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Abstract

For a Lagrangian system with nonholonomic constraints, we construct extensions of the
equations of motion to sets of second-order ordinary differential equations. In the case of a
purely kinetic Lagrangian, we investigate the conditions under which the nonholonomic tra-
jectories are geodesics of a Riemannian metric, while preserving the constrained Lagrangian.
We interpret the algebraic and PDE conditions of this problem as infinitesimal versions of
the relation between the nonholonomic exponential map and the Riemannian metric. We
discuss the special case of a Chaplygin system with symmetries and we end the paper with
a worked-out example.
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1 Introduction

In many applications involving mechanical systems, the motion is often limited by velocity-
dependent constraints. If these are given by equations, and if they are non-integrable, they are
called nonholonomic constraints. Some examples of such systems are those that involve wheels
that roll without slipping, or a skate that is prevented to move in a direction perpendicular to
the blade.

Let L = T — V be the Lagrangian of such a mechanical system (given by the difference in
kinetic and potential energy) on a configuration manifold @ and let the nonholonomic constraints
(assumed to be linear, throughout the paper) be represented by a distribution D on Q. The
equations of motion for such systems (L,D) follow from the so-called Lagrange-d’Alembert
principle (see e.g. [7,[13]). It is well-known that this is not a purely variational principle (for the
Lagrangian functional associated to L), since it only makes use of variations that are required to
follow the constraints. The resulting equations, the so-called Lagrange-d’Alembert equations of
(L, D), are therefore not simply the Euler-Lagrange equations of L. Instead, the nonholonomic
equations of motion contain Lagrangian multipliers, and when eliminated, they form a set of
first- and second-order ordinary differential equations (see their expressions in Section .



We will call the solutions of the Lagrange-d’Alembert equations the nonholonomic trajectories
of (L, D). In many papers, it has been recognized that it is often useful if the nonholonomic tra-
jectories can be interpreted, in one way or another, as part of the solutions of the Euler-Lagrange
equations of some unrelated (and possibly non-mechanical) Lagrangian L. This question is often
referred to as the ‘Hamiltonization problem of nonholonomic mechanics’. It was probably first
raised in the context of quantization of classical nonholonomic systems (see [1} 10, 20]), but there
are also other important areas of possible applications, such as e.g. that of geometric integrators
of nonholonomic systems (see e.g. [22], 26]). The subtlety of the Hamiltonization problem lies in
the fact that, in contrast to the nonholonomic equations of (L, D), the Euler-Lagrange equations
of L are purely second-order ordinary differential equations. There have been many different
approaches to this question. For example, in [9] 6] the main idea is to enlarge the mixed first-
and second order system of (L, D) to a (chosen) full system of SODEs and to find a Lagrangian
L for that system using techniques from the so-called inverse problem of Lagrangian mechanics.
In other papers [4, [5, 11l [19] one rather uses the symmetries of the nonholonomic system to
(roughly speaking) first reduce it to a SODE on a quotient manifold. Then, one tries to find a
symplectic or Poisson structure on that quotient for which it is a Hamiltonian vector field.

The results of the current paper belong to the first approach. In short, we will investigate
the conditions under which it is possible to have a Hamiltonization by means of the geodesic
equations of a Riemannian metric. If that can be achieved, we will speak of a ‘geodesic exten-
sion’ of the nonholonomic dynamics (even though this question seems to be dubbed the kinetic
Lagrangianization problem in the conclusions of the paper [3]).

In Section [2] we recall the most elementary concepts in this context, in an attempt to keep
the paper self-contained. Here it is important to notice that we will use a specific technique
throughout the paper. Indeed, to suppress the use of long expressions, and to gain ready
geometric insight, it will be advantageous to express the intrinsic and coordinate-independent
tools that we will use in terms of a so-called anholonomic frame of vector fields. In particular,
we will often choose the frame in such a way that the vanishing of a part of its corresponding
quasi-velocities represents the constraints and its distribution D. In the last sections, it will
be of further advantage to specify the frame in such a way that it also follows the orthogonal
decomposition of the tangent spaces by a given Riemannian metric.

In Section [3| we will first define the notion of a SODE extension of a nonholonomic system as a
set of (only) second-order differential equations whose solutions set contains the nonholonomic
trajectories. The name comes from [3], but the idea can already be found in e.g. [§] as ‘Newton
laws with the restriction property’ and, implicitly, in [9] where the SODE extensions are called
‘associated systems’. In the first part of the paper, we will show that such SODE extensions
always exist. We will give two natural constructions of a SODE extension in Propositions [I] and
We will motivate our constructions by showing in Proposition [3] that they represent, in fact,
a generalization of the well-known nonholonomic connection (see e.g.[24], [13]) to the level of
arbitrary Lagrangians. We will say that a nonholonomic system is purely kinetic, if its potential
V' is constant and if its kinetic energy can be derived from a Riemannian metric g. Specifically
for a purely kinetic nonholonomic systems, there is also a third construction of a SODE extension
at the end of Section [6l

From Section [4] onwards, we restrict the attention to only purely kinetic nonholonomic systems.
We will investigate the conditions under which the Riemannian metric g of the kinetic energy
can be modified to a metric g, such that the nonholonomic trajectories become part of its set
of geodesics (and therefore also of the Euler-Lagrange equations that can be associated to the
Lagrangian L of the kinetic energy g). The specific kind of geodesic extension we envisage here



will be such that the constrained Lagrangian Lo = L|p remains preserved. This means that we
will assume that the restrictions of the Riemannian metrics g and § to the constraint distribution
D are the same. We will say, in that case, that g is a D-preserving modification of g. We are
able to show in Lemma [2] that this has the advantage that the question narrows to the search for
a suitable 1-form (with components 6; along the distribution D) that satisfies a set of algebraic
and PDE conditions. If these have a solution, we show in Proposition 4] that we can always find
a Riemannian metric § that satisfies our purposes. In Section We relate (in Propositions |5 and
@ the conditions of Lemma [2| to the kind of SODE extensions we had encountered in Section

The exponential map of a Riemannian metric plays an important role in differential geometry
and geometric mechanics, for example in results concerning Jacobi fields, conjugate points,
variations of the energy and focal points. In this paper we will also address the search for
a geodesic extension from the viewpoint of the so-called nonholonomic exponential map. This
concept has been recently introduced in the paper [2], and further developed in [3]. There, among
other results, it was used to show that the nonholonomic trajectories of a purely kinetic system,
originating from a fixed point ¢, can be interpreted as the radial geodesics of a Riemannian metric
on a submanifold. This Riemannian metric should not be confused with the (full) Riemannian
metric § we are looking for, since it (and the submanifold on which it is defined) is different for
each different point q. Notwithstanding, like [3], we will be inspired here by the same underlying
result from Riemannian geometry: the so-called Gauss Lemma (see e.g. [18]). This Lemma states
that the exponential map of a Riemannian metric at ¢ is a radial isometry. In Proposition [7| we
show that the algebraic condition of Lemma [2] follows, as soon as the exponential map and the
sought-for modified metric § satisfy a certain Gauss-type condition. Next, in Proposition |8 we
show that also the PDE condition can be interpreted as an infinitesimal condition. Along each
nonholonomic trajectory, it can be seen to be equivalent with a conservation law that involves
the parallel transport along a linear connection whose quadratic spray is, in fact, again a certain
SODE extension. For these reasons, we will call the algebraic and PDE conditions infinitesimal
Gauss conditions.

In Section [7| we investigate the presence of symmetry. Chaplygin nonholonomic systems are
such that the Lagrangian and the constraints are both invariant under the action of a symmetry
Lie group G. Moreover, it is assumed that @ — @Q/G is a principal fibre bundle and that the
constraint distribution D is the horizontal distribution of a principal connection. We show in
Proposition [I0]that the conditions of Lemma[2] can be simplified, and that the geodesic extension
problem can be stated as the search for linear first integrals that satisfy some further algebraic
conditions.

We illustrate the results at the end of the paper with the example of a disk that rolls vertically
without slipping, and we compare the metrics we find with those that had already appeared in
the literature for this example [3], 2], @].

2 Tangent bundle geometry, Lagrangian systems and nonholo-
nomic systems

We will assume throughout that ) is an n-dimensional real differentiable manifold, with local
coordinates (¢“). We will assume that {X,} represents an anholonomic frame of vector fields
on ). The adjective anholonomic means here that the Lie brackets of these vector fields do not
necessarily vanish, and satisfy the relation [X,, X] = R} 5X~. We will call the components v*



in the decomposition v, = v*X,(q) the quasi-velocities of a tangent vector v, € T,Q). We may
then use (¢, v®) as (non-standard) coordinates on the tangent manifold 7'Q), where most of the
objects of interest live.

Any vector field X on @ can be lifted to vector fields on T'Q, by means of the complete and
vertical lift, respectively: If X = X“0/0q%, then in natural coordinates (¢%, ¢%),

and XV = X“i.
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One may easily verify that, if {X,} is a basis for X(Q) (the set of vector fields on @), then
{XC XY} forms a basis for X(T'Q). An important property we will frequently use is that, on
the quasi-velocities v® of the frame,

Xy (%) = g, XS (W) =R,

«

see e.g. [I5] (and the references therein) for more details.

We recall some aspects of the calculus of forms along the tangent bundle projection 7 : TQ — @
(see e.g. [25, 29] for a survey). A section X of the pullback bundle 7*TQ = {(u,v) € TQ X
TQ|7(u) = 7(v)} — TQ is said to be a vector field along 7. We denote the set of all these
vector fields by X' (7). We may interpret any vector field Y on @ as a “basic” vector field Y o 7
along 7, but we will no longer make a notational distinction. For that reason, we may express
X € X(7) in the given frame {X,} as X = £*X,, with £ € C=(T'Q). It is easy to see that
vertical vector fields on T'Q) are in 1-1 correspondence with vector fields along 7. Indeed, each
X = £%X,, € X(7) can be vertically lifted to XV € X(T'Q), given by

XV =¢Xx).

In particular, there exist a canonical vector field T = v*X, € X(7). It corresponds to the
section vy — (vg,v,) of the pullback bundle, and its vertical lift gives the Liouville vector field
on 7Q.

A vector field I' on T'Q is a second-order ordinary differential equations field (SODE, in short) if
all its integral curves v : I — T'Q are lifted curves, that is of the type y =¢. Wecall c: I — @
a base integral curve of . When expressed in terms of the frame {X¢, XYV}, a SODE T is of the
form

[ =v*XS + Fox),

for some functions F'* € C*°(T'Q). The quasi-velocity components (v*(t)) of the integral curves
v(t) of T satisfy 0 = F.

A sODE T can be used to introduce a horizontal lift X# € X(TQ) of X € X (7). Its coordinate
expression in the anholonomic frame is

1
xf =g (x§-rixy),  Ti-= —§(XX(F5) + 7R, ).

With this, any vector field Z on T'Q) can be decomposed into the sum of a horizontal and a
vertical lift, Z = X + X for X1, Xy € X(7). For any vector field X along 7, we may define

T,xY]=-x7+(vx)V and [[,X")= VX)) + (@®X)".



The (1, 1)-tensor field ® along 7, the so-called Jacobi endomorphism, is of no concern for the
current paper. Below, we will often use the dynamical covariant derivative V of I'. It acts as a
derivation on X (7). For f € C~(T'Q) and X € X(7):

V(fX)=fVX+T(f)X and VX,=TI7Xjs

The equations of motion for an (unconstrained) Lagrangian systems (with regular Lagrangian
L :TQ — R) are given by the Euler-Lagrange equations:

d (0L oL 0

dt \ 9¢™ dq>
The solutions of these equations are base integral curves of the Lagrangian vector field I';, €
X(TQ), which can be defined by as the unique SODE that satisfies

I (XV(L) - X%L)=0, VX eX@Q).

The main focus of the paper is on nonholonomic mechanical systems.

Definition 1. A nonholonomic system on a manifold Q consists of a pair (L,D), where L :
TQ — R is the Lagrangian of the system and D is the m-dimensional distribution on TQ that
describes the nonholonomic constraints.

In what follows, we will often use C, when we interpret the distribution D specifically as a
submanifold of T'Q). We will also use k for n — m.

The equations of motion follow from considering an extended principle of Hamilton (also called
Lagrange-d’Alembert principle, see [7, 13]). The nonholonomic trajectory c,,(t) = (¢“(t)) that
starts at v, € Dy is a solution of the equations

Had® =0,
k
d 0L oL ,
el Bt T At
dt (aq'a> 0q° 2_; iHe
The first set of equations represent the nonholonomic constraints. They ensure that the velocity

¢y, (t) remains in the distribution D during the motion. In the second set of equations, the
functions A;(t) are called the Lagrange multipliers and are part of the unknowns.

As before for Lagrangian systems, we will represent the nonholonomic trajectories as the base
integral curves of a vector field I'(;, p). Suppose that the vector fields {X,} span D, and that we
complete this set to a frame {X,} = {X,, X;} for all vector fields on Q). This has the advantage
that the equations for the nonholonomic constraints become very simple: if (v*) = (v®,v?) are
the quasi-velocities with respect to this frame, then v, € D, if and only its quasi-velocities
satisfy v* = 0. In this paper, the indices o run from 1 to n, a from 1 to m and i from 1 to k.

We will say that the Lagrangian is regular with respect to D if the matrix
(Xa (X3 (L))

is non-singular everywhere on 7T'Q). This is actually a small modification from the terminology in
[15] 16], where the matrix is only assumed to be non-singular on C (and see also the regularity
requirements in [I7, [13]). If satisfied, there will exist a unique vector field ['(z,p) of the type

Pwp) = v"Xg + [°X3



that satisfies, on C,
Py (XV(L) = X9(L) =0, VX € Sec(D).

We will call this vector field the nonholonomic vector field. Given the current frame, it can be
completely determined from the relation

1ﬂ(L,D) (X;/(L» - XS(L) =0, on C.

This equation represents a version of the Lagrange-d’Alembert equations where the Lagrangian
multipliers have already been eliminated. Once I'(f p) is determined, the functions A; :=
F(LD)(XiV(L)) — X (L) on C play the role of the Lagrangian multipliers, in the current frame.

Let L be a regular Lagrangian. The Hessian g of L, with respect to fibre coordinates, can be
thought of as a (0, 2)-tensor field along the tangent bundle projection 7 : TQ — Q (see [15, 29]
for details). To define it, it is enough to state its action along ‘basic’ vector fields in X(7) (i.e.
vector fields on Q):

XY = XVOV(L), XY e X(Q).

and extend it to X (7) by C>~(TQ)-linearity. Since there is a 1-1 correspondence between 7-
vertical vector fields on T'QQ and vector fields along 7, we may also think of it as acting on
vertical vector fields.

For what follows, it is important to realize that this Hessian is familiar in the case of a purely
kinetic Lagrangian, i.e. when L(v) = $G(v,v) for a Riemannian metric G on Q. In this case, we
may identify the above defined Hessian g of L (interpreted as a (0,2) tensor field along 7) with
the ‘basic’ Riemannian metric G (interpreted as a (0,2) tensor field on Q). We will not make a
notational distinction between G and g in that case, and simply write L(v) = %g(v, v).

Let’s assume now that L is again an arbitrary regular Lagrangian that is also regular with
respect to D. Let g be its Hessian. The pullback bundle 7*D — T'Q) is a vector subbundle of
T*T'@Q whose set of sections we will denote by X (7, D). Since L is regular with respect to D,
we can consider the set X9(7, D) of vector fields along 7 that are orthogonal to X (7, D), with
respect to g. That is, X € X9(r, D) when

9(X,Y) =0, VY € X(7,D).
With this, we can decompose X (1) as
X(r)=X(1,D) ® X9(1,D)
and define two complementary projection operators:

P:X(r)—» X(r,D) and Q:X(1)— X9(7,D).

Starting from a frame {X,, X;} for X'(Q), we can easily construct a frame for X(7) that is
adapted to the decomposition. Indeed, if g.p = g(Xa, Xp), gui = 9(Xa, Xi) and gi; = 9(Xi, X;),
then g, has an inverse (because of the assumed regularity with respect to D). Then, the set
{X,, X;}, with

Xi=Xi— " 90 X0 = Xi + KI' X,

is such a frame. The vector fields X; € X'(7) are, however, not basic vector fields.

Next, we introduce the set X7 (TQ) of vector fields on T'Q that are tangent to the constraint
manifold C, i.e. A
XNTQ) ={Z e X(TQ)| Z(v') = 0}.



In view of the relations X&' (v?) = —R., w7 and XY (v') = 6}, one easily verifies that the vector
fields on T'Q), given by

XC = XC4 RLORY, KT = XC4 RLOKY and X!

form a basis for X7(TQ). We may augment this basis with the vector fields {X}} that span
(X9(1,D))" to obtain a full basis of X(7'Q). From this, we can conclude that we can decompose
X(TQ) as

X(TQ) = X1 (TQ) ® (X*(7,D))"

and that we can define two complementary projectors p and g,
p: X(TQ) — XT(TQ) and  q:X(TQ)— (X9(r,D))V.
If Z=2°XS + 70X 4 XY + XY € X(TQ), then

p(Z2) = 2°XC + Z'XC + (¢* — (KXY and ¢(Z) = (—Z°Ri 07 — ZiRquﬂ +¢)xY.

3 Extensions of the nonholonomic vector field to a SODE

In what follows, we will assume throughout that the Lagrangian L is both regular and regular
with respect to D. Let ¢, (t) be the nonholonomic trajectory that starts at v, € D, We
formalize the notion of a SODE extension (implicit in [2}, B]) in the following definition.

Definition 2. A SODE I' is a SODE extension of the nonholonomic vector field ', py, if each
nonholonomic trajectory c,, ) is a base integral curve of I'.

An equivalent way to define a SODE extension is that it should satisfy
Llp =T 1p)-

It’s useful to see this property translated into terms of a frame {X,} = {X,, X;} on @ whose
first elements {X,} span D, and whose corresponding quasi-velocities are (v®) = (v%,v*). The
SODE I' and the vector field I'(; p) can then be represented, respectively, by

I =v"XS +F°X) and T(pp)=0v"XS + X, .

Let v®(t) be such that v* = f* From the definition, I' is a SODE extension if the curve
(v%(t),v'(t) = 0) is an integral curve of T, i.e. a solution of ¥ = F® and ¢¢ = F*. This will be
the case, if and only if,

Fle = f, and  F'lc=0.

For the rest of the paper it is important to realize that the Lagrangian vector field I'y, of L is
not a SODE extension of I'(z py. The SODE I', = ’Uan + F2 XY is uniquely determined by the
relations

Iy (XJ (L) —XJ(L)=0, Tp(x)(L)-XY(L)=0.

From the first set of equations we get, in particular on C,

VXY (XY (L)) + FPle Xy (Xg (D) + FlleX{ (X, (L)) — X{'(L) = 0.



On the other hand, on C, the nonholonomic vector field I'(;, p) = veXC + foXY satisfies:
o) (X4 (L)) = X{'(L) =0,
which becomes when written in full
X (X (L) + X (X (L) = XE(L) = 0.

In the assumed regularity with respect to D, this last equation determines the coefficients f° of
the nonholonomic vector field. This means that the relation between the forces F®, F' and f¢
is

f*=F%¢ — K!F'c onC.

This is not the required property for I';, to be a SODE extension of I'(, p), but it is a useful
property for what follows.

We now show that a SODE extension of I'(f, p) always exists. The construction we present below
is, in essence, also contained in [I6] (Proposition 2) and [I7] (formulated as Proposition 2.1 in

[21)-

Proposition 1. The vector field T' = p(I'y) is a SODE extension of the nonholonomic vector
field Uy py. It can, equivalently, be defined as the unique SODE ' which is tangent to the
constraints, and whose difference from 'y, is g-orthogonal.

Proof. If we rewrite I';, in terms of the basis {XZ-V,Xiz-C, XC XV we get

' = p(0p) =v*XS +v'XC + (F* — FIK&)XY
= V(XS + R0 X)) +0/(XT + RLVX)) + (F* — F'IK{) X,
= 0"XS + v XT + o R, VX 4+ (F* - F'K{) XY
= X+ (F - FKO)XY +0x).
From the first term we may conclude that I'! is indeed a SODE. When restricted to C, we know
that F? — F'K® coincides with f¢. Therefore, we can conclude that p(I'z) is a SODE extension.

To prove the second statement, we set It = Ty + UY = v*X{ + FOXY + U*X)Y. From

the first condition, I''(v?) = 0, we obtain U’ = —F%. The second condition can be expressed
as U € (X9(r,D))V, and thus U® = KPU! = —K’F!. With this we see that, again, I'l =
v XS + (F* - FIKS) XY O

In the next paragraph, we give a second construction of a SODE extension and show how it
appears in the literature (in a special case).

Proposition 2. Let V be the dynamical covariant derivative of I't, and Q the projection on
XL (1,D), defined by g. The vector field

I?=Tp - [V(Q(T))”

is a SODE extension of the nonholonomic vector field T'(y, p).



Proof. For the canonical vector field T along 7 we can write T = v*X, + v X; = 00X, + f}if(i
with 9% = v* + vaZ“ and o' = v’. Remark that if v = 0 (on C) then 9¢ = 0 and §* = v®. From
this, Q(T) = v'X; and

The last term doesn’t really concern us, since it vanishes on C. Then,

12 =X + FoxY + FiX) — FIXY —0/(VX)Y =02 XS + (F* - FIKO) XY —0{(VX;)Y,
from which it is clear that I'}|c = I'z, p. d

The above construction is actually familiar, in the case of a purely kinetic Lagrangian.

Definition 3. A nonholonomic system (L, D) is purely kinetic if its Lagrangian is of the type
L(v) = $9(v,v), for a Riemannian metric g on Q.

We have already remarked before that, in this case, the Hessian of L (interpreted as a (0,2)
tensor field along 7) is directly related to the Riemannian metric g. Since g is a Riemannian
metric, and therefore positive-definite, L is both regular and regular with respect to D. We first
derive an expression for I', and I'(; py. Next, we introduce the nonholonomic connection v
and we show that the SODE extension I'? is in fact the quadratic spray of V™.

We may use the Riemannian metric g to define an orthogonal complement DY of D in TQ.
With a slight abuse of notation, we will write P : X(Q) — Sec(D) and @ : X(Q) — Sec(D?)
for the two corresponding projections, since these operators can clearly be extended to their
counterparts we had encountered in the previous section (with the same notation) on X' (7).

Many papers make use of the so-called nonholonomic connection V** (see e.g. [24], 13]). It can
be defined by the expression

VY = P (V%Y) + V(Q(Y)).

Herein, VY is the Levi-Civita connection of g.

We will assume (until the end of the paper) that the frame {X,} = {X,, X;} is chosen is such
a way that {X,} represents a frame for D and that {X;} is a frame for D9. This means that,
from now on, g4 = g (X4, X;) = 0. As before, we denote the quasi-velocities w.r.t. this frame
by (v%) = (v, v%).

It is well-known that the Levi-Civita connection of g satisfies the Koszul-formula
29(V%Y, Z) = Xg(Y, 2)) + Y (9(X, 2)) - Zg(X,Y) + g(IX, Y], Z) + g([Z, X), Y) + g(1Z, Y], X).

If we write Vg(aXb =T¢ X+ X5, [Xa, Xp) = RS, X + Ry X, and so forth, we get by taking
X =X,,Y =X}, Z = X, (among other choices)

2gcdrgb = Xa(gbc) + Xb(gac) - Xc(gab) + gchgb + gdbRga + gdaRgb-

After multiplying both sides by v®*v® and canceling a factor 2, we obtain

1
Geal' L0 0® = X (gpe) v40° — §XC (gap) v0° — gap RS w00



Lemma 1. For a purely kinetic Lagrangian L = %gagvavﬁ = (gl vl + gapv®v b) the La-
grangian vector field is the geodesic spray I'y of the Levi-Civita connectzon It is given by the
exTPTession

I, =T,=v"X¢ — PgWU'B’U’YXX.

The nonholonomic vector field is given by
Tp) = v'X§—Tohv"’X).
The spray of the nonholonomic connection V™ is of the form

Tgun = X0 — (rcbv W¥ 4+ 20 %07 4 T ol + 21‘;?].@%1) XV - (F’;ju%j + rgvivi) x7.

Proof. We only prove the second expression, since the expression for the first can be found by
a similar reasoning.

Recall that on C all v* = 0 and that X¢(v*) = —R% v® and X} (v*) = 4. If we set L,p) =
’Ung + deC‘l/, the coefficients f¢ satisfy on C
0 = T,p (Xs (L) - X7 (L)
1 o 1
= v'XG (ga0”) + XY (gar”) = 5 Xa(gi)0"v = 95 X ()07 = S Xa(gea)v 0" = geaXg (00"
1
= v'Xq (gap) v* — v gan R0 + [P gandly — 5Xa (9ea) v + geaRG v 0"
1
= gabfb + <Xd (gab) vt — gabe}evdUe - §Xa (gcd) vt + gcdRZevevd>
= gaS’ + gL o7

We conclude that, indeed, f* = fv epf.

If, in the frame {X4}, the connection coefficients of the nonholonomic connection are given
by V}f; Xg = Fzzﬂva the corresponding quadratic spray can be expressed as I'gnn = zﬂXg -

fg Bvavﬁ X}f (see e.g. [14]). Specifically for the nonholonomic connection, we may compute:
o V' X, =PI}, X,) =T¢ X, + 0X;,
o VX = P (T],X, ) + V%, X; = T8, X + T Xy + T3, X, = 215, X, + T, X,
« VXX =P (F%Xw> + V% Xj =T§ X, + T8 X + 1§, X, = 2T, X + TE X,
from which the expression in the statement then follows. ]

We now show that the second construction of a SODE extension is natural in the following way:
it represents a generalization of the quadratic spray associated to the nonholonomic connection.

Proposition 3. For a purely kinetic Lagrangian L(v) = %g(v,v), the spray I'gnn of the non-
holonomic connection is the SODE extension I'? of I'ppy, ie

Pym =Ty = [V(Q(T))]".
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Proof. When one restricts the expression of I'y,, in the statement of Lemma 1| to v* = 0, one
easily verifies that I'gnn is indeed a SODE extension of I' (7, p). Besides, we can make the vector
field I'y appear in the expression of I'gnn, as follows:

R fojvavJXy +TF vt XY

In case of the geodesic spray I'y, the coefficients of the dynamical covariant derivative are given
by F? = Fiﬁavo‘ and T2 = T%,0%. A more compact way of writing the spray of the nonholonomic
connection is therefore

Tgnn =g — TS0/ XY + Tho" X

For any quadratic spray (like I'y) is VT = 0 (see e.g. [25]). For the projections P and @ (now
interpreted as acting on X' (7)), we have

V(Q(T)) = (VQ)(T)=V(Q(T)) - Q(VT) =V (v'X;) — Q (7 (v*) Xo + v*V X, + V (v'X;))
= P (VX)) —v"Q (VX,) = v'P (VX,) — v°Q (VX,) = v' P (rfxﬁ) —0°Q (r{fxﬁ)
= 0'TlX, — v Th X,

When we take the vertical lift of this expression, it represents the difference between I'ynr and
Iy, as required. ]

4 Geodesic extensions

In this section we consider only purely kinetic nonholonomic systems. The SODE extension I'gnn
(described in Proposition |3]) is a quadratic spray, but it is not necessarily the geodesic spray of
a (pseudo-)Riemannian metric g.

Definition 4. A geodesic extension of a purely kinetic nonholonomic system (L,D) is a Rie-
mannian metric g whose geodesic spray I's is a SODE extension of I'(f, p).

In that case, the nonholonomic trajectories could be interpreted as geodesics with initial veloc-
ities in D. In the rest of the paper, we look at this problem in more detail.

Consider a distribution D and a Riemannian metric g. We may use the metric g to decompose
TQ =D ® DI.

In what follows we will, again, make use of a frame {X,, X;} that respects this decomposition

and of its corresponding quasi-velocities (v®,v?).

If § is a pseudo-Riemannian metric (i.e. non-degenerate, but not necessarily positive-definite),
the integral curves of the geodesic spray I'; of g satisfy the equations

0% = —f‘éﬁvo‘vﬁ = —fgcvbvc — I:‘?vj,

0t = —ffxﬂvo‘vﬁ = —fgbv“vb — f;'»vj,
where f‘gﬁy are the connection coefficients of the Levi-Civita connection V9 associated to the
metric g, in the frame {X,, X;}. For our purpose, the terms with a factor v’ are of no special in-

terest, since they vanish after restriction to C. Recall that these equations are equivalent with the
Euler-Lagrange equations of the Lagrangian L(v) = %f](v, v) = % (gabv%b + 2G40 + gijvivj).

11



When compared to the nonholonomic equations of motion of (L, D), the integral curves of any
SODE extension of I'(;, p)y should satisfy on C:

v = —Fgcvbvc,
v =0.

We conclude that the pseudo-Riemannian metric § we are looking for must be such that its
connection coefficients satisfy the conditions

(%) I:gbv“vb = ngv“vb,
F})vavc =0.

The factors f‘gb are functions on ) and do not depend on the quasi-velocities v*. We may
also write the conditions (%) in a version without the factors vPv¢. However, we should keep
in mind that (even though the Levi-Civita connection is torsionless) the Christoffel symbols
are not symmetric in the current anholonomic frame. For example, the last condition of (x) is
equivalent with A A

2l + Ry, = 0,
and similar for the first. For compactness of our formulae, we prefer the first notation.

In what follows, we will make one further assumption:

Definition 5. A symmetric (0,2) tensor field g on Q is a D-preserving modification of a Rie-
mannian metric g on Q if ¢ and g are related in such a way that

JlpxD = 9lDxD-

In terms of the nonholonomic dynamics, this assumption has the interpretation that we are
looking for an extension L of the mechanical Lagrangian L, where we do not wish to alter the
constraint Lagrangian L. = L|¢c = L|¢. In the current frame {X,, X;}, this assumption means
that ¢ and g are of the form

0 . q .
g:<gab > and g:<Qab .?az)'
0 g Gai Gij
In this, for example, (g;;) is the matrix that corresponds to the restriction §|psxps, i€. Gij =
9(Xi, Xj).
Recall that the principal restriction g|pxp of a Riemannian metric remains positive-definite,
because g is as a whole. Among other, this means that the matrix (gq) with g = 9(Xa, Xp)
has an inverse (¢g?°). Under the current assumptions, this means that there exists also an

orthogonal decomposition by g, )
TQ =D& DI,

where Sec(D9) = span{Xi = X;—35i9°°X,}. In the next proposition, we will not assume from the
outset that ¢ is a Riemannian metric. The condition, in the Lemma below, that the restriction
Glpaxps is non-degenerate is equivalent with asking the matrix (§(X;, X;)) = (gij — 9ai 9™ G5)
to be invertible.

With these extra assumptions, we will show that we can re-write the conditions (x) as algebraic
and PDE conditions in the unknown functions §,;, which represents the restriction of g to D xD9I.
Besides, the Lemma below shows that the choice of g;; is (almost) completely free.

12



There is also a formulation of the conditions that solely makes use of unknown functions 6; =
Jaiv®. In that case, also the Lagrangian multipliers \; = F(L,D)(XZ»V(L)) — XF(L) (restricted to
C) make their appearance in the equations. These are both components of a semi-basic 1-form
on T'Q). This is a 1-form that vanishes when applied to vertical lifts and which, for this reason,
can be fixed by its action on complete lifts. Relying on the decomposition TQ) = D & DY, we
may consider the semi-basic 1-form defined by

(X)) =0, VX e€Sec(D), 6H(XY) =g(T,X), VX € Sec(DI).

In the above, we have interpreted the Riemannian metric § again as the Hessian of its corre-
sponding Lagrangian, i.e. as a (basic) (0,2) tensor field along 7. We will be mainly interested in
0|c, with components 6; = §q;0%, in the dual frame of {X¢, X&, XV XV},

Next, we consider the semi-basic 1-form, defined by
AXY) =0, VX e€Sec(D), ANXY) =Tp)(X"(L)—XL), VX €Sec(DI),

and we consider its restriction to C, M¢. Again, its components are the restrictions of the
multipliers A; = I'(f, p) (XY (L)) — XF(L) to C we had encountered before.

Lemma 2. Suppose that g is a Riemannian metric and that § is a D-preserving pseudo-
Riemannian modification of g whose restriction §|pgyps is non-degenerate. Then, the equations
(*) are equivalent with the equations

(A)  gwRFo™ =0,
(B)  gail%v™® = (guil™y + Xa(Gsi) — GouRE;) v,

in the unknown restriction Glpxps = (Gai). When written in terms of the 1-form 0 = (6;) the
algebraic condition (A) and the PDE condition (B) become

(A) elegcva =0,
(B) F(L,D)(ai) + Hkaav“ + X =0.

Proof. In the frame {X,, X;}, we have g,; = 0. Koszul’s formula (see Section [3)) for the metric
g leads to
{ 2gcal’ bvavb = (2X4 (gbe) — Xe (9ab) — 29ap R v 0?,
29kiTly v 0" = (= X; (gab) — 29ap R v 0"

Likewise, when applied on the metric § Koszul’s formula gives

{ (gcdr op T gckr )U U = (2X4 (Gbe) — Xe (Jab) — 200 RE, — 2G0r RE )00
2(gail%, + grilF) v = (2X 4 (i) — Xi (Gab) — 20avRE; — 200 RE v 0®

Since §up = gab, We can recognize some terms of the first set in the second to obtain the following
identities

2(geal'dy + genl'%, )U%b = (2geald, — 2gp RE v 0

2(gail %y + Geilh,)00® = (2X4 (G6i) + 20815, — 200rRE; )00

When conditions (x) hold, the first identity above leads to condition (A) and the second to
condition (B). We only need the extra assumptions in the statement to prove the converse.
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If we suppose that the conditions (A) and (B) hold, we get from the identities that

{(gcdfgb + chfljb)vavb = geal 400",

(il + gril ) o0® = gaiTv”.

We may rewrite the first as fgbv“vb = (ng — nggckf’;b)v“vb. When plugged in the second, this
gives (—Gaig™Ger + gki)r’;bv%b = 0. Under the current assumptions, we get indeed F’;bv“vb =0

and therefore also ngv“vb = ngv“vb.

For the statements involving 6;, it is clear that we may immediately rewrite (A) in the desired
form. For (B), recall first that, on C,

. 1
i = Doy (XY (L) — XE(L) =T (1) (gijv7) — §Xi(gab)vavb — gap XE (v*)0®

1
= 95T ) (V") = 5 Xilgan)v" 0" = gapRict” = gralayv™” + gap Rgiv™v” + gap Ricv v’

= —grlr(v").

In the before-last equality, we have again made use of Koszul’s formula for the metric g. Con-
dition (B) can then be expressed as

0 = —gdirgbv%b + gkif‘lébvavb + Xo(gpi)v*0® — Gop RE 000
= 9l (L,0)(v") = gL L (") + (1.1 (96:)0° — Go R0 0"
L.y (Giv”) — grilL(0%) — gon Rlv 0’
.oy (Giv”) + Ni — Gorv” RE 0
= T(w,p)(0:) + i + O Ri 0"

O]

The next proposition shows that the problem of finding a geodesic extension by means of a
Riemannian metric is solved, once we have found a solution for the algebraic condition (A) and
the PDE equation (B).

Proposition 4. Consider the equations (A) and (B) from the previous Lemma.

1. If § is a Riemannian metric that is a D-preserving modification of g and a geodesic exten-
sion of (L, D), then its restriction §lpxps = (Jai) Satisfies the algebraic equations (A) and
the PDE equations (B).

2. If g is (0,2)-tensor field that is a D-preserving modification of g and whose restriction
Jlpxpr = (Gai) satisfies the algebraic equations (A) and the PDE equations (B), then
there exists a geodesic extension of (L, D) by a Riemannian metric.

Proof. Given what we have said in the proof of Lemmal2] the first statement is obvious. To prove
the second, we only need to check that a restriction §|pxps = (Jai) (solving (A) and (B)) can
always be completed to a full Riemannian metric g, by an appropriate choice of the freedom in
Glp1wps = (§ij)- In this proof, we will use the shorthand notation g = <9“” €m> = < AT B).

Jai  Gij BY D
Here, A is a positive-definite m x m-matrix, B a m X k-matrix and D a k X k-matrix.
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First, we show that we can choose D such that § is a pseudo-Riemannian metric (i.e. non-
degenerate). Let C := BT A71B. Since

det(§) = det(A) det(D — BTA™'B) = det(A) det(D — C),

with det(A) # 0, we need to find a symmetric and invertible D in such a way that det(D—C') # 0.
These requirements can be achieved by considering an o # 0 which is not an eigenvalue of C' and
by choosing D = al}, (where I, is the identity matrix of order kx k). Since det(D—BT A1 B) # 0
is, in the current notations, equivalent with the condition that the restriction §|pgyps is non-
degenerate, all the conditions of Lemma [2] are now satisfied.

We now check whether we can specify « further, in such a way that g is also positive-definite.
This means that for every non-zero v € T, we must have

Gq(v,v) = Gapv 0’ + 2§00 + aéijvivj > 0.

Since g is positive-definite we already know that guv®v? > 0. If we assume, for our convenience,
that the frame {X,} of D is an orthogonal eigenbasis for the symmetric g4, then we may write
this as

a0 = 11 (V)2 + (V)2 + .+ T (0™)? > 0,
where 7; are the (positive) eigenvalues of gup. Let Typin = min{m,72,...,7m} > 0. Then

Gapv®0® > Tmin ((vl)2 +...+ (vm)z) = Tnin0apv 0.
If we can show that there exists an « such that
ToninOapv®0® + 2§aiv 0" + Oédij?}ivj >0
for every (v%,v%) # (0,0), we also get that
Gq(v,v) = Gap 00" + 2G40 0" + aéijvivj > 0.
In conclusion, we can finish the proof if we show that there exist a value for « for which the

matrix Tminm
BT

If A is an eigenvalue of the above matrix, it will satisfy

(Tmin — A\)Im B B
det < BT (- NI~ 0.

ol > is positive-definite, i.e. all its eigenvalues A are strictly positive.
k

We distinguish between two cases. Suppose, first, that A\ = 7y, then it is clearly strictly
positive. Next, if A # 7, then it will satisfy the equation:

1
det((Tmin — A\)Im) det((a — NI, — BTi/\IkB) =0
Tmin —
and therefore also

(Tmin — A)™ * det((« = A) (Tmin — A In — BTB) = 0.

BT aI
and only if 1 = (& — A\)(Tmin — M) is an eigenvalue of B B. This last relation can also be written
as

. . . . i, B\ .
Since the first factor is not zero, we see that A\ # i, will be an eigenvalue of <Tmm m > if

A2 — (Tmin + @)X — pt + Tiner = 0.
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Of all eigenvalues i of BT B, take fimax = max{u}. To end the proof, we will assume that a # 0
is not an eigenvalue of C, and is such that o > —7y;, and a > “ max  [n that case, the two values
A that satisfy the above quadratic equation are indeed strlctly p081tlve because their sum and
product satisfy, respectively,

Tmin + @ > 0, and — b+ Tmin® > —pmax + Tmine > 0.

O]

In Section 8.1 we will derive and integrate the conditions (A) and (B) explicitly for the example
of a vertically rolling disk. We will also provide Riemannian metrics ¢ which are geodesic
extensions of the nonholonomic system.

The conditions (A) and (B), when written in terms of §; are familiar from a completely different
context. If we set ¢; = —0; (and forget that here 6; is assumed to be linear in the v®), the
conditions

¢pRE* =0 and Tz p)(¢) + dpREv" — A =0

also appear in [15] (Corollary 1). The correspondence with our conditions is only ostensibly,
however, since there the conditions have a completely different interpretation and role in the
theory: there, they are related to conditions for the nonholonomic problem to be consistent with
a vakonomic problem. It would lead us too far to explain here deeper the relation between this
consistency problem and the geodesic extension problem we are now dealing with.

5 Relation to SODE extensions

Let (L = 3g(v,v), D) be a purely kinetic nonholonomic system. If we take a basis {X,, X;} that
respects the orthogonal decomposition by ¢ (i.e. with span{X,} = D and span{X,} = DY), we
have already seen that the nonholonomic vector field is

Tp) = VXS + X)) =0 XS - ThohX) .

Let ¢ be a Riemannian metric with g, = ga- We have already mentioned that we may also
use the metric § to decompose TQ into TQ = D @ DI. A basis {X } that spans DY is given
by the vector fields X; = X; — g®§,; X,. As in Section [3 l this decomposition will lead to a
decomposition of the type

X(TQ) = X'(TQ) ® (X*(r, D))"

where (X9(7, D))V = span{X)}. Let’s denote the projections that correspond to this decom-
position by
X(TQ) = XN(TQ) and  q:X(TQ) — (X(r, D))"

The geodesic spray I'y (i.e. the Lagrangian vector field I'; of f/(v) = %g(v, v)) is given in terms
of the basis {X,, X;} by

Iy =v"XS + FOXY + FIX) =X - T250 P XY — T 0P XY
where fzﬁ are the Christoffel symbols of g, as before.
Similarly as in Propositions (I{ and [2 we may construct from I'; two new SODEs. The first is

Tl =p(T;) = 2 XS + (B + g F)XY +0X) .
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The second is (according to Proposition |3) the quadratic spray of the nonholonomic connection
(now the one associated to g and D). To derive its expression, we see that the orthogonal
projection Q : X (1) — X9(7, D) has the property

Q(T) = Q(v" X, +v'X;) = Q((v* + v g™ gis) Xo + v X;) = v' X
With that, we may define
rE = Ip— (V)"
= Ty~ T3(0") X +v'V(Xy))Y
= XS+ (F+ g% FYXY — ' (V(X)))Y.
In the next proposition, we relate the condition (A) to SODE extensions of I';, p) by one of these
vector fields.

Proposition 5. Let g and § be two Riemannian metrics which are a D-preserving modification
of each other. The following statements are equivalent:

(i) The condition (A) is satisfied for g,
(i) The vector field Fé is a SODE extension of ', py,
(iii) The vector field Fg is a SODE extension of ', p),

(iv) The nonholonomic vector field I' 1, py satisfies on C,

Tpy(XY (L) —X9L))=0, VX € Sec(D).

Proof. We have already remarked in the proof of Lemma [2| that the Christoffel symbols fgﬁ of
gand T 5 of g are always related as follows:

2(geal'dy + Gl )00 = (29eal% — Gok R, — Gar RE )V
The condition (A) is satisfied if, and only if, we have
2(geal'y + Giel )" 0" = (2gcal')0"0".
We may, equivalently, rewrite this as
gacFe + G FFle = gact®.
Since the matrix g.q is invertible we get
Flo + g% g F e = f2.

Since the steps are reversible, this condition is in fact equivalent with the condition in (i). We
continue the proof by showing that also all of the other statements are equivalent to this.

Indeed, given that v* = 0 on C, it is easy to see from the expressions we had obtained before
that
Tile =X + f°XY =T (1p)
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if and only if Fd]c + gdcgckﬁk|c = f? and similarly for Fg.

The statement (7v) says that the coefficients f of the nonholonomic vector field I, py satisfy,
on C,

0 = Ty,n (X (L) - X(L)
= X{XC(L) + fPXY XY (L) — XS (L)
= VXFXS(L) + fogm — XS (L).

Now, recall that the Lagrangian vector field I'; = I'y always satisfies
I (XY(L) - X9(L)=0, VX €X(Q).
In particular, we have (after restriction to C)
0 = Tp(X) (L) = Xg (L) =" X5 X, (L) + FPle Xy X (L) + Flle Xy X, (L) - X7 (L)
= VXX (L) + Flegay + Fllegai — X¢ (L),

If we subtract this from the previous, the statement in (iv) is indeed equivalent with F|c +
Flledaig® = f°. O

We have already shown in Proposition that I'; is a SODE extension of Iy p) if and only if (A)
and (B) are satisfied. From the previous we know that, if only (A) is satisfied, it is not enough
to guarantee that I'; is a SODE extension: Proposition [5/says that in that case only F; or Fg is

one. Therefore, we need to add the condition that also the restriction V(Q(T))|¢c vanishes. The
proof of the next proposition is now obvious.

Proposition 6. Let g and § be two Riemannian metrics which are a D-preserving modification
of each other. The following statements are equivalent:

(i) Ty is a SODE extension of ' p),

(i) The conditions (A) and (B) are satisfied,
(ii) (A) is satisfied and V(Q(T))|¢ = 0,
(ii) Tjle = T3je = T2le.

6 Infinitesimal Gauss-type conditions

Throughout this section, given v, € T;Q, we will often make use of the canonical identification
of T, (T4Q) as the tangent space T,Q:

(wq)z‘}/q =w" XY (v)) +— w, = w*X,(q).

Let ¢7" : D — D be the flow of the nonholonomic vector field I'(z,p)- The nonholonomic
exponential map is defined in [2] as

expy” (vg) = 7(¢1" (1)),
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where 7 : T'QQ — @ is the tangent bundle projection. Among other properties, it has been shown

in [3] specifically for a purely kinetic nonholonomic system (L(v) = 3g(v,v), D) that for each

fixed ¢ € @, there exists a submanifold M, of @ (with ¢ € M) such that the nonholonomic
exponential map restricts to a diffeomorphism expg’h :Up C Dy — My, where Uy is a starshaped
open subset of D, around 0, € Uy. Moreover, expgh(()q) = ¢ and the morphism Tp, (expgh) :
Cq — T4Q (under the identification between Cq and Tp,Up) is the canonical inclusion. Important
for us, is that it has also been shown in [3] that, for every v, € U,
engh (tvq) = Cy, (1),

with ¢y, : [0,1] — M, the nonholonomic trajectory satisfying c,,(0) = ¢ and ¢,,(0) = v,.

In what follows we will use a description of the nonholonomic exponential in quasi-velocities.
Given a frame {X,} = {X,, X;}, adapted to T'Q = D® DI, as before, we set in local coordinates

exp;‘h 1vg = 0 Xo(q) — ¢ = €*(v).

We will also use ((E§)(v)) for the matrix representation of the tangent map of expgh in vy in
quasi-velocities: For ug € Dy, we set

T,, (exp") (ug) = u* (EY(0)Xp(@) + Ei(0)Xi(@)) € ToQ-
Lemma 3. At 0, € T,Q, we have E2(0) = 6%, Ei(0) =0,

OFd
ovb

(0) = SR — (0@ + Th(@) ana 2o (0) = LRiyq)

Proof. The first two properties follow from the fact that, when v, = 04, Toq(expgh) can be
regarded as the inclusion. We will compute the other expressions in two steps.

Let vy = v*X4(q) € T,Q. Consider a nonholonomic trajectory c,,(t) and its derivative ¢, (t) =
Va(t) Xq (e, (t) € D, ). The functions V*(t) then satisfy vet) = —T¢, (co, (1)) VO(£)VE(L).
Since in the purely kinetic case c,, (t) = exp (tvy), we may also write this as

Eo, () = BX(t0)v" Xy (cuy (1)) -

We get from this _
Ed(tv)v® = Vat) and Ei(tvg)v® = 0.

By applying %hzo on both sides of both equations we get

aEg a : e
S (0)tu = V4(0) = T4 (q)o"o!
and after symmetrization
OE4 OFd

e (0) + e (O) = _(Fgc(Q) + Fga(Q))'

Likewise, it follows from 9E?, /9t (0)vHv® = OEL /9v°(0)vbv?® = 0 that OE? /9v°(0)+IE! /0v®(0) =
0.
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Now we compute the expression for the differences 0EZ/0v¢(0) — OE?/0v®(0) and OE! /0v®(0) —
OFE;/0v*(0). We know that in natural coordinates and in quasi-velocities, we get (respectively)

Oe® 0

T, ex03") (ug) = u* 5 (0) 5 2 la = B (0)u"Xs(0).

Since {9/0q|g} is a basis for T3(Q there exists an invertible matrix (Ag(¢)) of functions such that
X3(q) = A3(4)0/9q"|g. Therefore 0e* /v (v) = Eg(v)Ag(e(v)), and in particular 9e®/0v®*(0) =
Eg(O)Ag(q) = A%(q). When we take a 9/0v’-derivative on both sides of the first relation, we
get,

0% B 8E§

— o (V) A3 (e(v) + B (v)

0A% el
B
v b (v) = Ovb

Tqu(e(v )W(U)a
and at v =0: \ 5 oA
0%e” OFE) 3
0) = 0)AS 55— (q) Al (q).
5oa5er(0) = G 0043() + 852 (0) 44 )
If we change in this last equality ¢ and b, and subtract we get the identity

B8 B o iy
0= (%fg@ - %’fgm)) 150+ (@At - Sh@aw).

The last term is, in fact, related to the Lie bracket Rbﬁan = [Xp, Xo] = (AJOAY/0gH —
ALOAY /9g")D/Dg™. The difference now becomes

OE, OE) 5 N
0= W(O) ~ Dpa (0) = R, (q)| A3(q).
For 8 =d and § = 1, we get, respectively,
OFEd OE¢ OE! OE;

0 (0) - SE0) = B, 5 (0) — 5 L(0) = Rigla).

We conclude that

OFE? OE¢ OF! OF; ;
_0(0) - 5 2(0) = Réy(a), —2(0) = 52(0) = Ripla),
OFd OEd i 4 OF! OE;
2 (0) + 52 (0) = ~(Tl@) + Thal@), | 5.0(0) + 5. 2(0) =0,
This leads to the expressions in the statement of the Lemma. ]

We can now relate condition (A) to the Gauss Lemma of Riemannian geometry. Let h be a
Riemannian metric on a manifold () with exponential map expg. Suppose that v, € T;Q is such
that expg(vq) is defined. The Gauss Lemma says, in essence, that expf; 1 TyQ — @ is a radial
isometry (under appropriate identification). This means that H® = (expg)*h satisfies the ‘Gauss
condition’:

ng(qu ug) = ng (vg; ug),

for all u, € T,,7,Q = T;Q. The expression for HO can equivalently be written as
hexpg(vq)(qu expg(vq), Ty, expg(uq)) = hq(vg, uq).

20



We refer to e.g. [1§] for the details.

We do not need the Gauss Lemma as such. In [3] it is shown that a certain Gauss-type condition
is necessary and sufficient for the existence of a Riemannian metric ggh on the submanifold
M, with the property that the radial kinetic nonholonomic trajectories departing from ¢ are
minimizing geodesics of ggh. This is also not the property that we will be interested in here,
but our result has a similar flavour. In the next proposition we give a sufficient condition under
which the condition (A) (that appears in Lemma [2{ and Proposition [4)) always holds.

Proposition 7. Let expgh be the nonholonomic exponential map of a purely kinetic (L, D) and
let § be a Riemannian metric on Q which is a D-preserving modification of g. If G° = (expgh)*g
satisfies the following Gauss-type condition

ggq (vg; uq) = ggq (vg, tq), Vg, ug € Dy,

or, equivalently,
gexpgh(vq) (T’Uq <expgh> (”q) 7T7Jq (engh> (uq)> = gq(quuq)7
then condition (A) is satisfied for §.

Proof. The equivalent condition is the first written in full, after having taken into account that
the tangent map of the exponential map in zero is the inclusion (with the identification between

T,Q and T, (T,Q)).

Given that vq, uq € Dy, we can write them as vy = v*X,(q) and wy = u*X,(q). With this the
Gauss condition becomes

Gas(expy" (vg)) ¢ (0)0° Ey (v) = gan(q)v".
Now, we substitute v, by tv, and cancel a factor ¢ on both sides,
gaﬁ(cvq (t))Eg‘(tv)vaEl?(tv) = gabvaa

where we have also used expgh(tvq) = ¢y, (t). If we apply %‘ +—o on both sides, we obtain

agaﬁ . a a B ~ 8Egé a B ~ « aaEbB _
20 0) 0, (O) B (0)6° B (0) + ) G 0000 0) + G(0) B (0)" G- (0)0% =

In the first term, we may rewrite (¢, )*(0)0/9g"|q as v/ X;(q) + v'Xi(q) = v/ X (q), since the
vector vy = ¢é,,(0) € Dy has components v* = 0. If we also insert the expressions that we had
found in Lemma [3] we get

. . 1 1
0 = v/ XG0 + Gan (—(Tg + %)) 070" + Sdua (—(Thy +T%) + Riy ) v/ 0" + S gui R0l v"

(gaiR;)f + gflR;)a») vavf

. 1, 1. 11
= <Xf(gab> - §gdb(2rgf + O) — igad(QF?fb) + 5(5

= <Xf (Gab) — gdbrgf - gadrjlfb + i(gm’RZf + gfin,a)> vl
Recall first that for the metric g, Vg(f g = 0. In the current frame this gives

(Xf(gab) - defﬁf — gadijb) v*f = 0.
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Since we assume that g, = gap, We may use this to see the first terms in the previous expression
vanish. What remains is then indeed condition (A) from Lemma

(§aiRis + Gpilha) v*0! =0,
or, equivalently, gq; Ry fv“vf =0. 0

We end this paragraph with an equivalent characterization of the condition (B). It will be most
convenient to come back to the version of (B), in the form where we regard it as a PDE in the
unknowns 0; = g,;v® (i.e. the restriction of some semi-basic 1-form € to C). We now show that
(B) can be interpreted as the infinitesimal version of a geometric property along c,,(t). To do
so, we introduce yet an other SODE extension I's of I, p), which is the quadratic spray of a

linear connection V on Q, different from the nonholonomic connection V*. The construction
of the connection V is inspired by a result that can be found in [28].

We have already introduced the two projection operators P : TQQ — D and Q : TQ — DY,
related to g. Consider the Levi-Civita connection VY of g. We may use it to define the operator
VP as

VP : Sec(D) x Sec(D) — X(Q), (X,Y) > VRY =P(V5Y).
Proposition 2.1 in [28] states that we may extend this to a covariant derivative

V7 X(Q) x Sec(D) = X(Q), (X,Y) = VE Y + P(Q(X),Y]).

We can do the same for the projection operator Q). Next, from Theorem 2.2 in [28], we obtain
that, for X,Y € X(Q), the operator

V:iX(Q) x X(Q) = X(Q), (X.Y)r Vi(P(Y))+ VR(Q(Y))
is a linear connection on ). In the current frame, the coefficients of this linear connection are
V. Xy =T Xe, Vi, Xi = REXy, Vi Xo = R,X., Vx,X;=T5Xy,
and its corresponding spray is
I'e = v* XS + (T5v™’ + REv'v") XY + (REv ' + Ffjvivj)XX.
By restricting it to v = 0 we can easily see that it is, indeed, a SODE extension of L(r,p)-

Let ¢y, (t) be a nonholonomic trajectory, with ¢y, (t) = V(t)Xa(cy,(t)) € De, ). Since I'y is
a SODE extension of I'(; p), we may interpret c,, (t) as one of its base integral curves. We may
then use the linear connection V to parallel transport a vector w, € T,Q along c,,(t). In this
way, we obtain a vector field W (t) along c,,(t) whose components along {Xq, X;} are solutions
of the initial value problem

W+ TV WP =0, W0) =w”

For our specific case, we get
We = —I¢ VWb,
Wi=—R VWi,

22



The above differential equations are separated. If we take the initial value w, € Dj, we have

w® = 0 and therefore is the solution of the first simply W%(¢) = 0. This means that W(¢t) €
DI .
C’Uq (t)

For a 1-form h(t) along the curve c,,(t), its covariant derivative Ve, )h(t) is again a 1-form
along ¢y, (t). It can be defined below by means of its action on vector fields X (¢) along c,, (1):

(Teaot®) (x(0) = 5 ((20) (x0)) = (20) (Ve ¥®).

Consider {X? X2} the basis of 1-forms, dual to the basis {X;, X,} of vector fields. Then
span{X‘} is the annihilator of D, say D°. Since éy,(t) has only components in D, (1), We can

compute that, along ¢y, (t), the covariant derivative of h(t) = h;(t)X*(cy,(t)) + hy(t) X (cy, (1))
is given by

Veuywh = (he = ThVemy) X+ (hy = REVhe) X

éug
Now, consider the 1-form A(t) = A(é,(t)) along ¢y, (t), i.e. the restriction of the semi-basic

1-form A that represented the Lagrangian multipliers (in Section . For this, we can define a
unique unique 1-form h(t) along c,,(t) that satisfies

Ve, h(t) = Mt),  h(0) =0, € T}Q.

This h(t) is the unique solution of the initial value problem

he(t) = Tl e, (0)V () a(8), he(0) =0,
hi(t) = Rp;(co,())V (£ () + Ni(t), 0.

From the first relation, we may conclude that hy(t) = 0.

We have now gathered all the tools to define an equivalent characterization of the PDE condition
(B) from Proposition

Proposition 8. Consider ¢ € Q,v, € Dy and the 1-form h(t), as defined above. A D-preserving
modification § of g satisfies (B) if and only if

Geuy 1) (60, (0, WD) + (h) (W(O)) = dulvg ), ¥, € DY,
where W (t) is the parallel transport of w, € D§ with respect to V.

Apart from the term in A(t) this condition is again reminiscent to a Gauss-type condition. If we
multiply the relation in the proposition on both sides with an extra factor ¢, we can express it
equivalently in terms of the exponential map expgh(tvq) = ¢y, (1), as follows:

Gosog(tng) (Loog (305 (00), W (D)) + ¢(B()) (W () = Gty wy)-

Proof. From Lemma [2] we know that the expression (B) can be written as
L) (0;) + i + 0 RE0" =0,
or, after expanding and multiplying both sides with w’:

Xf(gm-)va“wi + Goi fOW" + Nw' + gkavabevb i =.
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This expression is valid for arbitrary choices of ¢, v* and w¥. If we replace them, specifically, by
Co,(t), V(t) and W¥(t), respectively, we get, for all ¢:

Xi(Ga)VIOVEEWH () + §uaVEEW(E) + N ()W (E) + §urVER RV (W) = 0

% (3aiV" () W(E) + (halt) = B2, (e0, D)V (D)hy(8)) W(E) + gV " (W () = 0.
We may simplify this to
& @V W) + (W) + W (0hy(1) = 0,
from which

& GV W)+ R (OW(D) =0,

This means that ' ' ' '
9ai VEOW' (t) + hi(@)W*(t) = gaiv“w" + hi(0)w".
Since h;(0) = 0, we get the result.

The other direction follows if we start from the expression above, take a derivative by ¢ and set
t = 0, afterward. ]

From Propositions [ [7] and [§] we may conclude:

Proposition 9. Let expgh be the nonholonomic exponential map of a purely kinetic (L, D) and
let g be a Riemannian metric which is a D-preserving modification of g. If, for all vy € Dy, they
satisfy both

Gexpg (o) (Toa (ex03") (vg) To, (ex03) (1)) = Gylvg,10), Vg €D,
and
e (eny) (Thwn(ex0g™) (1), W) + ¢(h(D) (WD) = galtvg,w), Vo, € DY,
then § is a geodesic extension of (L, D).

Because of the similarity with the statement of the Gauss Lemma, we call the conditions (A)
and (B) the infinitesimal version of the above Gauss-type conditions.

7 Chaplygin systems

Chaplygin systems (also called generalized Chaplygin systems or nonholonomic systems of prin-
ciple type, see e.g. [7, [12] 23]) are essentially nonholonomic systems with extra symmetry prop-
erties. The goal of this section is to use that symmetry to simplify the conditions (A) and
(B).

Suppose that we have a purely kinetic Chaplygin system. This means that both the Riemannian
metric g (and its Lagrangian L) and the constraint manifold C are invariant under the action
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G x Q — @ of a Lie group G on the configuration manifold @ (when lifted to TQ). In addition,
we assume that 7 : Q — Q/G is a principal fibre bundle and that the nonholonomic distribution
D is the horizontal distribution of a principal connection w on 7. Let {E;} be a basis for the Lie
algebra of G and {(E;)q} its corresponding infinitesimal generators. If (z*) are coordinates on
Q/G, the horizontal lifts X, of the vector fields 9/0x* on Q}/G (by means of w) are invariant
vector fields on @ that span D. The set {X,, (E;)g} is then a basis for X(Q). If we construct
the basis in this way, we get

[Xa: (i)l =0, [Xa,Xo] =B (Ej)o, [(Eiq, (E))ql = —Cli(Er)q.
Here, Bg , can be interpreted as the curvature of the connection w and C’fj as the structure
constants of the Lie algebra.
Let, for now, Gap = g(Xa, Xp), Gai = 9(Xa, (Ei)q) and Gij = g((Ei)g, (Ej)@). Similarly as in
Section [2, we can create a basis for D9, by defining the vector fields X; as
Xi = (E’L)Q — GabGiaXb = (EZ)Q + Kleb
In the orthogonal basis {Xg, X;}, we have g = g(Xa, X3) = Gap, Gaj = g(Xa,Xj) = 0 and

9ij = g(Xi, X ;). We first compute the bracket coefficients R, and Rfc in terms of the current
bracket coefficients BSb and CZ

On the one hand, we have [X,, Xi] = [Xa, (Ei)g + K!'X)) = Xo(K?) X, + K?B’, (Ej)q, while
on the other hand is [X,, X;] = R, X, + R..X; = (R, + K;?Rfu-)Xb + R’.(Ej)q. Therefore,
R}, = K}B),. Likewise, from [X,, Xp] = B},(Ej)q and [X4, X3] = R, Xe + R, X; = (RS, —
K$R),)Xc + R),(Ej)q, we can conclude that R, = B},.

The Lagrangian is still L = % Gapv®0® + %gijvivj . We now give an expression for the multipliers
A; in the Chaplygin case. From the invariance of the Lagrangian it follows that (Ez)g(L) =0
(see e.g. [27]). Moreover, on C, X' (L) =T, py (X} (L)). With that, we have, on C,

Ai = T(r,p) (XZVL) ~ X{(L) =Tw.p) (9i50") — KiXy (L) = K7 X, (L)

= _biF(L,D) (X;/(L)) - KleY(L) = —I'(z,p) (biXlY(L)> =L'wp) (Gaiv®).

We may now re-express the conditions (A4) and (B). The (A) condition, 0 R v* = 0, becomes
here 0, B%.v® = 0. For the (B) condition, we obtain after plugging in (A4) and the expression for
)\i7
0 = Tup(0)+ N+ 0 RE0" =T (1 p)(Gaiv®) + T (1p) (Gaiv®) — 0K} Biyv®
= I'wp) ((Gai + Gai)v®).
As a consequence, (i; = (Jai + Gai)v® ave first integrals of the nonholonomic vector field T'(f, py.

Recall that (Gg;) in the Proposition below stands for the restriction g|pxy ., where V is the
vertical distribution of the principal fibre bundle 7 : @ — Q/G.

Proposition 10. Let (L,D) be a purely kinetic Chaplygin nonholonomic system. If I'(r,p) has
linear first integrals p; = pq;v® that satisfy

k kb
ukBac'Ua = Gkaac?} Ua,

then there exists a geodesic extension of (L, D) by a Riemannian metric §.

Proof. The proof follows from Proposition |4} since the conditions ensure that a (0,2) tensor field
g with §(Xq, Xp) = gap and §(Xa, X;) = pai — Gai can be extended to a Riemannian metric. [
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8 An example: the vertically rolling disk

The purpose of this section is to determine a geodesic extension §, on a concrete example.
We have chosen the example of the disk (rolling vertically without slipping), not only because
it is well-known and simple, but also because it is involved enough to enlighten some of the
constructions and results we have obtained in the previous sections. Moreover, for this example,
already, some quadratic Lagrangians L are known in the literature [9, B] and at the end of the
section we will compare them with the ones we find through our methods.

We will use the following coordinates, see the figures in [21] or in [26]. The couple (z,y) stands
for the position of the center of the mass C, ¢ is the orientation angle of the disk (measured
between the tangent of the contact point and the positive z-axis) and € is the angle that a point
fixed on the disk makes with respect to the vertical. In this example the configuration manifold
is Q = R? x 81 x S'. Because we assume the disk to remain vertical during its motion, the
potential is constant and the Lagrangian is of purely kinetic type. If we choose all relevant
constants to be unit, the Lagrangian function is given by
1

1,. . ) .
L=g(v,v) = 5(172 + 92+ ¢* +6%)

and the linear nonholonomic constraints are
& = cos(p),
3 = sin(p)0.
This means that the distribution D can be spanned by
D = span{X,} = span {X(p = 8(?0’ X = 886 + Cos(gp);x + Sin(gp);/} .

The constrained Lagrangian is

1. :
Le=Llc = 5(& + 26%).

With this input one may write down the Lagrange-d’Alembert equations. It is well-known (see
e.g. [7,13,[9]) that the center of mass will make either a circular movement, or a motion along
a straight line.

8.1 The vertically rolling disk as a purely kinetic nonholonomic system

Remark first that the metric g is such that ¢(9/9q¢,0/9¢’) = &;;, with (¢*) = (2,9, 0, ¢). In this
subsection we choose the following basis for the orthogonal complement DY:

d 0 0 0
Dg = i = = — -, = — — i —_— .
span{X;} = span {X 5 cos(¢) 50 Xy 9y sin(y) 80}

It is important to realize that none of our results depend on the specific choices we have made
for the frames. We will make this clear in the next subsection.

When compared to the expressions in the previous sections, the index a will run over ¢ and 6,
while the index i is here either x or y. If we compute the metric coefficients with respect to this
basis, we get gq; = 0, meaning here that gg, = goy = gpr = gy = 0. Moreover

o= (52 ) = 0 2) 0= (5 5) - (T THRES).
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With this, the Lagrangian in quasi-velocities (v, vy, vg,v,) becomes

1 1
L= 3 (207 + vi) + B ((1 + cos?()) v2 + 2 cos(p) sin(p)vzvy + (1 + sin®(p)) UZ) .

We may read off the coefficients Rgﬁ from the Lie brackets [X,, Xg] = RS, gXe + RiﬂX .. Here
they are

[ Xy, Xg] = —sin(p) X, + cos(p) Xy, (X2, Xy] =0, (X2, Xg] =0, [ Xy, Xp] =0,

1 . 1 . 1 .
(X, Xo] = 5 sin(p) Xy — B sin(p) cos(p) Xy — B sm2(<p)Xy,

1 1 1
(X, X,] = —3 cos(p) Xy + 5 COSQ(QO)X;E + 3 cos(y) sin(p) X,.

Since all g4y are constant and R, = 0, we get from the Koszul formula,

QQCdFZb =X, (gbc) + Xy (gac) — X (gac) + gchlLfC - deRZlc - gadeC)lca

that all ng =0.

We are now ready to find a solution for the equations (A) and (B) of Lemmal[2] For (A), we get
the following two algebraic conditions that should be satisfied by gy, §py, G and gay:

Gz SI(0) = Gy cos(p) = 0,
—J6 Sin(p) + goy cos(p) = 0.

Condition (B), written in a version without v (and with I'{, = 0) is here:
0= Xa(Gbi) + Xb(Jai) — Gor Rl — an R
If we first take a = b = ¢, this gives X, (g,,) — gkaf;i =0, or:
Xy (gpa) — Jpaltyr — goyRy, =0 and X, (Gey) — Jpx Ry — goyltY, = 0.

After substituting the values of RYs, etc, and after substituting the relations we had derived
from the algebraic condition (A), we may write this as

1. a4 1.
+ 390 tan(¢) =0 and 8:;y — 59y cot(p) = 0.

oL
dp

The solutions of these equations are gy, = C'\/cos(y) and gy, = D+/sin(p) (with C, D possibly
functions of (z,y, #)), but the only ones satisfying again the algebraic conditions are Jup = Gy =
0.

When we put a = 6 and b = ¢, we get:
_ ~ 0 ~ k
0= Xy (90i) — gooReyi — Gor Ry
which becomes here:

agé):c

1 1
o —sin(p) + iggx sin(p) cos(p) + iggy Sinz(go) =0
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and
89 Gy

dp
from which (with E, F' functions of (z,y,0))

G0z = E+/cos(p) —2cos(p) and ggy = F'\/sin(p) — 2sin(¢

Again, only for £ = 0 and F = 0 the algebraic conditions are satisfied. Finally, we get for
a = b= 0 that Xy (gg;) = 0 (since Rg; = 0). This is automatically satisfied since the gs; we had
found only depend on ¢.

1, )
=Gay cos(yp) sin(p) = 0,

1,
+ cos(p) = 5.90a cos? () — 5

We conclude that the trajectories of the vertically rolling disk with initial velocities in D are
geodesics of all metrics § with metric coefficients in the frame {X,, X;} given by

Jab = Yab, 9o = —2 COS(QO), ggo:c =0, g@y - _2Sin(90)7 gg&y =0,

and where the coefficients g;; can be anything as long as g is positive-definite. We may look at

the constructive proof of Proposition 4] for one possible (but not exclusive) way to realize this:
A

we only need to find a constant o such that § = < BT

B
N I> is positive-definite. The matrices
A and B are here given by

A (20) e (o) 2

The constant a # 0 is not allowed to be an eigenvalue of C' = BT A1 B, and should be larger than
—Tmin and 2222 where 75, = min{eigenvalues of A} and pimax = max{elgenvalues of BTB}.

Tmin

Here, the eigenvalues of A are 1 and 2, the eigenvalues of BT B are 0 and 4 and the eigenvalues
of C' are 0 and 2. We see that any a > 4 fulfills all requirements. We can take for example
a = 42 and then

.1 .
L = 3 [vi + 21}3 — 4 cos(p)vgvy — 4sin(p)vevy + 421;:% 4 421;2] )

The relation between the quasi-velocities {vz, vy, Vg, v, } and the natural fibre bundle coordinates
{&,9,¢,0} is

@ =wv, +vgcos(p), §=uv,+vgsin(p), @ =1v, 0=1vg—uvycos(p)— v,sin(p),

or conversely

Vp = @,

Vg %(9 + cos(p) + sin(p)y),

v = 5(— COS(SO)? + (sin?() + 1)@ — cos(yp) sin(p)y),
vy = 3(—sin(p)f — cos(p) sin(p)i + (cos® () + 1)7).

After substituting this, one obtains an expression for L in natural coordinates.
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On the left, we have plotted some geodesics for g
with o = 42 (their projections for the center of
mass (z,y)). The black circle through the origin
is the nonholonomic trajectory through the origin
with initial velocity

(#0 = 1,90 = 0,60 = 1,0 = 1) € Dg,0,0,0)-

The nearby grey geodesics are perturbations in ei-
ther &9, 9o and 6y, with e = +0.01.

We can now compare our results with the Lagrangians that have been derived in the literature,
as a solution of the Hamiltonization problem. A second attempt to obtain a Riemannian metric
g from the same solution (ggp, §ai) is to choose g;; in such a way that it is a multiple of the
original g;;, i.e. gij = Bgi;. In [9] (see also [21]) we can find the following regular quadratic
Lagrangian (among other non-quadratic Lagrangians):

. 1, . _ 1 . . i o
Ligy = 5(07 + &) = 5 (& +§7) + 0(& cos(p) + § sin(p)).
When written in our current quasivelocities, we find for the corresponding metric

1+ cos?(p)  cos(p) Sin(@) 7

(Gav) ) = (9ab)s  (Gai) @) = (Gai)s  (Gi5)f0) = — <COS(¢) sin(p) 1+ sin(y)

meaning that it corresponds with 8 = —1. This metric has therefore the same constrained
Lagrangian L. as L and as our Lagrangian L. However, the choice § = —1 leads only to a
pseudo-Riemannian metric.

The following Lagrangian is mentioned in [3]:
. 1 . .
Ligy = 520"+ ¢* + &% + §%) — (i cos(p) + ysin(p)).

It comes from a Riemannian metric, but it does not preserve the constrained Lagrangian (i.e. it
is not a D-preserving modification of g), since

(gab)[?;j = (é (1)> :

Finally, there are also some results that can be related to the geodesic extension problem in [g].
However, the authors of [8] do not make use of a D-preserving modification, and they mention
that they are unable to find a geodesic extension by their methods, specifically, for the vertically
rolling disk.

8.2 The vertically rolling disk as a Chaplygin system
It is well-known ([7, [13]) that the configuration space @ = S' x S x R? of the vertically rolling

disk is the total space of a principal fibre bundle with structure group G = R2. Both the
Lagrangian and the constraints are invariant under this symmetry group, and the constraints
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can be thought of as the horizontal distribution of a principal connection. This means that the
vertically rolling disk can be regarded as a Chaplygin system.
For the vertical distribution of m : Q@ — Q/G we can take V7 = span{(E;)q = 8@ (Ey)g = 5}

0
z ) dy
and for the horizontal distribution we may set D = span{X, = 3<,D’X0 = cos(cp)ai + sin(cp)a% +

%}, as before. We may compute that
Grpo =0, Gug=cos(p), Gy,=0, Gy =sin(yp),

and

) 0 0
[ Xy, Xo] = — sm(go)% + cos(go)a—y.

It is important to remark, however, that the result in Proposition [10| makes use of a frame of
DY that is different from the frame {X,, X} we had encountered earlier. The vector fields
X; = (Ei)g — G*Gei Xy = (E;)g + KPX,, are here

- 0 1 0 0 . 0
Xy = — — =cos(p) <80 + cos(cp)% + sm(cp)ay>

and

and the relation between {X;} and the frame {X;} of the previous subsection is

{{fx = (1 - §cos?()) Xa — & cos(y) sin(p) X,

1
3 C
X, = —3sin(p) cos(p) X, + (1 — 3 sin’(p)) X,

According to Proposition we should look for linear first integrals p, and puy, of I'(f, p) that
satisfy
(/Jx — Grpvg — qup) BZGUS@ + (My — Gygvg — GW%) Bzng =0,
which is here
—sin(p)pa + cos(p)py = 0.
If we take a I'(f, p)-derivative we also get cos(¢)pu. + sin(p)p, = 0 (because I'(f, p)(sin(p)) =

cos(p)¢). We can, therefore conclude that the first integrals should be p, = p1, = 0. With that,
we may get the coefficients of the metric § with respect to the frame {X,, X;} (see the proof of

Proposition ,
9(Xa, Xb) = Gab, Jai = §(Xa, Xi) = ftai — Gaiy
which are here - N
gl’(p =0 and g:p@ = - COS(‘P)
{g’;o =0 and éyvg = —sin(p)
We see that this method is way shorter and more efficient since we had already solved the
involved differential equations.

We end this section by showing that the new coefficients we had found are compatible with the
old ones. Indeed, given the relation between the two bases {X;} and {X;} one easily verifies
that, for example,

~ 1. . 1. .
9oy = — sin(p) cos(p)gor + <1 -3 sm2(s0)> 9oy

as it should.
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