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Summary

Khatri et al. have proceeded to address the limitations of existing compu-
tational tools to track self-intersecting single cytoskeletal filament dynamics
in microscopy image time-series. Their approach, ‘KnotResolver’ combines
directed graphs and contour warping to result in robust and accurate results.

Abstract

Quantification of microscopy time-series of in vitro reconstituted motor driven
microtubule (MT) transport in ‘gliding assays’ is typically performed using
computational object tracking tools. However, these are limited to non-
intersecting and rod-like filaments. Here, we describe a novel computational
image-analysis pipeline, KnotResolver, to track image time-series of highly
curved self-intersecting looped filaments (knots) by resolving cross-overs. The
code integrates filament segmentation and cross-over or ‘knot’ identification
based on directed graph representation, where nodes represent cross-overs
and edges represent the path connecting them. The graphs are mapped back
to contours and the distance to a reference minimized. We demonstrate the
utility of the tool by segmentation and tracking MTs from experiments with
dynein-driven wave like filament looping. The accuracy of contour detection
is sub-pixel accuracy, and Dice scores indicate a robustness to noise, better
than currently used tools. Thus KnotResolver overcomes multiple limitations
of widely used tools in microscopy of cytoskeletal filament-like structures.

Introduction

Microtubules (MTs) are an essential component of the cell cytoskeleton and
their interaction with molecular motors serves to generate forces required
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for organelle positioning and the assembly of supra-molecular structures like
the mitotic spindles, cilia and flagella (Woolley, 2000; Guérin et al., 2010).
The collective properties of MT growth and interactions result in complex
networks in vivo. However, quantifying the mechanical properties in such an
intracellular environment has proven to be difficult due to the crowded nature
of the intracellular space (Ellis, 2001). As a result, collective the mechanical
properties of both MTs and motors have been extensively studied in vitro.
One prominent method used to examine collective transport by molecular
motors is by immobilizing motors on the surface and allowing filaments to
bind to them, which results in transport of MTs, referred to as ‘gliding
assays’ (Howard et al., 1989; Nitzsche et al., 2010; Sumino et al., 2012).
Typically in such microtubule ‘gliding assays’ with short filaments, i.e. of
lengths 5 µm or less, are observed almost as rod-like objects in microscopy
in presence either kind of motor- kinesin (Scharrel et al., 2014) or dynein
(Monzon et al., 2018; Jain et al., 2019). Actin filament motility driven by
myosin however shows highly curved and bent structures at similar length
scales (Kron and Spudich, 1986; Kron et al., 1992; Ishijima et al., 1991). This
is consistent with the reported persistence length of MTs in vitro at thermal
equilibrium of the scale of millimeters while actin has an average persistence
length of the order of ∼10 µm (Gittes et al., 1993). Additionally highly
curved filaments are seen in ‘gliding assays’ either due to torsional forces
exerted by myosin resulting in filaments ‘twirling’ (Beausang et al., 2008),
and MTs when held in optical tweezers (Kurachi et al., 1995) or pinned at
one end due to buckling (Gittes et al., 1996). In recent work, complex curved
structures of bundled MTs have been observed in bottom-up reconstitution
of axonemal bending (Guido et al., 2022), as well as plus-end clamped MTs in
a dynein ‘gliding assay’ that undergo cyclical wave-like oscillations and self-
intersections (Yadav et al., 2024). Thus tracking curved and self-intersecting
filaments, i.e. knots, from time series are of wider relevance for quantification
of collective motor driven filament transport studies.

Quantifying such ‘gliding assays’ typically involves detecting and tracking
the movement of individual filaments in microscopy time-series. Some of the
widely used tools include a MATLAB based tool FIESTA, that was shown
to track MTs with sub-micron precision (Ruhnow et al., 2011), an active
countour based approach applied to track actin filaments, JFilament that
works as a FIJI plugin (Li et al., 2009; Smith et al., 2010) and MTrack, a
versatile FIJI plugin (Kapoor et al., 2019). While these tools are optimized
for a general ‘gliding assay’, they assume non-intersecting filaments that are
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straight over the time-series, assumptions that are violated in either complex
geometries or crowded environments.

Multiple algorithmic approaches to resolving networks from microscopy
have been developed including a general algorithm for the decomposition of
filamentous networks (DeFiNe) by weighted, undirected graph representation
and roughness minimization that can resolve simulated, cellular and astro-
nomical images of meshes of filaments (Breuer and Nikoloski, 2015). At a
whole cell scale NeuriteTracer has been used to automatically detect neuronal
extensions based on low-level segmentation and skeletonization (Pool et al.,
2008), which has been integrated with a graph theoretical representation in
simple neurite tracer (SNT) (Arshadi et al., 2021). At an organismal scale,
images of Caenorhabditis elegans worms at high density were resolved by
combining skeletonization with a graph-theoretical representation of worm
contours as edges and adjacencies as nodes (Raviv et al., 2010). Represent-
ing networks as open curves using B-spline surface representation of filaments
optimized by gradient-descent to the image, combined with image-formation
model to detect and segment unknown numbers of filaments (Xiao et al.,
2016). Thus, across problem-types the application of graph representations
have been useful to resolve filaments in complex geometries. However these
have, to our knowledge, not yet been applied to single filaments with cross-
overs in combination with tracking.

In this study, we describe a novel approach to segment and track sin-
gle microtubule filaments in time-series data that undergo self-intersections
or knots, that we refer to as KnotResolver. Our approach combines active
contours seeded by an initial guess based on an intensity threshold and geom-
etry, the representation of the intersecting segments as elements of a directed
graph and distance minimization between time-frames by comparing curves
predicted by the directed graph with an initial reference that is not inter-
secting. We demonstrate the utility of our approach by applying it to resolve
knots in both in silico and in vitro oscillations of clamped MTs described in
a recent study (Yadav et al., 2024). We demonstrate the improvements in
tracking by comparing KnotResolver to existing filament tracking tools.
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Results

Filament looping and cross-over detection: limits of ex-
isting tools

We have recently demonstrated microtubules can undergo waves of high cur-
vature and oscillate in a modified vitro ‘gliding assay’, where plus-ends of
MTs were clamped to the glass substrate while a surface-immobilized minus-
end directed motor, dynein generated the transport force(Yadav et al., 2024)
(Fig. 1A). The filaments undergo wave-like millihertz (slow) oscillations in
a motor-density and filament length dependent manner. In order to quan-
tify filament contours from such image time-series data, we applied multiple
standard image-analysis tools for segmenting filaments in ‘gliding assays’ of
which we describe the result of using the two more widely used: JFilament
and FIESTA. JFilament (Li et al., 2009; Smith et al., 2010) based on a
robust active-contour approach, resulted in filament detections, only when
they were not looped, but once filaments underwent self-intersections the
method took what appeared to be the shortest path (Fig. 1B(top)). This
relates to the nature of the active contour method used. FIESTA (Ruhnow
et al., 2011) on the other hand, is based on Gaussian profile fitting to im-
prove threshold-based segmentation with filament tracking broadly based on
distance minimization. The outcome of using the same dataset, resulted in
detection only of the straight segments of filaments, with highly curved re-
gions of the same filament fragmented into multiple straight segments (Fig.
1B(bottom)). While tuning multiple parameters of the code did change the
results slightly, it did not lead to a qualitative improvement, due perhaps to
the inherent assumption of straight rod geometry built into the method. Thus
we proceeded to address both these limitations of the existing approaches-
straightness assumption and path length optimization- to develop a novel
approach.

Resolving self-intersecting ‘knots’ in filament contours
by minimizing paths using directed graphs

The ‘KnotResolver’ pipeline consists of the following steps: (i) Segmentation
used to extract skeletons of a single microtubules (Fig. 2A). Segmentation
parameters are interactively set by visually inspecting the output with the
optimal values saved in a CSV file. (ii) Branch identification is called after the
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segmentation optimization script, that identifies filament self-intersections
(Fig. 2B). (iii) Mapping ‘knots’ to graph: converts the elements into a graph
representation, (iv) Template matching to reconstruct the correct filament
geometry by path minimization to previous time-frames (Fig. 2B,C).

(i) Segmentation: Images were first pre-processed to enhance contrast by
saturating the top and bottom 1% of intensity values and median filtering us-
ing a 3x3 kernel to smooth the intensity fluctuations. The pre-processed im-
age stack was converted to binary (black-white) by Otsu’s method of finding
the threshold(Otsu, 1979) and the segmented image with filament contours
used as the initial seed for an energy-based active contour model based on
Chan and Vese’s method (Chan and Vese, 2001). This improves the segmen-
tation by optimizing for the filament boundary. Finally, the optimized binary
contour is skeletonized using the medial axis transform (Lee et al., 1994) to
obtain one-pixel width filament contours, which are stored in a structured
array for all frames in the image stack (Fig. 2A,C(left)).

(ii) Branch identification: Skeletons obtained in the previous step are
tested for branch points in a neighborhood of 8 (Moore neighborhood), by
testing whether the summation of individual pixel values (Inb = either 0 or
1) satisfies ΣN

nb(Inb) ≥ 4. The central pixel (nb = 5) has a value 1, by virtue
of being on the skeleton. In cases where there are no branch points in a seg-
mented skeleton, the correct orientation of the filament indices is determined
using the geodesic distance algorithm (Soille et al., 1999) implemented us-
ing the bwdistgeodesic function in MATLAB (Mathworks Inc., Natick, MA,
USA). Filament end points are provided as a seed to the function. When the
skeleton is identified as being a ‘knot’, i.e. with branches, we proceed to use
a graph representation, as described in the following section.

(iii) Mapping ‘knots’ to graphs: A skeleton containing branch points is
represented as a directed graph G = (V,E) consisting of vertices V and
edges E, with the direction given by a chosen start point. They are labelled
as either branch (Vb) or filament segment (Vf ) (Fig. 2B). A branch vertex is
identified by connected pixels that satisfy the branch-point criterion, while
the remaining regions are labelled as filament vertices. Edges E are the
connectivity between unique label groups, forming connecting pairs of Vb and
Vf vertices (Fig. 2C). All edges are bidirectional, i.e they can be E(Vb, Vf )
or E(Vf , Vb), enabling traversal in either direction, except for start and end
vertices where traversal is limited to a single direction. Instances where a
filament merges with itself are represented as loops, in the graph, i.e. where
heads and tails coincide (Bang-Jensen and Gutin, 2001), for example for the
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pair of edges: E(1,7) (Fig. 2C).
(iv) Template matching: A branched skeleton thus represented as a graph

G = (Vi, Ei,j), where Vi denotes the set of vertices and Ei,j denotes the set of
bidirectional edges where i and j are indices of branched or filament vertices.
The graph structure is determined by the number of unique branch points,
which either indicate intersections with other filaments or an instance where
the filament forms a loop. We generate all possible path combinations be-
tween the start and endpoint by traversing every edge connecting vertices Vf

(filament vertex) and Vb (branch vertex). For graphs that lack an end point,
the path ends at the last visited node, after all nodes are visited once. Since
the number of paths can increase exponentially with the number of nodes
we optimized the number of possibilities generated at each step to capture
filament paths correctly, based on comparison to the ‘ground truth’, obtained
from manual analysis. Knot resolution is based on minimizing the difference
to a resolved skeleton, which is the template (Fig. 3A). We have implemented
a multi-step approach: (a) coarse identification of key vertices using euclidean
distance matching, (b) path generation to output possible paths between the
start and end point and (c) template matching of possible paths to the previ-
ous resolved contour. (a) Identifying key vertices: Euclidean distance scores
are of vertices compared to the template helps identify connections with
minimal distance to a reference- to identify the three vertices with minimal
distance to the template (Vm=1to3). These vertices are used to limit the search
and significantly reduce the number of paths generated. (b) Path generation:
Multiple paths are generated between a start node and a defined end vertex
(Fig. 3B). The first combination of path is generated by taking into account
the template found in the previous step. The remaining paths are generated
by finding number of combinations between the fixed start point and all of
the remaining vertices sequentially. The number of paths generated at every
combination is limited to 10, to avoid exponential growth of possibilities.
(c) Template matching: All possible paths are converted to contours and a
similarity score is assigned using dynamic score warping, DTW (Sakoe and
Chiba, 1978). The score is calculated as the cumulative cost function D(i, j)
between a selected contour S(xi, yi) and R(xj, yj) given by:

D(i, j) = |S(xi, yi)−R(xj, yj)|+min (D(i− 1, j − 1), D(i− 1, j), D(i, j − 1))
(1)

where i is the reference index and j the template index. This cost is compared
among the possible paths, and the path with the minimal cost is selected (Fig.
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3C). Once a match is found, pixel indices are iteratively ordered, along the
best found path using the geodesic distance (Paliwal et al., 1982).

KnotResolver has sub-pixel filament contour detection
accuracy and is robust to image ‘noise’

In order to asses the segmentation accuracy of our method, we created im-
ages of simulated time series of filaments that undergo crossovers based on
plus-ends clamped and minus-end directed motors in a modified ‘gliding as-
say’, as described previously (Yadav et al., 2024) and briefly summarized
in the Materials and Methods section. These simulated MT coordinates in
time-series were plotted as binary skeletons to provide the ‘ground truth’
and processed to resemble experimental images of filaments by dilation with
a diamond-shaped structuring element of size 2 and convolution with a Gaus-
sian point spread function (size: 3, σ: 2) centered around the central pixel.
Salt-and-pepper noise of different intensities was added and the signal-to-
noise ratios (SNR) calculated. The error in position detection is calculated
as the minimal distance between the segmented skeleton and the ground
truth pixel indices. ‘KnotResolver’ was then used to segment the images
of bent filaments, and compared to a simple intensity threshold and active-
contour based approach, when the signal to noise ratio (SNR) increased from
5 (Fig. 4A), 10 (Fig. 4B), 20 (Fig. 4C) to 30 (Fig. 4D). We find the mean
pixel error in position detection of ‘KnotResolver’ and active-contour meth-
ods remains sub-pixel for the range of SNR as seen by the Gaussian peak
from fitting (µ: mean, σ: std. dev.), but simple threshold-based methods
show errors exceeding few pixels for SNR 5 and 10. In image-frames where
the filament contour self-intersect, only KnotResolver can correctly identify
contours, with both segmentation and active-contour methods failing (Fig.
S1A). ‘KnotResolver’ remains robust to noise for SNR ranging from 30 to 5
but threshold-based methods and active contours are sensitive, as quantified
by the Dice Score as described in detail in the Methods section (Fig. S1B).
Threshold-based methods as highlighted are sensitive to low SNR while ac-
tive contour methods are sensitive to rapidly changing geometry that throws
off the initial seed and leads to filament shrinkage. The combination of these
two methods, implement in KnotResolver is robust to both low SNR and
rapidly changing filament positions which is key for tracking single filaments
showing sustained oscillations.
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In order to identify possible limitations of our method and solve them, we
tested the effect of multiple self-intersections that arise in simulations with
increasing filament length and motor density and find Dice score decreasing
after ∼ 60 frames in microtubules with lengths greater than 20 µm (Fig
S2A). As a measure of the geometric shape, we also use the Fréchet distance
score between segmentation result and ground truth and find a comparable
increase in distance indicating drop in accuracy of segmentation for long MTs
at high densities (Fig S2B). To address this limitation, we have implemented
a manual restart, which can be used when the code encounters problematic
frames using user-inout to interactively map the path in the graph structure
and correct the errors (Fig. S2C).

In summary while sub-pixel accuracy can be achieved by other methods
alternative to the proposed KnotResolver pipeline, the higher Dice score in
cases of self-intersections demonstrates both high accuracy and robustness
to noise.

KnotResolver outperforms existing methods for micro-
tubule filament tracking

We compare of our approach to resolving self-intersecting filaments in terms
of segmentation and tracking to two widely used computational tools - FI-
ESTA (Ruhnow et al., 2011) and TSOAX (Xu et al., 2019). FIESTA is based
on intensity thresholding and Gaussian fitting of contours to achieve sub-pixel
localization accuracy. Filament intersections are semi-automatically handled
with cross point identification followed by linking based on a minimum angle
criterion. TSOAX combines stretching open active contours based software
(SOAX) (Xu et al., 2015) with tracking by automatic initialization of multi-
ple open curves during the detection stage that elongate and stop at filament
intersections and tips, and curve intersections being addressed by identifying
T-junctions linked through a temporal local matching step. We use an ex-
perimental time-series from highly curved MT filaments in a clamped gliding
assay that show changes from straight through curved to self-intersecting fila-
ments (Fig. 5(input)). The output from FIESTA demonstrates only straight
segments are detected, while TSOAX while able (as expected) to identify
curved filaments, results in an incorrect tracing of the filament contour at
cross-over. Only KnotResolver correctly identifies curved sections and main-
tains the identity of the segments at cross-over. The entire experimental
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time-series can be resolved using KnotResolver and results in a smooth con-
tour (Fig. 6A, Video SV1) which when overlaid provides time-resolved data
of filament dynamics, as they undergo wave-like oscillations (Fig. 6B). We
now can proceed to quantify multiple such contours as seen in the time-
projected contours based on experimental data inputs (Fig. 7A). These can
be projected through the local tangent angle (Ψ) dynamics along the filament
length as represented in terms of a kymograph (Fig. 7B) and the distance
between the filament ends (de) demonstrates a compaction over time (Fig.
7C).

These results demonstrate optimal tracking of intersecting filaments by
KnotResolver using simulated and experimental data can be used to study
the geometric properties of such curved filaments.

Discussion

Here, we have demonstrated the limitations of existing methods and softwares
to detect and track self-intersecting filaments in microscopy time-series. We
describe a computational image-processing pipeline, KnotResolver, based on
intersection detection, mapping to directed graphs, contour tracing in two
steps and distance minimization to a template. We demonstrate that this
approach results in sub-pixel position detection and high Dice scores in iden-
tification, robust to image noise. In comparison to existing tools we demon-
strates KnotResolver overcomes their limitations and when applied to exper-
imental fluorescence microscopy time-series images of a ‘gliding assay’ where
the filament end is clamped, can allow us to automatically quantify geometry
and frequency of oscillations.

Similar to many such software developed KnotResolver has some param-
eters that need to be user input (Table S1). These are optimized for mi-
crotubules in a dynein gliding assay with pinned filaments. A further test
of the utility of this code could be to analyze time-series in more complex
backgrounds such as inside cells where compressive forces result in buck-
ling instabilities seen in MT filaments (Brangwynne et al., 2006). We also
expect that actin-based gliding assays with typically bent filament with com-
plex curvature, due to the lower persistence length compared to MTs (Gittes
et al., 1993), could also be tracked using this tool. Indeed surface-defects
in myosin-driven actin gliding assays have been previously reported to also
result in qualitatively comparable structures (Bourdieu et al., 1995). We
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expect the use of KnotResolver to extend to simply microtubule filament
analysis.

In conclusion our OpenSource computational image analysis tool that
uses a novel directed graph based mapping to resolve self-intersections of
cytoskeletal filaments from both simulated and experimental data has the
potential for automating many of the more unusual contours seen in experi-
mental systems in vitro and in cells.

Materials and methods

Reconstituting dynein-driven microtubule bending in a
modified ‘gliding assay’

The filament oscillation assays were performed in a flow chamber made by
sandwiching double-backed tape between a slide and a coverslip. The cham-
ber was coated with anti-GFP nanobody and streptavidin in a 1:1 molar
ratio, followed by casein to block non-specific attachment. Dynein was al-
lowed to attach by incubating in the chamber followed by washes to remove
unbound motors. The biotinylated MTs were added to the chamber and
allowed to land followed by washes to remove the unbound MTs (Fig. 1A).
Finally a motility buffer containing anti-fade and 4 mM ATP was added to
the chamber and MT movement was recorded. The setup was imaged using a
60x (NA 1.45) oil immersion lens using a motorized fluorescence microscope
(Nikon TiE, Nikon Corp. Japan) with 10 s time intervals for 10 to 20 min in
a lexan enclosure with temperature maintained at 37o C (Okolab, Pozzuoli,
Italy) as previously described (Jain et al., 2019; Yadav et al., 2024). Plus end
biotin labelled MTs were prepared by first polymerizing filaments with a 1:4
molar ratio of rhodamine labelled tubulin:unlabelled tubulin, centrifugation
to remove monomers and plus labelling with a mixture of 1:4 rhodamine-
labelled:biotinylated tubulin, with filaments then stabilized in taxol. The
filament oscillation assays were performed in double-backed tape flow cham-
bers made by sandwiching double-backed tape between a slide and a coverslip
to form a chamber that was coated with the nanobody and streptavidin in
a 1:1 molar ratio, followed by casein to block non-specific attachment. To
this the anti-GFP nanobody was added, then dynein-GFP, followed by mul-
tiple washes to remove unbound motors, biotinylated MTs, more washes and
finally motility buffer containing anti-fade and 4 mM ATP. The setup was
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imaged using a 60x (NA 1.45) oil immersion lens using a motorized fluores-
cence microscope (Nikon TiE, Nikon Corp. Japan) with 10 s time intervals
for 10 to 20 min at 3oC in a temperature controlled Lexan enclosure (Okolab,
Pozzuoli, Italy) as previously described (Yadav et al., 2024).

Generating simulated image of oscillatory filaments with
increasing ‘noise’

Simulations: We performed simulations of oscillatory wave-like dynamics
of simulated MTs based on a stochastic agent-based simulation engine for
motor-cytoskeleton interactions, Cytosim (Nedelec and Foethke, 2007), based
on a previously described 2D dynamics model of individual plus-end clamped
MTs in a gliding assay (Yadav et al., 2024). We systematically varied mi-
crotubule lengths from 5 to 50 µm and motor density over 12, 25, 50, and
100 motors/µm2. Each simulation was performed for 5 minutes and 120
frames were saved. The objective was to generate skeleton contours of vary-
ing lengths, comparable to experiments.

Adding ‘noise’ to simulated images: The simulated skeletons were di-
lated size-2 diamond-shaped structuring element and convolved the dilated
skeletons with a Gaussian point spread function (size: 3, sigma: 2). We
introduced noise of varying signal-to-noise ratio (SNRdb) to the simulated
data. The noise model is Gaussian with a specified noise power level Pnoise.
The desired Pnoise is related to SNR by the relation

Pnoise = Psignal/SNR (2)

where Psignal is equal to the variance of intensity of the original image. SNR
in linear scale is related to SNRdb by the following relation

SNR = 10
SNRdb

10 (3)

The SNRdb values used were 5,10,20 and 30. The generated Gaussian noise
is computed as Noise,

Noise ∼ σnoise ∗ N (0, 1) (4)

where, N is a normal distribution with zero mean and the σnoise is equal to

σnoise =
√

Pnoise (5)

The Noise is added to the original image to get a noisy image with specific
Pnoise.
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Quantifying filament detection accuracy

The simulated dataset described previously, was used to create benchmarks
to assess the proposed filament tracking method. We quantified detection
accuracy using the simulated dataset as a ‘gold standard’ and some typical
measures used in image-analysis accuracy using two measures: (a) Sørensen-
Dice Index, SDI for segmentation and (b) Fréchet distance to compare two
curves.

Dice Index: The Dice score or Sørensen-Dice index (Dice, 1945; Sorensen,
1948) takes into consideration TP: True positives, FP: false positives, FN:
False negatives and TN: True negatives and combines them as follows:

=
2× TP

2× TP + FP + FN
(6)

True positives are defined as segmented pixel indices that are within a thresh-
old distance (2 pixels) from the ground truth annotations. The choice of the
threshold was based on the point spread function (PSF) used to convolve
the filament skeletons to resemble experimental images. False positives are
segmented pixels which are not within this threshold. Ground truth pixels
that were not detected as TP are counted as false negatives.

Fréchet distance: This metric computes the minimum distance between
two curves which is sufficient to traverse their separate paths (Fréchet, 1906,
1924) using a MATLAB implementation of the discrete Fréchet distance.
This provides the maximum separation in distance metric between the two
curves. The metric is useful for comparing the overlap of two curves while tak-
ing into account the proximity of indices between the two curves. For a pair
of duplicate curves Fréchet distance should be zero, which indicates a perfect
overlap and identical ordering of pixel indices between two curves. Fréchet
distance is computed between the indices of input curve I(t) = (Ix(t), Iy(t))
and the resolved curve R(t) = (Rx(t), Ry(t)) obtained from the KnotResolver
pipeline. Here t signifies the orientation or ordering of the two pixel indices
in their respective curves. The Fréchet distance is computed as follows:

F (I, R) = inf
α,β

max
t

{ρ(t, α, β)} (7)

where ρ(t, α, β) is the distance function defined as:

ρ(t, α, β) =
√
(Ix(α(t))−Rx(β(t)))2 + (Iy(α(t))−Ry(β(t)))2 (8)

and α and β are re-parameterizations of the curves I(t) andR(t), respectively.
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Analysis of filament contours

All analysis was performed in MATLAB R2020b (Mathworks Inc., Natick,
MA, USA). We calculate the tangent, normal, and curvature vectors for
each smoothed contour by using the Frenet-Serret formulas (Mate, 2017).
Smoothing of the x and y coordinates is performed using the Savitzky-Golay
filter (Savitzky and Golay, 1964). The end-to-end distance of the curve is
computed as Euclidean distance between the tip and end of each filament.
All results are visualized by plotting the curve with color interpolation which
indicates the arrangement of contour indices from tip to end.

Code Availability

The tool was written in MATLAB2020b (Mathworks, Natick, MA, USA) and
uses functions called from the ‘Signal Processing Toolbox’, ‘Image Processing
Toolbox’ ‘Statistics and Machine Learning Toolbox’ and an optional ‘Parallel
Computing Toolbox’. The code for the filament bending analysis has been
made OpenSource and and is available at the Github URL https://github.

com/CyCelsLab/MTLoopResolve, together with an example time-series with
optimized segmentation parameters.
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Figure 1: In vitro assay of filament oscillations and errors in detec-
tion using Gaussian fitting and active contours. (A) The schematic
depicts the experimental setup of plus-end clamped MTs based on biotin-
streptavidin chemistry with dynein motors immobilized by antibodies in a
‘gliding assay’ that drives MT bending as described previously (Yadav et al.,
2024). (B) Representative frames from a microscopy time-series of the os-
cillations of rhodamine-labelled MTs (gray) oscillating over 5 min 20 s were
segmented detected segments overlaid (red lines) based on either (top) an
approach using open, active contours in JFilament (Smith et al., 2010) or
(bottom) threshold and Gaussian fitting approach using FIESTA (Ruhnow
et al., 2011). Scalebar: 2 µm, Time: mm:ss.
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Figure 2: Algorithmic flow diagram of graph-based resolution of self-
intersecting filament image time-series. (A) Segmentation and branch
finding: In a frame-wise manner images are binarized by thresholds. These
binary objects are used to seed active contours to smooth the curve. The
contour is skeletonized to 1 pixel width using medial axis transform, and
pixels with 4 or more neighbors are labelled as branched, suggesting a self-
intersection. (B) Branch resolution: The skeleton with sequential pixels is
used as an input labelled as either ‘branched’ or ‘unbranched’. Branched
contours are mapped to a directed graph (digraph) with branch points as
vertices connected to each other by segments of the contour as edges. Paths
are calculated using a two-step coarse and refined approach to reduce com-
plexity. Graph-paths are mapped back to possible contours, whose distance
is then minimized by comparison to the last unbranched contour (template),
to find the best match. (C) (left to right) A representative grayscale im-
age (gray) segmented resulting in a skeleton contour (red), that is classified
into regions (colors, numbers) that connect branch points. These regions
are mapped to edges and branches to vertices, with both directions possible
based on a user-input start point, to produce a directed graph.
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Figure 3: Resolve the knot by minimizing distances between tem-
plate and paths generated by the graph. (A) A representative image of
a bend microtubule at time t, when it does not have any knots (unbranched)
with the segmented contour. Colors: position index along the contour, blue:
start, yellow: end. (B) The microtubule in frame t+δt showing a knot
(branched) as seen from the contour (red line). (I-V) The possible paths
from the start to the other end are overlaid as contours with the position-
index in color. Blue: start, yellow: end. δt: interval between frames. (C)
The alignment score based on dynamic time wrapping for all paths is calcu-
lated by comparing with the unbranched path from the previous time-frame,
and the path with the lowest score is the optimal.
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Figure 4: Simulated filament images with increasing SNR used to
measure position detection error comparing segmentation methods.
(A) Segmentation accuracy of compared methods at different signal-to-noise
ratios (SNR). Simulated filaments were segmented at varying SNR levels
using three different methods: the Threshold method (black), the Active
contour method (blue), and our proposed method (red). The total error in
pixels for each segmented pixel with respect to the ground truth is plotted as
a histogram of probability density function. The inset displays the average
and sigma of a Gaussian fit to each histogram (n = 2880). A representative
image of an input filament at the specified SNR is shown adjacent to each
histogram for visual reference.
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Figure 5: Comparing KnotResolver to FIESTA and TSOAX. (IN-
PUT) A representative time-series of labelled MTs undergoing bending and
buckling forming a knot, was used as input and tracked using FIESTA (Ruh-
now et al., 2011), TSOAX (Xu et al., 2019) and KnotResolver. Parameters
used for (i) FIESTA were FWHM = 1000 nm, proportion curved filaments
= 25%, minimum track length = 1 frame, maximum break = 4, (ii) for
TSOAX default parameters were used with manual input of the minimum
and foreground intensity value and (iii) KnotResovler were intensity thresh-
old = 0.46, number of iterations for active contours =10, contraction bias =
0.4 and smoothing factor for active contours = 0.2, with no manual correc-
tions. Scale bar: 2 µm. Time: mm:ss.

23



Looped filament tracking with directed graphs

A

B

Figure 6: Representative time-series of filament with tracked con-
tours. (A) The fluorescence time-series of bent and crossing over filaments
are overlaid contour segmented using proposed pipeline. The skeleton is color
coded along its length (form tip to end). Time: mm:ss. (B) The filament
contours from successive frames are projected showing the traveling wave of
curvature.
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Figure 7: Contour analysis in time of representative experimental
filaments. Four filaments showing beating mobility patterns are shown.
(A) The skeletal line in the montage is color coded along its length (form tip
to end). (B) 2D plot of tangent angle along the microtubule length (µm) is
shown. (C) End to end distances along the time series is shown.
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1. Supplemental tables

2. Supplemental figures

3. Supplemental movies
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Supplemental tables

Parameter Typical value Description
segThresh 0.46 Threshold for intensity segmentation
segIteration 10 Number of iterations for active contour optimization
segContract 0.4 Contraction bias for active contours
segSmooth 0.2 Smoothing factor for active contours

Table S1: Parameters of KnotResolver. The parameters typically used
for microtubule bending and looping image-time series that can be modified
by the user for other input image types.
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Supplemental figures

Figure S1: Dice score of segmentation accuracy by KnotResolver
with increasing ‘noise’ compared to simpler approaches. (A) Mon-
tage of segmentation outputs (shown in yellow) overlaid on the input image
for the three compared approaches at different SNR. (B) Filament segmenta-
tion accuracy is compared using the Dice Score (Equation 6). Three alterna-
tive approaches were tested: threshold-based (black), active contour (blue)
and KnotResolver (red). Error bars indicate the standard deviation around
the mean. (C) Impact of increasing time step between frames on segmen-
tation accuracy. Segmentation accuracy is compared between KnotResolver
(red) and the active contour (blue) method for three frame intervals, ∆f : 5
(✡), 10 (□), 30 (⋄). Mean Dice scores are computed for every frame across
all time series. The analysis involves a total of n = 24 time series, each
consisting of 120 frames.
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Figure S2: Interactive resolution of complex knots from simulated
data. (A) Simulated time-series of filament buckling and bending are used as
inputs to KnotResolver. Validity of detected contours are quantified in terms
of the Dice score (grayscale colorbar). Simulations were run for increasing
MT lengths from 5 to 50 µm (y-axis) and frame-numbers from 1 to 120
(x-axis). Each value of MT length was simulated for four motor densities
12 (black), 25 (dark gray), 50 (light gray) and 100 motors µm−2 (white).
Asterisks mark the time series selected for further analysis. (B) A similar
matrix with the Fréchet distance is plotted. (C) Branch resolution output
using manual restarts at problem areas showing correct arrangement of the
filament contour.

29



Looped filament tracking with directed graphs

Supplemental videos

Video SV1: Representative time-series of filament knot resolution
with tracked contour. The fluorescence microscopy time-series of a fil-
ament undergoing self-intersection (gray) overlaid with the segmented and
tracked contours. KnotResolver parameters used to automatically track the
series without manual intervention were: intensity threshold = 0.46, contour
iteration = 10, contraction bias = 0.4, smooth factor = 0.2. Scalebar: 2 µm,
interval between frames (∆t): 10 s.
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