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Abstract 

 First-principles molecular dynamics (FPMD) simulations were applied for the paraelectric-

ferroelectric phase transition in the perovskite-type cadmium titanate, CdTiO3. Since the phase 

transition is reported to occur at the low temperature around 80 K, the quantum thermal bath (QTB) 

method was utilized in this study, which incorporates the nuclear quantum effects (NQEs). The 

structural evolutions in the QTB-FPMD simulations are in reasonable agreement with the 

experimental results, by contrast in the conventional FPMD simulations using the classical thermal 

bath (CTB-FPMD). According to our phonon calculations, volume expansion is the key in the 

stabilization of the ferroelectric phase at low temperatures, which was well reproduced in the QTB-

FPMD with the NQEs. Thus, the NQEs are of importance in phase transitions at low temperatures, 

particularly below the room temperature, and the QTB is useful in that it incorporates the NQEs in 

MD simulations with low computational costs comparable to the conventional CTB. 
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I. Introduction 

 The titanium-containing crystals with the perovskite structures, ATiO3 (A = Pb, Ba, Cd), are 

well-known ferroelectric ceramics [1–7]. The paraelectric-ferroelectric phase transitions in these 

crystals are reported to be the second-order or weak first-order phase transition with little volume 

gap [6–9]. In the case of the cubic-to-tetragonal transition in PbTiO3, every Ti ion is displaced from 

the center of the TiO6 octahedral unit to the [001] direction in the pseudo-cubic system, which is 

originated from the second-order Jahn-Teller effects for the d0 electronic structure of the tetravalent Ti 

ion [10]. In the case of BaTiO3, three phase transitions (cubic → tetragonal → orthogonal → 

rhombohedral) occur sequentially with decreasing temperature, where Ti ions are displaced to the 

[001], [011], and [111] directions, respectively [10]. 

In theoretical studies, phonon calculations within the harmonic approximation [11] are 

widely used for elucidating the lattice dynamics of displacive phase transitions [12–18]. The 

dynamical instabilities of high-temperature phases are evaluated from the vibrational modes, in which 

imaginary eigenfrequencies correspond to the atomic displacements in displacive phase transitions. 

Such phonon calculations are basically limited to dynamical stability analysis at 0 K, while first-

principles molecular dynamics (FPMD) simulations are able to directly treat phase transition dynamics 

at finite temperatures, e.g., structural changes and macroscopic dynamical properties around phase 

transition temperatures. FPMD simulations have therefore been applied for a wide range of perovskite 

crystals, such as PbTiO3 [19,20], LiNbO3 [21], and KNbO3 [22]. 

 However, it is difficult to rigorously evaluate lattice dynamics at low temperatures by 

conventional MD simulations, because the nuclear quantum effects (NQEs), e.g. the zero-point 

vibration, are not negligible. In the conventional methods, such as the Nose-Hoover thermostat [23,24] 

or Langevin thermal bath [25], each atom is treated as a classical particle with neglecting the NQEs 

even in FPMD simulations. To address this issue, Dammak et al. has proposed a new method based 

on the Langevin MD [26–28], which incorporates the NQEs by using the Quantum Thermal Bath 

(QTB) instead of the conventional Classical Thermal Bath (CTB). The computational cost of QTB-

MD is comparable to that of the CTB-MD, which is the greatest advantage over the huge 

computational cost of path integral molecular dynamics (PIMD) [29]. The QTB-MD has been applied 

to the two perovskite-type systems, BaTiO3 [30] and SrTiO3 [31]. Although these applications are 

based on not FPMD but the effective Hamiltonian or machine-learning potentials, the QTB-MD 

simulations showed the reasonable agreement with the PIMD results and reproduced the experimental 

values more accurately than the CTB-MD. 

 In this study, we demonstrate the importance of the NQEs in the structural phase transition 

at low temperatures using the first-principles QTB-MD (QTB-FPMD). We choose perovskite-type 

CdTiO3 as a model system because it is reported to have the paraelectric-ferroelectric phase transition 

at Tc ~ 80 K [9,32–36]. The space group of the high-temperature paraelectric phase is identified as 
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Pnma (62) by the X-ray and neutron diffraction studies [5,37]. As shown in FIG. 1, the Pnma phase 

has the structure with a a+b−b− distortion in the Glaser notation, in which the TiO6 octahedra are rotated 

alternately around the two of the three [001] axes in the pseudo-cubic phase, and simultaneously 

around the other axis. In contrast, the crystal structure of the low-temperature ferroelectric phase is 

still in controversy. The two crystal structures with the space groups Pna21 (33) [32,37] and P21ma 

(26) [38] have been suggested as the ferroelectric phase in the X-ray and neutron diffraction studies. 

The space groups of both phases are the non-centrosymmetric subgroups of the space group Pnma, 

and the difference is a symmetry element, a diagonal gride plane or a mirror plane. In the previous 

first-principles studies, the phonon calculations were performed for the paraelectric and ferroelectric 

phase [16,17], concluding that the ferroelectric phase is likely to have the space group Pna21 rather 

than P21ma by comparing the magnitudes of the eigenfrequencies between imaginary vibrational 

modes. FPMD simulations for CdTiO3 have not been reported, probably because the CTB-FPMD is 

not suitable for analyzing phase transition dynamics around the low phase transition temperature. In 

this study, we have investigated the temperature dependences in the cell volume and lattice constants 

by the QTB-FPMD simulations, analyzing the structural evolutions around the transition temperature. 

We also applied the CTB-FPMD for comparison, demonstrating the importance of incorporating the 

NQEs in the MD simulations. In addition, the phonon calculation for each phase was performed for 

elucidating the origin of the superiority in the QTB-FPMD over the CTB-FPMD. The methodology 

of the QTB method and the computational conditions are presented in Section II, and the results and 

discussions of the applications are presented in Section III.  

 

  

  

FIG. 1 (a) Crystal structure of CdTiO3 paraelectric phase with the space group of Pnma. (b) a+ and (c) 

b− distortions in the pseudo-cubic systems. 
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II. Computational method 

A. Quantum thermal bath in Langevin MD 

The QTB-MD method is a modification of the Langevin MD [25] for incorporating the 

NQEs. It is based on the Langevin equation expressed as 

mi(d2xiα/dt2) = − dU/dxiα – miγ(dxiα/dt) + Riα(t), (1) 

where mi and xiα are the mass and three-dimensional cartesian coordinate (α = 1, 2, 3) of the ith atom, 

respectively, and t, U, and γ are the time, the potential energy, and the friction coefficient, respectively. 

The last two terms of the right-hand side in Eq. (1) correspond to the friction and random forces, 

respectively, which are fictious forces controlling the temperature. In the CTB-based Langevin MD, 

CTB-MD, a time-uncorrelated random force is given as a Gaussian white noise for enabling the system 

to evolve under the energy equipartition theorem. This theorem means that the mean kinetic energy is 

1/2 kBT per degree of freedom, where kB and T are the Boltzmann constant and the temperature, 

respectively. 

In the QTB-MD [26–28], the kinetic energy is controlled for including the NQEs, while 

every atom in a given system is treated as a classical particle. A time-correlated random force is used 

instead of the time-uncorrelated force in the CTB-MD. The power spectral density IR(ω) of the time-

correlated random force is expressed as 

IR(|ω|) = 2mγ [1/2 ℏω + ℏω/(exp(ℏω/kBT) – 1)], (2) 

where ℏ and ω are the Dirac constant and the angular frequency, respectively. Under the harmonic 

approximation, the mean energy of the system, E, corresponds to the quantum harmonic energy of the 

lattice vibration, 

E = Σi [1/2 ℏωi + ℏωi/(exp(ℏωi/kBT) – 1)], (3) 

where ωi is the eigenfrequency of the ith vibrational mode and the first term corresponds to the zero-

point energy. 

 

B. First principles calculations 

  The DFT-based calculations implemented in the VASP package [39–41] were employed in 

the structural optimizations, phonon calculations, and MD simulations for the model system of CdTiO3. 

The projector-augmented wave (PAW) method [42] was used with the cut off energy of the plane-

wave as 500 eV. The pseudopotentials were used, in which the following electrons are explicitly treated 

as valence electrons; 4d and 5s for Cd, 4s and 3d for Ti, and 2s and 2p for O. The local density 

approximation (LDA) [43,44] was used as the exchange-correlation functional because the LDA is 

reported to reproduce the experimentally-determined lattice constants of CdTiO3 more accurately [17] 

than the generalized gradient approximation with Perdew-Burke-Ernzerhof parametrization 

(PBE_GGA) [45]. The obtained lattice constants under the LDA and the PBE_GGA are shown in 

Table S1 of Supplemental Materials, which coincide with those in the previous DFT study [17] within 
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the computational accuracy.  

The structural optimizations were performed for the three polymorphs, the paraelectric 

phase with the space group Pnma and the two ferroelectric phases with Pna21 and P21ma. The k-point 

mesh for Brillouin zone sampling in each unit cell was set to 4×2×4 for Pnma, 4×4×2 for Pna21, and 

2×4×4 for P21ma. The structural optimizations were terminated when the norms of all the forces are 

smaller than 1×10−4 eV/Å. After the structural optimizations, the phonon calculations were performed 

by the finite displacement method implemented in phonopy [46,47]. The supercells consisting of 

2×1×2, 2×2×1, and 1×2×2 unit cells were used for the three polymorphs with Pnma, Pna21, and P21ma, 

respectively. The k-points mesh for these supercells was set to 2×2×2. 

Since the CTB-based Langevin FPMD simulations are already implemented in the VASP 

package, we added the QTB on the VASP code. Specifically, we additionally implemented the code 

for calculating the time-correlated random force at each MD step. The NPT-MD simulations were 

performed on the CdTiO3 systems with the QTB or the already-implemented CTB for comparison. 

The temperature was set to 25, 50, 75, 100, 125, 150, 200, 250, or 300 K at each simulation, and the 

pressure was controlled to the ambient condition using the Parinello-Rahman barostat [48]. The time 

step and the total simulation time were 1 fs and 100 ps, respectively, starting from the 2×1×2 supercell 

of the Pnma structure. As for the Langevin thermal bath parameters, the friction coefficient γ in Eq. 

(1) was set to 5 THz. The domain of the frequency ω in Eq. (2) was set to [−314, 314] in THz to avoid 

the power spectral density IR(ω) diverging. The kinetic energies, volumes, and lattice constants in each 

simulation were averaged during 95 ps after 5 ps for thermal equilibration. 
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III. Results and Discussion 

First of all, the structural optimizations were performed for the three CdTiO3 polymorphs 

with the space group of Pnma, Pna21, and P21ma. As a result, all the three structures converged to the 

paraelectric Pnma structure, indicating that the high temperature paraelectric phase is the ground state 

under our computational condition. The optimized volume is 213.82 Å3, and the lattice constant a, b, 

and c are 5.38, 7.56, and 5.25 Å, respectively. FIGURE 2(a) shows the calculated phonon band 

structure of the Pnma structure. No imaginary mode means that the paraelectric structure is 

dynamically stable. The obtained phonon band structure is consistent with the one in the previous DFT 

study under the metaGGA [18]. However, it is inconsistent with the one with imaginary modes at the 

-point in the other previous study under the LDA [16,17]. The discrepancy is probably due to the 

different pseudopotentials and computational conditions. 

 Note that the dynamical stability of the paraelectric structure is sensitive to the cell volume. 

FIGURE 2(b) shows the calculated phonon band structure of the paraelectric Pnma phase with 

expanding each lattice constant by 0.3 %, corresponding to the 0.9 % expansion in the cell volume. 

The slight volume expansion softens the two vibrational modes at the Γ-point, which have imaginary 

eigenfrequencies, 0.94i and 1.29i THz, respectively. The two ferroelectric phases with Pna21 and 

P21ma were obtained by optimizing the displaced structure along the direction of each imaginary 

vibration mode. This dynamical instability due to the volume expansion of the paraelectric phase was 

also reported in the previous studies under the metaGGA [18] and the LDA [17]. In our phonon 

calculations of the paraelectric phase within PBE_GGA, there are four imaginary vibrational modes 

at the Γ-point in the phonon band structure shown in FIG. S1, probably due to the relatively large cell 

volume to that under the LDA. 

 

 

 

 
FIG. 2 Calculated phonon band structures of the Pnma structures (a) with the optimized cell volume 

and (b) with 0.3 % expanded cell volume. 
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 QTB- and CTB-FPMD simulations were then performed using the Pnma structure as the 

initial structure. FIGURE 3(a) shows the mean kinetic energies during the QTB- or CTB-FPMD 

simulations as a function of temperature. The quantum and classical kinetic energies under the 

harmonic approximation of the lattice vibrations are also shown in FIG. 3(a), which were estimated 

from the eigenfrequencies of the structure Pnma obtained by the finite displacement method and from 

the energy equipartition theorem, respectively. The mean kinetic energies during the QTB- and CTB-

FPMD simulations are in reasonable agreement with the quantum and classical ones under the 

harmonic approximation, respectively. The kinetic energies are larger in the QTB-FPMD than those 

in the CTB-FPMD, particularly at low temperatures, mainly due to the zero-point vibrations. Therefore, 

the NQEs are not negligible in the phase transition of CdTiO3.  

 FIGURE 4 shows the nuclear density distributions of oxide ions in the ab-plane during the 

QTB- and CTB-FPMD simulations at the lowest temperature, 25 K (See FIG. S3-S5 in Supplemental 

Materials for detailed nuclear density distributions of Cd, Ti, and O ions). In the CTB-FPMD, the 

distributions of O ions at the two sites of the structure Pnma are strongly localized, while the O ions 

are widely distributed in the QTB-FPMD. The difference in the nuclear density distributions is 

originated from the high kinetic energy even at the low temperature in the QTB-FPMD, which 

corresponds to the zero-point vibrations. 

The zero-point vibrations also have effects on the mean cell volume in the QTB-FPMD, as 

shown in FIG. 3(b). In the CTB-FPMD, the mean cell volume almost linearly depends on the 

temperature, while the cell volume non-linearly increases with temperature in the QTB-FPMD, nearly 

constant in the low-temperature range below 100 K. The cell volume in the QTB-FPMD is relatively 

large to that in the CTB-FPMD. For example, the cell volume at 25 K in the QTB-FPMD was about 

0.8 % larger than that of the ground state structure with Pnma, while only 0.07 % larger in the CTB-

FPMD. The relatively large cell volume can induce the instability of the ground state paraelectric 

structure with Pnma, leading to the stabilization of the ferroelectric phase at low temperatures in the 

QTB-FPMD. In contrast, the high-temperature paraelectric phase remains stable even at low 

temperatures in the CTB-FPMD because of little thermal expansion.  
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FIG. 4 Nuclear density distributions of (a, b) O1 and (c, d) O2 sites in the ab-plane during the QTB- and 

CTB-FPMD simulations at 25 K. The distributions were obtained by accumulating Gaussian 

distributions centered at each O ion with width of 0.05 Å at every MD step. 

 

FIG. 3 (a) Kinetic energies and (b) cell volumes during the QTB-FPMD (red circle) and the CTB-FPMD 

(blue square) as a function of temperature. The quantum and classical kinetic energies under the 

harmonic approximation of the lattice vibrations are also shown in the red solid and blue dashed lines, 

respectively. Error bars correspond to a standard deviation in each simulation. 
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 FIGURE 5 shows the comparison of the cell volume and lattice constants between our QTB-

FPMD, our CTB-FPMD, and the previous experimental study [18]. All data is normalized by the value 

at the lowest temperature. Regarding the cell volume, there are large discrepancies between the CTB-

FPMD and the experiment. The cell volume in the CTB-FPMD linearly increases with increasing 

temperature, and the change in slope cannot be observed clearly. Considering that the cell volume at 

25 K in the CTB-FPMD is almost the same as the one in the ground state Pnma structure, and that our 

phonon calculations indicate the Pnma structure is dynamically stable at the optimized volume, the 

paraelectric phase should be always stable in this temperature range. By contrast, the cell volume in 

the QTB-FPMD shows comparable temperature dependence to that in the experiment, which have a 

clear change in slope around the reported phase transition temperature [9,32–36].  

 As in the cell volumes, the QTB-FPMD reproduced the temperature dependences of the 

experimental lattice constants more accurately than the CTB-FPMD. In the experiments [9,18], the 

negative thermal expansion of the lattice constant a is reported around the phase transition temperature. 

This characteristic temperature dependence is qualitatively reproduced in the QTB-FPMD. The lattice 

constant decreases under 50 K with increasing temperature, possibly suggesting the paraelectric-

ferroelectric phase transition in the QTB-FPMD as in the experiments. In contrast, the CTB-FPMD 

shows linear thermal expansion under 100 K, probably due to the stable paraelectric phase even at the 

lowest temperature. Although the large fluctuations of the lattice constants in these simulations make 

it difficult to obtain the fully precise temperature dependences, the reasonable results in the QTB-

FPMD indicates the importance of the NQEs in the structural phase transition at low temperatures. 

 



10 

 

 

 

 

  

 
FIG. 5 The normalized (a) cell volumes and (b-d) lattice constants as a function of temperature. The 

data in the QTB-FPMD (red circle), CTB-FPMD (blue square), and experiments (black cross) are 

normalized at the lowest temperature. The experimental data are obtained by scanning the figure in [18] 

and the phase transition temperature reported in the previous experiments [9,32–36] are shown in a 

green line. 
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IV. Conclusion 

 The QTB-FPMD were performed for the paraelectric-ferroelectric phase transition in the 

perovskite-type CdTiO3. In the QTB method, the NQEs are incorporated by using a random force with 

time correlations instead of a time-uncorrelated Gaussian random force in the CTB-based Langevin 

MD. The method was additionally coded on VASP, where the CTB-FPMD are already implemented.  

By incorporating the NQEs, the QTB-FPMD showed larger kinetic energies than the CTB-

FPMD, leading to the cell volume expansions especially at low temperatures. In comparison with the 

previous experimental results, the QTB-FPMD were in reasonable agreement with the reported 

temperature dependences of the cell volume and lattice constants. In the QTB-FPMD, non-linear 

thermal expansion can be seen at low temperatures, possibly suggesting the phase transition as in the 

experiments. By contrast, the CTB-FPMD showed linear thermal expansion. The phonon calculations 

indicate that the paraelectric phase was dynamically stable at 0 K, meaning no phase transition in the 

CTB-FPMD. The ferroelectricity at low temperatures in the QTB-FPMD was originated from larger 

cell volume than that in the CTB-FPMD, which lead to the dynamical instability in the paraelectric 

phase. Considering the cell volume expansion resulted from the NQEs, our study indicates the 

importance of the NQEs for the phase transition in the CdTiO3 system. 
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Table S1 Lattice constants a, b, and c of the structure Pnma optimized by LDA and PBE_GGA.  

 a [Å] b [Å] c [Å] 

LDA 5.38 7.56  5.25  

PBE_GGA 5.49  7.72  5.37  

 

 

 

 

FIG. S2 Crystal structure Pnma in the (a) ab-, (b) bc-, and (c) ca-plane. 

 

FIG. S1 Phonon band structure of the paraelectric phase Pnma calculated by PBE_GGA. 
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FIG. S3 The nuclear density distributions of (a, e) Cd, (b, f) Ti, (c, g) O1 and (d, h) O2 ions in the 

ab-plane during the QTB- and CTB-FPMD simulations at 25 K. The distributions were obtained 

by accumulating Gaussian distributions centered at each ion with width of 0.05 Å every MD step. 

 

FIG. S4 The nuclear density distributions of (a, e) Cd, (b, f) Ti, (c, g) O1 and (d, h) O2 ions in the 

bc-plane during the QTB- and CTB-FPMD simulations at 25 K. The distributions were obtained 

by accumulating Gaussian distributions centered at each ion with width of 0.05 Å every MD step. 



Supplemental Materials 

 

16 

 

 

 

FIG. S5 The nuclear density distributions of (a, e) Cd, (b, f) Ti, (c, g) O1 and (d, h) O2 ions in the 

ca-plane during the QTB- and CTB-FPMD simulations at 25 K. The distributions were obtained 

by accumulating Gaussian distributions centered at each ion with width of 0.05 Å every MD step. 


