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Abstract—Fully distributed learning schemes such as Gossip
Learning (GL) are gaining momentum due to their scalability and
effectiveness even in dynamic settings. However, they often imply
a high utilization of communication and computing resources,
whose energy footprint may jeopardize the learning process, par-
ticularly on battery-operated IoT devices. To address this issue,
we present Optimized Gossip Learning (OGL), a distributed
training approach based on the combination of GL with adaptive
optimization of the learning process, which allows for achieving
a target accuracy while minimizing the energy consumption of
the learning process. We propose a data-driven approach to
OGL management that relies on optimizing in real-time for each
node the number of training epochs and the choice of which
model to exchange with neighbors based on patterns of node
contacts, models’ quality, and available resources at each node.
Our approach employs a DNN model for dynamic tuning of the
aforementioned parameters, trained by an infrastructure-based
orchestrator function. We performed our assessments on two
different datasets, leveraging time-varying random graphs and
a measurement-based dynamic urban scenario. Results suggest
that our approach is highly efficient and effective in a broad
spectrum of network scenarios.

keywords — Distributed Learning, Energy Efficiency,
Gossip Learning, Opportunistic Communication

I. INTRODUCTION

Distributed learning schemes are poised to become one
of the key enablers of future 6G networks, as they allow
fast and efficient training of complex and large-scale models
while delivering better reliability and fault-tolerance than tradi-
tional, centralized approaches. Among these, Gossip Learning
(GL) schemes are of special interest, as they do not require
uploading models to a parameter server, thus offering better
robustness and scalability.

Originally introduced in [1], GL schemes train ML models
over decentralized data via direct model gossiping among
nodes. Several versions of GL have been proposed for dynamic
settings [2], [3]. In these works, the changing topology is a
result of varying patterns of network connectivity, changes
in node availability (e.g. due to node duty cycling or battery
depletion), and churn, among others, as it is often the case in
realistic mobile edge and vehicular scenarios and use cases.
GL is based on a combination of iterative local training, and
model exchange over wireless channels. Both tasks on battery-
operated, resource-constrained IoT and edge devices might
imply rapid energy budget depletion, potentially slowing down
and jeopardizing the whole learning process.

Recently, several works have focused on decreasing the
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energy footprint of distributed learning, albeit in server-based
architectures such as Federated Learning (FL). [4] reduces the
amount of exchanged models in FL by decreasing the number
of communication rounds. Other approaches focus instead on
reducing the number of exchanged models at each round.
These methods consider factors such as the size and quality
of a node’s local dataset [5], [6], [7], [8]], the rate of network
evolution [4], [9], and the node’s trustworthiness [[10]. All these
works, however, consider a static network. [L1] proposes a
Gossip Learning scheme, evaluating the effect of the number
of models merged at each round in a vehicular network. It
shows that the resource-optimal value for these parameters is
highly context-specific. However, it considers measurement-
based mobility patterns, making it hard to untangle depen-
dencies between mobility features and the performance of the
training scheme. All these works leave unanswered the critical
question of when and which nodes should exchange models
in a fully distributed learning scheme to achieve a target
performance (in terms of accuracy and convergence speed) in
a dynamic network in an energy-optimal manner.

In this paper, we consider a scenario of reference in
which cellular connectivity is pervasive, and it allows tak-
ing advantage of an orchestration function that monitors the
gossip-based learning process without requiring infrastructure-
based exchanges of training data or ML models. The primary
contributions of this paper are:

e We propose OGL, a gossip-based training strategy for
dynamic networks capable of adapting to a wide range of
network topologies and dynamic settings.

e We present a data-driven approach for the dynamic man-
agement of OGL, which achieves a target performance in a
resource-efficient manner by proactively adapting the mod-
els’ distribution and training parameters to local conditions.
The approach employs a Deep Neural Network (DNN)
model, which is trained in an offline manner and distributed
to all nodes at the start of the learning process, and that
enables each node to tune the main parameters of the OGL
scheme adaptively.

e We assess the effectiveness and efficiency of our ap-
proach by leveraging time-varying random graphs and a
measurement-based mobility trace. These results suggest
that it substantially outperforms a set of baseline approaches
while achieving the target minimum accuracy in all of the
considered scenarios.



II. SYSTEM MODEL

We consider a set V' of nodes, with cardinality |V,
(modeling e.g., mobile devices, UAVs, or connected vehicles)
moving within a specific region according to an arbitrary
mobility model and during a predefined time interval 7" (the
observation interval). Let v € N denote the unique identifier
of a node. We assume nodes can communicate directly with
each other through wireless peer-to-peer (P2P) communica-
tions (e.g., using DSRC or Bluetooth Low Energy [12]).
Furthermore, each node is equipped with a cellular network
interface. Two nodes can exchange information whenever they
are in contact, that is, within each other’s transmission range.
We assume these exchanges are always unicast (one-to-one).
However, the proposed scheme can be easily extended to
incorporate the effects of multicasting and broadcasting. We
assume there is a coordination function (possibly implemented
by a Software Defined Network Controller(SDNC) [13]]) in
the region, and it resides within the cellular access network.
The coordination function comprises an auxiliary ML model
Miyne. The coordination function, through its cellular network
interface, transmits My, . to the nodes entering the region.
Hence, the architecture of this model is equal for all nodes.
Note that all communications are P2P, except for the initial
dissemination of M;,,. model from the coordination function
to nodes. Every node independently employs My, to fine-
tune and adjust its learning parameters. Moreover, we assume
each node entering the region possesses a local model w,, and a
local dataset, partitioned in the training set D,,, and validation
set S,, which generally differ in size and composition for each
node. The choice of the validation and training set size is
context-specific. We also assume that the observation interval
is segmented into I slots of equal size, short enough that node
mobility patterns can be considered not to vary substantially
within each slot. Let ¢ € 1, .., I be the label of slots.

III. THE OGL APPROACH TO ENERGY-EFFICIENT GOSSIP
LEARNING

A. A Gossip-Based Collaborative Training Algorithm

We assume all nodes in the region train their local model
through a gossip-based cooperative learning algorithm, de-
noted as OGL, and based on P2P model exchanges among
nodes. Such an approach is orchestrated by a cellular-based
coordination function, without requiring the exchange of the
trained models or training data (which would potentially
expose it to privacy breaches) between each node and the
coordinator. At the beginning of the scheme, all nodes present
in the region randomly generate an initial local model wg. We
assume the generation procedure to produce the same random
initial model for all nodes. Similarly, after the beginning of the
scheme, whenever a node enters the region, it generates wy
following the same procedure. Starting from wy, every node
elaborates a ML model (which we assume will be used by
the node itself. e.g. to carry out the same inference task, e.g.
trajectory prediction, or image recognition) by alternating local
training on each node’s local training set, with model aggre-
gation with models received from neighbors. Moreover, to all
nodes joining the scheme, the coordination function delivers
an auxiliary ML model My,,.. Each node employs My, for
the adaptive tuning of some key parameters of the learning
process. Such dynamic management of the learning process at
each node is based on each node’s available hardware resources

and power budget. In addition, it also accounts for each node’s
context in terms of the number of neighbours, the speed at
which they vary over time, and the quality and quantity of
their local model (i.e., in terms of mean accuracy or loss),
among others. Each node then uses the M;,,. to modulate
the number of local training epochs and to choose, among its
neighbours, those whose local model should be requested and
used for improving the node’s local model, as we will explain
later.

Then, at every time slot, the OGL algorithm proceeds
through three phases. The duration of each phase can be tuned
and adapted to the specific training task and setup, and it does
not need to be synchronized across nodes.

In the training phase, each node in the region applies
Miyne to get the number of epochs Z, ; that it has to train
its local model over its local dataset and train its model
accordingly. Subsequently, it assesses its local model over its
validation set S, to derive the loss value [, used in the next
phase. The choice of the loss function is context-specific.

In the communication phase, nodes exchange the loss value
of their local model with their neighbours. Each node then
employs My, to identify the neighbouring nodes from which
it should request the transfer of their local models. The node
then initiates a request directed towards the selected nodes,
soliciting their respective models. In response, these requested
nodes transmit their models if they are still within range of
each other. During this phase, a node may not request any
model, e.g. because it has no neighbours or when the My,
indicates that no model is worth requesting among the available
neighbours’ models. We assume that the connectivity between
nodes is relatively stable while exchanging models.

Finally, in the merging phase, each node combines the
models received from the chosen neighbours and its local
model to produce a new version of its local model. The
merging procedure consists of a weighted averaging method.
The weights associated with each merged model are computed
via the DFed Pow strategy [3]]. In DFed Pow, the weight of
each model to be merged is a function of the inverse of loss
calculated on the node’s validation set. Note, however, that
our approach is more general and does not rely on a specific
algorithm for calculating the weights for merging.

The three phases are repeated at each time slot until a
stopping condition is met (e.g., after a maximum number of
iterations, when the average local models’ accuracy surpasses
a certain threshold or when there is no significant improvement
in the model’s accuracy over several rounds). Regardless of the
reason, the final round at which the algorithm stops is called
the cut-off round.

B. Formulation of the energy optimization problem

The main goal of our OGL approach is to enable the
energy-efficient training of an ML model in a distributed man-
ner. As mentioned, this is enabled by an orchestrator function
that elaborates and distributes the M}, model among all the
nodes entering the region. Given the node context, as well as
some key parameters of the system and the training task, such
a model enables each node to tune the number of training
epochs and the set of ML models to merge, which allows
for achieving a given target accuracy while minimizing a cost
function which models the overall energy cost of the training
process.



In what follows, we formalize the energy optimization
problem that the orchestration function tries to solve. The cost
function we consider is the sum of two components. The first
one accounts for the computing costs. Generally, the energy
consumption associated with a computation task is determined
by CPU(or GPU) usage and memory resources [[14]. Those, in
turn, depend upon the architecture implemented, the quantity
of data it processes, and the node’s characteristics. In this work,
we assume all nodes have the same computing power. Then,
the energy required to run the (local) training process is:

S(Z2) =" Zuady(eg + ) (1)
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e Z,. depicts the number of epochs required by node v to
train its local model using the local dataset at time slot ¢;

e ¢, is the energy consumed by the CPU or GPU to perform
one training epoch on one sample;

e ¢, is the energy required to provide storage and memory
resources for the training of one epoch on a sample;

e d, denotes the number of samples of the local training set
of node v;

e T is the label of the slot at which convergence happens.

The energy consumed for computing the loss of the local
model on the validation set is modelled as follows:

D=3 s(ec +e) @)
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e and e, are the energy consumed by the CPU (or GPU) and
energy required to provide storage and memory to evaluate the
local model on one dataset sample. s,, indicates the size of the
validation set at node v.

The second component of the cost function accounts for
the communication costs. The communication costs consider
the exchanges between nodes:

C(k) = C®4> "N " hyy L+ kot (M + R) 3)
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C? is the cost per byte of a d2d (peer to peer) transfer

e H,. is the set of neighbors of node v at time slot ¢, of
cardinality h, ¢;

e K,+ € H,. is the set of chosen neighbours of node v at
time slot ¢ from which models to be merged are retrieved,
of cardinality k, ;.

e I, R and M are the message size containing loss value,
request and a local model, respectively.

Note that such a cost function neglects the cost of model
merging, as it is usually negligible [3]l, [11]. Let Z = {Z, +},
and K = {K,+}. Thus, an optimal OGL orchestration scheme
is a solution to the following optimization problem:

Problem 1:
mir%i%ize Ck)+B(S(Z)+T) 4

)

Subject to:
r >0 o)

Where r denotes the mean accuracy of the trained model across
all nodes achieved at convergence, and 7 is its target minimum
value. By varying (3, it is possible to adapt the cost function
to settings with different resource availability on user devices

and at the cellular network and to different incentive schemes
for resource sharing and cooperation.

C. OGL architecture, components and functions

The OGL approach aims at solving Problem[I] by training a
DNN-based auxiliary ML model, which enables nodes to adapt
in real-time the learning process to available contributions by
neighbours and, more generally, to each node’s context. The
auxiliary model is trained by the orchestrator, on a training
dataset whose data points are labelled by simulating the
system.

We assume the orchestrator regularly collects data from
every node, to be used as the feature set of the auxiliary
model that it has to train. The data collected are those that
are well known from the state of the art to be relevant to the
training process and its efficiency. These include computing
and communication costs, the number of neighbours for each
node at each time slot, the size of the local dataset, the
available computing power, and the initial power budget of
each node. Such a choice of features as input parameters
for the auxiliary model is, however, one of many possible,
and our approach is independent of it. From each set of
input parameters, the orchestrator derives a set of full system
configurations by associating to the input parameters a random
value for each of the parameters in Z and a random subset K
of each node’s neighbours. These inputs are fed to a simulator,
which labels them with the outputs and performance metrics
of the distributed training scheme. Specifically, for every node
and every time slot in a given time interval during which the
orchestrator has collected data, the simulation derives the local
model accuracy, the loss value, and the energy budget of each
node. In such a way, a training set is produced, which is then
used to train a DNN model.

This model is trained and evaluated using a k-fold cross-
validation approach [15], with 10 folds. The architecture
of the model is a multi-layer perceptron composed of four
layers. The multiple layers allow models to be more efficient
at learning complex features [16]]. The initial layer is a dense
layer with 64 neurons and a rectified linear unit (ReLU)
activation function. The second layer is a flattening layer,
which reshapes the input to a one-dimensional array. The third
and fourth layers are dense layers with 32 and 16 neurons,
respectively, and ReL.U activation functions. The final layer is
a dense layer with two neurons. The model is compiled with a
mean squared error loss function and the Adam optimizer. To
prevent overfitting and save the best model, early stopping and
model checkpoint callbacks are used. This approach ensures
a robust evaluation of the model performance, as it assesses
the model’s ability to generalize to unseen data. Note that the
selection of parameters in the model is either empirical or
based on extensive usage in the state-of-the-art models. After
the training and evaluation process, the best-performing model,
referred to as M;yne, 18 saved for future use. This model
encapsulates the optimal parameters learned during the training
process. At runtime, the orchestrator function disseminates the
Miyne model to all nodes entering the region. Then, at each
time slot, each node feeds the M;,,,,. model with its own data,
to determine the optimal number of local training iterations
(number of epochs) and the optimal set of models to merge to
achieve the given target accuracy while minimizing the energy
cost of the whole process.



CNN parametrs MNIST CIFAR-10
Input shape (28,28,1) (32,32,3)
Batch size 32 64
Learning rate 0.0001 0.001
Number of neurons 100 100
Momentum 0.9 0.60
Kernel dimension 3 3

Number of filters 32 32
Number of outputs 10 10

TABLE I: Parameter values used to train the CNN model on the
CIFAR-10 and MNIST datasets.

164 I Training
" | = Evaluation
4‘;" 1.4 { 3 Communication
[} 1.2 = p=0.1
U 1.2 1 .
= 1.0
T P %
@ 1.0
N
E 0.8
E 0.6 .
o o
=2 0.4 .
0.2 °
0.0 -
Local Centralized Fed DP OGL Random
only ML Avg GL

Fig. 1: Comparative analysis of cost function on the MNIST dataset
with |V| = 6 and various values for p.

Algorithm Acc Fl  Loss PrecisionRecall SUEOf
round
Centralized ML 0.87 0.87 045 0.88 0.87 300
Fed Avg 0.85 0.84 0.57 0.87 0.85 500
Local only 036 042 32 042 0.56 200
DP 0.58 0.60 1.42 0.68 0.67 500
OGL 0.88 0.88 0.44 0.88 0.89 320
Random GL 0.51 0.56 1.73 0.7 0.6 500

TABLE II: Performance metrics of OGL at the cut-off round, com-
pared to baselines on the MNIST dataset, with |V| = 6 and p = 1.
Results are presented with a 98% confidence interval and a maximum
margin of error of 1%.

IV. NUMERICAL ASSESSMENT

To assess the effectiveness of our OGL approach in dy-
namic settings, we consider a set of V' nodes which need to per-
form a handwritten digit recognition task (MNIST dataset [17])
or object recognition (CIFAR-10 dataset [18]). We assume
that each node in the system is endowed with a local dataset
of different sizes and randomly selected without replacement
from the original MNIST and CIFAR-10 dataset. The resulting
dataset size, denoted by d,,, falls within the range of 50-350
samples for each node. This implied a training set size ranging
from 600 kB to 3.2 MB when utilizing the CIFAR-10 dataset
and between 224 KB and 645 KB when employing the MNIST
dataset. Let us denote the aggregate local dataset across all
nodes in the system as the global dataset. The size of the
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Fig. 2: Comparative analysis of cost function and mean accuracy at
convergence on the CIFAR-10 dataset, with [V| =6 and p = 1.
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Fig. 3: Mean accuracy versus round of our OGL algorithm compared
to baselines using the CIFAR-10 dataset, with |V| = 6 and p = 1.
Curves are associated with a 95% confidence interval.

global dataset is 700 samples in all scenarios unless stated
differently. We aim to ensure that the results remain consistent
and are not subject to significant variation due to differences
in global information in different scenarios.

In Problem [I] the coefficient § has been set to 1, to
ensure both computing and communication costs are equally
weighted. The target accuracies have been set to 0.8 and 0.4 for
the MNIST and CIFAR-10 datasets, respectively. These targets
were set based on the convergence accuracy of a centralized
ML model trained on the global dataset. Furthermore, we
assume the cost per byte of d2d transfer to be four times
less costly than device-to-server transfers. This is because
d2d transfers bypass the need for data routing or server
maintenance, making them a more cost-effective solution. We
associate a global test set obtained by random sampling 20%
of the source datasets and ensuring that the local datasets and
test set are disjoint. We assume that nodes use a CNN model
to perform both inference tasks.

The first layer of the CNN model is a Conv2D layer,
which applies a number of convolutional operations to the
input image and uses the activation function ReLU. This
layer is followed by a MaxPooling2D layer with a 2x2 pool
size, which reduces the spatial dimensions of the input. The
Flatten layer then transforms the 2D matrix data into a 1D
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Fig. 6: Comparison of mean accuracy at convergence time versus
cost for the OGL and random GL algorithms over different network
configurations using the CIFAR-10 dataset. Results are presented with
a 98% confidence interval and a maximum margin of error of 2%.

vector. Subsequently, a Dense layer using ReLU activation
and He-uniform weight initialization is added. The final layer
is another Dense layer, with the number of neurons equal
to the number of output classes, and the softmax activation
function is used for multi-class classification. The model is
compiled with the Stochastic Gradient Descent (SGD) opti-
mizer, and categorical cross-entropy loss function. The values
of the parameters of each layer are mentioned in Table [, We
choose this architecture and parameter values based on two key
considerations. Firstly, some choices are widely recognized
as effective in extracting shape features from images for
the considered datasets [19]]. Secondly, we tune some other
parameters empirically by conducting a series of experiments.

With the specified parameters, the resulting model size is
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Fig. 7: Histogram representing the percentage of vehicle arrivals, and
departures across different time slots in the Luxembourg City off-
peak scenario (12:00-12:40 PM). Time on the x-axis shows the time
from the beginning of the scheme.

approximately 320 KB when trained on the MNIST dataset
and 1.2 MB when trained on the CIFAR-10 dataset. Note that
better energy performance might be achieved by tuning all
of the CNN hyperparameters, as they impact the size of the
model to be exchanged. However, this is out of the scope of
the present work and is left for future developments. We end
our simulations after 600 rounds or when the average accuracy
across all nodes does not improve by more than 0.5% for 20
consecutive rounds.

In addition to our scheme, we have considered the follow-
ing baseline approaches:

o Centralized ML. In this approach, a central server possesses
a dataset identical to the global dataset of the scenario, over
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Fig. 8: Distribution of mean accuracy at every five-minute interval
for the OGL algorithms in the Luxembourg City off-peak scenario
(12:00-12:40 PM) using the MNIST dataset. Each point is the mean
accuracy of a single vehicle, averaged in the time interval. The target
line shows the target accuracy (95%) obtained using the centralized
ML training on the union of the local dataset of all vehicles. Time on
the x-axis corresponds to the time from the beginning of the scheme.

which it trains the CNN model.

o Federated Averaging (Fed AVG) [20]. In this training
scheme, a parameter server collects the CNN models trained
locally by each node at every round, merges them, and sends
the resulting CNN to each node for a new round of local
training. For fairness of comparison, we assumed random
client subsampling, with an average number of selected
clients coinciding with the average number of nodes each
node comes in contact with during a round.

e Decentralized Powerloss (DP) [11]] is a decentralized learn-
ing approach. In this approach, all the nodes set the number
of local training epochs to 1 and merge the models from
all neighbours at a given time slot, without exception. In
this approach, the weights associated with each model to be
merged are derived from a measure of the received models’
performance over the node’s validation set.

e Random GL is derived from OGL algorithm, by setting
uniformly at random ( and independently for each node
and time slot) parameters K, and Z,;, i.e. the number
of training epochs and the set of neighbour nodes whose
models have to be merged.

e Local only, in which each node trains the local model only
on its local dataset, with no data or models exchanged with
neighbouring nodes or a server.

The size of local datasets varies across nodes, leading to an
uneven distribution of classes. It requires using various perfor-
mance metrics to compare the effectiveness of our algorithm
with baseline methods.

In the first set of experiments, we considered scenarios
with different numbers of nodes in the network, specifically
|[V| = [3,6,12]. In addition, we model the connectivity graph
resulting from node mobility via an Erd6s-Rényi dynamic
random graph [21]. It is thus a sequence of graphs, each
associated with a time slot. In this type of graph, an edge is
established between two nodes with probability p, independent
from other edges. Then, at each time slot, the connectivity
graph stays constant, but possibly the set of edges in the graph
(connection among nodes) varies. The degree of connectivity in
the network is determined by the parameter p. A mesh network

is formed when p = 1, while p = 0.1 leads to a sparse network.
The choice of this type of graph enables a controlled and
systematic modification of node numbers, connection patterns,
and node interaction frequency and duration [21]].

Figure [I] shows the mean total amount of computing and
communication costs at convergence for OGL as well as for
the baselines in different network configurations utilizing the
MNIST dataset. Figure [2] illustrates the mean total amount
of computing and communication costs at convergence for
OGL as well as for the baselines using the CIFAR-10 dataset.
These results suggest that our OGL scheme is by far the
most energy-efficient among the gossip learning schemes,
particularly concerning communication costs, achieving a level
of efficiency comparable to that of Federated Learning. This
confirms that context-aware tuning of the local training and
merging phases of GL schemes may have a high impact on
the efficiency and effectiveness of the training process. Another
key aspect resulting from our experiments is the relative mean
training performance of our OGL scheme in terms of model
accuracy at convergence. As Table [[I] shows, using MNIST
dataset OGL outperforms all baseline distributed approaches in
all performance metrics, achieving performance comparable to
centralized training. Critically, though being significantly more
energy efficient, at convergence, OGL improves by more than
40% both mean accuracy and mean loss with respect to DP, i.e.
to the best performing gossip-learning approach in the state-
of-the-art. Indeed, the two other distributed learning models,
DP and random GL, as well as the local-only approach, fail to
achieve the target mean accuracy. Figure [3] depicts the mean
accuracy versus round (learning process) of the OGL and
other baseline algorithms using the CIFAR-10 dataset. The
outcomes derived from the CIFAR-10 dataset largely mirror
those obtained from the MNIST dataset. It reinforces the
effectiveness and consistency of the OGL algorithm across
different datasets.

Figure [ and [5] show the impact of network connectivity
and the number of nodes in the system on the evolution
of mean accuracy over the learning round for MNIST and
CIFAR-10 datasets. In a system with very few nodes, the
impact of optimally choosing the neighbours’ contributions is
relatively modest, with the mean accuracy of Random GL and
DP eventually matching that of OGL. In larger systems, our
OGL tuning approach is key to achieving faster convergence
and higher accuracy in sparse and dense networks. Figure
[0] illustrates that OGL maintains superior energy efficiency,
notwithstanding an accuracy comparable to Random GL. Note
that all schemes perform sensibly worse in the CIFAR-10
dataset, as for the same average local dataset size, its samples
are more complex (i.e. larger pictures with more pixels).

To evaluate the effectiveness of our OGL approach in a
realistic scenario, we consider a scenario where moving nodes
are vehicles traversing a region of interest. We focused on a
specific area in the city centre of Luxembourg City. This area, a
square with sides measuring 1 km, was observed during a low-
traffic period (off-peak) from 12:00 PM to 12:40 PM. During
this time interval, there are 492 vehicles in the region, with
an average sojourn time of 2.9 minutes. On average, there
are about 27.3 vehicles in the region at any given time. In
this scenario, vehicles are in contact if they are within each
other transmission radius. The transmission radius has been
set to 150 m (e.g. typical of DSRC in urban environments



[22]). In this case, on average, each vehicle is in contact
with 6.7 vehicles at any time. Note that, unlike previous
scenarios, the set of nodes in the region may change at different
time intervals. Figure [7| depicts the percentage of arrivals and
departures at every S5-minute interval. In order to ensure a
dynamic neighbourhood pool and give each vehicle enough
time to train its local model, vehicles interchange both the loss
values and the trained models at regular intervals of twenty
seconds. Figure [§] shows the mean accuracy of the vehicles
approach the target accuracy, obtained by training a centralized
ML model on the union of all vehicles’ datasets, after ten
minutes despite having churn in the network. In addition, we
observe the adaptive learning capability of new arrivals. New
arrivals are characterized by their initial impact on reducing
the mean accuracy, as they are identified as outliers within the
given time shown in Figure [§] Despite the initial disruption,
these outliers demonstrate a capacity to learn from the existing
vehicles, thereby gradually aligning with the overall trend.
This is evidenced by the subsequent decrease in the number
of outliers from time interval 15-20 to 20-25 minutes. This
adaptive learning capability of new arrivals contributes to the
robustness and resilience of the system, enabling it to maintain
overall accuracy over time. It indicates our OGL model is
able to maintain high accuracy even in the face of network
instability.

V. CONCLUSIONS

This work presents a novel approach to an energy-efficient

gossip learning scheme for dynamic settings. We employ an
auxiliary DNN model trained by an orchestrator to adaptively
tune some of the key parameters of the learning process in a
decentralized manner. Results indicate that our approach effi-
ciently achieves accuracy comparable with a centralized ML
method across a variety of network conditions, utilizing time-
varying random graphs and a measurement-based dynamic
urban scenario across two distinct datasets.
For future work, we plan to enhance the scalability and
adaptability of our optimization system by developing a fully
distributed optimization system, eliminating the need for an
orchestrator, where nodes can self-optimize in response to
drastic changes in the environment. Furthermore, we plan to
investigate the impact of different types of DNN models on
the optimization and learning process, as DNN models vary in
their computational requirements. This could be particularly
important in a distributed learning context where computa-
tional resources are limited.
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