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Abstract

A yet undetected class of gravitational wave signals is represented by the close encounters be-

tween compact objects in highly-eccentric (e ∼ 1) orbits, that can occur in binary compact systems

formed in dense environments such as globular clusters. The expected gravitational signals from

these close encounters are short-duration pulses that would repeat over a much longer time scale in

case of multiple passages at periastron. These sources represent a unique opportunity of exploring

astrophysical formation channels as well as a different way of testing general relativity. Further-

more, in the case of binary systems containing neutron stars, the observation of these sources could

help to constrain the neutron star equation of state, thanks to the signature left in the gravitational

wave signal by the f-modes excitation that can occur during the encounter.

The detection and parameter estimation of these signals is however challenging given the short

duration of expected signals and the sensitivities of current ground-based gravitational wave inter-

ferometers. We present a novel approach to perform fast detection and parameter estimation of

gravitational wave signals from binary close encounters that exploits probabilistic machine learning.

We have used Conditional Normalizing Flows to model complex probability distributions and there-

fore infer posterior distributions for the source parameters. This architecture is able to perform

inference in a very short time and its output can be directly compared with classical methods. Fast

detection and parameter estimation is very important as it could trigger electromagnetic follow-up

campaigns and offer the possibility to study these events in a multimessenger context. To develop

and test the algorithm, we have focused on the simulations of single bursts emission obtained using

the Effective Fly-by formalism and embedded in the noise of Advanced LIGO and Virgo during

their third Observing Run (O3). Our proposed model outperforms standard Bayesian methods in

accuracy and is ∼5 orders of magnitude faster, being able to produce 5 × 104 posterior samples

in just 0.5 s. The results are extremely promising and constitute the first successful attempt for a

fast and complete parameter estimation of binary close encounters using deep learning, offering a

new approach to study the evolution of orbital parameters of compact binary systems.
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I. INTRODUCTION

The detection of gravitational waves represents a revolution in the way we probe the

Universe and provides a new and independent tool to investigate the physics of extreme

compact objects. For instance, the first detection of gravitational waves from the coales-

cence of a binary black hole system, GW150914 [1], provided the observational proof of

the existence of stellar-mass black holes with masses greater than ≃ 25M⊙ and established

that binary black holes can form in nature and can merge within a Hubble time. Further-

more, the detection of gravitational waves from the event GW170817 and its associated

electromagnetic counterparts marked the birth of a new era in multimessenger astrophysics

[2, 3]. The joint observation of electromagnetic and gravitational waves provided the first

confirmation that binary neutron star coalescence are progenitors of short Gamma-Ray

Bursts [4], and allowed the investigation of the origin of heavy elements [5, 6]. Furthermore,

multimessenger observations of GW170817 offered a new way of investigating the equation

of state of neutron stars [7, 8], testing General Relativity [9] and measuring the Hubble

constant [10].

The third Gravitational Wave Transient Catalogue (GWTC-3) [11] contains 90 events de-

tected by Advanced LIGO and Virgo during the first three observing runs (O1, O2, O3)

from 2015 to 2020. All these events are associated with the coalescence of compact binary

systems (CBCs) containing black holes and/or neutron stars. More specifically, several

dozens are consistent with binary black hole (BBH) systems. The growing population of

BBHs observed through gravitational waves allowed to perform population studies that

seem to support the presence of more than one binary formation channel [12, 13]. There

seem to be two main formation channels [14]: BBHs can be the outcome of isolated binary

evolution, i.e. they can form from the evolution of stars paired together at birth, or they

can form dynamically, through strong stellar encounters in dense environments as young,

globular, and nuclear clusters or active galactic nuclei. A deeper understanding of these

different formation mechanisms is crucial in order to fully explain the BBH population so

far observed.

Recent simulations of dynamical interactions in globular clusters have predicted the ex-

istence of populations of binaries merging with non-null eccentricity (e > 0.05) [15, 16].

Despite gravitational wave emission being in general an efficient mechanism for the or-
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bit circularization during the binary evolution, these works have revealed the existence of

BBH subpopulations forming in orbits with eccentricities e ∼ 1. We will refer to them as

Close Encounters (CE).

Accurate measurement of the parameters of CE signals is of paramount importance to

study dynamical formation channels as well as gravity in the strong field regime. At the mo-

ment no confident gravitational wave signal emitted during a CE has been detected, making

these sources new and potentially interesting to search for [17, 18].

Due to the high eccentricity of these systems, the expected gravitational wave emission dif-

fers from the chirp-like waveform detected from CBCs. Eccentricity induces a modulation in

the waveform that, in the limit e→ 1, transforms it into a series of repeated short duration

bursts emitted during each periastron passage.

The burst-like nature of the signal, combined with the expected low signal-to-noise ratio,

makes the detection of these sources particularly challenging. While current search strate-

gies are based on unmodeled searches, Deep Learning has been proposed as a possible new

approach to analyze these sources [19, 20].

This paper present a novel approach to the detection and parameter estimation of gravi-

tational waves from CEs based on Probabilistic Machine Learning. Our approach exploits

Normalizing Flows (NFs) to combine Bayesian inference methods with Deep Learning. This

approach has been successfully tested on other types of sources. For instance, BBH coales-

cences have been studied with DINGO [21, 22]. We will focus on single burst emission from

encounters of binary black hole systems, as they are ones most likely to be detected by the

current generation of interferometric detectors. We defer to subsequent work the application

to the case of repeated bursts. The paper is organized in this way. In Section II we discuss

the dynamical scenarios for the formation of CEs and their expected gravitational wave

emission derived from the Effective Fly-by formalism. Section III introduces Normalizing

Flows and their properties. In Section IV we discuss HYPERION, the NF-based pipeline

that we have developed for parameter estimation using NFs. Section V contains the training

on a simulated dataset and the resulting performance of the pipeline. Finally, section VI

discusses the results and limitations of this approach.
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II. BINARY CLOSE ENCOUNTERS AS GRAVITATIONAL WAVE SOURCES

The canonical formation channel for BBH systems is via isolated binary evolution driven

by stellar physics [23]. Stellar evolution further predicts the existence of a gap in the BH mass

distribution from 50+20
−10 M⊙ to approximately 120 M⊙ because of pair-instability supernovae.

The main uncertainties in the boundaries of this mass gap are related to limited knowledge

of processes at play during the evolution of massive stars: e.g. the 12C(α, γ)16O reaction

[13].

However, population studies, made possible thanks to catalogs of observed gravitational

wave events, have revealed a slightly different picture. In particular, the inferred distribution

for the primary mass component in GWTC-3 does not exhibit a sharp drop at ∼ 50 M⊙

[13] as one would expect from the outlined formation channel. The presence of a tail at

higher masses seems to suggest that a fraction of the observed BBHs could have formed

through additional formation channels that have to be of dynamical origin, i.e. from N-body

interaction between stars and/or black holes.

Besides the mass distribution, another ingredient that can provide clues to the formation

channel is the spin orientation of the binaries. For instance, isolated field binary evolution is

believed to produce components with preferably aligned spins [24] in contrast to dynamical

encounters which can lead to isotropic spin-orbit misalignment [25]. There are currently

evidences for the spin distribution to require misalignment as well as events with anti-

aligned spins [13]; this could suggest that some of the observed BBHs formed dynamically,

but further investigations are needed.

Therefore, this has led to the examination of these additional channels, which are pos-

sible in highly dense stellar environments. Examples of such environments are globular

clusters which have central densities ρc ≥ 104M⊙ pc−3 [26], young stellar clusters with

ρc > 103M⊙ pc−3 [26, 27], nuclear star clusters of galactic nuclei [28] as well as active

galactic nuclei [29].

A. Dynamics in Dense Stellar Environments

Given the high stellar density in globular clusters, single-single, binary-single and even

binary-binary interactions can take place and influence the evolution of binary systems.
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These interactions have been studied through numerical N-body simulations and have re-

vealed a wide spectrum of possible final states [30, 31].

Recent simulations in globular clusters [15, 31] have indeed confirmed that multiple reso-

nant interactions can lead to the formation of highly eccentric compact binaries. A subset of

these binaries forms in a condition in which energy loss due to gravitational wave emission

produces a capture: the inspiral phase of the binary speeds up, leading to a merger with a

non-negligible eccentricity. More importantly, a subset of them is expected to merge within

the LIGO-Virgo-KAGRA frequency range [16].

B. Highly Eccentric Compact Binaries in Globular Clusters: populations and

rates

Dynamical interactions in globular clusters can produce different populations of merging

systems, each one with its typical eccentricity. The dominant frequency fpeakGW at which these

binaries emit gravitational waves is: [16]

fpeakGW =

√
GM

π

(1 + e)1.1954

[a(1− e2)]3/2
(1)

with M being the total mass of the binary, a its semi-major axis and e the eccentricity .

BBHs mergers formed through dynamical interactions in globular clusters fall into three

major categories [16, 31], depending on the timescale TGW for gravitational wave emission

to drive a binary to merge and the average timescale TSE between two successive encounters.

In particular they are defined as [16]:

TGW ∝ a4(1− e2)7/2 , TSE ∝ na2σ

(
1 +

GM

2aσ2

)
(2)

where n and σ are the number density and the velocity dispersion in the cluster, respectively.

The first category of BBH mergers is that of ejected inspirals, which are binary systems that,

by the recoil from close interaction, acquire a center of mass velocity that exceeds the escape

velocity of the cluster and get ejected from it. These mergers produce gravitational waves

with fpeakGW ≤ 10−2 Hz while being characterized by a non-zero eccentricity (e > 0.01) [32, 33].

For this reason, they are among the major sources detectable by LISA [34].

The In-cluster mergers are a second category of binaries merging inside the cluster due to

dynamical encounters, but not due to significant emission of gravitational waves during the
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encounters. They can be of two kinds: 2-body and 3-body mergers. The former are binary

black holes that survive a binary-single interaction with semi-major-axis and eccentricities

such that their inspiral times are less than interaction times (∼ 107 years [35]). Their

eccentricity is expected to be similar to that of ejected inspirals and the fpeakGW near the

LISA sensitivity band [36]. The latter are still formed through binary-single interactions.

However, their pericenter distance is perturbed in such a way that the energy lost over one

orbit through gravitational wave radiation is larger than the initial energy of the 3-body

system. Timescales associated with this process are thus much smaller (∼ 1 year), which

implies gravitational waves frequency peaks in the ground-based detector sensitivity bands

[35, 36].

Finally, the category of gravitational wave captures consist of binaries that inspiral and

merge during a resonant interaction itself due to the strong emission of gravitational waves.

This interaction can be a binary-single, binary-binary, or even a single-single. In the latter,

two initially unbound objects experience an encounter on a hyperbolic orbit that causes

the binary to become bound and rapidly merge. They typically result in fGW ≥ 10−1 Hz.

However, this mechanism is also able to produce highly eccentric binaries (e ∼ 1) that will

merge within the sensitivity band of ground-based detectors with timescales O(seconds).

Given the high eccentricities of this last subset, some of them are close enough to the

unbound limit to experience fly-by encounters [16]. The expected rate of eccentric BBH

captures is expected to be 1− 2 Gpc−3 yr−1 in the local universe (z < 1) [16].

C. Astrophysical Relevance of CE Observations

Close Encounters carry distinctive signatures that can be used to differentiate between

different formation channels, hence probing the underlying mechanisms responsible for the

binary formation and merger. Tests of General Relativity can also be carried out with such

sources. For eccentric bound orbits, the smallest pericenter distance can be rp/M ∼ 4

(G = c = 1 units) corresponding to vp ∼ 0.7c [37]. Therefore, CEs provide themselves

as a unique laboratory to test General Relativity in the strong-field regime: higher order

effects such as radiation reaction and tides are indeed expected to become dominant. Other

than that, eccentricity can be used to put constraints on alternative or modified theories

of Gravity [38]. Neutron Star’s Equation of State can also be constrained if one of them is
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present in the binary. In the case of CBCs, the effects related to the equation of state become

relevant only during the late inspiral and post-merger phase. In the case of eccentric inspiral,

on the contrary, f-modes on the NS surface can be excited during each close interaction [39].

CE events could be potentially interesting also from a multi-messenger point of view, either

when neutron stars [40] and/or BHs are involved. As already mentioned, CEs can happen

between two BHs embedded in the accretion disk of an active galactic nuclei [29] and, in such

a gas rich environment, the merger can also yield a significant, detectable EM counterpart

(see e.g. [41, 42]).

CEs could also be the source of a stochastic background from primordial black holes.

Close Hyperbolic Encounters from primordial black oles have been recently proposed as a

detectable source for Einstein Telescope [43]. Being not resolvable, this emission results in

overlapping bursts forming a stochastic background. In this work we will consider BBH

gravitational wave captures at high eccentricity (e ∼ 1), since they are expected to be

detectable with current ground-based interferometers.

D. Waveforms for Eccentric Close Encounters

In order to be able to infer the parameters of a CE source, an accurate theoretical de-

scription of the gravitational wave signal emitted is needed. The presence of eccentricity,

which is the defining feature of these system, poses several challenges. In first place, it makes

mandatory to have accurate waveforms models. Indeed, even a small orbital eccentricity, if

not correctly accounted for, is able to introduce systematic biases that exceed the statistical

errors in parameter estimation [44]. As an example in [45] it has been shown that black hole

captures might be misclassified as standard CBCs.

Currently, the most accurate gravitational wave waveforms are obtained through numerical

relativity simulations, which have the drawback of being extremely computationally costly.

This is due to the great velocities reached during the encounter which impose small inte-

gration steps. On the other hand, successive periastron passages happen on much wider

timescales. Numerical relativity simulations available today, hence, only cover a limited

number of orbits [46, 47] and have shown that the gravitational wave emission consists in a

series of repeated burst signals.

Since numerical relativity waveforms are too expensive to be exploited during an online
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analysis, it is crucial to also pursue an analytical approach. In order to account for relativis-

tic effects such as radiation reaction, the Post Newtonian formalism is widely used. This

method, which works well for binaries in quasi-circular orbit, has difficulties in the high ec-

centricity limit since it is based on a post-circular expansion where the eccentric orbit is seen

as a perturbation of a circular one. Previous attempts to describe eccentric waveforms in

this way have been done in [48, 49] up to eccentricities ≲ 0.8 for widely separated binaries.

However this approach suffers from Post Newtonian convergence issues when considering

higher e or smaller separations [37]. Therefore the description of Close Encounter mergers

is not fully feasible with it.

An alternative solution is represented by a formalism recently developed: the Effective Fly-

by formalism [37, 50]. The difference with respect to other analytical approaches is that

the periastron passage in the eccentric orbit is obtained by perturbing a parabolic fly-by.

That defines the post-parabolic approximation [50]. Hence, the Effective Fly-by Formalism

provides an accurate analytical description of the single burst emission at each periastron

passage by modeling the single close passage as fly-by: i.e., a perturbation on a parabolic or-

bit. This method overcomes the issues of the post-circular approximation and is best suited

for higher eccentricities. It is also possible to derive the whole inspiral waveforms from a

single burst by adding many of these. In order to do so, it is necessary to include radiation

reaction effects to track the evolution of the orbital parameters through time. Time-domain

waveforms produced with this formalism (henceforth referred to as EFB-T) are given by [50]

h+,×(t) = −
M2η

p[ℓ(t)]dL

6∑
k=0

2∑
n=0

ϵnΦ(n,k)(ι, ψ) +O(ϵ3) (3)

where M is the total mass of the binary, η = m1m2/M
2 the symmetric mass ratio, ι - ψ

the inclination and polarization angles respectively, p is the semi-latus rectum of the orbit

which corresponds to the distance perpendicular to the semi-major axis to one of the focuses.

In G = c = 1 units, it can be measured in M⊙ units, and it is convenient to normalize it

with respect to the total mass M : p̄ ≡ p/M . It is also related to the pericenter distance by

r̄p =
p̄

1 + e
(4)

ℓ(t) is the mean anomaly defined as

ℓ(t) =
2π

Torb(t)
(t− tp) (5)
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(a) 10M⊙ + 10M⊙ (b) 100M⊙ + 100M⊙

(c) 10M⊙ + 10M⊙ (d) 100M⊙ + 100M⊙

FIG. 1. (Top): plus and cross polarizations waveforms obtained with the Effective Fly-by formalism.

The captions indicate the BH masses, while other relevant parameters are e = 0.9 and p̄ = 15.

Note the different timescales. (Bottom): FFT of the plus polarizations above. We see that the

signals lie in the LIGO & Virgo sensitivity band and that the increase of the total mass M results

in a peak at lower frequencies.

with tp the time of periastron passage and Torb the orbital period. The relation p[ℓ(t)]

accounts for radiation reaction effects at 2.5 Post Newtonian order (see Sec. IIIB in [50]).

The waveforms so computed are valid only near tp (t ∈ [−tl=π, tl=π]) and reproduce the

parabolic limit as e→ 1.

Examples of the EFB-T plus and cross polarizations waveform are given in Fig. 1. From
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Eq.( 3 ) the parameter that mainly affects both polarizations is the total mass M . With

other parameters fixed, more massive binaries result in a longer and broader burst signal

peaked at lower frequencies. Even so, the bursts have very short duration ≲ 1 s, and an

overall peak frequency in the range 10− 100 Hz.

The good accuracy of these waveforms has been studied in [50] by comparing it with nu-

merical waveforms at leading Post Newtonian order [51] and full numerical relativity.

III. NORMALIZING FLOWS FOR PARAMETER ESTIMATION

A. Basic definitions

The objective of Bayesian Inference in the context of Gravitational Wave data analysis

is to obtain the posterior distribution for the parameters describing the signal. To compute

it in the case of Close Encounters sources, we have exploited, in this work, the method of

Normalizing Flows [52]. They are a powerful class of generative models capable of modeling

complex probability distributions p(x) out of simpler base distributions by means of a learned

invertible transformation. The transformation can be conditioned on data thus making it

possible to model surrogate posteriors q(θ|s) ≈ p(θ|s). The key aspect of this approach is

that it does not require any likelihood evaluation as the flow learns how to map θ to the

base distribution via a simulation-based process. Furthermore, inference requires only to

evaluate the inverse transformation on samples from the base distribution, thus leading to

a significant reduction in computational inference time.

To introduce the definition of a Normalizing Flow, let x be a vector in an input data

space X , distributed as x ∼ p(x): a Normalizing Flow is then defined by an invertible map

(bijection) fϕ : X −→ U from the input data space X to a latent space U of a random

variable u ∼ πψ(u)

x
fϕ−−−−−→ u ∼ πψ(u) (forward pass) (6)

Our notation follows [53], with ϕ and ψ parameters f and π depend respectively upon.

Since Eq.( 6 ) is nothing but a change of variable, the probability distribution p(x) can be
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expressed in terms of the base distribution as:

p(x) = πψ(u)
∣∣detJfϕ∣∣ = πψ(fϕ(x))

∣∣∣∣det(∂fϕ(x)∂x

)∣∣∣∣ (7a)

log p(x) = log πψ(fϕ(x)) + log

∣∣∣∣det(∂fϕ(x)∂x

)∣∣∣∣ (7b)

where Jfϕ =

(
∂fϕ
∂x

)
is the Jacobian of the transformation.

The map fϕ is learned by performing the forward pass specified by Eq.( 6 ), then the

sampling of p(x) is straightforward and simply consists in evaluating the inverse f−1
ϕ over

samples from the base distribution

x
f−1
ϕ←−−−−− u ∼ πψ(u) (inverse pass) (8)

This evaluation can be done as long as some conditions hold. First, πψ(u) must be easy to

sample and evaluate. To this scope, the uniform or Gaussian distribution are best suited.

Second, fϕ must be invertible, and third: fϕ and its inverse are differentiable. Furthermore,

data and latent spaces share the same topology and dimensionality: the common choice is

X = U = RD

B. Expressive power and flexibility

It is interesting to consider whether a flow-based model can represent any distribution.

If p(x) and πψ(u) are well behaved distributions satisfying the autoregressivity assumption:

p(x) =
D∏
i=1

p(xi|x<i) , p(xi|x<i) > 0 ∀i,x ∈ RD (9)

then there exists a diffeomorphism F that can map πψ(x) into p(x) [52]. Although this

guarantees its existence, it does not provide a closed formula for F , so that it must be

learned by optimizing a function fϕ. Therefore the expressive power of a Normalizing Flow,

i.e. its ability to model complex distributions, strictly depends on the form of fϕ. Making

flows more expressive can be achieved by increasing the flexibility of the bijection fϕ. For

instance, given that a single function may not be sufficient, the whole bijection can be

constructed as a combination of intermediate bijections:
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FIG. 2. A schematic representation of the inverse pass of a Normalizing Flow where the bijection is

made up by a series of composite functions. During the inverse pass (sampling) the samples from

the base distribution are gradually transformed in each step into a more complex distribution to

match the target. Adapted from [54].

fϕ = f
(1)
ϕ1
◦ f (2)

ϕ2
◦ · · · ◦ f (K)

ϕK
(10)

each one with its own set of parameters ϕi to be optimized.

Under this assumption, the Jacobian can be factorized:

Jfϕ =
K∏
j=1

J
f
(j)
ϕj

(11)

Then Eq.( 7b ) reads

log p(x) = log πψ(fϕ(x)) +
K∑
j=1

log

∣∣∣∣detJf (j)ϕj

(uj−1)

∣∣∣∣ (12)

This shows also the meaning of the name “Normalizing Flows”: the input samples x un-

dergoes a series of composite bijections to be gradually transformed into noise: i.e. p(x)

flows through each discrete step to be normalized. The reverse is true when computing the

inverse to sample p(x). Fig. 2 gives a graphical representation of this concept.

As will be discussed in Sec. IIIG, the bijections may be parametrized with the support of

Deep Neural Networks to increase expressiveness.

C. Likelihood-Free Inference

The main application of a Normalizing Flow model is probability density estimation and

sampling, as stated by Eq.( 7a ). This approach is useful in cases where it is possible to
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have access to a collection of samples drawn from an unknown distribution that we would

like to reconstruct. Indeed, by fitting the model through Eq.( 6 ) then new samples can be

generated as illustrated by Eq.( 8 ). However the list of possible applications for such models

does not end up here, as they can also perform variational inference. We will focus more on

this kind of application as it fits our studying purposes.

Our goal is to infer probability distributions for a set of implicit parameters θ that better

describe some observation data x. In our particular case x ≡ s(t) is the strain time series

containing the gravitational wave signal of a Close Encounter, and θ the parameters of the

physical system that generated it. From the Bayes Theorem

p(θ|s) ∝ p(θ) p(s|θ) (13)

The posterior distribution p(θ|s) is traditionally computed either with Monte Carlo

Markov Chain (MCMC) or Nested Sampling by repeated evaluations of the likelihood p(s|θ).

This can become a bottleneck in many situations, either because the likelihood function can

be costly to evaluate or because it may be not well defined thus preventing a tractable

computation. Alternatively, Normalizing Flows provide themselves as a natural method to

approximate the posterior by producing a surrogate posterior q(θ|s) in a tractable way. This

can be done by making the bijection conditioned on the observed data.

p(θ|s) ≈ q(θ|s) = πψ(fϕ(θ, s))

∣∣∣∣det(∂fϕ(θ, s)∂θ

)∣∣∣∣ (14)

It is worth emphasizing that Eq.( 14 ) does not require any likelihood evaluation to perform

inference. The only requirement is to be able to simulate the data from a given set of

parameters θ∗ extracted from a prior distribution:

θ∗ ∼ p(θ) , s∗ ∼ p(s|θ∗) (15)

By this simulation process, the model indirectly incorporates both the prior over the pa-

rameters and the likelihood since the data points are generated accordingly. Therefore, this

whole approach goes under the name of Likelihood-Free Inference or even Simulation-based

Inference [55]. As in other methods based on Machine Learning, inference is significantly

faster since the computational cost is mostly during the training phase.
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D. Training of Normalizing Flows

The training of Normalizing Flow models consists in optimizing the set of parameters

ϕ upon which the bijection fϕ depends by minimizing a suitable loss function. Given our

purposes of inferring a surrogate gravitational wave posterior, in order for q(θ|s) ≈ p(θ|s) it

is necessary to minimize the distance between the two. The most straightforward measure of

how close two distributions are is the Kullback-Leibler divergence [56]. The true posterior is

in principle unknown but we can use the simulated set of samples {θ(i), s(i)}Ni=1 to minimize

the forward KL divergence KL[p||q].

It is possible to derive an expression for the loss in the following way

L = KL [ p(θ|s) || qϕ(θ|s) ] =

=

∫
ds p(s)

∫
dθ p(θ|s) log

(
p(θ|s)
qϕ(θ|s)

)
=

=

∫
ds p(s)

−
∫
dθ p(θ|s) log qϕ(θ|s)︸ ︷︷ ︸

H[p||qϕ]

+

∫
dθ p(θ|s) log p(θ|s)︸ ︷︷ ︸

H[p||p]=cost

 ≃

≃ −
∫
dθ p(θ)

∫
ds p(s|θ) log qϕ(θ|s) ≃

≃ − 1

N

N∑
i=1

log qϕ(θ
(i)|s(i))

(16)

where H[p||qϕ] is the differential Cross-Entropy between the two distributions and H[p||p]

can be discarded, being constant with respect to the flow’s parameters. At the fourth line

we have applied the Bayes Theorem to express the cross entropy in terms of the likelihood

instead of the unknown posterior and in the last passage we leveraged the fact that we

are in a simulation based context (cf. Eq.( 15 )) which implies that the integral can be

approximated via Monte Carlo methods.

Therefore, minimizing the KL divergence is equivalent to minimizing the Cross-Entropy

between p and q. By substituting Eq.( 7b ) we obtain the final formula

L = − 1

N

N∑
i=1

[
log πψ(fϕ(θ

(i); s(i))) + log

∣∣∣∣∣det
(
∂fϕ(θ

(i); s(i))

∂θ

)∣∣∣∣∣
]

(17)
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So, minimizing the loss defined by Eq.( 17 ) guarantees that the distribution inferred by

the flow will converge to an optimal approximation for the true posterior. That relation

remarks another time the likelihood-free nature of this approach since even to optimize the

flow no likelihood evaluations are required: hence, the likelihood enters in the model via the

simulated dataset.

Furthermore, the optimization of the parameters can be performed via Stochastic Gradient

methods since unbiased estimators for the gradients are given by [52]:

∇ϕL ≈ −
1

N

N∑
i=1

∇ϕπψ(fϕ(θ
(i); s(i))) +∇ϕ log|Jfϕ(θ

(i); s(i))| (18a)

∇ψL ≈ −
1

N

N∑
i=1

∇ψπψ(fϕ(θ
(i); s(i))) (18b)

Eq.( 18b ) is due to the fact that in some applications the base distribution can be learned

together with the flow as well. However in the case of likelihood-free inference is common

practice to keep it fixed. In deriving Eq.( 17 ) we opted to minimize the forward KL di-

vergence KL [ p || q ]. In principle, there are other possible divergence measures that can be

minimized: here, we motivate our choice. An alternative could have been the reverse KL

divergence KL [ q || p ]. This is typically adopted when the target density p is easy to eval-

uate but difficult to sample, which is not our case with posteriors over gravitational wave

parameters. There is, however, a much more profound reason why the reverse is not the best

option. First of all, KL divergence is not symmetrical. Thus, minimizing either one or the

other leads to different results, as the optimized distribution will show different behaviours.

More specifically, the forward KL is mass covering while the reverse is mode seeking. An

intuitive explanation can be suggested. In the forward case, in order for KL to not diverge,

q > 0 whenever p > 0, meaning it must cover the whole support of p. Conversely, in the

reverse case, being p at the denominator: q = 0 whenever p = 0, thus forcing q to seek for

the dominant mode in p. In the case of a multimodal distribution, as gravitational wave pos-

teriors are, a mass covering approximant is preferable since it will not exclude less dominant

modes that could provide interesting information.
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E. Normalizing Flows for gravitational wave data analysis

Two main algorithms are currently exploited to infer the Bayesian posteriors over gravi-

tational wave parameters: MCMC and Nested Sampling. Both are based on Markov Chains

and obtain samples from p(θ|s) by means of repeated likelihood evaluations. This implies

several computational drawbacks. First of all, the computational efficiency of these algo-

rithms is severely limited by waveform generation, which can take about 10−3s ≲ ⟨τ⟩ ≲ 1s

[57], depending on the particular waveform model used. This, combined with the elevated

number of required likelihood evaluations O(107) [58], gives a hint about the amount of

time required to perform an analysis. Secondly, being based on Markov Chains, the pro-

duced samples show correlation, which has to be accounted for, thus reducing the number

of effective samples. The high inference time is perhaps the most relevant limitation since

it also impacts Multimessenger observations as an Early Warning strategy is hardly imple-

mentable. Furthermore, the typically adopted Gaussian likelihood (see, e.g., [59]) assumes

Gaussian (Wide sense) Stationary Noise in the detector. Such a condition is not always

completely satisfied as detectors may manifest both non-gaussianities and non-stationarities

like the frequent short transients known as glitches. Therefore, if the noise assumptions are

violated, the whole analysis can be affected by biases.

Parameter estimation analyses typically require a precise knowledge of the waveform

models. In the case of Close Encounters, where uncertainties exist on the waveform model-

ing, it has been shown that the recovery of parameters (e.g., the masses) is limited by a small

number of accessible bursts during the inspiral [60]. A NF-based approach can leverage the

generalization capabilities of deep neural networks to better recover the parameters with a

limited amount of information, providing, at the same time, reduced inference times.

Finally, computational efficiency will become a key aspect of data analysis in future observ-

ing runs as well as in the third-generation detector era. As a consequence of the higher

sensitivity of future instruments, it is expected a ∼103 increase in the event rate R. As

an example, R ≳ 105 events/year for the Einstein Telescope [61]. Faster and more efficient

algorithms will be crucial for the success of those experiments.

Normalizing Flows provide themselves as a valid alternative able to supply to the limita-

tions of traditional methods. In fact, as we discussed in Sec. III C, the cost of inference

is completely amortized as likelihood evaluations are not required, and expensive waveform
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computations are performed only once during training. The fact of being a simulation-based

inference has another implication worth emphasizing: it does not suffer from the limiting

assumption about gaussianity and stationarity of the noise, provided that an adequate de-

scription is available.

F. Model Selection with Normalizing Flows

Another kind of analysis that strictly depends on Parameter Estimation is model selection

(or hypothesis testing), which in the case of gravitational waves may refer to signal detection,

i.e. testing the hypothesis of the presence or absence of a signal in the strain, or even

discriminating between two waveform models what is better at describing the data. This

is done by computing the Bayes factor B12 = Z1/Z2 which compares the evidences (or

marginal likelihoods) of the two hypothesis. Furthermore, when computed in the case of

the null hypothesis of having only noise (Z2 = Lnoise), B12 can be exploited as a detection

statistic.

Although the product of a Normalizing Flow model is a direct approximation of the posterior,

the evidence can be estimated as well through Importance Sampling, which is nothing but

a Monte Carlo estimate. More precisely

Z =

∫
dθ p(θ) p(s|θ) =

∫
dθ

p(θ) p(s|θ)
q(θ|s)

q(θ|s) (19)

By sampling the flow posterior q(θ|s), which is optimized by minimizing the mass covering

forward KL divergence, we can get an estimator of the evidence from importance sampling

weights.

Ẑ =
1

N

N∑
i=1

p(θi) p(s|θi)
q(θi|s)

=
1

N

N∑
i=1

wi (20)

The only disadvantage is that wi relies on the analytical likelihood to be computed. However,

since they can be computed separately, the whole procedure can be parallelized in principle,

reducing its computational cost.

G. Constructing the Flow

We now discuss how Normalizing Flows can be constructed by implementing the bijec-

tion fϕ to be expressive and computationally efficient at the same time. When referring
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to computational efficiency, the interest is to find a function whose Jacobian, actually its

determinant, is fast to compute. The function must also be easy to invert and rapid to

evaluate both in the forward and inverse pass. On the other hand expressiveness refers to a

sufficiently flexible transformation able to deal with highly complex distributions. More in

general since fϕ : RD → RD acts on D-dimensional vectors, it has the general form:

ui = gϕi(θi;Θi) , Θi = ci(θ) (21)

where ci is the conditioner, which specifies how the bijection acts on the various dimensions

and, in particular, on which set of components Θi does θi depends. It is not required for

it to be a bijection. gϕ is instead the transformer : a monotonic function, hence invertible,

that actually transforms the input variables. The set of parameters ϕ of fϕ contains both

parameters of the conditioner and transformer. Since, however, the conditioner is typically

specified before the training and it is not part of the optimization, its are just hyperpa-

rameters. For this reason, henceforth, we’ll refer to ϕ as the parameters of the transformer

only.

The most simple flow that can be constructed is the so-called Element-wise Flow whose

conditioner treats each vector dimensions independently Eq.( 22 ).

u1 = gϕ1(θ1)

u2 = gϕ2(θ2)

...

uD = gϕD(θD)

, detJfϕ =
D∏
i=1

∂gϕi
∂ui

(22)

This flow is efficient both in the forward and inverse pass due to the simple Jacobian:

being a diagonal matrix, its determinant is just the product of the diagonal. However, it

lacks expressiveness since each component is transformed independently. Hence, it won’t be

able to capture all the eventual dependencies and degeneracies among the various elements.

In the case of gravitational waves, there are a lot of dependencies between parameters. As

an example, recall from Eq.( 3 ) that in the case of Close Encounters, the strain amplitude

is h+,×(t) ∝M2/dL which induces a degeneracy between the total mass and the luminosity

distance. Other degeneracies can arise, for instance, when considering the localization of

the source and the antenna pattern response of the detectors. There are other architectures

able to deal with such situations, like the Autoregressive conditioner or the Coupling Layers.
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The former, in particular, models the dependencies between variables assuming an autore-

gressive structure Eq.( 9 ) where each component θi depends upon θj<i components. With

this assumption the bijection Eq.( 21 ) becomes

ui = gϕi(θi) with ϕi = F (θ1:i−1) (23)

In most cases, gϕ is taken to be an analytical invertible function whose parameters ϕ are

the output of a Neural Network here denoted with F [62]. The autoregressive transformation

Eq.( 23 ) is characterized by having a low triangular Jacobian

Jfϕ(θ) =


∂u1

∂θ1
0

. . .

A
∂uD
∂θD

 (24)

hence making the computation of its determinant equivalent to the Element-wise Flow

Eq.( 22 ).

Nevertheless, the whole architecture of Autoregressive Flows manifests inefficiency when

computing the inverse transformation (inference) as it takes a recursive structure. In fact,

the sampling of θi from u requires to have already sampled θ1:i−1 thus turning this operation

in a sequential and non parallelizable one: see e.g. Fig. 3 in [52]. The computational cost

scales in particular as O(D). It is, therefore, an unavoidable aspect of Autoregressive Flow

to have either one of the two passes to be inefficient1. Although they are, in principle,

the most expressive since they are able to account for any dependence in the variables, the

computational cost either for training or sampling scales badly with high dimensional inputs.

Coupling Layers were introduced in [53] to overcome the efficiency limitations of Autore-

gressive Flows while maintaining their expressiveness. The idea behind a coupling layer is to

split the parameter space in two equally dimensional subsets θ = (θd,θD−d) with d ≃ D/2.

The second half is then transformed element-wise and conditioned on the first half, which

is mapped through an identity.u1:d = θ1:d

ud+1:D = gϕ(θd+1:D;θ1:d)
(25)

1 It has been proposed indeed a slight variation of this flow which is the Inverse Autoregressive Flow [63].

The recursive structure is moved from the inverse to the forward pass, but it can’t be removed.
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The Jacobian is still a low triangular matrix

Jfϕ(θ) =


Id 0

A DD−d

 , D = diag

[
∂ud+1:D

∂θd+1:D

]
(26)

However, since the upper left block is simply the identity matrix, the computational cost

scales as O(D − d). It turns out that computing both forward and inverse is an efficient

operation that can be further parallelized. The only drawback of this layer is that a single

one is not sufficient, as only half of the components get actually transformed. To enhance

the expressiveness, it is possible to stack multiple of these layers with random permutations

of θ indexes in between. Hence, fϕ is given by Eq.( 10 ) and the full Jacobian by Eq.( 11 ).

If the number K of layers is sufficient, the output will be equivalent to an autoregressive

one due to the fact that, in the end, each component is transformed, being conditioned on

every other component. As a “rule of thumb”, K should at least be equal to D.

Coupling Layers provide themselves as the optimal choice both in terms of expressiveness,

flexibility, and computational cost: in fact, both training and sampling are equally fast.

Moreover, they are also relatively easy to implement.

We now describe the invertible transformation. Any strictly monotonic function, being in-

vertible, can be applied, provided, however, it is differentiable and with an easy-to-compute

inverse. In the continuation of this discussion, we will consider two of the most widely

adopted. Affine transformations were among the first functions to be proposed as suit-

able transformers. The same work introducing coupling layers adopted this form exploiting

exponential rescaling [53, 64]:

u = gϕ(θ) = θ ⊙ exp [s(θ)] + t(θ)

θ = g−1
ϕ (u) = [u− t(u)]⊙ exp [−s(u)]

(27)

In Eq.( 27 ), ⊙ denotes the Hadamard (or element-wise) product. The parameters of this

function are hence ϕ = {t, s}: shift and scale.

Combined with Coupling Layers, the transformation of Eq.( 27 ) has proven to be flexible and

expressive enough to model complex distributions as images [65] or even audio waveforms

[66].

Another flexible transformation was introduced in [67] as an avenue to model extremely
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complex and multimodal distributions while retaining the property of being analytical, dif-

ferentiable, and easy to invert. The idea is to map an interval [−B,B] ⊂ X into [−B,B] ⊂ U

by interpolating a Rational Quadratic Spline between a set of sorted knots {xk, yk}Kk=0 where

both the knots and their internal derivatives {δk}K−1
k=1 are parametrized as the output of a

Neural Network. Computing the inverse requires solving a 2nd order equation, which can be

done analytically (see Eqs. (6)−(8) in [67]). This kind of transformation is extremely flexi-

ble, and it naturally induces multimodality by increasing the number K of knots. Therefore,

it has been mainly applied in the context of image generation.

IV. HYPERION’S ARCHITECTURE

We present here the “HYPer-fast close EncounteR Inference from Observations with

Normalizing-flows” pipeline (HYPERION). This pipeline takes as input 1 s of whitened

strain time series and returns as output samples from the posterior probability p(θCE|s).

More specifically, the parameters over which it makes inference are: the total mass M , mass

ratio q, eccentricity e0
2, semi-latus rectum p̄0, luminosity distance dL, the time of periastron

passage δtp, right ascension α and declination δ. The general structure of HYPERION is

depicted in Fig. 3 along with input/output relations between its building blocks.

The core of the model is a Normalizing Flow, which reconstructs the posterior distri-

bution. Given that it is a conditional probability distribution, the flow must be supplied

with the most informative context as possible. Therefore, we introduced in the model an-

other building block, fundamental as well: an Embedding Neural Network. Acting as a

feature extractor, its primary task is to extrapolate the information in the noisy strain time

series and to compress it to a lower dimensional form. This procedure has the purpose of

filtering out all the irrelevant features, mainly the noise content. Other than the Embedding

one, other Deep Neural Networks are implemented in the Normalizing Flow itself, thus mak-

ing our model reach the number of ∼ 180 millions of trainable parameters. HYPERION

was developed with python 3.10 and PyTorch 2.1.0 [68].

2 the subscript 0 refers to the value when the mean anomaly ℓ = 0, i.e., the periastron passage
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FIG. 3. Schematic overview of HYPERION which is composed of a Normalizing Flow and and

Embedding Neural Network acting on input strain data. Solid arrows represents input-ouput rela-

tions: red apply during training, blue ones when performing inference while black ones are always

present.

A. The Embedding Network

The presence of such an element in our model can be justified by the following reason.

In the process of Likelihood-free Inference, the likelihood enters indirectly as the result

of a simulation procedure. It means that the NF is able to determine the best mapping

fϕ : Θ→ U based on the similarity between the joint samples {θ(i)
CE, s

(i)} that it is supplied

with. A raw data representation, like the strain time series, is not the optimal choice, even

if whitened. That is both because of the low signal to noise ratio for CE signals and because

of the morphology of the signal itself, which does not show directly a clear dependency on

all the θCE parameters. Hence, a feature extractor is necessary. The overall architecture

of the Embedding Network shown in Fig. 4a is the result of several optimizations and

improvements.

It is composed of two Convolutional Neural Network (CNN) blocks that perform the
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(a)

(b)

FIG. 4. (a): The general architecture of the Embedding Network is composed of two CNN blocks

acting in different ways and a ResNet block that efficiently compresses the extracted features into a

(1, 256) dimensional tensor. More specifically, the CNN block on the left extracts features related to

the signal morphology, while the other on the right focuses more on temporal correlated patterns.

(b): Detailed architecture of the ResNet block.

feature extraction from the input time series: 1s sampled at fs = 2048 Hz with each of the

3 channels corresponding to a given interferometer (H1, L1, V1). The first block consists of

three 1D Convolutional Layers with fixed kernel size = 5 and [32, 64, 128] numbers of filters
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respectively. Between each layer, there are pooling layers and also Batch Normalization

layers, whose addition was found to be beneficial. This first block is able to learn features

related to the shape or morphology of the signal which are relevant for a subset of θCE.

Given, however, the translational invariance of the neuron’s response in such block, it is

unable to learn features that are mostly correlated with their.

Indeed, in our earlier experiments, the inference about {δtp, α, δ} was not great as we

were simply recovering their priors. The reason for the effect on sky localization can be

easily understood by the fact that it is determined by the relative shifts in arrival time of

the signal in each detector . For long signals, like those produced by coalescences, multiple

time instants can be compared: i.e., the information spreads over a wide temporal interval.

For a burst signal, on the contrary, all the emission is concentrated over a small time interval,

which implies that the sky localization information strongly correlates with δtp itself.

This motivated introducing a parallel CNN block acting differently from the former. The

crucial difference is that many convolutional layers, with different filters and kernel sizes, slide

independently over the time series and after each of them a Global Max Pooling layer keeps

the maximum neuron’s response. The resulting outputs are then concatenated together, and

in this way, the temporal information about the neuron’s response gets preserved.

The output of each CNN block is then passed to Linear layers with 2048 neurons that are

subsequently concatenated and then compressed into a final layer with 256 output neurons

by means of the ResNet block (Fig. 4b). This block is composed of four sub-blocks sized

[2048, 1024, 512, 256] respectively, each one containing 3 skip connections. In contrast

to regular linear layers, skip connections proved to be more efficient at compressing the

dimensionality of the network’s output without loss of meaningful information. Regarding

activation functions, we have found the best results with the ELU rather than ReLU. To

reduce at minimum the chances of overfitting the Embedding Network, especially the ResNet

block, makes extensive use of Dropout layers

We decided to exploit CNNs and not Recurrent Neural Networks (RNNs) mainly for two

reasons. RNNs are suited for the analysis of long temporal correlated sequences. In our

case, as already explained, the information is localized in time. CNNs are better suited

to extract feature on different timescales, therefore they have been proposed as a viable

machine learning method for gravitational wave data analysis. Furthermore, the recurrent

structure of RNNs negatively impacts the computational cost of inference.
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FIG. 5. The architecture of the Normalizing Flow implemented in HYPERION which consists of

a stacking of 32 coupling layers with affine transformations. The red arrows refer to training, while

the blue ones to inference (inverse of the transformation).

B. The Normalizing Flow

The NF implemented in HYPERION adopts Coupling Layers, given their properties and

computational efficiency, combined with affine transformations Eq.( 27 ). The whole Nor-

malizing Flow scheme is shown in Fig. 5 where we made explicit the structure of the Affine

Coupling Layer Eq.( 28 ).

(training) :

u1:d = θ1:d

ud+1:D = θd+1:D ⊙ exp [sd+1:D(θ1:d)] + td+1:D(θ1:d)

(inference) :

θ1:d = u1:d

θd+1:D =
[
ud+1:D − td+1:D(u1:d))

]
⊙ exp [−sd+1:D(θ1:d)]

(28)

The architecture consists of 32 layers: a sufficiently high number to guarantee a proper

mixing between all the θCE components in order to capture all the dependencies and degen-

eracies. In between every coupling layer, a Random Permutation shuffles the parameter’s
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space indexes. This can be seen as an additional transformation with a Jacobian equal to

1. The permutation matrices are then saved as parameters of the model for reproducibility.

We also tested Rational Quadratic Splines, given their expected expressiveness, but they

turned out to be sub-optimal. The posteriors produced were excessively multimodal, with

clear signs of either underfitting or overfitting in some cases: this was also confirmed by the

training and validation losses during the optimization.

The Affine Couplings depend upon two parameters: scale s and shift t. Both of them

are the output of a Fully Connected Neural Network (Fig. 6), which takes as input both the

identity-mapped parameters and the embedded strain. In our implementation, each layer

has its own Network that is optimized independently for an overall more precise inference.

The Network for the scale and shift parameters are nearly identical except for the activation

function. While the shift’s one adopts the ELU, the other one adopts the tanh to prevent

numerical instabilities that can arise otherwise due to the fact that s enters into an expo-

nential. The hyperbolic tangent is also a better choice than the Sigmoid since it allows both

≤ 1 and ≥ 1 scale factor values.
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FIG. 6. Neural Network architecture for the Affine Coupling Layer Eq.( 28 ). Each of the 32

Coupling Layers in HYPERION contains such a Network that gets optimized independently.

Note the different activation functions for the scale parameter branch.

C. Pre and Post Samples Processing

Since the various parameters in θCE might have wide and different numerical ranges, a

direct usage of their strict value would certainly result in numerical instabilities when fed

to the Neural Networks. For that reason, each parameter is rescaled to have zero mean and

unit variance. This reduces their numerical range while keeping intact the shape of their

prior distribution at the same time. Means µ and standard deviations σ are computed from

the training dataset and saved as model hyperparameters. At the end of the inference phase,

all the samples are brought back to their original physical range.
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V. SIMULATIONS AND RESULTS

A. Training Dataset

Since Likelihood-free inference with Normalizing Flows relies on simulated training data

samples that must reflect the properties of real ones, the simulation of the training dataset

is one of the most delicate operations of this work. The dataset is made up by joint samples

D = {θ(i)
CE, s

(i)}Ni=1 where θCE are the Close Encounter gravitational wave signal parameters

and s is the corresponding strain time series sampled at 2048 Hz. This sampling frequency

implies a Nyquist frequency fnyq = 1024 Hz large enough to capture the frequency spectrum

of CE BBH, whose peak frequency is in the band 10 − 100 Hz. We prepared a dataset

of N = 5 × 106 samples, being the best compromise between an accurate inference and

computational training cost. The first step in generating the dataset is the sampling of θCE

from prior distributions. Those parameters are then fed into the Effective Fly-by model

to produce plus and cross template polarizations h+,×(t). Depending on the source sky

coordinates, the template is afterward projected onto Advanced LIGO and Virgo detectors.

This simulated signal is embedded into 8 seconds of Gaussian colored noise sampled from the

reference O3a amplitude spectral density and saved in a Hierarchical Data Format file. We

allowed the amplitude spectral density to vary for each simulated event in order to reproduce

the non-stationarity of background noise.

In this work, we have not included transient noises like glitches since the capability of

analyzing the time series of three detectors simultaneously automatically rejects local sources

of noise. This whole procedure is parallelized, therefore significantly reducing the simulation

time to O(10 h) on a AMD Epyc 7301CPU with 32 cores / 64 threads.

The prior distributions over θCE are listed in Tab. I. These population parameters can

be grouped into the following categories:

Mass components: we adopted a uniform prior overm1,2 (Fig. 7). As the strain amplitude

in the EFB-T model Eq.( 3 ) scales with the total mass M , the model makes inference on

M = m1 + m2 and q = m2/m1. The condition m2 ≤ m1 reduces the number of effective

simulations and hence computational resources;

EFB-T parameters: namely the eccentricity e0, semi-latus rectum p̄0 (normalized with

the total mass M) and time of peri-astron passage δtp with respect to a reference GPS
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θCE distribution min max

m1 [M⊙] uniform 10 100

m2 ≤ m1 [M⊙] uniform 10 100

p̄0 uniform 13 25

dL [Mpc] uniform 100 2000

e0 uniform 0.85 0.95

α uniform 0 2π

δ cos −π/2 π/2

δtp [s] uniform −0.25 0.25

ψ uniform 0 π

ι sin 0 π

GPS time fixed 1370692818.0

TABLE I. Prior distributions of the simulated BBH CE population. The first set of parameters

is the one over which HYPERION makes inference, while the rest enters only in the simulation

phase. α and δ are right ascension and declination respectively.

time. The ranges for these parameters are chosen for the template waveforms to provide the

highest match with Numerical Relativity. In particular, we adopt the same prior choices of

[20];

Gravitational wave localization parameters: the sky angles α (RA) and δ (DEC) whose

prior is chosen to be uniform over the sphere. For the luminosity distance dL we chose the

range 100 Mpc − 2 Gpc. We opted for a uniform prior to produce a more balanced dataset.

It’s worth to note also that, since from Eq.( 3 ) h(t) ∝M2/dL a biased estimate of dL could

indeed introduce a bias also in the estimate of M ;

Other gravitational wave parameters: additional parameters relevant for the simulations

of the gravitational wave emission are the GPS time at which the event occurs, which is

fixed for all the simulations, polarization angle ψ and inclination angle ι between the orbital

angular momentum and the line of sight. For the last two, we adopt standard physical

priors. At the moment, these parameters are not included in the inference process.
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(a) (b)

FIG. 7. Prior distributions over the mass parameters. (a): uniform prior overmi with the condition

m2 ≤ m1. This is the prior implemented in the simulations. (b): The same mass prior but in terms

of total mass M = m1 + m2 and mass ratio q = m2/m1. Instead of the two mass components,

HYPERION makes inference on M and q.

B. Training procedure

We trained the model for 250 training epochs, each one ending after the flow has been

optimized over 1000 batches made of 512 samples.

We used the ADAM optimizer [69] with an initial learning rate of 10−4. During the training,

10% of the dataset was reserved for validation, and the learning rate was reduced by 50%

after 10 epochs without validation loss improvements. Before training, the training dataset

is completely simulated and preprocessed. In particular, during the preprocessing phase,

the strain is whitened and cropped to one second. No highpass filter was applied to avoid

the risk of cutting out relevant signal frequencies. During training, we did not apply any

augmentation except for the time of periastron passage δtp, which is randomly drawn from

the prior (Tab. I) for any training sample loaded into the GPU. The relative strain time

series is rolled accordingly. Given the short duration of the signal, there is no risk for it to

get too close to the time series edges. This augmentation has proven to be quite effective

at reducing overfitting. The training history is shown in Fig. 8. As both the training and

validation loss are in close agreement, we conclude there is no sign of overfitting.

The value of 512 for the batch size is an optimal compromise between the training stability
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FIG. 8. Plot of the training history. (Left): Training and Validation Loss over the 250 training

epochs. The close agreement between the two indicates no issue of overfitting. (Right): Learning

Rate schedule during training.

and final model accuracy. Moreover, the usage of only 1000 batches for optimization during

each epoch ensures a good covering of the training sample’s parameter space without the

model having seen the whole dataset. This strategy is similar to the one adopted in [70].

Tuning the learning rate η was a crucial aspect of the training phase. The typical start-

ing value of η0 = 10−3 has been demonstrated to be too large and did not allow a proper

optimization. We have also tested different annealing strategies, like the cosine annealing,

although we found best results with the strategy oulined earlier.

The whole training phase took around 20 hours on a Dell PowerEdge R7425 machine

equipped with NVIDIA A30 GPUs.

C. Performance on parameter inference

To test the ability of HYPERION to recover θCE and its overall performance, we have

simulated an additional test set. This set is composed of other 103 simulated signals with

the same distribution as the training one. The SNR distribution of the test set is shown in

Fig. 9: both for the individual detectors and for the network. The network SNR shows, in

particular, a peak around a value of 5 as seen in previous works [20, 60].
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FIG. 9. SNR distribution of the signals in the Test Dataset. (Top): SNR distribution for each of

the simulated detectors. (Bottom): Network SNR distribution

HYPERION’s inference has been compared with the one produced by BILBY [71],

adopting the Dinesty [72] sampler. We tested different hyperparameters/settings, al-

though with minimal discrepancies in the outputs. Henceforth we will refer to the results

obtained with these settings: r-walk sampling method, nlive = 1000, nact = 50, npool = 42.

With these parameters, 5 × 103 posterior samples were obtained in ∼ 10 hours. Using

the same hardware, we produced 5× 104 samples in 16 seconds by HYPERION running on

the CPU only. When using the GPU, the same amount of samples were produced in just

0.5 seconds, improving by almost 5 orders of magnitude over standard Bayesian methods.

Even on a CPU, the model can exploit, at most, hardware parallelization offered by the
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PyTorch deep learning library. The higher inference time required by BILBY (O(10 h)

is mainly due to the elevated number ∼ 107− 108 of likelihood evaluations required and the

account for the autocorrelation time in the MCMC chains. In Figs. [10 − 12] we show corner

plots comparing the obtained posteriors for some of the simulated test signals. The upper

quantiles, as well as the sky-maps, refer to HYPERION. The sky-maps, in particular, are

produced with a subset of 104 samples with the tool ligo.skymap [73].
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FIG. 10. Comparison of posterior samples produced by BILBY and HYPERION for a test signal

with network SNR ≃ 30 (dL ≃ 100 Mpc). The posterior for most of the parameters are well

overlapping, except for eccentricity e0 which only HYPERION is able to estimate. On the other

hand, BILBY gives a slightly better estimation of the localization.
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FIG. 11. Comparison of posterior samples produced by BILBY and HYPERION for a test signal

with network SNR ≃ 12 (dL ≃ 700 Mpc). In this case, only HYPERION’s posteriors are infor-

mative since BILBY essentially reproduces the priors. δtp is the better-estimated parameter. The

sky-localization’s posteriors show bimodality: the dominant mode is, however, the one containing

the right value for (α, δ).
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FIG. 12. Comparison of posterior samples produced by BILBY and HYPERION for a test

signal with network SNR ≃ 6 (dL ≃ 1400 Mpc). In this case, only HYPERION’s posteriors are

informative since BILBY reproduces the priors. The estimate of M is emblematic as BILBY

completely misses the right value, which is correctly estimated by HYPERION. The greater sky-

localization area can be due to this signal peaking at lower frequencies where the sensitivity is

worse.
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VI. DISCUSSION

The results obtained by testing HYPERION on simulated data show a very promising

performance when compared with traditional parameter estimation based on Bayesian infer-

ence. The agreement between the parameter’s values estimated by HYPERION and Bilby

(e.g., in Fig. 10) shows that NFs are a viable and robust alternative to traditional Bayesian

methods since they provide the same accuracy on results but on much shorter timescales. At

the same time, as shown in Fig. 12, HYPERION maintains the capability of providing infor-

mative posteriors even in the presence of low SNR signals. This can be seen, for instance, in

the estimate of the total mass M in Fig. 12, where HYPERION correctly produces values

peaked around the simulated values (e.g., M ≃ 40 M⊙) instead of reproducing the prior

distribution. Results on posteriors using Bilby suggest that low SNR signals might require

additional fine-tuning of the nested sampling hyperparameters.

We note that the time shift δtp parameter has narrow marginalized posteriors. This illus-

trates the efficiency of the Embedding Network and, in particular, of its Convolutional layers,

which are able to recognize CE patterns even in the lowest SNR scenarios. In fact, one of

the advantages of a time domain representation is that time-related patterns are directly

accessible, in opposition to a frequency domain representation in which they manifest as

phase shifts. Therefore, HYPERION is able to work as a standalone detection pipeline by

using the Bayes factor statistic (Sec. III F). When analyzing simulated data containing only

noise, the posterior for δtp produced by HYPERION gets excessively broad, resembling the

prior, thus indicating that the embedding network found no matches with known signals in

the data.

As far as sky localization is concerned, we expect CE waveforms to be more difficult to

localize than longer CBC waveforms, given their shorter duration and/or lower SNR. Indeed,

with a shorter signal, it becomes more difficult to estimate the relative temporal shifts

between the detectors because that information is concentrated in time. As a consequence,

sky localization area increases with lower SNR or waveforms peaked at lower frequencies,

as in Fig. 12. Although this aspect affects both standard methods and HYPERION, we

notice that the latter provides better performance on localization for low SNR signals. This

can be interpreted as proof of the efficiency of the localization CNN block in HYPERION’s

embedding network.
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It can be further noticed that those posteriors (in particular the right ascension α) show

multimodality, which is related to periodicity in coordinates that induces a degeneracy for

values near 0 and 2π. This multimodality is also a manifestation of the ability of NFs to

model complicated distributions.

FIG. 13. Comparison between the posterior inferred by HYPERION and the importance-

reweighted posterior for the test sample of Fig. 12

To futher validate HYPERION’s results we reweighted the posteriors with Importance
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Sampling, with the method described in Sec. III F and compared the two distributions. A

metric for the inferred posterior’s goodness can be defined as ϵ = 1
n
(
∑

iwi)
2/(
∑

iw
2
i ) ∈ (0, 1]

(sample efficiency) [74] where wi are the importance weights and n the total number of

posterior samples. We show an example in Fig. 13 for which ϵ ≈ 0.8. We obtain similar

results also for other test samples. The high efficiency can be justified by the fact that the

test samples comes from the same distribution as the training ones (i.e. there are no OOD

samples).

Although the results on the test set suggest the good performance of HYPERION, it

is crucial to provide more accurate metrics to assess the power of this approach. Given

the probabilistic and Bayesian nature of the model, a suitable test for its accuracy is the

Probability−Probability Plot. This is a test used in Bayesian data analysis and widely

adopted in the context of gravitational waves. The idea behind this test is to give a frequen-

tist interpretation of Bayesian Credible Levels for the 1D marginalized posterior distribu-

tions. As an example, given a CL = 0.8, for an optimal model, it means that in the 80% of

the cases, the true parameter value will lie in an interval that encloses 80% of the posterior

probability, regardless of the skewness of the distribution.

To perform the test, we first drew a set of N data samples from the test set. For each of them

we computed the posteriors and determined the percentile score of the true θCE parameter

values in each marginalized posterior. We then took the cumulative distribution (CDF) for

each of the θCE. As the optimal case is represented by the percentiles being distributed

according to a uniform one U(0, 1), we tested whether the CDFs lay on the diagonal.

Fig. 14 shows the result of the PP test for a set of N = 1024 draws. It is possible to

notice that all the CDFs are well distributed along the diagonal with minimal spread limited

within 2σ for almost all the CL intervals. To quantify how close the percentile distributions

are to a uniform, a two-tail Kolmogorov-Smirnov Test is performed. The output p−values

are shown in Fig. 14 as well. For each of the θCE, the p−values are greater than 0.1 with

the combined one ≃ 0.5, thus implying a good recovery of the parameters. Assuming a

confidence level of 95% (threshold at α = 0.05), it is therefore not possible to reject the null

hypothesis that the obtained CDFs are drawn from a uniform distribution since p > α. The

parameter with the highest p−value is the total mass M reaching ≃ 0.7, which does not

surprise given the strong dependency of the Effective Fly-by waveforms on it.

One of the main differences between a Normalizing Flow model such as HYPERION
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FIG. 14. Probability-Probability Plot for a set of 1024 posterior evaluations from the Test Set.

Each cumulative distribution lines up pretty well along the diagonal with a spread limited within

the 2σ (grey regions) for almost all the CL interval. In the legend is also reported for each θCE

the KS statistics result. This plot has been made with a Bilby built-in function.

and standard methods is that it does not use Markov chains. MCMC algorithms have to

account for correlation within the chains by thinning them. This has an impact on the

efficiency since the the number of effective samples is reduced, or equivalently, to obtain the

same Neff samples longer chains need to be produced (see Sec. 3 of [75]). On the contrary,

NFs are able to draw a set of N independent samples directly, and to prove it we computed

the autocorrelation time. In particular, τ̂θ is determined for each of the θCE set of samples

with

τ̂θ = 1 + 2
M∑
τ=1

ĉθ(τ) (29)

where ĉ(τ) is the autocorrelation function computed with the Fast Fourier Transform algo-
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rithm, and M is the first τ value for which the autocorrelation exceeds a threshold value

(ĉθ(τ) < 0.01).

Applying Eq.( 29 ) the estimated autocorrelation time is τ̂θ = 3 ∀θ : the smallest amount

possible. The outlined procedure has been repeated for several different posteriors with

no changes in the results. This hence indicates that all the posterior samples produced by

HYPERION are valid.

We address now the major limitations of this work and how they can be alleviated in the

future. Being this work a proof of concept in the analysis of Close Encounters, we chose

limited prior bounds for the simulations. However, extended simulations can be carried out

anytime. The training dataset size can be, therefore, accordingly increased, provided that

it is possible to account for the higher training time. Besides, our simulations assumed

Gaussian and stationary noise. By considering also artifacts like nonstationarity and/or

glitches in the simulations, this inference scheme can be made even more robust.

VII. CONCLUSIONS

In this work, we introduced HYPERION, a deep learning-based pipeline to detect and

perform Bayesian parameter estimation on gravitational wave signals produced by binary

close encounters.

No firm detection of gravitational waves from close encounters has been achieved so far,

making these sources particularly interesting to broaden our view of the gravitational wave

Universe. Detecting and measuring parameters of close encounters could, therefore, help

to shed light on the dynamical formation channels of compact binaries and explain the

observed population. Furthermore, their detection would confirm the expectations of a sub-

population of compact binaries merging with non-null eccentricities.

Moreover, their low-latency detection would allow the trigger of electromagnetic follow-up

observations necessary to study a potential electromagnetic counterpart as well as the sur-

rounding environment. Detecting close encounters is difficult because of their intrinsic low

signal-to-noise ratio, which makes them a hard target for current interferometers. Moreover,

the short duration of the expected gravitational wave signal impacts the capability to esti-

mate the sky coordinates and other parameters. Deep learning is a promising tool for fast

analysis of gravitational wave data that could constitute a viable approach for the study
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of this particular source. Since the standard methods for parameter estimation are based

on a Bayesian framework, we explored the application of probabilistic machine learning. In

particular, we focused on Normalizing Flows, an emerging machine-learning technique that

is able to infer posterior distributions on very short timescales. Compared to other methods,

such as MCMC, that require many likelihood computations, NFs introduce a faster posterior

sampling based on a likelihood-free approach.

The architecture of HYPERION consists of two main parts: an embedding network whose

goal is to extract features from the strain time series collected by a network of ground-based

interferometers and an Affine Coupling Flow for the quick reconstruction of the posterior dis-

tribution and the estimation of the source parameters. The training of HYPERION pipeline

was carried out adopting the Effective Fly-by waveforms on a set of ∼5×106 simulated sig-

nals, obtaining extremely promising results on the test set. The value of the reconstructed

parameters is consistent with the simulated values even in low signal-to-noise ratio cases.

Furthermore, the HYPERION pipeline is ∼5 orders of magnitudes faster than traditional

algorithms, providing the reconstruction of the posterior distribution on timescales of 0.5 s

instead of ∼ 10 h.

These results show that the NF-based approach is a viable and robust strategy for real-time

detection and parameter estimation of signals from close encounters, also enabling electro-

magnetic follow-up campaigns.

There are several other prospects about how this work might be extended or improved in the

future. In this work, we focused in particular on CE signals from binary black holes as they

are the most likely to be observed with the current generation detector, both in terms of

SNR and expected rates. Nevertheless, CE emission is expected also from systems contain-

ing neutron stars, and they constitute a potential source for ground-based third-generation

detectors like Einstein Telescope or Cosmic Explorer [76, 77], or spaceborne missions like

LISA [78]. Future work will include the analysis of repeated bursts from multiple periastron

encounters, allowing to track the evolution of orbital parameters during the inspiral phase.

The deep learning method presented in this work will permit rapid systematic searches

for transients produced by close encounters, with the exciting possibility of detecting these

signals and exploring the formation scenarios of binary compact systems in the Universe.

Furthermore, this inference scheme is not limited to gravitational waves emitted by close

encounters. With minimal changes, e.g., by employing a different waveform model during
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training and/or changing its hyperparameters, HYPERION can be adapted to search for

other kinds of sources, e.g., other kinds of burst-like signals.
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