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Abstract

We have developed a set of four fully coupled Boltzmann equations to precisely determine the

relic density and temperature of dark matter by including three distinct sectors: dark matter, light

scalar, and standard model sectors. The intricacies of heat transfer between DM and the SM sector

through a light scalar particle are explored, inspired by stringent experimental constraints on the

scalar-Higgs mixing angle and the DM-scalar coupling. Three distinct sectors emerge prior to DM

freeze-out, requiring fully coupled Boltzmann equations to accurately compute relic density. Inves-

tigation of forbidden, resonance, and secluded DM scenarios demonstrates significant deviations

between established methods and the novel approach with fully coupled Boltzmann equations. De-

spite increased computational demands, this emphasizes the need for improved precision in relic

density calculations, underlining the importance of incorporating these equations in comprehensive

analyses.
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I. INTRODUCTION

Exploring dark matter (DM) via interactions between the dark sector and the standard

model (SM) sector aids in unraveling the nature of DM. Weakly interacting massive par-

ticles (WIMP), a potential DM candidate, are expected to produce a detectable signal in

DM measurements; although, currently it remains elusive in recent findings from LHC [1],

XENON1T [2], and various DM indirect detection experiments [3–7]. Among these experi-

mental attempts, the measurement of DM relic density from cosmic microwave background

(CMB) radiation stands out as it provides both upper and lower limits on the DM inter-

action rate. In other words, the DM annihilation rate is required to fall within a specific

range to match the relic density reported by PLANCK [8]. Considering this, by assuming

a certain coupling strength for the DM-SM interaction, the DM mass can be constrained to

belong in a particular range. For instance, a DM particle with weak coupling typically has a

mass around 100GeV, known as the WIMP miracle [9], while strong coupling is associated

with a DM mass around 200TeV [10]. Therefore, the application of the relic density con-

straint significantly narrows down the allowed parameter space for DM models, facilitating

the search for DM signals.

The calculation of relic density is heavily dependent on the thermal history of the dark

sector. The most straightforward assumption is the thermal dark matter paradigm, where

the observed relic abundance can be naturally explained by the freeze-out mechanism. Dur-

ing the radiation-dominated era, thermal DM is generated through collisions within the

thermal plasma, with its number density following the thermal Boltzmann distribution. A

similar successful explanation can be applied to the history of Big Bang Nucleosynthesis if

SM particles adhere to the same assumption. However, recent XENON1T findings impose

a stringent limit on the DM-nucleon cross-section, rendering some parameter space with

the interaction too tiny to maintain thermal equilibrium prior to freeze-out, a phenomenon

known as “early kinetic decoupling”. In this regard, early kinetic decoupling is investigated,

focusing on DM resonant annihilation [11–13] and forbidden DM annihilation [14, 15]. Stud-

ies on thermal freeze-out mechanisms involving vector DM, such as those on the U(1)X Higgs

portal [16] and vector-portal frameworks [17], relax the assumption of thermal equilibrium

between the dark and SM sectors during DM freeze-out. Furthermore, researchers have

investigated the impact of early kinetic decoupling in a fermionic dark matter model with
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CP-conserving and CP-violating interactions mediated by Higgs exchange [18] as well as in

a pseudo-Nambu-Goldstone model [19].

The standard calculation for relic density assumes that the DM initial density is in thermal

equilibrium at a temperature slightly above the freeze-out temperature. This assumption is

utilized in software packages like DarkSUSY [20], micrOMEGAs [21], and MadDM [22]. However,

this approach neglects the effects of early kinetic decoupling and temperature differences

between the dark and SM sectors, as demonstrated in Ref. [11]. To accurately calculate relic

density for DM with early kinetic decoupling, one must consider the Boltzmann equations for

the density and temperature of the dark sector and initiate the evolution from a temperature

significantly higher than the freeze-out temperature.

To produce the correct relic density with DM mass lighter than the Lee-Weinberg

bound [23], one can consider a simplified DM model that contains a DM candidate and

a light mediator. In a simplified Higgs portal model [24, 25], the DM candidate, χ, is a

light Majorana particle and the light mediator, ϕ, is a scalar, both of them singlet under

the SM. Due to mixing between the light scalar and the SM Higgs boson the DM candidate

can interact with the SM mediated by the light scalar singlet ϕ. The mixing between the

SM Higgs boson and ϕ is characterized by a mixing angle, θ. These two new particles are

expected to be produced in meson decay processes at LHCb [26, 27] and beam dump exper-

iments [28–35]. However, none of them has been observed putting a severe exclusion on the

model parameter space, as demonstrated by a comprehensive likelihood analysis involving a

robust set of constraints [24, 25]. Consequently, a large portion of the surviving parameter

space can have early kinetic decoupling between the dark, scalar, and SM sectors because of

the suppressed sin θ. In such parameter space, it would be interesting to perform a precise

study of early kinetic decoupling.

Based on the model in Ref. [24], we will revise the relic density computation by allowing

different temperature evolution for the dark, ϕ, and SM sectors. We focus on three typical

scenarios where the leading DM annihilation in the early universe are:

(i) forbidden annihilations χ + χ → ϕ + ϕ with subsequent decays mainly to SM states

where DM is only slightly lighter than ϕ [36] accompanied by a relatively large mixing

angle sin θ ≈ O(10−3),

(ii) resonance annihilation scenario χ + χ → ϕ → SM+ SM enhanced at a certain DM
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temperature via ϕ resonance with 2mχ ≈ mϕ,

(iii) secluded DM scenario [37] involving a tiny mixing angle and mϕ ≪ mχ. Importantly,

a considerable interaction between the ϕ and dark sector in this scenario is necessary

to maintain thermal equilibrium before the DM chemical decoupling.

Although we restrict ourselves to the light scalar, our derivation of Boltzmann equations is

generic and can be applied to the light vector mediator as well.

This paper is structured as follows. In Sec. II, we provide a brief overview of the Ma-

jorana DM model incorporating a light singlet scalar and highlight its main features. In

Sec. III, we adapt the standard Boltzmann equation to incorporate the evolution equations

for the number density and temperature of both DM and the new scalar. Sec. IV presents

our numerical results for three selected benchmark scenarios. Finally, Sec. V summarizes

and discusses our findings. Additionally, we include detailed derivations of the Boltzmann

equations in the appendices at the end of this paper.

II. MAJORANA DARK MATTER WITH A LIGHT SINGLET SCALAR MEDI-

ATOR

In this section, we review the minimal Higgs portal Model described in Refs. [24, 25],

which considers a light fermionic WIMP, χ, with a mass around O(1) GeV or less. This

Majorana WIMP requires the presence of a light mediator, Φ, chosen as a real singlet scalar

for simplicity. Both the Majorana DM field and the singlet scalar mediator are singlets

under the SM gauge group. Additionally, the Majorana DM is associated with the odd

sector of an imposed Z2 symmetry, while all other particles are even under this symmetry.

The minimal renormalizable Lagrangian, which includes a light Majorana DM, a real scalar

mediator, and all SM interactions, is expressed as

L = LSM +
1

2
χ̄(iγµ∂

µ −mχ)χ+
1

2
(∂Φ)2 − cs

2
Φχ̄χ− cp

2
Φχ̄iγ5χ− V (Φ, H). (1)

The SM lagrangian is represented by LSM and H is the SM Higgs doublet. The full scalar po-

tential is given by V (Φ, H) ≡ VΦ(Φ)+VΦH(Φ, H) plus the potential of H, VH(H), contained
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in LSM. These components of the potential are given by

VH(H) = µ2
HH

†H +
λH

2
(H†H)2,

VΦ(Φ) = µ3
1Φ +

µ2
Φ

2
Φ2 +

µ3

3!
Φ3 +

λΦ

4!
Φ4,

VΦH(Φ, H) = AΦHΦH
†H +

λΦH

2
Φ2H†H, (2)

where λH,Φ,ΦH are dimensionless couplings, but µH,1,Φ,3 and AΦH couplings have mass dimen-

sion one. Following the procedure of Ref. [24, 25], we also assume that the vacuum expecta-

tion value (VEV) of Φ, ⟨Φ⟩ = vΦ, vanishes such that Φ = vΦ+ϕ′ = ϕ′. Furthermore, we use

the unitary gauge expansion of the Higgs doublet around its VEV, H = [0, (vH + h′)/
√
2]T .

Under these assumptions, the minimization conditions for the potential result in the follow-

ing expressions for µ2
H and µ3

1 as functions of other parameters

λHv
2
H

2
+ µ2

H = 0 ⇒ µ2
H = −λHv

2
H

2
, (3)

AΦHv
2
H

2
+ µ3

1 = 0 ⇒ µ3
1 = −AΦHv

2
H

2
. (4)

From the quadratic terms in the scalar potential we can find the following squared mass

matrix written in the {h′, ϕ′} basis λHv
2
H AΦHvH

AΦHvH
λΦHv2H

2
+ µ2

Φ

 = UT
θ

m2
h 0

0 m2
ϕ

Uθ, with Uθ =

cos θ − sin θ

sin θ cos θ

 , (5)

where Uθ is the matrix that relates the interaction states h′ and ϕ′ with the mass eigenstates

h and ϕ: (h, ϕ)T = Uθ(h
′, ϕ′)T . The mixing angle θ and the eigenvalues of the squared mass

matrix are given by

tan 2θ =
4AΦHvH

λΦHv2H + 2µ2
Φ − 2λHv2H

(6)

m2
h,ϕ =

1

2

v2H

(
λH +

λΦH

2

)
+ µ2

Φ ±

√[
vH

(
λH − λΦH

2

)
− µ2

Φ

]2
+ 4A2

ΦHv
2
H

 . (7)

By comparing the left-hand-side and right-hand-side of Eq. (5) we can trade three model

parameters with the mass eigenvalues m2
h and m2

ϕ and the mixing angle θ. Namely, the three
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model parameters λH , AΦH and λΦH can be expressed as

λH =
m2

H +
(
m2

ϕ −m2
H

)
sin2 θ

v2H

θ≈0⇒ m2
H

v2H
, (8)

AΦH =

(
m2

ϕ −m2
H

)
sin θ cos θ

vH

θ≈0⇒ 0, (9)

λΦH =
2
[
m2

ϕ − µ2
Φ −

(
m2

ϕ −m2
H

)
sin2 θ

]
v2H

θ≈0⇒
2
[
m2

ϕ − µ2
Φ

]
v2H

, (10)

where the rightmost expressions represent the θ → 0 limit (the SM limit).

Note that by taking the mass of the Higgs to be its measured value, mh ≈ 125 GeV, and

the SM VEV fixed at vH = 246 GeV, the parameter λH is fixed in the sin2 θ → 0 limit.

Thus, we are left with five free parameters from the scalar potential: θ, mϕ, µ
2
ϕ, µ3 and λΦ.

To those parameters, we add the WIMP mass mχ and the couplings between the WIMP

and the scalar Φ, cs and cp, leaving a total of eight free parameters

λΦH , AΦH , µ
2
ϕ, µ3, λΦ,mχ, cs, cp → θ,mϕ, λΦH , µ3, λΦ,mχ, cs, cp (11)

The interactions between the scalars can be extracted from the Lagrangian of Eq. (1).

After moving to the mass eigenstates base and using mϕ and θ as free variables we can

rewrite the three-scalars terms in the Lagrangian as

−chhh
3!

h3 − cϕhh
2

ϕh2 − cϕϕh
2

ϕ2h− cϕϕϕ
3!

ϕ3 (12)

where the couplings are given

chhh = v−1H cθ
[
3m2

H

(
c2θ + 2s4θ

)
+ 6m2

ϕs
2
θc

2
θ − 6µ2

Φs
2
θ

]
− µ3s

3
θ, (13)

cϕhh = v−1H sθ
[
2m2

H(1− 3s2θc
2
θ)− 3m2

ϕc
2
θ(1− 2s2θ) + 2µ2

Φ(2− 3s2θ)
]
+ µ3cθs

2
θ, (14)

cϕϕh = v−1H cθ
[
3m2

Hs
2
θ(1− 2s2θ) + 2m2

ϕ(1− 3s2θc
2
θ)− 2µ2

Φ(1− 3s2θ)
]
− µ3sθc

2
θ, (15)

cϕϕϕ = v−1H sθ
[
6m2

Hs
2
θc

2
θ + 3m2

ϕ(2 + 2s4θ − 3s2θ)− 6µ2
Φc

2
θ

]
+ µ3c

3
θ. (16)

It is straightforward to write the sθ ≡ sin θ → 0 and cθ ≡ cos θ → 1 limits of these

expressions:

chhh ∼ 3v−1H cθm
2
H (17)

cϕhh ∼ v−1H sθ(2m
2
H − 3m2

ϕ + 4µ2
Φ) (18)

cϕϕh ∼ 2v−1H cθ
(
m2

ϕ − µ2
Φ

)
− µ3sθ (19)

cϕϕϕ ∼ 6v−1H sθ
(
m2

ϕ − µ2
Φ

)
+ µ3cθ (20)
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The couplings of Eqs. (13)–(16) are equivalent to the expressions found below Eq. (2.7)

of Ref. [24] rewritten to use θ, mH and mϕ instead of λH , AΦH and λΦH . The four-point

interactions are only relevant for very massive χ and can be consulted in and below Eq. (2.8)

of Ref. [24]. Finally, due to the mixing between h′ and ϕ′, the terms of the Lagrangian that

couple the DM χ and the scalar mass eigenstates are given by

Lint ⊃ −1

2
[cθϕ (csχ̄χ+ icpχ̄γ5χ) + sθh (csχ̄χ+ icpχ̄γ5χ)] . (21)

It is easy to see that as long as we keep sθ as a small parameter, the coupling between the

Higgs h and χ remains suppresed. As it was mentioned in Ref. [24], precision measurements

on the properties of the Higgs found at the LHC require |θ| ≪ 1.

III. BOLTZMANN EQUATIONS

For a particle species i, the evolution of its phase space density fi(t,p) is governed by

the Boltzmann equation [38], which, in a Friedmann-Robertson-Walker universe, takes the

form of

E (∂t −Hp · ∇p) fi = Ci[fi]. (22)

Here, H ≡ (1/a)(da/dt) is the Hubble parameter, a(t) is the scale factor of the universe,

and t is the evolution time. The i particle possesses energy E = Ei and three-momentum

p = pi. On the right side, the collision term Ci[fi] contains all interactions of particle i. Our

focus here is solely on the Boltzmann equations for two weakly interacting particles, χ and

ϕ. The dominant processes in the collision terms include annihilation, elastic scattering, ϕ

decay, and ϕ absorption. By following the approach in Ref. [11], we can derive complete

collision terms, as shown in Appendix A, and evolution equations as shown in Appendix B.

Before delving into our primary equations, it is crucial to highlight the difference

between our computational approach and conventional methods like DarkSUSY [39] and

micrOMEGAs [40] for calculating relic density. These programs assume that ϕ interacts suffi-

ciently with both the SM and dark sectors to maintain thermal equilibrium during freeze-out.

However, our approach differs as the thermal history of ϕ and χ evolves independently from

the SM sector. Practically, this implies solving a temperature equation alongside the number

density equation for each particle, resulting in four coupled Boltzmann equations governing

the evolution of χ and ϕ.
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Scalar

Standard
Model

Dark
Matter

FIG. 1: A schematic plot to illustrate the interactions between three sectors. The parameters

shown near the color lines govern the relevant processes in the nearest box.

Throughout our work, we denote the temperatures of the SM, ϕ, and dark sectors as T ,

Tϕ, and Tχ respectively. 1 If the three sectors are in thermal equilibrium (T = Tχ = Tϕ),

one can simply evolve only the number densities of χ and ϕ with respect to T near the

freeze-out temperature TF . However, in our case, we have to consider three interaction rates

among three sectors: Γ(ϕ ↔ χ), Γ(ϕ ↔ SM), and Γ(χ ↔ SM), as illustrated in Fig. 1. If

Γ(χ ↔ SM) or min [Γ(ϕ ↔ χ),Γ(ϕ ↔ SM)] is not greater than the Hubble expansion rate,

then thermal equilibrium between the DM and the SM sectors cannot be maintained, leading

to kinetic decoupling of the DM from the SM sector. In such case, the standard relic density

computation, based solely on DM number density evolution, can be inaccurate.

In standard calculations, the initial number density condition for a particle with mass

mi relies on the thermal distribution exp (−mi/T ) at freeze-out. Nonetheless, this approach

becomes inadequate when early kinetic decoupling is considered. Hence, it is necessary to

revert to the original assumption for thermal DM, where particles are presumed to be in

equilibrium with the SM sector as early as T ≈ mi. The standard form of the distribution

1 Since the SM sector is fully in thermal equilibrium before DM freeze-out, the SM temperature T is identical

to the photon temperature.
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at thermal equilibrium (maximum entropy) is

f(Ei, T ) =

[
exp

(
Ei − µ

T

)
± 1

]−1
, (23)

where we can simply assume that chemical potential µ is much less than particle energy

Ei at very high temperature T . The plus sign corresponds to fermions, and the minus sign

corresponds to bosons. The number density ni and temperature Ti of a particle i are defined

as

ni ≡ gi

∫
d3pi

(2π)3
fi(Ei, T ), and Ti ≡

〈
p2
i

3Ei

〉
=

gi
ni

∫
d3pi

(2π)3
p2
i

3Ei

fi(Ei, T ), (24)

respectively. In Eq. (24) above, the dependence on momentum is left implicit in Ei = Ei(pi).

For simplicity, we can represent fi(Ei, T ) as f(Ei) when T matches the temperature of

particle i. Before and during chemical freeze-out, we express the phase space distribution

f(Ei, Ti) in terms of feq(Ei, Ti) using the equation:

f(Ei, Ti) =
n(Ti)

neq(Ti)
feq(Ei, Ti). (25)

When Ti = T and n(Ti)/neq(T ) ≈ 1, full equilibrium between the SM sector and the i sector

is implied.

Finally, we introduce two dimensionless quantities

Yi ≡
ni

s
and yi ≡

mi

s2/3
Ti (26)

corresponding to the comoving number density and the comoving temperature. Here, s =

(2π2/45)gseffT
3 is the entropy density of the universe with effective entropy degrees of freedom

gseff . The evolution equations for Yi and yi can be obtained from the Boltzmann Eq. (22).

Taking i equal to χ or ϕ, we can express the comoving number density and temperature

equations in terms of annihilation cross sections and decay widths, as explained in detail in

Appendix B.

A. The evolution equations of the comoving number density

The temperature of DM, SM, and ϕ can be all different and we represent their tempera-

tures as Tχ, T , and Tϕ, respectively. By introducing the derivative Y ′i = dYi/dx with respect

to the dimensionless variable x ≡ mχ/T , the comoving number density evolution equations
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for χ and ϕ are given by

xH̃Y
′

χ = ⟨σφφ̄→χχv⟩T sY 2
φ,eq − ⟨σχχ→φφ̄v⟩Tχ

sY 2
χ

−⟨σχχ→ϕϕv⟩Tχ
sY 2

χ + ⟨σϕϕ→χχv⟩Tϕ
sY 2

ϕ

+ ⟨Γϕ→χχ⟩Tϕ
Yϕ − ⟨σχχ→ϕv⟩Tχ

sY 2
χ (27)

and

xH̃Y
′

ϕ = ⟨σφφ̄→ϕϕv⟩T sY 2
φ,eq − ⟨σϕϕ→φφ̄v⟩Tϕ

sY 2
ϕ

−⟨σϕϕ→χχv⟩Tϕ
sY 2

ϕ + ⟨σχχ→ϕϕv⟩Tχ
sY 2

χ

−⟨Γϕ→φφ̄⟩Tϕ
Yϕ + ⟨σφφ̄→ϕv⟩T sY 2

φ,eq

−⟨Γϕ→χχ⟩Tϕ
Yϕ + ⟨σχχ→ϕv⟩Tχ

sY 2
χ

+
∑

φ2,φ3,φ4

[
⟨σφ3φ4→ϕφ2v⟩T sYφ3,eqYφ4,eq − ⟨σϕφ2→φ3φ4v⟩(Tϕ,T ) sYφ2,eqYϕ

]
. (28)

The Hubble parameters used in this work are

H̃ ≡ H

[
1 +

1

3

d log(gseff)

d log(T )

]−1
, and H =

√
4π3gseff
45

T 2

mplanck

, (29)

wheremplanck is the Planck mass. The particles (φis) involved in the co-annihilation processes

are SM particles, including gluons g, SM fermions f like leptons l± and quarks q, photons

γ, and Higgs boson. The co-annihilation contributions can be dominated by the process

q + g ↔ f + ϕ before the QCD epoch and f + γ ↔ f + ϕ after the QCD epoch.

We define the thermally averaged annihilation cross-section with temperature Ti and Tj

as

⟨σij→abv⟩(Ti,Tj)
≡ gi

ni,eq(Ti)

gj
nj,eq(Tj)

∫
d3pi

(2π)3
d3pj

(2π)3
σij→ab vMøl feq(Ei, Ti)feq(Ej, Tj)

=
1

ni,eq(Ti)

1

nj,eq(Tj)

∫
dΠidΠjdΠadΠb(2π)

4δ(4)(pi + p̃j − ka − k̃b)

× |Mij→ab|2feq(Ei, Ti)feq(Ej, Tj) (30)

=
1

ni,eq(Ti)

1

nj,eq(Tj)

∫
dE+dE−ds dc

∗
θ

128π(2π)4s

√
λab|Mij→ab|2feq(Ei, Ti)feq(Ej, Tj),

(31)

where the phase space volume element and the number density at thermal equilibrium for

each particle are

dΠi ≡
d3pi

(2π)32Ei

, and ni,eq ≡ gi

∫
d3pi

(2π)3
fi,eq(Ei). (32)
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The index i, j are the initial state particles while a, b are final state particles. If temperature

Ti and Tj are the same, we denote ⟨σv⟩T ≡ ⟨σv⟩(T,T ). The integration in Eq. (31) is performed

for squared center-of-mass energy s = (pi + pj)
2 ≥ max[(mi + mj)

2, (ma + mb)
2], E+ ≡

Ei + Ej ≥
√
s, −1 < c∗θ < 1 and

E+(m
2
j −m2

i )−
√

λij

√
E2

+ − s

s
≤ E− ≤

E+(m
2
j −m2

i ) +
√

λij

√
E2

+ − s

s
. (33)

where E− ≡ Ei − Ej. The cross-section is then given by

σij→ab ≡
1

2gigj
√

λij

∫
|Mij→ab|2(2π)4δ(4)(pi + p̃j − ka − k̃b)dΠadΠb (34)

with Kallen function

λij ≡ (s−m2
i −m2

j)
2 − 4m2

im
2
j = 4v2MølE

2
i E

2
j . (35)

B. The evolution equations of the temperature

Next, the temperature evolution is governed by the equations

xH̃YχTχ

(
y

′
χ

yχ
+

Y
′
χ

Yχ

)
=

H

3

〈
p4
χ

E3
χ

〉
Yχ + ⟨Tχσφφ̄→χχv⟩T sY 2

φ,eq − ⟨Tχσχχ→φφ̄v⟩Tχ
sY 2

χ

−⟨Tχσχχ→ϕϕv⟩Tχ
sY 2

χ + ⟨Tχσϕϕ→χχv⟩Tϕ
sY 2

ϕ

+ ⟨TχΓϕ→χχ⟩Tϕ
Yϕ − ⟨Tχσχχ→ϕv⟩Tχ

sY 2
χ

+Sχϕ(Tχ, Tϕ)sYχYϕ + Sχφ(Tχ, T )sYχYφ,eq (36)

and

xH̃YϕTϕ

(
y

′

ϕ

yϕ
+

Y
′

ϕ

Yϕ

)
=

H

3

〈
p4
ϕ

E3
ϕ

〉
Yϕ + ⟨Tϕσφφ̄→ϕϕv⟩T sY 2

φ,eq − ⟨Tϕσϕϕ→φφ̄v⟩Tϕ
sY 2

ϕ

−⟨Tϕσϕϕ→χχv⟩Tϕ
sY 2

ϕ + ⟨Tϕσχχ→ϕϕv⟩Tχ
sY 2

χ

−⟨TϕΓϕ⟩Tϕ
Yϕ + ⟨Tϕσχχ→ϕv⟩Tχ

sY 2
χ + ⟨Tϕσφφ̄→ϕv⟩T sY 2

φ,eq

+Sϕχ(Tϕ, Tχ)sYχYϕ + Sϕφ(Tϕ, T )sYϕYφ,eq

+
∑

φ2,φ3,φ4

s
[
⟨Tϕσφ3φ4→ϕφ2v⟩T Yφ3,eqYφ4,eq − ⟨Tϕσϕφ2→φ3φ4v⟩(Tϕ,T ) Yφ2,eqYϕ

]
.

(37)
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Considering that the temperature of the sector, e.g., Tχ for the dark sector, is included in

the integral of the thermal average, we define a new physical quantity Tχσv for convenience

as

⟨Tχσij→abv⟩(Ti,Tj)
≡ gi
ni,eq(Ti)

gj
nj,eq(Tj)

∫
dΠidΠjdΠadΠb ×

p2
χ

3Eχ

× (2π)4

× δ(4)(pi + p̃j − ka − k̃b)× |Mij→ab|2 × feq(Ei, Ti)× feq(Ej, Tj). (38)

The thermal averaged momentum exchange in scattering terms include Sχϕ, Sχφ, Sϕχ,

and Sϕφ. Taking Sχϕ as an example, the scattering term for χ(pχ)ϕ(pϕ) → χ(p̃χ)ϕ(p̃ϕ) in

Eq. (36) can be explicitly written as

2gχ

∫
dΠχ

p2
χ

3Eχ

Cχϕ→χϕ =

∫
dΠχ

p2
χ

3Eχ

dΠϕdΠ̃χdΠ̃ϕ(2π)
4δ(4)(pχ + pϕ − p̃χ − p̃ϕ)

× |Mχϕ→χϕ|2
[
fχ(Ẽχ, Tχ)fϕ(Ẽϕ, Tϕ)− fχ(Eχ, Tχ)fϕ(Eϕ, Tϕ)

]
= Sχϕ(Tχ, Tϕ)nχnϕ, (39)

where we have defined

Sχϕ(Tχ, Tϕ) ≡
1

nχ,eq(Tχ)

1

nϕ,eq(Tϕ)

∫
dΠχdΠϕfχ,eq(Tχ, Eχ)fϕ,eq(Tϕ, Eϕ)

×
∫

dΠ̃χdΠ̃ϕ

(
p̃2
χ

3Ẽχ

−
p2
χ

3Eχ

)
(2π)4δ(4)(pχ + pϕ − p̃χ − p̃ϕ)|Mχϕ→χϕ|2 (40)

=
gχ

nχ,eq(Tχ)

gϕ
nϕ,eq(Tϕ)

∫ ∞
mχ

dEχ

∫ ∞
mϕ

dEϕ

∫ smax

smin

dsfχ,eq(Tχ, Eχ)fϕ,eq(Tϕ, Eϕ)

×

√
λ(s,m2

χ,m
2
ϕ)

2× (2π)4

[
−

p2
χ

3Eχ

σχϕ→χϕ +

∫
dΩ

dσχϕ→χϕ

dΩ

p̃2
χ

3Ẽχ

]
. (41)

Unlike the conventional cross-section computation performed in the center of mass frame, the

term p̃2
χ/Ẽχ has to be given in the laboratory frame which discards the usual center-of-mass

simplifications. Comprehensive and detailed calculations are available in Appendix B. Due

to the CPU-intensive computation required for the S terms, we numerically tabulate their

values as a function of temperatures and present their visualization map in Appendix C.

We use the set of four coupled equations (27)–(37) to compute the main result of this

work. In Sec. IV, we will present the numerical evolution and the implications of three

scenarios.
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IV. NUMERICAL RESULT

In Big Bang Nucleosynthesis theory, we commonly assume that the distribution of rel-

ativistic particle number density follows a thermal equilibrium distribution. Therefore, we

apply the same assumption to thermal dark matter and use it as the initial condition for the

Boltzmann equation. According to the convention in Ref. [41], the non-relativistic condi-

tion is x ≡ mχ/T ≫ 3, thus we evolve the Boltzmann equations with the initial conditions

Tχ = Tϕ = T starting from x = 3.

To easily demonstrate our result, we set µ3 = 0 to exclude the three-scalar-vertex in

this study, allowing all interaction cross sections between χ and the SM to be scaled by

sin θ and cs. In this study, we ignore λΦ to focus on the interactions among three sectors,

and set cp = 0 for simplicity. In the following subsections, we will present the evolution of

the comoving number density Yi and temperature yi with respect to x for three scenarios.

For comparison, we will calculate the DM relic density using the evolution of DM density

alone (denoted as “Only-Yχ BE”), DM density and temperature (denoted as “Yχ-and-yχ

BEs”), and the full Boltzmann equations (denoted as “Full BEs”). The method Only-Yχ

BE is similar to how MicrOMEGAs works, while Yχ-and-yχ BEs would be similar to the DRAKE

code [42]. Results labeled “Full BEs” correspond to our set of four coupled Boltzmann

equations that are studied in this work for the first time.

A. Scenario (i): Forbidden DM mϕ ≈ mχ

In Fig. 2, we present the comparison of interaction rates with the Hubble parameter H in

the context of the forbidden DM scenario. Adoptingmχ = 0.1GeV,mϕ = 0.13GeV, cs = 0.1

and λϕH = 1.0 as benchmark values, we set sin θ = 10−3 to catch the unique characteristics

of the forbidden DM nature. In the left panel, elastic scattering χϕ → χϕ dominates the

evolution at x <∼ 30, while annihilation χχ → ϕϕ is subdominant and decouples around

x ≈ 22. This implies that kinetic decoupling between χ and ϕ sectors occurs after their

chemical decoupling. In the right panel, the ϕ sector, despite ϕ → χχ being forbidden,

maintains thermal equilibrium with the SM sector efficiently through processes like ϕ → ff̄

and co-annihilation.

In Fig. 3, we illustrate the evolution obtained by numerically solving Eq. (26) for the

13
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Forbidden DM :  m = 0.1 Gev, m = 0.13 GeV, sin = 10 3, cs = 0.1 and H = 1.0

FIG. 2: Reaction rates for the forbidden DM scenario using mχ = 0.1 GeV, mϕ = 0.13 GeV,

sin θ = 10−3, cs = 0.1 and λϕH = 1.0. The left panel shows the interactions relevant to χ, while the

interactions in the right panel correspond to ϕ. Here, we denote f±, g, and γ as charged fermions,

gluon, and photon in the SM, respectively.

comoving number density Yi (upper left), comoving temperature yi (upper right), Tχ,ϕ,SM

(lower left), and a comparison of three cases (Only-Yχ BE, Yχ-and-yχ BEs and Full BEs

cases discussed before) in the lower right panel.

The upper-left panel of Fig. 3 displays the evolution of the comoving number densities

of χ and ϕ, represented by green and orange solid lines, respectively. The dashed line

corresponds to the thermal equilibrium distribution. When Yχ (green solid line) departs

from Yχ,eq (green dashed line), the chemical decoupling of χ occurs at x ≈ 20. For x <∼ 20, Yϕ

and Yϕ,eq evolve similarly, due to substantial ϕ decay that sustains the thermal equilibrium,

as illustrated in Fig. 2. The upper-right panel of Fig. 3 interestingly shows the ϕ comoving

temperature evolution. Here, yϕ (blue solid line) deviates from yϕ,eq (blue dashed line) at

the DM freeze-out and closely, or even identically, aligns with yχ,eq (red dashed line) in the

20 < x < 50 range, a result of the efficient ϕϕ → χχ annihilation and elastic scattering

χϕ → χϕ. However, once the ϕϕ → χχ annihilation and χϕ → χϕ cease, co-annihilation

take over, transferring energy between the ϕ and SM sectors. Consequently, yϕ becomes to

yϕ,eq for x > 100. The complex evolution of the ϕ temperature can be further understood by

14
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FIG. 3: Numerical evolution for the forbidden DM scenario by using parameters mχ = 0.1GeV,

mϕ = 0.13GeV, sin θ = 10−3, cs = 0.1 and λϕH = 1.0. The upper left and upper right panels

show the number density Y and temperature y evolution with solid and dashed lines representing

actual numerical evolution and predicted results in thermal equilibrium. In the lower-left panel,

Tχ is presented with a red solid line, Tϕ with a blue dashed line, and TSM with a gray dash-dotted

line while varying TSM. The lower right panel illustrates comoving number density Yχ (blue left

axis) and comoving temperature yχ (red right axis) using blue and red lines; Those solid, dashed,

and dotted lines are based on the calculation of full Boltzmann equations, Yχ and yχ Boltzmann

equations, and only Yχ Boltzmann equation, respectively.
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FIG. 4: Relic density Ωχh
2 for the forbidden DM scenario, as a function of cs (left panel) and

sin θ (right panel). Three numerical approaches are compared by red solid lines (Full BEs), blue

dashed lines (Yχ-and-yχ BEs), and orange dash-dotted lines (Only-Yχ BEs).

comparing Tχ (red line), Tϕ (blue line), and TSM (gray line) in the lower-left panel of Fig. 3.

The lower-right panel of Fig. 3 compares numerical evolution equations for Y (blue, left

axis) and y (red, right axis) using three computational methods: Full BEs (solid lines),

Yχ-and-yχ BEs (dashed lines), and Only-Yχ BE (dotted lines). We first tune the coupling

parameters to match the Planck measured relic density (black line) using the Only-Yχ BE

approach, then apply these parameters to compute the evolution with the other two meth-

ods. Surprisingly, in the forbidden DM scenario, the Yχ-and-yχ BEs approach shows little

difference compared to the conventional Only-Yχ BE approach, while the Full BEs approach

yields significantly different results compared with the other two simplified approaches.

In Fig. 4, we present the relic density Ωχh
2 with respect to cs (left panel) and sin θ (right

panel). The benchmark parameters are mχ = 0.1GeV, mϕ = 0.13GeV and λϕH = 1.0. The

red solid lines, blue dashed lines, and orange dash-dotted lines correspond to the Full BEs,

Yχ-and-yχ BEs, and Only-Yχ BEs approaches, respectively. In the left panel, sin θ = 10−3

remains constant as cs changes, while in the right panel, sin θ varies for cs = 0.1. Both

panels exhibit similar trends when cs and sin θ are varied. The results from Yχ-and-yχ

BEs and Only-Yχ BEs are similar, but those from Full BEs show a greater deviation due
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to early kinetic decoupling effects in the ϕ sector, which are not considered in the former

methods. Specifically, for this benchmark point (sin θ = 10−3, cs = 0.1), the relic density

computed by Only-Yχ BEs matches the Planck measurement Ωχh
2 = 0.11, whereas the

results from Yχ-and-yχ BEs and Full BEs exceed this value by approximately 10% and

72%, respectively. Furthermore, when comparing the Full BEs approach with the other

two approaches in both panels, we observe larger differences between Full BEs and Only-Yχ

BEs when varying sin θ compared to varying cs. This occurs because the interactions between

ϕ and SM particles are proportional to sin2 θ, and affect the early kinetic decoupling of the

ϕ sector.

B. Scenario (ii): Resonance DM mϕ ≈ 2mχ
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Resonance DM :  m = 2.2 Gev, m = 4.7 GeV, sin = 0.01, cs = 10 3 and H = 1.0

FIG. 5: Reaction rates for the resonance DM scenario using mχ = 2.2GeV, mϕ = 4.7GeV,

sin θ = 0.01, cs = 10−3 and λϕH = 1.0. The color scheme matches that of Fig. 2.

For convenience, in this scenario we use xpole ∼ 1.5/
(
1−R2

χ

)
, where Rχ = 2mχ/mϕ, to

characterize the cross section peak for annihilation χχ → ff̄ . To emphasize the impact

of temperature, we require the peak to fall within 3 < x ≤ 25, and choose benchmark

parameters: mχ = 2.2GeV, mϕ = 4.7GeV, sin θ = 10−2, cs = 10−3 and λϕH = 1.0. With

this setup, the characteristic peak occurs at x ≈ 10.
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In Fig. 5, we compare interaction rates with the Hubble parameter H in the resonance

DM scenario. Annihilation χχ → ff̄ dominates evolution at x ≲ 20 in the left panel, while

the elastic scattering rate χf → χf stays below H, indicating that heat transfer between

χ and SM particles relies solely on annihilation. Due to the mass condition mϕ ≈ 2mχ,

χχ → ϕϕ annihilation and χϕ elastic scattering decouple at x ≈ 6 and x ≈ 8, respectively.

This suggests kinetic decoupling between χ and ϕ sectors, occurring before the DM freeze-

out. The reaction rate χχ → ϕϕ exhibits a dip at x = 10 due to rapid reduction of χ near

the peak of χχ → ff̄ , something that will be discussed further when we introduce Fig. 6.

In the right panel, ϕ efficiently maintains thermal equilibrium with the SM via ϕ → ff̄ .

Additionally, at x ≈ 23, ϕ → ff̄ significantly exceeds ff̄ → ϕ, representing heat transfer

solely from ϕ to the SM sector.

We illustrate the resulting numerical evolution of the resonance scenario in Fig. 6. In the

upper-left panel of Fig. 6, when Yχ (green solid line) and Yϕ (orange solid line) depart from

Yχ,eq (green dashed line) and Yϕ,eq (orange dashed line), the freeze-out of χ and ϕ occurs at

x ≈ 20 and x ≈ 23, respectively. The upper-right panel shows that yχ (red solid line) departs

from yχ,eq (red dashed line) at x ≈ 7, and yϕ (blue solid line) leaves yϕ,eq (blue dashed line)

at x ≈ 18. This indicates that for both χ and ϕ, their kinetic decoupling appears before

their chemical decoupling.

From the low-left panel in Fig. 6, we can observe that the three sectors maintain thermal

equilibrium initially, then Tχ and Tϕ increase rapidly until TSM ≈ 0.1GeV. However, in the

range TSM >∼ 0.1GeV, Tϕ is flat but Tχ decreases. From looking at Fig. 5, we can see that

the increase in Tχ results from χχ → ff̄ reaching the cross-section peak and, therefore,

DM particles with temperature Tχ being massively consumed while new DM particles with

higher speed are continuously generated by ϕ-decay. To all that, adding that the higher

temperature enhances the averaged cross-section, thus, the intriguing Γχχ→ϕϕ dip in Fig. 5

can be related to the decrease in nχ first accompanied by the successive enhancement of

averaged cross-section. Similarly, Tϕ increases because ff̄ → ϕ becomes less efficient than

ϕ → ff̄ with ϕs with lower temperature being massively consumed while new ϕs with higher

speed are generated by ϕf → ϕf and those inverse co-annihilation processes.

In the lower-right panel of Fig. 6, the Full BEs and Yχ-and-yχ BEs approaches yield

almost identical results, contrasting significantly with those from using Only-Yχ BEs. The

Full BEs approach agrees with the one obtained using Yχ-and-yχ BEs because ϕ sector
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FIG. 6: Numerical results for the resonance DM scenario using mχ = 2.2GeV, mϕ = 4.7GeV,

sin θ = 0.01, cs = 10−3 and λϕH = 1.0. The color schemes are the same as Fig. 3.

remains in equilibrium with the SM sector even after χ-SM decoupling. However, the differ-

ence with Only-Yχ BEs approach arises as χ kinetically decouples from the other two sectors

before its chemical decoupling. Hence, for this benchmark resonance scenario, the standard

calculation using Only-Yχ BEs may underestimate the relic density by a factor of ten.

In Fig. 7, we depict the relic density Ωχh
2 as a function of cs (left panel) and sin θ (right

panel), with mχ = 2.2GeV and mϕ = 4.7GeV as benchmark points. Similar to Fig. 4, the

left panel uses fixed sin θ = 0.01 with different cs values, while the right panel has fixed
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FIG. 7: Same as Fig. 4 but for the resonance DM scenario with parameters mχ = 2.2GeV and

mϕ = 4.7GeV.

cs = 10−3 with changing sin θ to calculate the relic density. Overall, both panels show that

results from Full BEs and Yχ-and-yχ BEs are consistent but differ by approximately an

order of magnitude from the result using Only-Yχ BEs, for all the values of cs and sin θ

displayed in Fig. 7. Referring back to Fig. 5, we note that the heat transfer between the

dark and SM sectors depends entirely on the process χχ → ff̄ , with heat and density

transfer being controlled by sin θ and cs in the same way. Therefore, altering sin θ and cs

cannot induce kinetic decoupling of DM following its chemical decoupling, as heat transfer

is always less efficient than number density transfer in the χχ → ff̄ process. After kinetic

decoupling, the heat transfer between the dark sector and the other two sectors is trivial, and

the relic density is inversely proportional to the annihilation cross-section ⟨σv(χχ → ff̄)⟩ ∝

(cs sin θ)
2. Thus, in contrast with the forbidden scenario, the three numerical approaches in

the resonance scenario cannot be unified at large cs and sin θ values.

We would like to address the case where the ϕ sector decouples from the SM sector before

the dark sector, potentially leading to different outcomes between Full BEs and Yχ-and-yχ

BEs. However, finding a parameter combination where such case is realized is challenging. A

weaker interaction causing earlier decoupling of the ϕ sector demands a smaller sin θ and a

finely tuned value for the resonance parameter (1−R2
χ). The annihilation process χχ → ff̄
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with these parameters may reach its peak later than our intended time frame, leading to an

overabundance of relic density. Moreover, maintaining thermal equilibrium among the three

sectors at x ≈ 3, our default initial conditions, becomes difficult with such a small sin θ.

Therefore, we can conclude that in the resonance scenario, it is crucial to precisely consider

the evolution of DM temperature, without extending to include ϕ evolution.

C. Scenario (iii): Secluded DM: mϕ ≪ mχ
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Secluded DM :  m = 1.0 Gev, m = 0.01 GeV, sin = 10 9, cs = 0.045 and H = 0.1

FIG. 8: Comparison of interaction rates with the Hubble parameter H in the context of the

secluded DM scenario, by using model parameters aremχ = 1.0GeV, mϕ = 0.01GeV, sin θ = 10−9,

cs = 0.045 and λϕH = 0.1. The color scheme follows Fig. 2.

Lastly, we examine the secluded DM scenario in detail. In this scenario, the main annihi-

lation channel of the secluded DM scenario is χχ → ϕϕ. To obtain the correct relic density,

the cross-section for this annihilation must have a large phase space integral, particularly

when mχ ≫ mϕ, to compensate for tiny sin θ. Hence, we set sin θ = 10−9, mχ = 1.0GeV,

mϕ = 0.01GeV, cs = 0.045, and λϕH = 0.1 as benchmark parameters for our analysis of the

secluded DM scenario.

In Fig. 8, we present the comparison of interaction rates against H in the context of the

secluded DM scenario. The left panel shows scatterings related to χ, where we see that
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the evolution of χ is primarily driven by the highly efficient elastic scattering χϕ → χϕ,

while the subdominant process χχ → ϕϕ decouples at x ≈ 22. This indicates that kinetic

decoupling between χ and ϕ occurs after their chemical decoupling. Regarding interactions

between χ and the SM sector, elastic scatterings χf → χf and annihilations χχ → ff̄

are far below the Hubble parameter due to suppression by sin θ, suggesting no direct heat

transfer between χ and the SM sector, but rather indirect transfer via ϕ. In the right panel,

it can be observed that the dominant process is ϕf → ϕf , decoupling at x ≈ 50, while the

subdominant reaction rate for ϕϕ → ff̄ falls an order of magnitude below H for x > 100.

Regarding ϕ decay and co-annihilation, their reaction rates remain significantly below H,

indicating negligible effects in the evolution of ϕ.

The numerical evolution results of the secluded scenario are illustrated in Fig. 9. In

the upper-left panel, both Yχ (green solid line) and Yϕ (orange solid line) deviate from

their equilibrium values (Yχ,eq in the green dashed line and Yϕ,eq in the orange dashed line),

marking the freeze-out of χ and ϕ at approximately x ≈ 22 and x ≈ 120, respectively. In the

upper-right panel, both yχ (red solid line) and yϕ (blue solid line) differ from their equilibrium

values (yχ,eq in red dashed line and yϕ,eq in blue dashed line) around x ≈ 150. This implies

that both χ and ϕ undergo kinetic decoupling later than their chemical decoupling.

The temperature evolution among the three sectors, illustrated in the lower-left of Fig. 9,

highlights that the temperatures of χ and ϕ remain identical within our range of interests due

to efficient heat transfer via elastic scattering χϕ → χϕ, until they deviate from TSM around

T ≈ 0.006GeV when ϕϕ → ff̄ decouples. This shared temperature between the dark and

ϕ sectors, together with the kinetic decoupling of χ occurring after its chemical decoupling,

results in nearly identical outcomes between the Yχ-and-yχ BEs and Only-Yχ BEs methods,

shown as dashed lines in the lower-right panel of Fig. 6. They are slightly different from

Full BEs due to asymmetry in the Sχϕ term2. Nevertheless, this difference leads to a

significant systematic uncertainty of around 9%, comparable to uncertainties originating

from the entropy table [43] but surpasses the uncertainty of Planck measurement [8].

Similar to the DM resonance case, in this scenario we did not find a suitable range for

cs and sin θ where the Full BEs approach would show a significant shift. In our secluded

DM setup, where the thermal equilibrium is maintained between the dark and ϕ sectors,

2 Refer to Fig. 10 in Appendix C
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FIG. 9: Same as on Fig. 3 but showing for the secluded DM with mχ = 1.0GeV, mϕ = 0.01GeV,

sin θ = 10−9, cs = 0.045 and λϕH = 0.1.

and all three sectors are assumed to be in thermal equilibrium at x = 3, the improvement

brought by the Full BEs approach is not as pronounced as in the forbidden DM scenario.

Furthermore, the discrepancy arising from the asymmetry in the Sχϕ term must be sizable,

because secluded DM particles mainly annihilate via the χχ → ϕϕ channel controlled by the

same couplings as χϕ → χϕ. Additionally, sin θ has no impact on the Sχϕ term. Therefore,

it is unnecessary to include plots analogous to Figs. 4 and 7 in this scenario.
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V. SUMMARY AND CONCLUSION

When the dark sector interacts with the SM sector through a light scalar particle ϕ, the

heat transfer between the dark and SM sectors becomes intricate. Previous studies often rely

on the simplest assumption to calculate the DM relic density: these two sectors are in thermal

equilibrium before freeze-out. However, when incorporating the interaction between ϕ and

the SM sector, the mixing angle sin θ is strongly constrained by experimental data, leading

to insufficient heat transfer between ϕ and SM particles to maintain thermal equilibrium.

Moreover, the absence of a signal in DM direct detection experiments may indicate that the

coupling between DM and ϕ (cs in the present analysis) may be suppressed. Consequently,

three distinct sectors emerge—the DM sector, the ϕ sector, and the SM sector—prior to

the DM freeze-out. It becomes important to consider Boltzmann equations for the densities

and temperatures of all relevant sectors to accurately compute the DM relic density. In this

study, we have developed four fully coupled Boltzmann equations to precisely determine the

relic density and dark temperature with contributions from these three sectors.

We utilize the minimal Higgs portal Model to study Boltzmann equations for densities

and temperatures, focusing on light χ and ϕ particles with masses approximately O(1)GeV

or lower. The relevant model parameters include mχ, mϕ, sin θ, cs and λϕH , governing

the interaction rate. Inspired by previous works, we investigate three scenarios featuring

early decoupling: (i) forbidden DM with mχ ≲ mϕ, (ii) resonance DM with 2mχ ≈ mϕ,

and (iii) secluded DM with mχ ≫ mϕ; crucial for understanding DM annihilation in the

early universe. We analyze the evolution of comoving number density Yi and temperature

yi for these scenarios. To quantitatively verify the results obtained by the full Boltzmann

equations (Full BEs), we compare them against other well studied approaches: considering

only DM density evolution (Only-Yχ BE), and incorporating both DM density and temper-

ature evolutions (Yχ-and-yχ BEs). While these two approaches resemble existing codes like

MicrOMEGAs and DRAKE, the approach of this work, Full BEs, is introduced for the first

time.

In the forbidden DM scenario, while the results from Only-Yχ BEs and Yχ-and-yχ BEs

show similarity, the Full BEs method exhibits a more significant deviation. This is due

to early kinetic decoupling effects within the ϕ sector. Specifically, using a benchmark

point we show that the relic density calculated by Only-Yχ BEs could align with Planck

24



measurements, while the results from Yχ-and-yχ BEs and Full BEs could exceed this value

by approximately 10% and 72%, respectively. When varying sin θ compared to varying cs,

larger differences are observed between Full BEs and Only-Yχ BEs because of the early

kinetic decoupling in the ϕ sector.

In the resonance DM scenario, heat transfer compared to number density transfer is

less efficient. Moreover, modifying sin θ and cs does not lead to kinetic decoupling of DM

after chemical decoupling, as long as we require the resonance peak to happen at a higher

temperature than the freeze-out temperature. Unlike the forbidden scenario, the three

numerical approaches in the resonance scenario cannot be reconciled at large cs and sin θ.

Results from Full BEs and Yχ-and-yχ BEs remain consistent but deviate by an order of

magnitude from Only-Yχ BEs, regardless of cs and sin θ values.

In the secluded DM scenario, the outcomes of the Yχ-and-yχ BEs and Only-Yχ BEs

methods are nearly identical due to the nature of the scenario. However, the Full BEs

approach can introduce a considerable systematic uncertainty of approximately 9%, compa-

rable to uncertainties originating from entropy tabular data but exceeding the uncertainties

in Planck measurement. This discrepancy arises from the asymmetry in the scattering term

Sχϕ, which is spontaneously induced for a nonzero cs.

To summarize, while our full calculation is CPU intensive, increasing the time and energy

requirements, it is worthwhile to compute the relic density of DM using a complete set of

coupled Boltzmann equations for χ and ϕ, especially in scenarios where early decoupling

occurs. When comparing our numerical results obtained from the Full BEs approach with

those from the Only-Yχ BEs and Yχ-and-yχ BEs approaches, we observe significant differ-

ences between the Full BEs and Only-Yχ BEs methods, particularly for the forbidden DM

and the resonance DM scenarios. However, in the case of resonance DM, the results obtained

from the Full BEs approach are nearly identical to those obtained from the Yχ-and-yχ BEs

approach. While the differences in the secluded DM scenario are not as pronounced as in the

other two scenarios, precise relic density computation still demonstrates a considerable im-

provement compared to standard computation methods. We hope that future works based

on this approach will increase CPU efficiencies and identify cases where a full treatment is

appropriate.
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Appendix A: The collision terms

In this section, we present the collision terms in Eq. (22).

1. Collision terms of χ

For the DM χ, the dominant processes include annihilation into φSMφ̄SM or ϕϕ as well

as the inverse mediator decay χχ → ϕ. Since the elastic scattering terms do not change the

number density of χ or ϕ, they can be omitted for density evolution but they have to be

included for temperature evolution. Thus the collision term is written as

Cχ = Cann
χ + Cdec

χ + Cel
χ .

In this work, the squared invariant amplitude |M|2 is summed over all internal degrees of

freedom of all initial and final state particles involved.

• χχ annihilation term (Cann
χ ):

DM can annihilate to a pair of SM particles φ or the new scalars ϕ. Hence, the

annihilation term can be written as

Cann
χ = Cχχ→φφ̄ + Cχχ→ϕϕ, (A1)
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where

Cχχ→φφ̄ =
1

2gχ

∫
dΠχ

∫
dΠφ

∫
dΠφ̃ × (2π)4δ(4)(pχ + p̃χ − k − k̃)

×
[
|Mχχ←φφ̄|2fφ(ω)fφ̄(ω̃)− |Mχχ→φφ̄|2fχ(Tχ, Eχ)fχ(Tχ, Ẽχ)

]
,

Cχχ→ϕϕ =
1

2gχ

∫
dΠχ

∫
dΠϕ

∫
dΠϕ̃ × (2π)4δ(4)(pχ + p̃χ − pϕ − p̃ϕ)

×
[
|Mχχ←ϕϕ|2fϕ(Tϕ, Eϕ)fϕ(Tϕ, Ẽϕ)− |Mχχ→ϕϕ|2fχ(Tχ, Eχ)fχ(Tχ, Ẽχ)

]
.

(A2)

In the absence of Boson condensation or Fermi degeneracy, we have ignored Pauli

blocking and Bose enhancement factors, i.e., (1± fi) ≈ 1. Here, we define

dΠi ≡
d3pi

(2π)32Ei

. (A3)

• Decay term (Cdec
χ ):

The decay term for the WIMP ϕ → χχ is given by

Cdec
χ =

1

2gχ

∫
dΠχ̃

∫
dΠϕ(2π)

4δ(4)(pϕ − pχ − p̃χ)

×
[
|Mϕ→χχ|2fϕ(Tϕ, Eϕ)− |Mϕ←χχ|2fχ(Tχ, Eχ)fχ(Tχ, Ẽχ)

]
. (A4)

• Elastic scattering term (Cel
χ ):

Since the scattering χϕ → χϕ and χφ → χφ do not change the number particles, this

term is only used in the second-moment (temperature evolution). The scattering term

Cel
χ contains two components, Cχφ→χφ and Cχϕ→χϕ. They can be written as

Cχφ→χφ =
1

2gχ

∫
dΠχ̃

∫
dΠφ

∫
dΠφ′(2π)4δ(4)(pχ + k − p̃χ − k̃)

× |Mχφ→χφ|2
[
fφ(ω̃)fχ(Tχ, Ẽχ)− fφ(ω)fχ(Tχ, Eχ)

]
, (A5)

Cχϕ→χϕ =
1

2gχ

∫
dΠχ̃

∫
dΠϕ

∫
dΠϕ̃(2π)

4δ(4)(pχ + pϕ − p̃χ − p̃ϕ)

× |Mχϕ→χϕ|2
[
fχ(Tχ, Ẽχ)fϕ(Tϕ, Ẽϕ)− fχ(Tχ, Eχ)fϕ(Tϕ, Eϕ)

]
. (A6)

Again, we have ignored the effects of Fermi blocking and Bose enhancement factors.
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2. Collision terms of ϕ

In addition to annihilation, decay, and elastic scattering terms, the collision terms of the

new scalar Cϕ contain an co-annihilation term as well

Cϕ = Cann
ϕ + Cdec

ϕ + Cco
ϕ + Cel

ϕ .

Their explicit forms are presented below.

• ϕϕ annihilation term (Cann
ϕ ):

The annihilation and scattering terms are analogous to Cχ. We can simply make

χ ↔ ϕ in Cann
χ and Eq. (A2).

• Decay term (Cdec
ϕ ):

The new scalar ϕ decays into SM final states as well as WIMP pairs. The ϕ decay

term can be divided in two components

Cdec
ϕ = Cϕ→φφ̄ + Cϕ→χχ, (A7)

where

Cϕ→φφ̄ =
1

2gϕ

∫
dΠφ

∫
dΠφ̃ × (2π)4δ(4)(pϕ − k − k̃)

×
[
−|Mϕ→φφ̄|2fϕ(Tϕ, Eϕ) + |Mϕ←φφ̄|2fφ(ω)fφ̃(ω̃)

]
, (A8)

Cϕ→χχ =
1

2gϕ

∫
dΠχ̃

∫
dΠχ × (2π)4δ(4)(pϕ − pχ − p̃χ)

×
[
−|Mϕ→χχ|2fϕ(Tϕ, Eϕ) + |Mϕ←χχ|2fχ(Tχ, Eχ)fχ(Tχ, Ẽχ)

]
. (A9)

• SM-ϕ co-annihilation term (Cco
ϕ ):

The interaction rate between ϕ and the SM sector can be dominated by co-annihilation

processes involving photons and gluons [24]. The new scalar can absorb a massless

gauge boson φb (photon or gluon) and then emit a pair of SM fermions as ϕφb → φfφf .

Additionally, the co-annihilation with a SM fermion ϕφf → φbφf can take place.

Hence, the co-annihilation term can be written as

Cϕφ2→φ3φ4 =
1

2gϕ

∫
dΠφ2

∫
dΠφ̃3

∫
dΠφ4(2π)

4δ(4)(pϕ + k2 − k3 − k4)

×
[
|Mϕφ2←φ3φ4|2fφ̃3(ωφ̃3)fφ4(ωφ4)− |Mϕφ2→φ3φ4|2fϕ(Tϕ, Eϕ)fφ2(ω2)

]
.

(A10)
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• Elastic scattering term (Cel
ϕ ):

The elastic scattering does not change the number density but contributes to temper-

ature evolution. Therefore, this term is only included in second-moment equations.

The scattering term Cel
ϕ can obtained by doing the exchange χ ↔ ϕ in Eqs. (A5) and

(A6).

Appendix B: Number density and temperature evolution equations

The number density and temperature evolution equations can be obtained by integrating

Eq. (22) with p0
i and p2

i /Ei over the phase space, respectively. In this section, we demon-

strate the derivation of the number density evolution for Yχ Eq. (27) and Yϕ Eq. (28). The

temperature evolution for Tχ Eq. (36) and Tϕ Eq. (36) are also presented.

1. Number density evolution

The number density evolution (zeroth-moment) equation is found by integrating Eq. (22)

over the phase space

gi

∫
dΠi E (∂t −Hp · ∇p) fi = gi

∫
dΠi Ci[fi] (B1)

The left hand side (LHS) of Eq. (B1) becomes

gi

∫
d3p

(2π)3
(∂t −Hp · ∇p) fi(p) =

dni

dt
+ 3Hni = xH̃sY ′i , (B2)

where we have used integration by parts and conservation of entropy, i.e., d(sa3)/dt = 0 with

s = (2π2/45)gseffT
3 being the entropy density, gseff the effective entropy degrees of freedom,

and a the scale factor of the universe. The factor xH̃ arises from differentiation with respect

to the variable x ≡ mχ/T , where we have defined

H̃ ≡ H

[
1 +

1

3

d log(gseff)

d log(T )

]−1
. (B3)

For the right hand side (RHS) of Eq. (B1), excepting the elastic scattering term that does

not change number density, we present the integration of the annihilation and decay terms

in what follows.
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a. The annihilation terms

Here we summarize the annihilation terms of χ and ϕ in the RHS of Eq. (B1).

• χχ → φφ̄ and χχ → ϕϕ̄:

By using Eq. (25), the DM annihilation to a SM pair can be rewritten as

2gχ

∫
dΠχ × (Cχχ→φφ̄ + Cχχ→ϕϕ) = ⟨σvφφ̄→χχ⟩T n2

φ,eq(T )− ⟨σvχχ→φφ̄⟩Tχ
n2
χ(Tχ)

−⟨σvχχ→ϕϕ⟩Tχ
n2
χ(Tχ) + ⟨σvϕϕ→χχ⟩Tϕ

n2
ϕ(Tϕ). (B4)

The collision terms Cχχ→φφ̄ and Cχχ→ϕϕ̄ are given in Eq. (A2) and ⟨σv⟩Ti
is defined in

Eq. (30). Here, we assume fi to have Maxwellian form before kinetic decoupling.

Replacing the number density ni to the comoving number density Yi with Eq. (26),

we can obtain the first two rows of Eq. (27).

• ϕϕ → φφ̄ and ϕϕ → χχ̄:

Similarly, the annihilation of ϕ can be obtained by exchanging χ and ϕ in Eq. (B4),

2gϕ

∫
dΠϕ (Cϕϕ→φφ̄ + Cϕϕ→χχ̄) = ⟨σvφφ̄→ϕϕ⟩T n2

φ,eq(T )− ⟨σvϕϕ→φφ̄⟩Tϕ
n2
ϕ(Tϕ)

+ ⟨σvχχ→ϕϕ⟩Tχ
n2
χ(Tχ)− ⟨σvϕϕ→χχ⟩Tϕ

n2
ϕ(Tϕ). (B5)

The above equation is the first two rows of Eq. (28).

b. The decay terms

The zeroth moment of the decay term in the Eq. (27) is

2gχ

∫
dΠχ × Cdec

χ =

∫
d3pϕ

(2π)32Eϕ

∫
d3pχ

(2π)32Eχ

∫
d3p̃χ

(2π)32Ẽχ

× (2π)4δ(4)(pϕ − pχ − p̃χ)

× |Mϕ→χχ|2
[
fϕ(Tϕ, Eϕ)− fχ(Tχ, Eχ)fχ(Tχ, Ẽχ)

]
= gϕ

∫
d3pϕ

(2π)3
Γϕ→χχ

nϕ(Tϕ)

nϕ,eq(Tϕ)
fϕ,eq(Tϕ, Eϕ)

− g2χ

∫
d3pχ

(2π)3

∫
d3p̃χ

(2π)3
σvχχ→ϕ

n2
χ(Tχ)

n2
χ,eq(Tχ)

fχ,eq(Tχ, Eχ)fχ,eq(Tχ, Ẽχ)

= ⟨Γϕ→χχ⟩Tϕ
nϕ(Tϕ)− ⟨σvχχ→ϕ⟩Tχ

n2
χ(Tχ) (B6)
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where the thermally averaged partial decay width is given by

⟨Γϕ→χχ⟩Tϕ
≡ gϕ

nϕ,eq(T )

∫
d3pϕ

(2π)3
Γϕ→χχfϕ(Tϕ, Eϕ). (B7)

For the new scalar ϕ, one can obtain the decay term in Eq. (28), by simply swapping χ

and ϕ in Eq. (B6) but we note that the signs of two terms are different as seen in Eq. (28)

for increasing and decreasing particles. However, the additional terms for decay into a pair

of the SM final states are

2gϕ

∫
dΠϕ × Cϕ→φφ̄ =

∫
d3pϕ

(2π)32Eϕ

∫
d3k

(2π)32ω

∫
d3k̃

(2π)32ω̃

× (2π)4δ(4)(pϕ − k − k̃)|Mϕ→φφ̄|2 [−fϕ(Eϕ) + f(ω)f(ω̃)]

= − ⟨Γϕ→φφ̄⟩Tϕ
nϕ(Tϕ) + ⟨σvφφ→ϕ⟩T n2

φ,eq(T ). (B8)

c. Co-annihilation

The zeroth moment of Cϕφ2→φ3φ4 term is obtained by a similar procedure as in the

annihilation terms

2gϕ

∫
dΠϕ × Cϕφ2→φ3φ4

= gϕgφ2

∫
d3pϕ

(2π)3

∫
d3k2

(2π)3
σvϕφ2→φ3φ4 [fφ3(ω3)fφ4(ω4)− fϕ(Tϕ, Eϕ)fφ2(ω2)]

= ⟨σvφ3φ4→ϕφ2⟩T nφ3,eq(T )nφ4,eq(T )− ⟨σvϕφ2→φ3φ4⟩(Tϕ,T ) nϕ(Tϕ)nφ2(T ). (B9)

Note that the temperatures T and Tϕ can be different. The energy distributions of two

initial particles in Eq. (30) can be different as well.

2. Temperature evolution

The temperature evolution (second-moment) equations are found by integrating Eq. (22)

with the second moment over phase space

gi

∫
dΠi ×

p2
i

Ei

× E (∂t −Hp · ∇p) fi = gi

∫
dΠi ×

p2
i

Ei

× Ci[fi] (B10)

31



The LHS of Eq. (B10) becomes

3
d(Tini)

dt
+ 15HTini −H

〈
p4
i

E3
i

〉
ni

= 3niTi

(
Ẏi

Yi

+
ẏi
yi

− 5H

)
+ 15HTini −H

〈
p4
i

E3
i

〉
ni

= 3xH̃niTi

(
Y ′i
Yi

+
y′i
yi

)
−H

〈
p4
i

E3
i

〉
ni. (B11)

Here, we have used integration by parts and the energy-momentum relation E2
i = m2

i + p2
i .

The thermal average of p4
i /E

3
i is given by〈

p4
i

E3
i

〉
≡ gi

ni

∫
d3pi

(2π)3
p4
i

E3
i

fi(Ei). (B12)

In the following, we show the RHS of Eq. (B10). All the collision terms, including elastic

scattering, will contribute to the second-moment equations.

a. Elastic scattering

Considering a process χ(pχ) + ϕ(pϕ) → χ′(p̃χ) + ϕ′(p̃ϕ), the temperature term p2
χ/Eχ

can be easily obtained while p̃2
χ/Ẽχ requires some additional algebra work as shown below.

The integrals over Π̃χ and Π̃ϕ of Eq. (41) can also be directly computed as an integral over

the solid angle of the outgoing χ particle

2

∫
dΠ̃χdΠ̃ϕ

(
p̃2
χ

Ẽχ

−
p2
χ

Eχ

)
(2π)4δ(4)(pχ + pϕ − p̃χ − p̃ϕ)|Mχϕ→χϕ|2

= 2

∫
p̃2
χdΩ

16π2ẼχẼϕ

(
p̃2
χ

Ẽχ

−
p2
χ

Eχ

)∣∣∣∣∣ |p̃χ|
Ẽχ

+
|p̃χ| − |pχ + pϕ| cosα

Ẽϕ

∣∣∣∣∣
−1

|Mχϕ→χϕ|2

= 2

∫
dΩ

16π2

p̃4
χ/Ẽχ − p2

χp̃
2
χ/Eχ∣∣∣|p̃χ|(Eχ + Eϕ)− |pχ + pϕ|Ẽχ cosα

∣∣∣ |Mχϕ→χϕ|2, (B13)

where α is defined as the angle between pχ + pϕ and p̃χ.

We can solve p̃χ by choosing a coordinate system where the vector pχ is on the z-axis.

The relevant vectors have the following characteristics

pχ

|pχ|
= (0, 0, 1) ,

pχ + pϕ

|pχ + pϕ|
= (sin β, 0, cos β) ,

p̃χ

|p̃χ|
= (sin θχ′ cosϕχ′ , sin θχ′ sinϕχ′ , cos θχ′) , (B14)
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where β is the angle between pχ + pϕ and pχ. The angular coordinates of p̃χ in spherical

coordinates are θχ′ and ϕχ′ . We also have

cosα = cosϕχ′ sin θχ′ sin β + cos θχ′ cos β (B15)

and

cos β =
|pχ|+ |pϕ| cos θ12

|pχ + pϕ|
. (B16)

Using the Lorentz scalar

p̃χ · (pχ + pϕ) = Ẽχ(Eχ + Eϕ)− |p̃χ||pχ + pϕ| cosα, (B17)

the invariant product can be simply obtained in the center of mass frame,

p̃χ · (pχ + pϕ) =
s+m2

χ −m2
ϕ

2
. (B18)

Therefore, we can obtain |p̃χ| by solving the quadratic equation

(m2
χ + |p̃χ|2)(Eχ + Eϕ)

2 =

(
s+m2

χ −m2
ϕ

2
+ |p̃χ||pχ + pϕ| cosα

)2

(B19)

with |pχ +pϕ| = [(Eχ +Eϕ)
2 − s]1/2 and cosα as given in Eq. (B15). Note that the integral

in Eq. (B13) has to be evaluated using all the valid (positive and real) |p̃χ| solutions. For

Eq. (B19) it is possible to have from none to at most two such solutions.

Other scattering terms in the temperature evolution such as Sχφ, Sϕχ, and Sϕφ can be

obtained in an analogous manner. In this work, we have performed these multidimensional

integrals numerically using the Monte Carlo integration package Cuba.

b. Annihilation

Mimicking the case of zeroth moment, the second moment of the annihilation term in

Eq. (36) is derived as

2gχ

∫
dΠχ

p2
χ

Eχ

Cann
χ

= 3 ⟨Tχσφφ̄→χχv⟩T n2
φ,eq(T )− 3 ⟨Tχσvχχ→φφ̄⟩Tχ

n2
χ(Tχ)

+ 3 ⟨Tχσvϕϕ→χχ⟩Tϕ
n2
ϕ(Tϕ)− 3 ⟨Tχσvχχ→ϕϕ⟩Tχ

n2
χ(Tχ), (B20)

where T is defined as shown in Eq. (24). Similarly, the second annihilation moment of ϕ in

Eq. (37) can be obtained by simply swapping χ and ϕ.
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c. Decay

The second moment of the decay terms for DM sector temperature can be obtained as

follows:

2gχ

∫
dΠχ

p2
χ

Eχ

Cdec
χ = 2

∫
d3pϕ

(2π)32Eϕ

∫
d3pχ

(2π)32Eχ

p2
χ

Eχ

∫
d3p̃χ

(2π)32Ẽχ

× (2π)4δ(4)(pϕ − pχ − p̃χ)|Mϕ→χχ|2
[
fϕ(Eϕ)− fχ(Eχ)fχ(Ẽχ)

]
= 3 ⟨TχΓϕ→χχ⟩Tϕ

nϕ(Tϕ)− 3 ⟨Tχσvχχ→ϕ⟩Tχ
n2
χ(Tχ) (B21)

where the thermally averaged product of Tχ and decay width Γ is given by

⟨TχΓϕ→χχ⟩Tϕ
≡ 2

nϕ,eq

∫
d3pϕ

(2π)32Eϕ

∫
d3pχ

(2π)32Eχ

p2
χ

3Eχ

∫
d3p̃χ

(2π)32Ẽχ

× (2π)4δ(4)(pϕ − pχ − p̃χ)|Mϕ→χχ|2fϕ,eq(Eϕ). (B22)

Similarly, for the temperature of ϕ sector, the second moment of its decay term can be

obtained as follows

gϕ

∫
d3pϕ

(2π)3
p2
ϕ

E2
ϕ

Cdec
ϕ

= − 3 ⟨TϕΓϕ→φφ⟩Tϕ
nϕ(Tϕ) + 3 ⟨Tϕσvφφ→ϕ⟩T n2

φ,eq(T )

− 3 ⟨TϕΓϕ→χχ⟩Tϕ
nϕ(Tϕ) + 3 ⟨Tϕσvχχ→ϕ⟩Tχ

n2
χ(Tχ). (B23)

The thermally averaged second moment of the mediator decay width Γϕ is similar to

Eq. (B22).

d. Co-annihilation

The second moment of the ϕ and SM φ scattering term is derived as follows:

2gϕ

∫
dΠϕ

p2
ϕ

Eϕ

Cϕφ2→φ3φ4

= gϕgφ2

∫
d3pϕ

(2π)3
p2
ϕ

Eϕ

∫
d3k2

(2π)3
σvϕφ2→φ3φ4 [fφ3(ω3)fφ4(ω4)− fϕ(Tϕ, Eϕ)fφ2(ω2)]

= 3 ⟨Tϕσvφ3φ4→ϕφ2⟩T nφ3,eq(T )nφ4,eq(T )− 3 ⟨Tϕσvϕφ2→φ3φ4⟩(Tϕ,T ) nϕ(Tϕ)nφ2(T ). (B24)
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FIG. 10: The resulting numerical maps for Sχϕ for the forbidden scenario (mχ = 0.1 GeV, mϕ =

0.13 GeV, sin θ = 10−3, cs = 0.1 and λϕH = 1.0 ) in the left panel, the resonance scenario

(mχ = 2.2GeV, mϕ = 4.7GeV, sin θ = 0.01, cs = 10−3 and λϕH = 1.0 ) in the center panel and

the secluded scenario (mχ = 1.0GeV, mϕ = 0.01GeV, sin θ = 10−9, cs = 0.045 and λϕH = 0.1)

in the right panel. The orange, black, and blue lines correspond to the contours where Sχϕ =

{−10−4, 0, 10−4}GeV−1 in the forbidden scenario, Sχϕ = {−10−11, 0, 10−11}GeV−1 in the

resonance scenario and Sχϕ = {−10−10, 0, 10−10}GeV−1 in the secluded scenario.

Appendix C: The temperature tables of χ-ϕ elastic scattering

In Fig. 10, we present Sχϕ on the plane (Tχ, Tϕ) for three benchmark scenarios, mχ ≈ mϕ

(left panel), resonance mϕ ≈ 2mχ (center panel) and secluded mϕ ≪ mχ (right panel).

From Eq. (41), we learned that DM gains energy from ϕ if Sχϕ > 0. On the other hand,

energy is transferred from dark sector to ϕ sector if Sχϕ < 0. As expected from the second

law of thermodynamics, we can see that the energy always flows from a sector with higher

temperature to other with lower temperature resulting in Sχϕ symmetric around the diagonal

in both the forbidden and the resonance scenarios. In these two scenarios, DM mass and

the new scalar mass are in the same order, while in the secluded scenario ϕ is much lighter.

Therefore, ϕ becomes non-relativistic later than DM and the resulting Sχϕ is asymmetric in

the region where it becomes non-relativistic.
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