arguments of the
eigenvalues are chosen. Consequently, the spectral determinant may differ for different
branch cuts, see [QHS93, FL19, LM23]. This behaviour appears also for the problem
considered in this paper.

When we move the branch cut so that it crosses a finite number of eigenvalues, the
spectral determinant does not change (see [FL19, LM23]). As the number of eigenvalues
of Hα with the arguments in the intervals (β1, β2) with

π
2 < β1 < β2 <

3π
2 and (β3, β4) with

−π
2 < β3 < β4 <

π
2 is finite, one essentially has two independent choices of the branch cut.

Namely, anywhere in the sectors with the argument in the intervals (β1, β2) and (β3, β4),
respectively, as long as the cut does not intersect any eigenvalue (otherwise the spectral
zeta function would not be properly defined). To be more specific, we choose the first and

second branch cuts as the rays ei(π+ε)(0,∞) and e−iε(0,∞), respectively, where ε ∈ (0, π2 )
is always such that there are no eigenvalues of Hα with arguments in the intervals (π, π+ε]
and [−ε, 0) (in principle, ε can depend on α). To make the long story short, we concisely
say that the branch cut is either “below the negative real axis” or “below the positive real
axis”, respectively.

Writing det(α) = det(Hα) in the present case, our main result reads as follows.
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Theorem 1.1. If the branch cut of the logarithm is below the negative real axis, then

det(α) =


4L

2− α
if α ̸= 2 and a ∈ (0, L) ,

2L if α = 2 and a ̸= L/2 ,

L if α = 2 and a = L/2 .

If the branch cut of the logarithm is below the positive real axis, then

det(α) =


− 4L

2 + α
if α ̸= −2 and a ∈ (0, L) ,

−2L if α = −2 and a ̸= L/2 ,

−L if α = −2 and a = L/2 .

The results of the theorem are illustrated in Figure 1.
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Figure 1. Dependence of the spectral determinant on the real values of the
parameter α for both branch cuts and different positions of the δ-damping.

The paper is structured as follows. In Section 2 we rigorously introduce the model.
Sections 3 and 4 are devoted to the proof of Theorem 1.1. The strategy is to consider the
case of rational ratio a/L first (Section 3) and then argue by continuity (Section 4).
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2. The model

Recall that the wave equation (1) is considered for any complex number α and subject
to the Dirichlet boundary conditions u(0, t) = u(L, t) = 0 for all times t > 0. In order to
reconsider it as an evolution problem for a linear operator, we follow [BRT82] and introduce
the pair U = (v, w)T = (∂u∂t , u)

T in the Hilbert space

H = L2((0, L))⊕H1((0, L)) .

Then the evolution problem (1) is equivalent to

∂U

∂t
= HαU

with the operator Hα formally acting as in (2) in H. More specifically, the distributional
damping as well as the Dirichlet boundary conditions are introduced via the operator
domain. Thus the rigorous definition of Hα reads

Hα

(
v
w

)
(x) =

(
w′′(x)
v(x)

)
for every x ∈ (0, a) ∪ (a, L) ,

D(Hα) =

{(
v ∈ H1

0 ((0, L))

w ∈ H1
0 ((0, L)) ∩H2((0, a)) ∩H2((a, L))

)
: w′(a+)− w′(a−) = αv(a)

}
.

The operator Hα is maximal dissipative (respectively, maximal accretive) if Reα ≥ 0
(respectively, Reα ≤ 0). In particular, Hα is skew-adjoint if Reα = 0. Moreover, Hα is an
operator with compact resolvent. We refer to [BRT82, CH08, KR23] for more details. An
alternative approach based on Schur complement can be found in [Ger24].

Since the domain D(Hα) is compactly embedded in H, the resolvent of Hα is compact.
Consequently, the spectrum of Hα is purely discrete. We arrange the eigenvalues in a
sequence {λj}∞j=1, where each eigenvalue is repeated according to its multiplicity. It is easy

to see (see, e.g., [CH08]) that the eigenvalues of Hα satisfy the implicit equation

sinh (Lλ) + α sinh (aλ) sinh ((L− a)λ) = 0 .(5)

An analysis of this equation implies that λj is asymptotically proportional to j as j → ∞.
It follows that the sum in the definition of the spectral zeta function (3) is convergent in
the half-plane Re s > 1. For those s, for which the above sum is not convergent, we define
its values as the unique meromorphic continuation of the spectral zeta function from the
region where it converges. The spectral determinant of Hα is then defined by formula (4).

As explained above Theorem 1.1, we consider two branches of the complex logarithm
in (3): either the ray ei(π+ε)(0,∞) or e−iε(0,∞). Any other eligible choice of the branch
cut is already covered by Theorem 1.1.

3. Rational position of the Dirac damping condition

Our first step in proving Theorem 1.1 is the analysis of the case when the δ-damping
divides the interval (0, L) into two parts with rationally related lengths. Let us therefore
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consider the situation when

a = pL0 and L− a = qL0

with p and q being incommensurable positive integers, without loss of generality p ≥ q,
and L0 is a positive number actually defined by the requirement. Then the equation (5)
can be rewritten into the form

(2 + α)e2(p+q)L0λ − αe2pL0λ − αe2qL0λ + (α− 2) = 0 .

This is a polynomial equation in the variable z = e2L0λ with one of the roots equal to 1.
Factoring out the z − 1 term one finds

(α+ 2)zp+q−1 + (α+ 2)zp+q−2 + . . . (α+ 2)zp + 2zp−1 + 2zp−2 + · · ·+ 2zq

+(2− α)zq−1 + (2− α)zq−2 + · · ·+ 2− α = 0 .(6)

For α ̸= −2 we obtain, after dividing by α+ 2,

zp+q−1 + zp+q−2 + . . . zp +
2

α+ 2
zp−1 +

2

α+ 2
zp−2 + · · ·+ 2

α+ 2
zq

+
2− α

α+ 2
zq−1 +

2− α

α+ 2
zq−2 + · · ·+ 2− α

α+ 2
= 0 .(7)

The left-hand side of the last equation can be rewritten as

p+q−1∏
k=1

(z − zk) ,(8)

where zk, k = 1, . . . , p + q − 1 are the roots of (7). Clearly, one finds, by comparing the
left-hand side of (7) and (8) after substituting z = 1, that

p+q−1∏
k=1

(1− e2L0µk) = q +
2

α+ 2
(p− q) +

2− α

α+ 2
q =

2(p+ q)

α+ 2
,(9)

where µk = 1
2L0

log zk with log denoting the natural logarithm. Although we can use any
µk satisfying the defining relation in our construction, for unambiguity of the definition we
use the solutions with Imµk ∈ (− π

2L0
, π
2L0

].

The equation (6) can be for α ̸= 2 written also as the equation for the variable y = e−2L0λ

as

yp+q−1 + yp+q−2 + . . . yp +
2

2− α
yp−1 +

2

2− α
yp−2 + · · ·+ 2

2− α
yq

+
α+ 2

2− α
yq−1 +

α+ 2

2− α
yq−2 + · · ·+ α+ 2

2− α
= 0 .(10)

Rewriting the left-hand side as
∏p+q−1

k=1 (y− yk) with yk, k = 1, . . . , p+ q− 1 being its roots
and again substituting y = 1 one obtains from (10)

p+q−1∏
k=1

(1− e−2L0µk) = q +
2

2− α
(p− q) +

α+ 2

2− α
q =

2(p+ q)

2− α
.(11)
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We will use the formulæ (9) and (11) later.

The first set of eigenvalues of the considered problem is λ1j = jπi
L0

, j ∈ Z\{0}. This
set follows from the equation z = 1. Zero is not an eigenvalue because the corresponding
eigenfunction would be identically zero. The equation (7) yields the eigenvalues

λ2kj = µk +
πi

L0
j , j ∈ Z .

Note that λ2kj for some k diverge to complex infinity as α → ±2. Also note that it follows
from (9) that µk ̸= 0 and hence all λ2kj are present in the spectrum.

3.1. First branch cut. Let us start to study the spectral determinant for the branch cut
of the logarithm to be the ray ei(π+ε)(0,∞).

The spectral zeta function is

ζ(s) =
∑

j∈Z\{0}

λ−s
1j +

p+q−1∑
k=1

∑
j∈Z

λ−s
2kj .

Note that none of µk’s is zero due to (9) and hence the sum in the second term goes
through Z. The equation above can be rewritten as

ζ(s) =
∞∑
j=1

(
π

L0

)−s

e−iπ
2
sj−s +

∞∑
j=1

(
π

L0

)−s

ei
π
2
sj−s +

p+q−1∑
k=1

µ−s
k

+

p+q−1∑
k=1

 ∞∑
j=1

(
µk +

π

L0
ij

)−s

+

∞∑
j=1

(
µk −

π

L0
ij

)−s
 .(12)

Defining the Riemann zeta function as ζR =
∑∞

j=1 j
−s for complex s and Hurwitz zeta

function as ζH(s, c) =
∑∞

j=0(j + c)−s for complex parameters s and c we can rewrite the
previous expression as

ζ(s) = 2 cos
πs

2
es log

L0
π ζR(s) +

p+q−1∑
k=1

e−s logµk +

p+q−1∑
k=1

[(
π

L0

)−s

e−
iπ
2
sζH(s, 1− i

µkL0

π
)

+

(
π

L0

)−s

e
iπ
2
sζH(s, 1 + i

µkL0

π
)

]

= 2 cos
πs

2
es log

L0
π ζR(s) +

p+q−1∑
k=1

[
e−s log µk + es log

L0
π e−

iπ
2
sζH(s, 1− i

µkL0

π
)

+es log
L0
π e

iπ
2
sζH(s, 1 + i

µkL0

π
)

]
.(13)

Note that the factor of 1 in the second argument of the Hurwitz zeta function appears
because in its definition the sum goes from 0, not from 1 as (12).
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The right-hand side converges for Re s > 1 and can be uniquely meromorphically ex-
tended to s = 0. Our aim is to compute its derivative with respect to s at s = 0. To do
that, we will use the following expressions (see [SO87, eqs. 64:10:4 and 64:3:2])

ζR(0) = −1

2
,

ζ ′R(0) = −1

2
log (2π) ,

ζH(0, 1 + c) = −1

2
− c ,

∂

∂s
ζH(0, 1 + c) = log

(
Γ(1 + c)√

2π

)
.

Using the above formulae, one can differentiate the expression (13) at s = 0 and find

ζ ′(0) = 2 log
L0

π
ζR(0) + 2ζ ′R(0) +

p+q−1∑
k=1

[
− logµk +

(
log

L0

π
− iπ

2

)
ζH(0, 1− i

µkL0

π
)

+

(
log

L0

π
+

iπ

2

)
ζH(0, 1 + i

µkL0

π
) +

∂

∂s
ζH(0, 1− i

µkL0

π
) +

∂

∂s
ζH(0, 1 + i

µkL0

π
)

]
= − log

L0

π
− log (2π) +

p+q−1∑
k=1

[
− logµk − log

L0

π
+ µkL0

+ log

(
Γ(1− iµkL0

π )Γ(1 + iµkL0

π )

2π

)]
.

Using (see, e.g., [SO87, 43:11:2])

Γ(1− ic)Γ(1 + ic) =
cπ

sinh cπ
,

we obtain

ζ ′(0) = −(p+ q) log 2− logL0 +

p+q−1∑
k=1

[L0µk − log (sinh (L0µk))] .

We find

det(α) = e−ζ′(0) = 2p+qL0

p+q−1∏
k=1

[sinh (L0µk) e
−L0µk ] = 2L0

p+q−1∏
k=1

(1− e−2L0µk) .

Using (11) we obtain

det(α) =
4L0(p+ q)

2− α
=

4L

2− α
.(14)
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3.2. Second branch cut. For the cut being the ray e−iε(0,∞), the calculation is very
similar. We obtain

ζ(s) = 2e−iπs cos
πs

2
es log

L0
π ζR(s) +

p+q−1∑
k=1

[
e−s log µk +

(
π

L0

)−s

e−
iπ
2
sζH(s, 1− i

µkL0

π
)

+

(
π

L0

)−s

e−
3iπ
2

sζH(s, 1 + i
µkL0

π
)

]
.

Hence

ζ ′(0) = 2(log
L0

π
− iπ)ζR(0) + 2ζ ′R(0) +

p+q−1∑
k=1

[
− logµk +

(
log

L0

π
− iπ

2

)
ζH(0, 1− i

µkL0

π
)

+

(
log

L0

π
− 3iπ

2

)
ζH(0, 1 + i

µkL0

π
) +

∂

∂s
ζH(0, 1− i

µkL0

π
) +

∂

∂s
ζH(0, 1 + i

µkL0

π
)

]
= iπ − log

L0

π
− log (2π) +

p+q−1∑
k=1

[
− logµk − log

L0

π
− iπ − µkL0

+ log

(
Γ(1− iµkL0

π )Γ(1 + iµkL0

π )

2π

)]

= iπ(2− p− q)− logL0 − (p+ q) log 2−
p+q−1∑
k=1

[log (sinh (L0µk)) + L0µk] .

The determinant is equal to

det(α) = e−ζ′(0)

= (−2)p+qL0

p+q−1∏
k=1

sinh (L0µk)e
L0µk

= (−2)p+qL0(−2)−p−q+1
p+q−1∏
k=1

(1− e2L0µk)

= −4L0
p+ q

α+ 2

= − 4L

α+ 2
,(15)

where we have used (9).

3.3. Cases α = ±2. To solve the singular situations of α equal to ±2, let us start with
the general case p > q first. We will solve p = q = 1 later.

For α = −2 the equation (6) gives

zp−1 + zp−2 + · · ·+ zq + 2zq−1 + 2zq−2 + · · ·+ 2 = 0 .(16)
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Let z−2,k = e2µ−2,kL0 , k = 1, . . . , p− 1 be its roots. Then similarly to the construction for
general α we get by substituting z = 1 that

p−1∏
k=1

(1− e2µ−2,kL0) = p− q + 2q = p+ q .(17)

Dividing (16) by 2zp−1 we get the equation for y = e−2λL0

yp−1 + yp−2 + · · ·+ yp−q +
1

2
yp−q−1 +

1

2
yp−q−2 + · · ·+ 1

2
= 0 .

For its roots y−2,k = e−2µ−2,kL0 , k = 1, . . . , p− 1 we get

p−1∏
k=1

(1− e−2µ−2,kL0) = q +
1

2
(p− q) =

1

2
(p+ q) .(18)

The construction of the spectral zeta function and the spectral determinant goes through
similarly as in the general case. For the first branch cut we obtain

ζ ′(0) = −p log 2− logL0 +

p−1∑
k=1

[L0µ−2,k − log (sinh (L0µ−2,k))]

and so

det(−2) = 2pL0

p−1∏
k=1

[sinh (L0µ−2,k) e
−L0µ−2,k ] = 2L0

p−1∏
k=1

(1−e−2L0µ−2,k) = 2L0
1

2
(p+q) = L ,

where we have used (18).
The second branch cut yields

ζ ′(0) = (2− p)iπ − p log 2− logL0 −
p−1∑
k=1

[L0µ−2,k + log (sinh (L0µ−2,k))]

and so

det(−2) = (−2)pL0

p−1∏
k=1

[sinh (L0µ−2,k) e
L0µ−2,k ] = −2L0

p−1∏
k=1

(1−e2L0µ−2,k) = −2L0(p+q) = −2L ,

where we have used (17).
For α = 2, we proceed similarly. We obtain the equations

zp−1 + zp−2 + · · ·+ zp−q +
1

2
zp−q−1 +

1

2
zp−q−2 + · · ·+ 1

2
= 0 ,

yp−1 + yp−2 + · · ·+ yq + 2yq−1 + 2yq−2 + · · ·+ 2 = 0 ,
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for variables z = 1/y = e2L0λ. For their roots e2L0µ2,k and e−2L0µ2,k , respectively, we obtain
the formulae

p−1∏
k=1

(1− e2L0µ2,k) = q +
1

2
(p− q) =

1

2
(p+ q) ,

p−1∏
k=1

(1− e−2L0µ2,k) = p− q + 2q = p+ q .

The determinants are for the first branch cut

det(2) = 2L0

p−1∏
k=1

(1− e−2L0µ2,k) = 2L0(p+ q) = 2L

and for the second cut

det(2) = −2L0

p−1∏
k=1

(1− e2L0µ2,k) = −2L0
1

2
(p+ q) = −L .

Finally, we solve the case p = q = 1 for α = ±2. The equation (6) does not have a

solution, hence there are only roots of the equation e2L0λ = 1, λ1j =
jπi
L0

, j ∈ Z\{0}. This
problem has been solved in [FL19] and the result is det (±2) = 2L0 = L for the first cut
and det (±2) = −2L0 = −L for the second one.

4. General position of the Dirac damping

In this section, we generalise the results of the previous section to irrational positions
of the δ-damping. We will use results on positions of the zeros of certain functions. The
following lemma summarises the results of Theorems 12.4 and 12.5 of [BC63].

Lemma 4.1. Let

g(λ) =
n∑

j=0

rje
βjλ ,(19)

with 0 = β0 < β1 < · · · < βn and rj ̸= 0, j = 0, . . . , n are complex numbers.

a) There is a positive number c1 such that all zeros of g(λ) lie in the strip |Reλ| < c1.
b) Let R be the rectangle |Reλ| < c1, |Imλ−A| ≤ B such that no zeros of g(λ) lie on

the boundary of R. Then provided c1 is sufficiently large, the number n(R) of zeros
of g(λ) in the rectangle R satisfies

−n+
B

π
(βn − β0) ≤ n(R) ≤ n+

B

π
(βn − β0) .

With the use of this lemma, we give the following theorem.

Theorem 4.2. For a given a ∈ (0, L/2] and α ̸= ±2 let λj(a) be the j-th eigenvalue in the
upper half-plane sorted in the non-decreasing order according to the imaginary part. Then
λj(a) =

jπi
L + fj(a), where
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a) |Re fj(a)| < c1,
b) |Im fj(a)| < c2, where the constants c1, c2 are independent of j and a,
c) fj(a) are analytic functions in a with at most algebraic singularities. If for cer-

tain a0 a finite number of λj(a) have the same imaginary part, one may need to
interchange their indices to get the analyticity.

A similar claim holds for the eigenvalues in the lower half-plane.

Proof. The spectral condition (5) can be rewritten as

2 sinh (Lλ) + α cosh (Lλ) = α cosh ((L− 2a)λ))

or

(2 + α)e2Lλ − αe(2L−2a)λ − αe2aλ + α− 2 = 0 .(20)

The condition (20) is of the form (19) with n = 3 and βn = 2L. Note that the leading and
the last coefficients are non-zero for α ̸= ±2. For α = 0 we have n = 1.

a) The claim a) directly follows from claim a) in Lemma 4.1.
b) Let us choose the rectangle R in Lemma 4.1 with A = B (if there are eigenvalues

on the positive real axis, we shift the rectangle slightly below, i.e. choose A = B−ε
with small ε). Then from claim b) in Lemma 4.1 it follows (for the eigenvalue near
the upper side of the rectangle it holds Imλj ∼ 2B)

−3 +
2L

π

Imλj

2
≤ j ≤ 3 +

2L

π

Imλj

2
,

−3π

L
+

jπ

L
≤ Imλj ≤

3π

L
+

jπ

L
.

Hence the claim b) with c2 =
3π
L holds.

c) The claim follows from [Kat95, Thm. VII 1.8]. The eigenvalues in dependence of
the parameter a are either continuous lines or two or several lines can meet at one
point and emanate from this point at different angles than the incoming angles.
Note that to keep the continuity of the eigenvalues, the indices of two or more
eigenvalues (as defined in Thm. 4.2) may be interchanged.

□

We use Theorem 4.2 to prove the continuity of the determinant in the position of the
Dirac damping.

Theorem 4.3. Let α ̸= ±2 and a ∈ (0, L/2]. Then the spectral determinant is continuous
in a.

Proof. We have

|λj(a)
−s| =

∣∣∣|λj |−Re se−i arg (λj)Re s|λj |−i Im searg (λj) Im s
∣∣∣ = |λj |−Re s|earg (λj) Im s| .

For any fixed s with Re s > 1 the sum
∑∞

j=1 |λj(a)
−s| is convergent. Let ζ(s, a) =∑∞

j=1 λj(a)
−s. Hence for s with Re s > 1 it holds due to the absolute summability of



SPECTRAL DETERMINANT FOR THE WAVE EQUATION WITH DIRAC DAMPING 12

the sum that ζ(s, a0) = lima→a0 ζ(s, a). Both expressions can be uniquely continued to
zero and hence ζ ′(0, a0) = lima→a0 ζ

′(0, a) and lima→a0 det(a) = det(a0). □

Similarly, we prove the continuity for α = ±2.

Theorem 4.4. Let α = ±2 and a ∈ (0, L/2). Then the spectral determinant is continuous
in a.

Proof. The proof is similar to the proofs of Theorems 4.2 and 4.3. The condition (20)
becomes

e2(L−a)λ + e2aλ − 2 = 0

or

2e2(L−a)λ − e2(L−2a)λ − 1 = 0

for α = −2 and α = 2, respectively. Note that the theorem does not hold for a = L
2 ; in

that case two of the terms in the above conditions have the same βj ’s and the assumption
of Lemma 4.1 is not satisfied.

One can use Lemma 4.1 to conclude in both cases that

− 2π

L− a
+

jπ

L− a
≤ Imλ ≤ 2π

L− a
+

jπ

L− a
.

We find λj(a) = jπi
L−a +

f̃j(a)
L−a , and similarly to Theorem 4.2 we argue that f̃j(a) has real

and imaginary part bounded by constants independent of j and a and it is analytic in a.
We conclude the proof by the same argument as in the proof of Theorem 4.3. □

We conclude the proof of Theorem 1.1 by observing that the formulae (14) and (15) are
valid also for a general value of a. Together with the fact that equation (5) is symmetric
in a with respect to L/2, this proves Theorem 1.1.

We see that for the first branch cut the spectral determinant is continuous at α = −2
having the value L at this point and discontinuous at α = 2. For the second branch cut
the spectral determinant is discontinuous at α = −2 and continuous at α = 2.
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[FL19] P. Freitas and J. Lipovský, Spectral determinant for the damped wave equation on an interval,
Acta Physica Polonica A 136 (2019), 817–823.

[Fre18] P. Freitas, The spectral determinant of the isotropic quantum harmonic oscillator in arbitrary
dimensions, Math. Ann. 372 (2018), 1081–1101.

[Ger24] B. Gerhat, Schur complement dominant operator matrices, J. Funct. Anal. 286 (2024),
No. 110195.

[GK19] F. Gesztesy and K. Kirsten, Effective computation of traces, determinants, and ζ-functions for
Sturm-Liouville operators, J. Funct. Anal. 276 (2019), 520–562.

[Kat95] T. Kato, Perturbation Theory for Linear Operators. Springer Berlin, Heidelberg, 1995. ISBN:
978-3-540-58661-6.
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