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The low-energy finite-volume spectrum of the two-nucleon system at a pion mass of
mπ ≈ 806 MeV is studied with lattice quantum chromodynamics (LQCD) using variational
methods. The interpolating-operator sets used in [Phys.Rev.D 107 (2023) 9, 094508] are
extended by including a complete basis of local hexaquark operators, as well as plane-wave
dibaryon operators built from products of both positive- and negative-parity nucleon oper-
ators. Results are presented for the isosinglet and isotriplet two-nucleon channels. In both
channels, these results provide compelling evidence for the presence of an additional state
in the low-energy spectrum not present in a non-interacting two-nucleon system. Within
the space of operators that are considered in this work, the strongest overlap of this state is
onto hexaquark operators, and variational analyses based on operator sets containing only
dibaryon operators are insensitive to this state over the temporal extent studied here. The
consequences of these studies for the LQCD understanding of the two-nucleon spectrum are
investigated.

I. INTRODUCTION

Lattice quantum chromodynamics (LQCD) offers the tantalizing prospect of computing quan-
tities in nuclear physics from first principles in a systematically-improvable manner. Besides the
importance of these calculations to reveal the emergence of nuclear complexity from the Stan-
dard Model, such studies provide necessary theoretical inputs for experimental searches for physics
beyond the Standard Model using nuclei, where precise theoretical understanding of the nuclear
targets used in experiments is required to maximise sensitivity to new physics [1–5]. For exam-
ple, theoretical constraints on nuclear matrix elements are required to interpret the results of
dark-matter direct-detection experiments [6–9], to search for lepton-number violation via neutri-
noless double-beta decay measurements [10–13], and to determine neutrino oscillation parameters
precisely [14–16]. In each case, LQCD can provide essential non-perturbative QCD information
which, via matching to nuclear effective field theories (EFTs), can enable a low-energy description
of nuclear processes. The constrained EFTs can be paired with many-body methods to make pre-
dictions for properties of heavy nuclei that are beyond the scope of present-era LQCD calculations.
Grounding these nuclear-physics calculations in QCD is expected to lead to reduced systematic
errors arising from nuclear-model uncertainty and thereby increased sensitivity in experimental
searches.

For somewhat more than a decade, LQCD calculations of single-hadron masses have achieved
few-percent statistical precision and careful control of systematic effects [1, 17]. The success of
this program for stable single-hadron systems is aided by large energy gaps, δE, between the
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ground state and the lowest excitations because excited-state effects are suppressed by e−δE tmax ,
where tmax ≫ δE−1 is the maximum Euclidean time extent for which statistically precise two-point
correlation functions can be resolved with available resources. The achievements in computing the
single-hadron spectrum have motivated the spectroscopic study of multi-hadron systems, hadron
resonances, and nuclei using LQCD [2, 3, 18–23].

In this work, the focus will be on two-nucleon systems. The extraction of the physically-
relevant scattering parameters for these systems requires knowledge of energy levels beyond the
ground state, which are typically closely spaced. Below inelastic thresholds, low-energy scattering
in multi-hadron systems is described in terms of phase-shifts and mixing angles. Demonstrating
that the scattering amplitudes of multi-hadron systems can be reliably determined from LQCD
is an important step towards grounding nuclear-physics calculations in QCD. While a complete
validation of the calculation of these quantities can only be achieved utilizing the physical values of
the quark masses, calculations at heavier-than-physical quark masses provide a useful testbed for
developing methods for studying two-nucleon systems since the computational resources required
to achieve a given statistical precision decrease exponentially with increasing quark mass [24–26].
In addition, studies of the dependence of nuclear interactions on the quark masses are interesting
in their own right; this dependence has implications for Big-Bang nucleosynthesis and the stellar
production mechanisms of carbon, oxygen, and other elements that are necessary for life [27–
35]. Understanding the dependence of resonances and bound-states in QCD-like theories on quark
masses, the number of colors, and the number of flavors is also relevant for testing models of
strongly-coupled dark matter [36–38].

Multiple studies of the finite-volume two-nucleon spectrum from LQCD have been undertaken
at a range of quark masses [39–57]. These studies arrive at differing conclusions about the nature
of this spectrum, resulting in significant uncertainty about the phase-shifts. In particular, these
calculations arrive at mixed conclusions regarding the existence of bound deuteron and dineutron
states at larger-than-physical quark masses. Thus, while these proof-of-principle calculations have
demonstrated that the application of LQCD to the few-baryon sector is possible, it remains an
outstanding challenge to demonstrate that LQCD in the nuclear sector can achieve the statistical
precision and systematic control already achieved in the single-hadron sector, particularly given
the additional physical and technical subtleties arising in nuclear systems [1, 18].

The majority of LQCD studies of two-nucleon systems [39–54] have been performed using asym-
metric correlation functions in order to minimize the computational costs involved. The results of
these calculations implied the presence of bound two-nucleon systems over a range of unphysically-
large values of the light-quark masses. During the same time period, the two-nucleon system was
also studied using the potential method [58–65] and the resulting potentials extracted from this
approach did not produce bound two-nucleon systems over a similar range of unphysically-heavy
quark masses.

As will be discussed in detail below, LQCD spectroscopy can also be cast as a variational
problem from which information about the energy eigenvalues can be obtained [66–68]. While
variational calculations to date have not revealed the existence of a bound dibaryon in the two-
nucleon system [55–57], it is important to emphasize that the variational method provides only
upper bounds (up to statistical fluctuations) on the energy eigenvalues of the theory. Thus, while
no definitive evidence for two-nucleon bound states has been found in Refs. [55–57], these results
do not, and by definition cannot, rule out the presence of bound dibaryons at larger-than-physical
quark masses.

In Ref. [56], the low-energy spectrum of two-nucleon systems was studied using a variational
approach in a lattice geometry with a cubic spatial volume of side-length L ≈ 4.5 fm (L/a = 32,
where a is the lattice spacing) and degenerate light and strange quark masses corresponding to
a pion mass of mπ ≈ 806 MeV. Evidence was found for at least one additional low-lying finite-
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volume energy eigenvalue beyond those arising for non-interacting two-nucleon systems in both the
isospin-zero (deuteron) and isospin-one (dineutron) channels. The open questions regarding the
existence of bound states and the presence of this additional energy eigenvalue motivates further
studies of two-nucleon spectra at these values of the quark masses.

In the study reported here, two-nucleon systems are investigated using LQCD with the same
quark masses as in Ref. [56], in a smaller spatial volume with side-length L ≈ 3.4 fm (L/a = 24).
The variational approach is again used with a range of interpolating-operator sets containing as
many as 46 and 31 operators in the isospin-zero and isospin-one channels, respectively. Sets
of interpolating operators are constructed that contain dibaryon operators built from products of
plane-wave nucleon operators, local hexaquark operators, and quasi-local operators inspired by low-
energy nuclear EFTs. New operators not considered previously are constructed, including dibaryon
operators involving negative-parity quark spinor components (“lower-spin components” in the Dirac
basis) and those built from products of two negative-parity nucleon operators. Complete bases of
local hexaquark operators with isospin-zero and isospin-one are also constructed. This extends the
operator set considered in Ref. [56] by the inclusion of operators which cannot be written as the
local product of two color-singlet three-quark operators with the quantum numbers of baryons, and
therefore have the possibility of probing so-called “hidden color” [69–72] components of dibaryon
states in QCD.

From the computed variational bounds, further evidence is found for the presence of at least
one additional low-lying energy eigenvalue in both the isospin-zero and isospin-one channels. The
presence of these approximately-degenerate energy levels in both channels, as opposed to only one,
can be understood in the heavy-quark limit, where the spectra of the two channels are expected to
become degenerate [73], and at large-Nc as a manifestation of Wigner SU(4) symmetry [74]. The
observation of this energy eigenvalue in a second physical volume in both channels and with more
extensive operator sets provides strong evidence for the existence of a resonance or bound state at
this set of quark masses and lattice spacing. This additional variational bound may be an analog
of the d∗(2380) resonance seen in, e.g., deuteron photodisintegration experiments [75–79] close to
the ∆∆ threshold. However, given the large quark masses used here and the limits of variational
methods, this interpretation is somewhat speculative.

The remainder of the paper is organized as follows. Section II introduces notation and discusses
techniques for hadron spectroscopy in LQCD. Section III summarizes the full set of interpolating
operators appearing in this work. Section IV presents numerical results for both the dineutron and
deuteron channels from a selection of different operator sets. Section V discusses the results and
Sec. VI presents conclusions.

II. HADRON SPECTROSCOPY

In this section, the general principles of hadron spectroscopy and the variational method in
LQCD [67, 68] are summarized. The starting point for all studies of hadron spectroscopy using
LQCD is a two-point correlation function, which may be generically defined as

Cχχ′(t) = ⟨Ω|Oχ(t)O†
χ′(0)|Ω⟩ , (1)

where O†
χ′(0) and Oχ(t) are referred to as the source and sink interpolating operators, respectively,

and |Ω⟩ denotes the vacuum state.1 The indices χ and χ′ label the interpolating operators, which
are chosen to possess the quantum numbers of the states of interest. Explicit labels corresponding

1 For simplicity, an infinite temporal extent is assumed throughout this work. See Ref. [80] for a discussion of finite
temporal extent effects in variational calculations.
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to these quantum numbers are used below but suppressed for clarity in this section. Operators can
also be labeled by other non-conserved quantities such as the relative momentum or separation
between two components of the operator. By the orthogonality of the energy eigenstates, the
operators only project onto states commensurate with the quantum numbers of both the source and
sink interpolating operators. Consequently, correlation functions admit a spectral decomposition,
which for theories with an Euclidean metric take the form of a sum of decaying exponentials,

Cχχ′(t) =
∞∑
n=0

ZnχZ
∗
nχ′ e−tEn , (2)

where the sum is over all energy eigenstates, |n⟩, with the requisite quantum numbers. The index
n orders the states such that the corresponding energy eigenvalues2 satisfy En ≤ Em for n < m.
The overlap factors, Znχ, are given by

Znχ = ⟨Ω|Oχ(0)|n⟩ . (3)

Relative overlap factors,

Znχ =
|Znχ|∑
χ′ |Znχ′ | , (4)

can be used to identify the state or states with which a particular operator Oχ has large overlap,
although these quantities depend explicitly on the full set of operators that are considered in a
given calculation. In general, there is no constraint on the complex phase of the overlap factors,
and thus the above correlation functions are not real in general. However, when the source and sink
interpolating-operators are related by Hermitian conjugation, the resulting correlation function is
real-valued and positive,

Cχχ(t) =
∞∑
n=0

|Znχ|2e−tEn > 0 . (5)

The Euclidean-time dependence of such correlation functions provides information about the low-
energy spectrum in sectors of fixed quantum numbers. In particular, at sufficiently large Euclidean
time, the correlation function in Eq. (1) is dominated by the lowest-energy eigenstate with non-zero
overlap with the chosen operators.

A. The Variational Method

Due to the exponential degradation of the signal-to-noise ratio observed in most numerical
LQCD calculations of two-point correlation functions at large Euclidean times [24, 25], and in
particular for systems with non-zero baryon number [26, 43, 46, 81–86], the Euclidean time range
where the low-energy eigenstates provide the largest contributions is difficult to access. It is
therefore desirable to construct interpolating operators which overlap strongly with a particular
state in the spectrum (although large overlaps do not necessarily minimize statistical noise [87]).
To this end, the variational method [67, 68] begins by choosing N operators with the quantum
numbers of the system being studied, {O1, . . . ,ON}. By computing the quantities given in Eq. (1)
for all χ, χ′ ∈ {1, . . . , N}, an N ×N matrix of correlation functions with elements Cχχ′(t) can be

2 In this work, the vacuum energy, EΩ is set to zero.
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constructed. To investigate the spectrum, one solves the generalized eigenvalue problem (GEVP)
given by ∑

χ′

Cχχ′(t)vnχ′(t, t0) = λn(t, t0)
∑
χ′

Cχχ′(t0)vnχ′(t, t0) , (6)

where t0 is a chosen reference time, vnχ′(t, t0) are the components of the eigenvector corresponding
to the nth eigenvalue λn(t, t0),

λn(t, t0) = e−(t−t0)En(t,t0) , (7)

and En(t, t0) are time-dependent effective masses extracted from the logarithm of Eq. (7). The
index n orders the eigenvalues such that λn ≥ λm (and hence that En(t, t0) ≤ Em(t, t0)) for n < m.
Note that this labelling is chosen such that the largest eigenvalue corresponds to the smallest
time-dependent effective mass.

The eigenvectors v⃗n(t, t0) can be used to define overlap-optimized sets of interpolating operators
that provide N variational bounds on the lowest energy eigenvalues. In particular,

ψn(t, t0, tref) =
∑
χ

vnχ(tref, t0)Oχ(t) , n ∈ {0, 1, . . . , N − 1} , (8)

is an interpolating operator whose overlap onto the nth energy eigenstate is maximized within the
set of operators considered. Both t0 and tref are Euclidean times which may be chosen freely. With
this set of overlap-optimized operators, a set of N correlation functions known as the “principal
correlation functions” can be computed [66–68],

Ĉn(t, t0, tref) = ⟨0|ψn(t, t0, tref)ψ
†
n(0, t0, tref)|0⟩ , n ∈ {0, 1, . . . , N − 1} . (9)

These can be expressed in terms of the original correlation matrix as

Ĉn(t, t0, tref) =
∑
χ,χ′

vnχ(tref, t0)Cχχ′(t)v†nχ′(tref, t0) . (10)

The principal correlation functions also admit a spectral decomposition, which is guaranteed to be
positive-definite and convex up to statistical fluctuations,

Ĉn(t, t0, tref) =

∞∑
m=0

|Zmn(t0, tref)|2e−tEm , (11)

where Zmn(t0, tref) = ⟨Ω|ψn(0, t0, tref)|m⟩. One important property of the above GEVP lies in
the constraints resulting from the Cauchy interlacing theorem in the infinite statistics limit.3 In
particular, it is possible to make a rigorous statement about the minimum number of energy
eigenvalues below a particular effective mass, En(t, t0), extracted from the GEVP. As this is a key
component of the results presented here, it is helpful to review the origin of these constraints. In
this discussion, it is useful to distinguish the GEVP eigenvalues from the energy eigenvalues of the
QCD Hamiltonian. In this section, the term “eigenvalue” is used to refer to an eigenvalue of the
GEVP, while “energy eigenvalue” is used to refer to an eigenvalue of the LQCD Hamiltonian.4 In
matrix-vector notation, the GEVP in Eq. (6) above can be written as

C(t)v⃗n(t, t0) = λn(t, t0)C(t0)v⃗n(t, t0) , (12)

3 The relevance of the interlacing theorem [88–90], which is equivalent to the Poincaré separation theorem, to
LQCD-spectroscopy calculations was recently highlighted in Ref. [91], but is implicit in earlier discussions [66–68].

4 These energy eigenvalues may be defined as the negative logarithms of the eigenvalues of the transfer matrix.
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where C(t) is an N × N matrix with components Cχχ′(t). This may be transformed into an
eigenvalue problem of the form

B(t, t0)v⃗n(t, t0) = λn(t, t0)v⃗n(t, t0) , (13)

where B(t, t0) = C−1(t0)C(t).
If there are K states in the spectrum of a given theory, solving this system for a correlation-

function matrix constructed from K independent operators would enable an extraction of the ener-
gies of the K states. However, LQCD formally possesses an infinite dimensional Hilbert space [92].
Even in practice, working with finite-precision floating-point numbers means that the (finite) num-
ber of states, K, numerically relevant to observables with a given set of quantum numbers is far
larger than the size of any practicably-realizable matrix of correlation functions. Consequently,
the eigenvalues obtained from an N × N correlation-function matrix do not correspond to the
eigenvalues of the full K × K matrix for N < K. To understand what can be learnt from the
N×N correlation-function matrix, let A be a K×K correlation-function matrix constructed from
K independent interpolating operators with eigenvalues {α0, . . . , αK−1}. In this case, the GEVP
eigenvalues of A are related to the energy eigenvalues, En, of the LQCD Hamiltonian as

αn(t, t0) = e−(t−t0)En , (14)

where the eigenvalues are ordered such that αn(t, t0) ≥ αm(t, t0) for n < m and it is important to
emphasize that the En are energy eigenvalues rather than the time-dependent effective masses in
Eq. (7). Let B be a principal sub-matrix of A obtained by removing both the ith rows and ith
columns for some values of i ∈ {i1, . . . , iK−N}. In this situation, the interlacing theorem states that
the eigenvalues of B(t, t0), λn(t, t0) for n ∈ {0, . . . , N − 1} ordered such that λn(t, t0) ≥ λm(t, t0)
for n < m, obey the inequalities5

αn(t, t0) ≥ λn(t, t0) ≥ αn+K−N (t, t0) , ∀n ∈ {0, . . . , N − 1} . (15)

From Eq. (7), it is clear that the largest eigenvalue, λ0(t, t0), corresponds to the smallest effective-
mass function. In this case, the bounds in Eq. (15) read α0(t, t0) ≥ λ0(t, t0) ≥ αK−N (t, t0). From
the left-hand inequality, there is at least one eigenvalue greater than or equal to the variational
eigenvalue λ0(t, t0). By the monotonicity of the logarithm, this implies that there exists at least
one energy-eigenvalue less than or equal to the lowest effective mass E0(t, t0) for any t or t0. The
second largest eigenvalue of B(t, t0), λ1(t, t0), corresponds to a variational bound of the first excited
energy-eigenvalue. In this case, the bounds read α1(t, t0) ≥ λ1(t, t0) ≥ αK−N+1(t, t0). Since there
is clearly one additional state with a larger eigenvalue, α0(t, t0), this implies that there are at least
two energy-eigenvalues less than or equal to the effective mass E1(t, t0). This argument can be
iterated to show that there exist at least (n+ 1) energy-eigenvalues less than or equal to En(t, t0)
for any choice of t and t0. Various realizations of this statement are shown in Fig. 1. It is important
to note that the interlacing theorem (and variational bounds in general) is valid only in the limit
where the path integrals which give the correlation-function matrix are evaluated exactly. When
Monte-Carlo importance-sampling is used to estimate these integrals, the bounds only hold in a
statistical sense, with violations allowed at any finite statistical-precision.

B. Principal correlation function definition

Principal correlation functions can be defined either by using GEVP eigenvectors at a fixed
reference time or by using time-dependent GEVP eigenvalues, with both definitions having distinct

5 Note that the lower bound in the right-hand inequality in Eq. (15) is only usefully constraining if K is not much
larger than N .
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FIG. 1. Realizations of the interlacing theorem. Solid horizontal lines represent the true energy-eigenvalues
of the LQCD system, while the dashed lines represent the locations of observed effective masses which are
consistent (a, b, c) or inconsistent (d) with the interlacing theorem. Arrows indicate the largest energy-
eigenvalue for which the effective mass serves as a variational bound for. Note that there exists at least one
true energy-eigenvalue between each pair of variational bounds. The “best case” scenario for the variational
method is shown in (a), where there is exactly one energy eigenvalue between each variational bound,
however, the situations shown in (b) or (c) are also possible. Panel (d) shows an impossible scenario in
which there are two variational bounds below the first excited state energy.

advantages. The eigenvector-based definition in Eq. (9) leads to principal correlation functions
that are linear combinations of LQCD correlation functions and therefore have simple spectral
representations, even when an interpolating-operator set spans a small subset of Hilbert space [93,
94]. In particular, they are symmetric, so they can be expressed rigorously as sums of exponentials
with positive-definite coefficients and modelled by truncations of these sums. However, it is the
eigenvalues and their associated effective masses that constitute rigorous (stochastic) upper bounds
on the energy eigenvalues. To ensure that this property also holds for the principal correlation
functions defined in Eq. (9), it suffices to choose t0 and tref so that the effective masses obtained
using both definitions agree within uncertainties. This condition can be achieved in (sufficiently
precise) practical LQCD calculations because the eigenvectors become independent of tref and t0
when both parameters are taken sufficiently large. It can therefore be used as a starting point for
an algorithmic definition of t0 and tref for which Ĉn(t, t0, tref) achieves the simultaneous benefits of
having a positive-definite spectral representation and having eigenvalues that satisfy the interlacing
theorem.

To make this definition precise, the effective mass function for the nth eigenvector-based prin-
cipal correlation function is defined as

aEn(t, t0, tref) = ln

[
Ĉn(t, t0, tref)

Ĉn(t+ 1, t0, tref)

]
, (16)

and the effective mass obtained from the GEVP eigenvalues is defined as [95]

aFn(t) = ln

[
λn(t, ⌊t/2⌋)

λn(t+ 1, ⌊t/2⌋)

]
. (17)

where ⌊·⌋ denotes the floor function evaluated for the argument expressed in lattice units. These
definitions should coincide when an interpolating-operator set approximately spans the set of states
which make statistically-resolvable contributions to correlation functions with separations t0 and
tref. By varying t0 and tref, a region of sufficiently large t0 and tref can be identified where En(t) and
Fn(t) agree within statistical uncertainties. Within this region, results are insensitive to t0 and tref
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(i, j, k)

−(i, j, k)

H D Q

FIG. 2. Graphical depiction of the three types of operators included in the numerical calculation. From left
to right: hexaquark (H), dibaryon (D) and quasi-local (Q) operators. The relative momentum between the
two nucleons in the dibaryon operators is labelled by (i, j, k).

by construction However, as t0 and/or tref increase, statistical noise will eventually overwhelm the
signal for the correlation function and results will become unreliable. This noise can be diagnosed
by failures of the central values of correlation functions to satisfy properties that must hold in
the infinite statistics limit, in particular the positivity of GEVP eigenvalues and monotonicity of
differences between En(t, t0, tref) and Fn(t) for large arguments. An algorithm for choosing the
largest t0 and tref where there is statistical agreement between En(t, t0, tref) and Fn(t) and the
signal is larger than the noise is presented in Appendix A.

III. INTERPOLATING OPERATORS

This section discusses extensions of the interpolating-operator sets used in Ref. [56] through
the inclusion of one- and two-nucleon operators constructed using additional spin and color struc-
tures. The spatial structures of the two-nucleon operators considered are the same as in Ref. [56]:
hexaquark (H) operators are constructed from products of six quark fields centered at the same
point, dibaryon (D) operators are constructed from products of plane-wave nucleon operators, and
quasi-local (Q) operators are constructed from products of nucleon operators with relative wave-
functions that resemble bound-state wavefunctions in finite-volume EFT. These operator types are
shown pictorially in Fig. 2.

A. Single-Nucleon Operators

The one- and two-nucleon operators used in this study can be described conveniently using
diquark fields

Dab
Γ,F (x) =

1√
2
qaT (x)CΓiτ2Fq

b(x) , (18)

where q = (u, d)T is an isodoublet quark field, C = γ2γ4 is the Euclidean charge conjugation
matrix, τ2 =

(
0 −i
i 0

)
is a Pauli matrix in isospin space, F and Γ are flavor and spin matrices, and

a and b are color indices. Proton and neutron operators can be built from isosinglet diquarks

Dab
Γ,1(x) =

1√
2

[
uaT (x)CΓdb(x)− daT (x)CΓub(x)

]
, (19)
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where 1 denotes the flavor identity matrix. In particular,

pΓσ(x) = ϵabcDab
Γ,1(x)Pσu

c(x) , (20)

nΓσ(x) = ϵabcDab
Γ,1(x)Pσd

c(x) , (21)

where Pσ projects the quark spin to a specific row σ ∈ {0, . . . , 3} of the spinor representation of
SO(4). In the Dirac basis, these projectors can be defined using parity projectors P± = (1± γ4)/2
as

Pσ =

{
P+ (1− (−1)σiγ1γ2) /2, σ ∈ {0, 1} ,
P− (1− (−1)σiγ1γ2) /2, σ ∈ {2, 3} .

(22)

The isodoublet nucleon field N = (p, n)T is defined as

NΓ
σ (x) = ϵabcDab

Γ,1(x)Pσq
c(x) . (23)

In addition to using the isosinglet diquark shown above, I = 1/2 nucleon operators can be
constructed using an isovector diquark Dab

Γ,τA
, where A ∈ {1, 2, 3} is an adjoint isospin index.

However, as shown in Ref. [96], quark antisymmetry can be used to relate the isovector diquark
operators (which correspond to mixed-symmetric operators in Ref. [96]) to linear combinations of
isoscalar diquark (mixed-antisymmetric) operators. A complete basis of local nucleon operators
can therefore be obtained from NΓ

σ with all linearly independent choices of Γ leading to nucleon
quantum numbers, and is given by the three positive-parity and the three negative-parity operators
presented in Ref. [96]. In the numerical calculations below, two positive-parity nucleon operators,
given by

Nγ5P+
σ (x) = ϵabcDab

γ5P+,1(x)Pσq
c(x) , (24)

Nγ5P−
σ (x) = ϵabcDab

γ5P−,1(x)Pσq
c(x) , (25)

are included. The operator N
γ5P+
σ involves only the Dirac basis upper components σ ∈ {0, 1} of

the quark field and corresponds to the operator used in Ref. [56], while the operator N
γ5P−
σ also

involves the lower components σ ∈ {2, 3} in the diquark field (the nucleon spin is still restricted
to σ ∈ {0, 1}). Products of these operators will be used to build dibaryon operators as described
below. Positive-parity dibaryon operators can also be constructed from products of two negative-
parity nucleon operators such as

N1
σ (x) = ϵabcDab

1,1(x)Pσq
c(x) . (26)

The three linearly-independent nucleon operators that are not studied in this work are expected
to overlap predominantly with excited states outside the low-energy region that is the focus of this
work [97–100].

B. Dibaryon Operators

Dibaryon operators are constructed from products of two-nucleon operators that are individually
projected to definite momentum. Dibaryon operators with zero total three-momentum are defined
by

D(2,I)Γ
ρ (n⃗, t) =

∑
x⃗1,x⃗2∈ΛS

ei
2π
L
n⃗·(x⃗1−x⃗2)

∑
σ,σ′,u,u′

vσσ
′

ρ P
(I)
uu′N

Γ
σu(x⃗1, t)N

Γ
σ′u′(x⃗2, t) , (27)
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where x = (x⃗, t) are lattice coordinates whose components are integer multiple of the lattice
spacing a, L is the spatial extent of the lattice geometry, ΛS is a sparse sublattice with L/(aS)
sites in each dimension that is introduced to make the volume sums computationally tractable as
described in Refs. [56, 101, 102]. The index ρ ∈ {0, . . . , 3} labels spin-singlet (ρ = 0) and spin-
triplet (ρ ∈ {1, 2, 3}) dibaryon operators, and vσσ

′
ρ denotes Clebsch-Gordon coefficients (explicitly

presented in Ref. [56]) projecting the product of two spin-1/2 operators into the particular dibaryon
spin state. Quantum numbers, here baryon number B = 2 and total isospin I, are denoted by
superscripts in parantheses. Projection to operators with definite isospin is accomplished using
P (0) = iτ2 and P (1) = iτ2τ3, where Iz = 0 is chosen for simplicity and u, u′ are flavor indices.

The set of dibaryon operators used here extends that of Ref. [56] by including dibaryon operators
with Γ = γ5P− and Γ = 1 in addition to Γ = γ5P+. These dibaryon operators all have the same
quantum numbers because products of two negative-parity nucleon operators (Γ = 1) have positive
parity. Analogous dibaryon operators can also be constructed in cases where the two nucleons each
have different spin structures, as well as from other products of two-baryon operators, such as ∆∆
and N∆, but the construction of this larger operator set is beyond the scope of this work.

For each Γ, operators with relative momenta k⃗ = (2π/L)n⃗ are included with

n⃗ ∈
{
(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1), (0, 0, 2), . . .

}
, (28)

where the ellipsis denotes momenta related to the ones that are shown by all possible cubic group
transformations. Dibaryon operators that transform irreducibly under cubic transformations are
obtained using appropriate averages of dibaryon operators with the same |n⃗| but different n⃗. Defin-
ing the momentum orbit K(s) = {n⃗

∣∣ |n⃗|2 = s}, projection to a cubic irrep ΓJ with a row labeled
by Jz is achieved by forming linear combinations

D(2,I,ΓJ ,Jz)Γ
sm (t) =

∑
n⃗∈K(s)

∑
ρ

G
(ΓJ ,Jz)
smn⃗ρ D(2,I)Γ

ρ (n⃗, t) , (29)

where m ∈ {1, 2, 3, . . . , NΓJ
s } indexes the operators arising for a given s, ΓJ , Jz, and Γ. For I = 1

operators, m ∈ {1} is trivial, while for I = 0, spin-orbit coupling leads to non-trivial multiplicities
NΓJ

s for some s and ΓJ as discussed in Refs. [56, 103] and below. The change-of-basis coefficients

G
(ΓJ ,Jz)
smn⃗ρ are presented in Ref. [56] (see also Ref. [104]).

C. Quasi-local operators

Quasi-local operators are constructed using spatial wavefunctions that are chosen to mimic
the form of the asymptotic wavefunction for the deuteron determined from nuclear EFTs and
phenomenological models [58, 105–107], while having a factorizable form that enables efficient
contraction calculations [56]. They are defined as

Q(2,I)Γ
ρ (κ, t) =

∑
x⃗1,x⃗2,R∈ΛS

e−κ|x⃗1−R⃗|e−κ|x⃗2−R⃗|
∑
σ,σ′

vσσ
′

ρ P
(I)
uu′N

Γ
σu(x⃗2, t)N

Γ
σ′u′(x⃗1, t) , (30)

where κ is a parameter controlling the amount of correlation between the two nucleon positions,

and R⃗ describes the center-of-mass of the two-nucleon system. The analog of Eq. (29) with D
(2,I)Γ
ρ

replaced by Q
(2,I)Γ
ρ is used to project quasi-local operators onto rows of cubic irreps ΓJ with definite

Jz. As for the dibaryon operators, the set of quasi-local operators considered in Ref. [56] is extended
here to quasi-local operators with Γ ∈ {γ5P+, γ5P−,1}.
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D. Hexaquark operators

In this section, a complete basis of local (single-site or smeared) hexaquark operators which
project onto two-nucleon states is constructed. The general hexaquark operator used to construct
this basis is

H(2,I,ΓJ ,Jz)
K (x) = HC1C2C3

G1,F1;G2,F2;G3,F3
(x) = TC1C2C3

abcdef Dab
G1,F1

(x)Dcd
G2,F2

(x)Def
G3,F3

(x) , (31)

where K = {1, 2, . . . } corresponds to a particular spin-color-flavor structure. TC1C2C3 is a color
tensor labeled by C1C2C3 as described below, which projects the above operator to the color-
singlet irrep, and diquarks DGi,Fi with Dirac and flavor structures G1, F1, . . . , G3, F3 are defined
in Eq. (18). In order to construct a complete basis of these operators, all possible color, spin and
flavor labels must be enumerated. Only gauge invariant spin-singlet and spin-triplet operators with
isospin zero and one are considered.

1. Color

Diquarks, being the product of two quarks, transform as 3⊗3 = 6⊕3 under SU(3)c. Hexaquark
operators formed from the product of three diquark operators therefore transform as

(3⊗ 3)⊗ (3⊗ 3)⊗ (3⊗ 3) = (6⊕ 3)⊗ (6⊕ 3)⊗ (6⊕ 3) . (32)

Not all of these terms contain a color-singlet in this irrep decomposition, but it appears once in
each of the five products 3⊗3⊗3, 3⊗3⊗6, 3⊗6⊗3, 6⊗3⊗3, and 6⊗6⊗6. There are therefore
five ways to combine the product of three diquarks into a color singlet. The corresponding color
tensors are given by

TAAA
abcdef = ϵabeϵcdf − ϵabf ϵcde ,
TAAS
abcdef = ϵabeϵcdf + ϵabf ϵcde ,

TASA
abcdef = ϵabcϵefd + ϵabdϵefc , (33)

TSAA
abcdef = ϵefaϵcdb + ϵefbϵcda ,

TSSS
abcdef = ϵaceϵbdf + ϵacf ϵbde + ϵbceϵadf + ϵbcf ϵade ,

where the labels C1, C2, C3 ∈ {A,S} denote whether each tensor is antisymmetric or symmetric in
each pair of indices (a, b), (c, d), and (e, f), and hence is to be combined with a diquark in the 3
or 6 representation for A and S, respectively.

2. Spin

The operators introduced in Eq. (31) can be decomposed into (direct sums) of irreps of the rele-
vant spatial symmetry group. In a continuous infinite volume, this group is Spin(3) = SU(2) (i.e.,
the double cover of the SO(3) spatial rotation group), under which two-nucleon states transform in
either the spin-triplet or spin-singlet representations. On a periodic (hyper-)cubic lattice, the resid-
ual spatial symmetry is the double cover of the octahedral group, OD

h . The isovector (spin-singlet)
two-nucleon states transform in the A+

1 irrep, while the isosinglet (spin-triplet) states transform in
the T+

1 irrep. In what follows, the continuum language of “spin-singlet” and “spin-triplet” will be
used, as it unambiguoulsy specifies the internal spin degrees of freedom.
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Recall from Eq. (18) above that each diquark contains a Dirac matrix of the form CGi where
C is the charge conjugation matrix. A possible basis for the matrices Gi is given by

Gi ∈ {PR, PL, PRγ
µ, PLγ

µ, σµν} , (34)

where PR/L = 1
2(1± γ5) and µ, ν ∈ {1, 2, 3, 4}. In general, there are therefore 163 = 4096 possible

hexaquark spin structures. However, not all of these are independent. Fierz identities can be used
to transform any product of two vector diquarks containing γµ or two tensor diquarks containing
σµν = i

2 [γ
µ, γν ] into a product of scalar diquarks [108]. Thus, when constructing the spin-singlet

operator, it is sufficient to consider Gi ∈ {PR, PL}. By a trivial change of basis, one can instead
use the set Gi ∈ {1, γ5} to construct a complete basis of Spin(4)-invariant hexaquark operators.
For interpolating-operator construction, where the relevant symmetry group is OD

h , additional
insertions of γ4 do not change diquark transformation properties (note that the P± projectors are
used to isolate the upper/lower quark components). The Dirac matrices required for a complete
basis of diquarks that are singlets under OD

h are, after a change of basis,

Gi ∈ {1, γ5, γ4, γ4γ5} . (35)

This leads to 43 = 64 independent spin-singlet hexaquark operators.

Using the parity projection operators P±, the 64 combinations can be split into a set of 32
positive-parity combinations and a set of 32 negative-parity combinations, with the parity of the
hexaquark operator equal to the product of the parities of the diquarks. Positive-parity diquarks
correspond to

Gi ∈ {γ5P+, γ5P−} , (36)

while negative parity diquarks correspond to

Gi ∈ {1, γ4} . (37)

This basis is convenient because it has definite symmetry properties for each diquark: diquarks
with the Dirac matrix Cγ4 are symmetric under exchange of spin indices while diquarks with the
C and Cγ5P± Dirac matrices are antisymmetric. With this choice, operators that vanish due to
quark antisymmetry can be easily identified.

For the spin-triplet hexaquark case, the only difference is that the construction must include one
vector diquark whose Dirac structure includes one of the spin vector Si ≡ 1

2ϵijkγjγk for i ∈ {1, 2, 3}.
Since factors of γ4 and γ5 do not change OD

h transformation properties, these vector diquarks can
involve four linearly independent Dirac matrices for a given spin index, i. To ensure definite
exchange symmetry, the four independent structures can be taken to be Si, Siγ4, and Siγ5P±.
Further appearances of spin-vector diquarks can be removed using Fierz relations as above. There
are therefore 64 linearly independent spin structures relevant for spin-triplet hexaquark operators
for each spin index, i,

G1 ∈ {Siγ5P+, Siγ5P−, Si, Siγ4} , G2, G3 ∈ {γ5P+, γ5P−,1, γ4} , (38)

where the freedom to permute the diquarks to label the spin-vector diquark with G1 has been used.
As in the spin-singlet case, these operators can be split into sets of 32 operators with each parity.
The positive-parity structures again correspond to operators with an odd number of structures
involving γ5.
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3. Flavor

Assuming SU(2) isospin symmetry is exact, products of two local nucleon operators form either
an isovector spin-singlet state or an isoscalar spin-triplet state. Although hexaquark operators with
other transformation properties, for example isosinglet spin-singlet, can be constructed, they will
not mix with operators in these two channels.

Each diquark can be projected into isosinglet and isovector flavor irreps as

Dab
G,1(x) = qaT (x)CGiτ2q

b(x) ,

Dab
G,τA

(x) = qaT (x)CGiτ2τAq
b(x) ,

(39)

where A ∈ {1, 2, 3}. Five linearly independent operators with I = 0 can be constructed from these
building blocks,

Dab
G1,1(x)Dcd

G2,1(x)D
ef
G3,1

(x) ,

Dab
G1,τA

(x)Dcd
G2,τB

(x)Def
G3,1

(x)δAB ,

Dab
G1,τA

(x)Dcd
G2,1(x)D

ef
G3,τB

(x)δAB ,

Dab
G1,1(x)Dcd

G2,τA
(x)Def

G3,τB
(x)δAB ,

Dab
G1,τA

(x)Dcd
G2,τB

(x)Def
G3,τC

(x)ϵABC ,

(40)

where A,B,C ∈ {1, 2, 3}. Note that the color and spin structures may differ on each diquark,
making the second, third, and fourth combinations in Eq. (40) distinct.

A total of nine linearly independent isospin tensor operators with I = 1 can be constructed
analogously,

Dab
G1,τA

(x)Dcd
G2,1(x)D

ef
G3,1

(x) ,

Dab
G1,1(x)Dcd

G2,τA
(x)Def

G3,1
(x) ,

Dab
G1,1(x)Dcd

G2,1(x)D
ef
G3,τA

(x) ,

Dab
G1,τB

(x)Dcd
G2,τC

(x)Def
G3,1

(x)ϵABC ,

Dab
G1,τB

(x)Dcd
G2,1(x)D

ef
G3,τC

(x)ϵABC ,

Dab
G1,1(x)Dcd

G2,τB
(x)Def

G3,τC
(x)ϵABC ,

Dab
G1,τA

(x)Dcd
G2,τB

(x)Def
G3,τC

(x)δBC ,

Dab
G1,τB

(x)Dcd
G2,τA

(x)Def
G3,τC

(x)δBC ,

Dab
G1,τB

(x)Dcd
G2,τC

(x)Def
G3,τA

(x)δBC .

(41)

4. Gram-Schmidt Reduction and Hexaquark Basis

Spin-color-flavor tensor hexaquark operators are obtained by contracting the flavor tensor op-
erators above with one of the five color tensors shown in Eq. (33) and choosing G1, G2, and G3

to correspond to the choices of spin operators described in Sec. IIID 2. However, the resulting
operators will not all be linearly independent because of quark antisymmetry. The reduction of
this overcomplete set to complete bases of positive-parity spin-singlet hexaquark operators with
I = 1 and positive-parity spin-triplet hexaquark operators with I = 0 is discussed in this section.
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K Color Spin Flavor K Color Spin Flavor

1 AAA γ4 γ5P+ 1 τ 1 1 9 S AA γ5P− γ5P+ γ5P+ τ 1 1

2 AAA γ4 γ5P− 1 τ 1 1 10 S AA γ5P− γ5P− γ5P+ τ 1 1

3 S AA γ5P+ γ5P+ γ5P+ τ 1 1 11 S AA γ5P− γ5P− γ5P− τ 1 1

4 S AA γ5P+ γ5P− γ5P+ τ 1 1 12 S AA γ5P− 1 1 τ 1 1

5 S AA γ5P+ γ5P− γ5P− τ 1 1 13 S AA γ5P− γ4 γ4 τ ′τ τ ′

6 S AA γ5P+ 1 1 τ 1 1 14 S AA γ5P− γ4 γ4 τ τ ′τ ′

7 S AA γ5P+ γ4 γ4 τ ′τ τ ′ 15 S S S γ5P+ γ5P− γ5P+ τ τ ′τ ′

8 S AA γ5P+ γ4 γ4 τ τ ′τ ′ 16 S S S γ5P+ γ5P− γ5P− τ ′τ τ ′

TABLE I. A complete basis of hexaquark operators with I = 1 and spin zero, H(2,1,A+
1 ,Jz=0)

K (x), enumerated
by K ∈ {1, . . . , 16}. Note that all but K = 3 constitute operators with hidden color. Each operator takes
the form HC1C2C3

G1,F1;G2,F2;G3,F3
(x), where the color tensor labels Ci, Dirac matrices Gi, and flavor tensors Fi

appearing in each diquark as defined in the main text are indicated in the corresponding columns for each
K. Here, τ always refers to an isovector diquark with a free isospin index, while τ ′ pairs indicate isovector
diquarks whose indices are contracted as τ ′Bτ

′
CδBC .

K Color Spin Flavor K Color Spin Flavor

1 AAA Siγ5P+ γ4 1 τ τ 1 9 S AA Siγ5P+ 1 1 1 1 1

2 AAA Siγ5P− γ4 1 τ τ 1 10 S AA Siγ5P− γ5P− γ5P+ 1 1 1

3 AAA Si γ4 γ5P+ τ τ 1 11 S AA Siγ5P− γ5P− γ5P− 1 1 1

4 AAA Siγ4 γ5P+ 1 1 1 1 12 S AA Siγ5P− 1 1 1 1 1

5 AAA Siγ4 γ5P− 1 1 1 1 13 S S S Siγ5P+ γ4 γ4 1 1 1

6 S AA Siγ5P+ γ5P+ γ5P+ 1 1 1 14 S S S Siγ5P− γ4 γ4 1 1 1

7 S AA Siγ5P+ γ5P− γ5P+ 1 1 1 15 S S S Siγ4 γ4 γ5P+ τ 1 τ

8 S AA Siγ5P+ γ5P− γ5P− 1 1 1 16 AAS Siγ5P+ γ5P− γ5P− τ 1 τ

TABLE II. A complete basis of hexaquark operators with I = 0 and spin one, H(2,0,T+
1 ,Jz=i)

K (x), enumerated
by K ∈ {1, . . . , 16}. Note that all but K = 6 constitute operators with hidden color. Color, spin, and flavor
labels are as in Table I. Here, the τ flavor structures correspond to contracted indices τAτBδAB .

The five color tensors and 32 positive-parity spin-singlet tensors discussed above can be com-
bined with the nine I = 1 flavor tensors in 5× 32× 9 = 1440 ways. Each of these spin-color-flavor
tensor operators can be described as a contraction of six quark fields with a weight tensor that
has six spin, color, and flavor indices. The resulting rank-18 weight tensors are sparse and can
be represented efficiently as lists of the non-zero weights and their corresponding index values.
To make the constraints from quark antisymmetry manifest, the quark fields appearing in every
term with non-zero weights can be permuted into a fiducial flavor ordering, such as uuuddd for the
Iz = 0 case, as described in Refs. [56, 109]. Many terms in the original weight tensor correspond
to the same tensor structure after antisymmetrization and can be combined together to build a
reduced rank-12 spin-color weight tensor corresponding to the fiducial ordering.

The reduced weight tensors associated with linearly independent spin-color-flavor tensor op-
erators are not linearly independent if some operators are related by quark antisymmetry. An
orthonormal basis of reduced-weight tensors is constructed using a Gram–Schmidt process; this
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basis is a complete basis of hexaquark operators without redundancies from quark antisymme-
try or Fierz relations. The orthogonalization isolates 16 linearly independent operators from the
full set of 1440 isovector spin-singlet hexaquark operators. Note that accounting for the quark
antisymmetry of each individual diquark reduces the 1440 operators to 101; however, many of
the remaining redundancies can be understood as arising from combined color-spin-flavor Fierz
identities that complicate a group theoretic determination of the number of linearly independent

operators [108, 110]. These 16 orthonormal operators H
(2,1,A+

1 ,Jz)
i (x) are linear combinations of

the 16 spin-color-flavor tensor operators H(2,1,A+
1 ,Jz)

K (x) shown in Table I,

H
(2,1,A+

1 ,Jz)
i (x) =

i∑
K=1

w
(2,1,A+

1 )
iK

∑
x⃗

H(2,1,A+
1 ,Jz)

K (x) . (42)

Hexaquark operators with zero momentum are defined as H
(2,1,A+

1 ,Jz)
i (t) =

∑
x⃗H

(2,1,A+
1 ,Jz)

i (x⃗, t). It
is noteworthy that normalized isovector hexaquark operators constructed from products of color-
singlet upper-spin-component baryon operators of the forms NN , N∆, and ∆∆ are all identical to

the basis operator H
(2,1,A+

1 ,Jz)
3 . This can be explained by the fact that baryon-product operators

of the forms NN , N∆, and ∆∆ all include two diquarks that are antisymmetric in color and are

comprised of only upper-spin-component quark fields — H
(2,1,A+

1 ,Jz)
3 is the only basis operator, or

linear combination of basis operators, meeting this description.
The same considerations apply to positive-parity spin-triplet hexaquarks with I = 0, where five

flavor tensors are available. In this case, a total of 5×32×5 = 800 spin-color-flavor tensor operators
can be constructed. As in the preceding spin-singlet case, reduced weights are constructed for each
of these 800 operators. Finally, the Gram–Schmidt algorithm isolates 16 orthonormal spin-triplet
hexaquark operators using linear combinations of the operators shown in Table II. Normalized
isosinglet hexaquark operators constructed from products of color-singlet upper-spin-component

baryon operators of the forms NN and ∆∆ are both identical to the basis operator H
(2,0,T+

1 ,Jz)
6 ,

which can be explained analogously to the I = 1 case.

IV. NUMERICAL STUDY WITH mπ ≈ 806 MeV

This section presents a variational study of the spectrum of two-nucleon systems for Nf = 3
degenerate quarks with a common mass corresponding to a pion mass of mπ ≈ 806 MeV. This
calculation uses gauge fields also employed in previous studies of two-nucleon spectroscopy in
Refs. [46–48, 54, 56] which were generated using the tadpole-improved Lüscher-Weisz gauge field
action [111] with a single level of stout smearing [112] and the Wilson-clover fermion action [113]
with a tadpole-improved tree-level clover coefficient cSW = 1.2493 [114]. Relevant details are
presented in Table. III.

Quark propagators computed for all source points in a 63 sparse sub-lattice of the (L/a)3 =
243 spatial volume at a fixed time are used to construct sparsened quark propagators [101] with
sparseining factor S = 4. The quark sources employ gauge-invariant Gaussian smearing [115, 116]
with a Chroma smearing parameter 2.1, which corresponds to a Gaussian smearing width of ≈ 0.18
fm. Interpolating operators constructed from these quark propagators are therefore identical to
the “thin”-smearing operators described in Ref. [56] except that an ensemble with larger L is used
in that work. Variational bounds on the one- and two-nucleon systems are obtained by performing
multi-exponential fits to the principal correlation functions determined from the GEVP, following
the algorithm described previously in Refs. [50, 56] augmented by the algorithm for choosing
reference times t0 and tref discussed in Appendix A.
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(L/a)3 × (T/a) β amq a [fm] L [fm] T [fm] mπL mπT Ncfg Nsrc

243 × 48 6.1 -0.2450 0.1453(16) 3.4 6.7 14.3 28.5 469 216

TABLE III. Details of the ensemble of gauge field configurations used for the numerical calculations. L and
T are the spatial and temporal extents of the lattice, β = 6/g2 is the inverse bare coupling, mq is the bare
quark mass, a is the lattice spacing, Ncfg is the total number of gauge field configurations used, and Nsrc is
the number of source locations employed on each configuration.

A. Interpolating-operator sets

A range of different variational operator sets are considered. Sets are chosen to study the oper-
ator dependence of variational bounds on the energy eigenvalues. Understanding this variation is
critical because a complete basis of operators for the full Hilbert space of QCD remains intractable.

Shorthand notation is useful for discussing interpolating-operator sets and variational bounds.
The positive- and negative-parity single-nucleon channels have quantum numbers Q = (B, I,ΓJ)
that will be denoted

N+ ≡ (1, 12 , G
+
1 ) , (43)

N− ≡ (1, 12 , G
−
1 ) . (44)

The energy spectrum is independent of Jz; numerical calculations average N+ and N− correlation
functions over Jz ∈ {1, 2}. The quantum numbers Q = (B, I,ΓJ) for the two-baryon systems are

nn ≡ (2, 1, A+
1 ) , (45)

d ≡ (2, 0, T+
1 ) . (46)

Note that nn is used to label the “dineutron” I = 1 spectrum, which is independent of Iz; numer-
ical calculations are explicitly performed using Iz = 0. Similarly, the label d is used to denote the
isoscalar spin-triplet spectrum, which is independent of Jz; numerical calculations average corre-
lation functions over Jz ∈ {1, 2, 3}. Notation for energy gaps in these channels is summarized in
Table IV.

The sets of operators that are studied in this work can be divided broadly into three main
categories:

1. Dibaryon operator sets include a range of different dibaryon operators, including those with
lower-spin components and negative parity nucleon operators. Dibaryon operator sets are
denoted SQNDD, where Q ∈ {nn, d} denotes the quantum numbers of the system and ND is
the number of dibaryon operators in the set.

2. Hexaquark operator sets include a variety of hexaquark operators from Sec. IIID. Hexaquark
operator sets are denoted SQNHH , with Q as above and NH the number of hexaquark operators
that are included.

3. Dibaryon and hexaquark operator sets combine operators from the previous two sets to
examine the combined effect of both types of operators. Combined operator sets are denoted
SQNDD∪S

Q
NHH . The integersND andNH correspond to the number of dibaryon and hexaquark

operators, respectively. Thus, a total of ND + NH operators appear in the combined set.
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Quantity Description

MN ≡ EN+

0 Nucleon mass

δEN+ ≡ EN+

1 −MN Energy gap in channel N+

δEN− ≡ EN−

0 −MN
Energy gap in channel N− between lowest-energy negative-parity
state and positive-parity ground state

∆EQ
n ≡ EQ

n − 2MN
nth energy gap from two-nucleon threshold in channel Q,
computed using fit results for each energy level

∆EQ
n (t) ≡ EQ

n (t)− 2EN+

0 (t)
Time-dependent nth energy gap from two-nucleon threshold in
channel Q, computed using the effective energies defined in Eq. (16)

∆cut ≡ 2

√
M2

N + 5
(
2π
L

)2 − 2MN
Energy gap from two-nucleon threshold to the first non-interacting
energy level with larger momentum than the operators used here

TABLE IV. Summary of spectral quantities used to characterize the low-energy one- and two-nucleon spectra.
Single-nucleon splittings are denoted by δ, while two-nucleon splittings use ∆.

Sets of dibaryon operators constructed using upper-spin-component diquarks are defined by

Snn5D ≡
{
DnnΓ

sm (t)

∣∣∣∣ s ∈ {0, 1, 2, 3, 4},m ∈ {1, . . . , NA+
1

s }, Γ ∈ {γ5P+}
}
,

Sd10D ≡
{
DdΓ

sm(t)

∣∣∣∣ s ∈ {0, 1, 2, 3, 4},m ∈ {1, . . . , NT+
1

s }, Γ ∈ {γ5P+}
}
.

(47)

On the right-hand side, s = |n⃗|2 is the magnitude of the plane-wave momentum appearing in
Eq. (27) and m indexes the multiplicity of each shell. These sets are analogous to the interpolating-
operator set denoted S0 in Ref. [56], except that operators with a second Gaussian quark field
smearing were also included in Ref. [56].

Sets of dibaryon operators involving products of two negative-parity nucleons and involving
nucleon operators built from lower-spin-component diquarks are defined by

Snn10D ≡
{
DnnΓ

sm (t)

∣∣∣∣ s ∈ {0, 1, 2, 3, 4},m ∈ {1, . . . , NA+
1

s }, Γ ∈ {γ5P+,1}
}
,

Snn15D ≡
{
DnnΓ

sm (t)

∣∣∣∣ s ∈ {0, 1, 2, 3, 4},m ∈ {1, . . . , NA+
1

s }, Γ ∈ {γ5P+,1, γ5P−}
}
,

Sd20D ≡
{
DdΓ

sm(t)

∣∣∣∣ s ∈ {0, 1, 2, 3, 4},m ∈ {1, . . . , NT+
1

s }, Γ ∈ {γ5P+,1}
}
,

Sd30D ≡
{
DdΓ

sm(t)

∣∣∣∣ s ∈ {0, 1, 2, 3, 4},m ∈ {1, . . . , NT+
1

s }, Γ ∈ {γ5P+,1, γ5P−}
}
.

(48)

The meanings of s, and m are the same as in the preceding equation.

Compared to dibaryon operators, spatially localized hexaquark operators might be expected
to have larger overlap with compact bound states and smaller overlap with scattering states.
Sets containing one, two, and sixteen hexaquark operators are considered in order to study the
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variational bounds from hexaquark operators alone. For the dineutron, these sets are defined as

Snn1H ≡
{
Hnn

i (t)

∣∣∣∣ i ∈ {3}} ,

Snn2H ≡
{
Hnn

i (t)

∣∣∣∣ i ∈ {3, 4}} ,

Snn16H ≡
{
Hnn

i (t)

∣∣∣∣ i ∈ {1, 2, . . . , 16}} .

(49)

The dineutron operatorsHnn
i (t) appearing on the right-hand side are defined Eq. (42) as orthogonal

linear combinations of the basic hexaquark operators in Table I. The operator Hnn
3 (t) appearing in

all three sets is identical, apart from an irrelevant constant, to the product of color-singlet nucleon
operators centered at the same point that was studied in Ref. [56]. Explicitly, the two operators
appearing in Snn2H are

Hnn
3 (x) = Hnn

3 (x) ,

Hnn
4 (x) = Hnn

4 (x)− 1

3
Hnn

1 (x) .
(50)

For the deuteron, the corresponding operator sets are defined as

Sd1H ≡
{
Hd

i (t)

∣∣∣∣ i ∈ {6}} ,

Sd2H ≡
{
Hd

i (t)

∣∣∣∣ i ∈ {6, 7}} ,

Sd16H ≡
{
Hd

i (t)

∣∣∣∣ i ∈ {1, 2, . . . , 16}} ,

(51)

where

Hd
6 (x) = Hd

6(x) ,

Hd
7 (x) = Hd

7(x) +
3

14
Hd

4(x)−
11

42
Hd

3(x)−
2

21
Hd

1(x) .
(52)

As in the dineutron channel, the operator Hd
6 (t) appearing in all three sets is identical to a product

of color-singlet nucleon operators. The second operators included in SQ2H for each channel are
chosen because of their relatively large overlaps with low-energy states in the numerical results
below.

Four additional interpolating-operator sets are chosen for each channel to study the combined
effects of including both dibaryon and hexaquark operators,

Snn5D ∪ Snn1H , Snn5D ∪ Snn2H , Snn5D ∪ Snn16H , Snn15D ∪ Snn16H ,

Sd10D ∪ Sd1H , Sd10D ∪ Sd2H , Sd10D ∪ Sd16H , Sd30D ∪ Sd16H .
(53)

It is possible to define additional sets including quasi-local operators. In practice, such sets give
results for the low-energy spectra which are consistent with one or more of the operator sets reported
here, albeit with larger uncertainties. Results for operator sets including quasi-local operators are
therefore not presented below.

Dibaryon operators with all three choices of Γ ∈ {1, γ5P+, γ5P−} are also computed for cubic
irreps that are associated with D-wave phase shifts in infinite volume. For the I = 1 case, such
dibaryon operators are constructed for ΓJ = E+ with s ∈ {1, 2, 4} and for ΓJ = T+

2 with s ∈ {2, 3}.
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For the I = 0 case, dibaryon operators are constructed for ΓJ = A+
2 with s ∈ {2, 3}, for ΓJ = E+

with s ∈ {2, 3}, and for ΓJ = T+
2 with s ∈ {1, 2, 3, 4}. Although there are no hexaquarks built

from products of color-singlet nucleons that transform in these representations, hexaquarks built
from N∆ and ∆∆ operators, as well as hidden-color operators, can be constructed that transform
in the same representations. The inclusion of such operators is left to future work.

B. The Single-Nucleon Channel

The positive-parity single-nucleon channel can be studied using the interpolating-operator set
SN+

= {NΓ |Γ ∈ γ5P±}, with the quantum numbers N+ defined in Eq. (43). Applying the
algorithm for selecting t0 and tref discussed in Appendix A leads to t0 = 7 and tref = 11. The
effective masses and fit results using the multi-state fitting algorithm detailed in Refs. [50, 56]
are shown in Fig. 3. The variational bound on the nucleon mass obtained from fits to the n = 0
principal correlation function is

aMN ≡ aEN+

0 = 1.2036(15) , (54)

which is consistent with previous analyses of this ensemble [46, 48]. The variational bound on the
first excited state in this channel obtained from analogous fits to the n = 1 principal correlation
function is

aEN+

1 = 1.928(47) . (55)

This bound is weaker than the corresponding bound aEN+

1 = 1.770(14) obtained using a set of
two interpolating operators with different Gaussian smearing widths on a larger spatial volume
in Ref. [56]. The presence of significant excited-state contamination is unsurprising, since it is
the second eigenvalue from a 2× 2 matrix of correlation functions, and further since Fig. 3 shows
there may still be significant time-dependence in the effective energy at imaginary times where the
signal is lost to noise. The insets in Fig. 3 show the overlaps with the ground and first excited
states with upper- and lower-component operators. The ground state has similar overlaps, 0.548(1)
and 0.452(1), with the respective upper- and lower-component operators. The first excited state
overlaps dominantly with the lower-spin-component operator.

The negative-parity single-nucleon sector is orthogonal and is studied using the interpolating-
operator set with a single operator SN−

= {N1}. The resulting diagonal correlation function is
positive definite and provides a variational bound on the lowest-energy negative-parity state,

aEN−
0 = 1.6357(76) , (56)

as shown in Fig. 4.

Constraints on the single-nucleon energy gaps defined in Table IV, aδEN+
= 0.73(5) and

aδEN−
= 0.43(1), can inform interpretations of the two-nucleon energy spectrum.6 In particu-

lar, two-nucleon states with energies near aδEN+
might be associated with N+(N+)∗ scattering

states. Since positive-parity two-nucleon states include either zero or two negative-parity nucleon
operators, states with energies near aδEN−

are not expected to appear in the positive-parity two-
nucleon sector, while states with energies near 2aδEN−

might be associated with N−N− scattering
states.

6 These values only furnish variational bounds on the energy gaps under the assumption that the ground-state bound
aMN has been saturated.
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FIG. 3. The positive parity single-nucleon channel is studied using the variational method utilizing a set of
two operators constructed from the upper- and lower-spin components. The relative weights of the upper
and lower spin components are shown as the left and right columns in the histogram (inset). The lower
variational bound constrains the nucleon mass in lattice units. Lightly shaded colored bands show the total
statistical plus fitting systematic uncertainties added in quadrature while the outlined regions show the
statistical uncertainty of the highest-weight fit. Note that for the n = 1 case, fit results provide a variational
bound even though there may still be significant curvature in the effective energy for all t where signals can
be resolved from noise.
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FIG. 4. The negative parity nucleon channel is studied using the single negative parity nucleon operator
defined in Eq. (26).

C. Two-Nucleon Spectroscopy

Since one- and two-nucleon correlation functions are computed on the same gauge-field configu-
rations, statistical fluctuations are strongly correlated between them. Consequently, correlated dif-
ferences often lead to reduced statistical uncertainties. In particular, correlated energy differences
(e.g., from the differences between separate fits to one- and two-nucleon correlation functions) are
more precisely determined than total energies. Results are presented below for the effective energy
gap a∆EQ

n (t) defined in Table IV, where t0 and tref have been chosen as detailed in Appendix A.
Critically, variational bounds are obtained from correlated fits to the one- and two-nucleon prin-

cipal correlation functions individually and not to a∆E
(2,I,ΓJ )
n (t), which is not a convex sum of

exponentials. Individual variational bounds from fits to one- and two-nucleon correlation functions
also furnish results for the energy gap a∆EQ

n defined in Table IV. Energy gaps a∆EQ
n are computed

using the bootstrap methods described in Ref. [56]. Appendix B collects the strongest variational
bounds on a∆EQ

n for all Q = (2, I,ΓJ) studied in the present work.

Before presenting results, it is useful to consider where the near-threshold variational bounds
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would be expected to appear in the absence of hadronic interactions. In the present work, dibaryon
operators are projected to all plane-wave momenta with |n⃗|2 < 5. Therefore it may be expected
that these operators will overlap predominately with finite-volume scattering states with energy
gaps

a∆E ≲ a∆cut ≡ 2
√

(aMN )2 + 5(2πa/L)2 − 2aMN = 0.27 , (57)

where aMN is given in Eq. (54) and ∆cut is the non-interacting energy difference corresponding
to |n⃗|2 = 5; see Table IV. This energy region aligns with the energy region a∆E ≲ 0.24 studied
using plane-wave momentum-projected operators with |n⃗|2 < 8 on an ensemble with larger volume
in Ref. [56]. Additional multi-hadron states that have small overlap with these dibaryon operators
may be present at similar or somewhat lower energies than ∆cut, in particular N∆ states with I = 1
and ∆∆ states with I ∈ {0, 1}. Using the mass of the ∆ baryon (stable at these values of the quark
masses) computed using this gauge-field ensemble in Ref. [117], aM∆ = 1.3321(21), the threshold
for S-wave ∆∆ states with nn or d quantum numbers is a∆E∆∆ ≡ 2aM∆ − 2aMN = 0.26.
The corresponding threshold for D-wave N∆ states with nn quantum numbers is7 a∆EN∆ ≡√
(aM∆)2 + (2πa/L)2 +

√
(aMN )2 + (2πa/L)2 − 2aMN = 0.18. Variational bounds above these

non-interacting thresholds still provide valid bounds satisfying the interlacing theorem. However,
such bounds seem very unlikely to have saturated due to small, though exponentially growing in
t, contributions to the associated principal correlation functions from N∆ and ∆∆ states. These
thresholds will be indicated in the numerical results below.

1. The Dineutron Channel

The energy spectrum for two-nucleon systems with I = 1 is independent of Iz in the isospin-
symmetric limit considered here. Therefore the results for nn, pp, and spin-singlet pn systems
are equivalent. This channel will be referred to as the dineutron channel in order to distinguish
it from the I = 0, spin-triplet deuteron channel. The most important contributions to the near-
threshold scattering amplitude come from the ℓ = 0 partial-wave, as higher partial-waves are
kinematically suppressed. In this section, results are given for the A+

1 irrep, which corresponds
to states with orbital angular momentum, ℓ ∈ {0, 4, 6, . . .} in the continuum and infinite-volume
limit [103, 105, 118, 119]. Effective masses from four representative operator sets are shown in
Fig. 5. Variational bounds from each of the operator sets defined in the previous section are
presented in Fig. 6.

In each of the dibaryon operator sets Snn5D, Snn10D and Snn15D, denoted “Dibaryon Studies” in Fig. 6,
there exists a variational bound which lies just below each non-interacting two-nucleon energy level.
This placement suggests that these bounds may be associated with attractive finite-volume NN
scattering states. Results for the sets Snn10D and Snn15D are consistent with those from the Snn5D
set for all variational bounds below ∆cut. Differences between the variational bounds from each
interpolating-operator set are smaller than the statistical uncertainties. The lowest energy bound
is just below the two-nucleon threshold. This bound is higher than the previous estimates of the
ground state energy on this ensemble using asymmetric source and sink interpolating operators
and is therefore consistent in the sense of a variational bound.8

Additional bounds not present for Snn5D appear in results for Snn10D and Snn15D at higher energies,
as shown in Fig. 7. For Snn10D, which contains dibaryon operators constructed from products of

7 An N∆ system at rest transforms as G+
1 ⊗H+ = E+ ⊕ T+

1 ⊕ T+
2 and can lead to ΓJ = A+

1 when combined with
|n⃗| = 1 spatial wavefunctions transforming in the E+ irrep [96]. In the deuteron channel, isospin symmetry forbids
N∆ contributions.

8 Under the assumption that this bound has been saturated, the analysis of these operator sets does not suggest a
bound state in contrast to studies using asymmetric source and sink interpolating operators. See Ref. [56] for an
extensive discussion of the meaning of this contrast.
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FIG. 5. Effective mass functions and spectral bounds for operator sets Snn5D (upper left), Snn1H (upper right),
Snn5D∪Snn1H (lower left), and Snn5D∪Snn16H (lower right) for the dineutron, (B, I,ΓJ) = (2, 1, A+

1 ). Non-interacting
NN and N∆ energy levels are represented as dashed and dotted horizontal lines, respectively.
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1 ) spectrum obtained

from all operator sets considered in this work. Non-interacting NN and N∆ energy levels are represented
as dashed and dotted horizontal lines, respectively.

negative-parity nucleon operators, all but one of the additional bounds are above the threshold
2aδEN− ≈ 0.87 For Snn15D, several additional bounds appear around aδEN+ ≈ 0.74. This suggests
that these operators predominantly overlap with N−N− and N+(N+)∗ scattering states, although
the presence of one bound below aδEN+

shows that they do not overlap exclusively with such
states.

The sets Snn1H , Snn2H and Snn16H furnish variational bounds for energy eigenstates obtained from
operator sets which contain only hexaquark operators. While these sets may seem unnatural since
they lack the dibaryon operators, which have been observed to have significant overlap with low-
energy two-nucleon-like states, the interlacing theorem implies that S16H nevertheless provides
valid variational bounds on the lowest sixteen energy eigenvalues in the theory. The variational
bounds determined from these interpolating-operator sets are shown in Figs. 5 - 7. For each
hexaquark operator set described here, it is possible to observe a plateau at late Euclidean times
in the n = 0 principal correlator. In each operator set, the variational bound on the lowest energy
is a∆Ed

0 ≈ 0.07 above the two-nucleon threshold. For each of these hexaquark-only operator sets,
the other variational bounds are above ∆cut and do not exhibit clear plateaus, as shown in Fig. 7.

For the operator sets which include the upper-spin-component positive-parity dibaryon opera-
tors and either one, two, or sixteen hexaquark operators (Snn5D ∪ Snn1H , Snn5D ∪ Snn2H and Snn5D ∪ Snn16H)
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FIG. 7. The effective mass spectra showing all of the variational bounds obtained with the interpolating-
operator sets indicated. Non-interacting energy levels are represented as follows: dashed gray lines for NN ;
dotted black lines for N∆ and ∆∆; and dot-dashed gray lines for NNπ. Lines for non-interacting energy
levels above a∆cut are cut off for visual clarity. Thresholds related to single-nucleon excitations are also
indicated: dashed orange line for aδEN+

and dashed purple line for aδEN+

.
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FIG. 8. Results for relative overlap factors Znn
nχ for operator set Snn15D ∪ Snn16H . Uncertainties are not shown

here but are shown by error bars in histograms for the 6 lowest-energy states in Fig. 17.

and for the operator set which includes all dibaryon and hexaquark operators (Snn15D ∪ Snn16H), the
resulting low-energy spectrum appears to be approximately the union of spectra for the dibaryon-
only and hexaquark-only operator sets. Based on the numerically-determined variational bounds
obtained from these operator sets, there exists an additional energy eigenvalue below a∆Enn ≲ 0.1
beyond those expected in a non-interacting two-nucleon system.

This additional level is constrained by the variational bound a∆Enn
2 = 0.077(7) from Snn15D∪Snn16H

to be significantly below the non-interacting N∆ threshold a∆EN∆ = 0.183(6). The energy of an
attractive but unbound N∆ system can be shifted from this value by roughly −0.005 [58, 105, 120,
121] before it becomes a bound state so this constraint precludes interpretation of the additional
state as an N∆ scattering state. Interpretation of the additional state as a NN resonance (e.g., a
N∆ bound state) cannot be excluded.

One can now critically re-examine both the dibaryon-only and hexaquark-only operator sets.
In particular, this study suggests that the hexaquark and dibaryon operators have statistically
resolvable overlaps with disjoint sectors of the Hilbert space. This hypothesis is reinforced by
examining the overlap factors obtained from fits to the operator set Snn15D ∪ Snn16H , shown in Fig. 8
and Appendix C. There, it can be seen that the dibaryon operators have large relative overlap with
energy-levels which sit near non-interacting two-nucleon energy levels (n ∈ {0, 1, 3, 4, 5}), while the
additional energy level (n = 2) has large relative overlap with the hexaquark operators Hnn

3 and
Hnn

4 . The existence of a low-lying energy level with small overlap to dibaryon operators has been
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previously observed at the same pion mass but different physical volume in Ref. [56].

It is noteworthy that there is not a simple diagnostic for the existence of a third energy level
below a∆Enn ≲ 0.1 arising from analysis of Snn15D or for the existence of multiple energy levels below
∆cut using Snn16H . It is clear that computationally-accessible Euclidean times are not yet sufficient
to ensure that all variational bounds are saturated within statistical uncertainties. Therefore, one
should exercise caution in assuming that the bounds from a given interpolating-operator set are in
one-to-one correspondence with energy levels.

The set Snn16H contains operators which cannot be written as the local product of two color-singlet
three-quark operators. Such operators probe the hidden-color components of the two-nucleon
wavefunction. While such operators do not provide strong variational bounds on the low-energy
dineutron spectrum and exhibit large statistical fluctuations, evidence exists for states higher in
the spectrum having statistically-significant overlaps with these novel operators. This can be seen
in Fig. 8, where the relative overlaps of each GEVP eigenvector onto each operator is shown. In
particular, the n = 2 dineutron level has largest overlaps with operators with TAAS color structures
arising from products of two color-singlet baryon operators and includes an admixture of upper-
spin-component and lower-spin-component operators of this form. Operators involving the color
tensors TAAA and TSSS that cannot be constructed from products of color-singlet baryons are
associated with the appearance of variational bounds above ∆cut. It is noteworthy that several
of these variational bounds appear between ∆cut and aδEN+

, which suggests that hidden-color
operators in this channel predominantly overlap with lower-energy states than operators involving
single-nucleon excitations. The structure of these states may exhibit novel features associated with
the presence of hidden color that should be explored in future work.

2. The Deuteron Channel

Similar studies using the various operator sets can be performed for the deuteron channel.
Results are presented for the Jz = 0 row of the T+

1 irrep, which contains the ℓ = 0 partial-
wave contribution in the infinite volume limit. The resulting variational bounds on the spectra are
shown in Figs. 9 and 10. It is important to note that unlike the dineutron channel, multiple linearly
independent dibaryon interpolating operators in a given row of the cubic group representation can
be constructed. These arise because the total angular momentum irrep is a tensor product of
the “orbital” angular momentum and the spin, ΓJ = Γℓ ⊗ Γspin. The total-angular-momentum
irrep containing the deuteron (ΓJ = T+

1 ) includes contributions from spatial wavefunctions with
Γℓ ∈ {A+

1 , E
+, T+

2 } (other irreps are only relevant for higher-momentum dibaryon operators. For
example, Γℓ = T+

1 contributes for s ≥ 5). Thus, these operators are sensitive to the energy splittings
arising from the orbital angular momenta of the states. The multiplicities of operators with total
angular momentum irrep ΓJ are given in Table III of Ref. [56]. In particular, for ΓJ = T+

1 , the

multiplicities are N
(0,T+

1 )
s = {1, 2, 3, 2, 2} for s = {0, 1, 2, 3, 4}, respectively. Consequently, if the

low-energy deuteron spectrum could be described purely in terms of non-interacting energy levels,

then one should expect N
(0,T+

1 )
s nearby variational bounds for each non-interacting energy level.

For the operator sets containing only dibaryon operators (Sd10D, Sd20D, Sd30D), exactly N
(0,T+

1 )
s

nearby variational bounds for each s are observed, in agreement with the expected counting of
non-interacting degenerate copies. It is interesting to note that the variational bounds for the
two s = 1 states differ by several standard deviations. If these variational bounds were saturated,
these differences could be used to study S-D partial-wave mixing [49, 107]. Additional variational
bounds appearing only for Sd20D and Sd30D are present at higher energies that, as in the dineutron

channel, are consistent with 2aδEN−
and aδEN+

, respectively, as shown in Fig. 11.
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FIG. 9. Effective mass spectra for operator sets Sd10D (top left), Sd1H (top right), Sd10D ∪ Sd1H (bottom left),
and Sd10D ∪ Sd16H (bottom right) for the deuteron, (B, I,ΓJ) = (2, 0, T+

1 ). Non-interacting NN energy levels
are represented as dashed horizontal lines.
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FIG. 10. Summary of low-lying deuteron (B, I,ΓJ) = (2, 0, T+
1 ) spectra obtained from all operator sets

considered in this work. Non-interacting NN energy levels are represented as dashed horizontal lines.

The sets Sd1H , Sd2H and Sd16H again provide much less-constraining variational bounds of the low-
energy eigenvalues of the deuteron system than the dibaryon operator-sets, but the n = 0 effective
mass function exhibits a plateau at a∆Ed≈0.06 As in the dineutron channel, combinations of
dibaryon and hexaquark operator sets (Sd10D ∪ S1H , Sd10D ∪ Sd2H , Sd10D ∪ Sd16H and Sd30D ∪ Sd16H)
produce spectral bounds that are approximately the union of the variational bounds of the spectra

from the dibaryon-only and hexaquark-only operator sets. That is, in addition to the N
(0,T+

1 )
s

variational bounds arising primarily from the dibaryon operators, there is an additional variational
bound below a∆Ed ≲ 0.1. This larger set of variational bounds therefore provides strong evidence
for an additional energy eigenstate below this threshold. While the majority of the variational
bounds arising predominantly from the dibaryon operators remain fairly stable between operator
sets, this additional variational bound exhibits greater sensitivity to the choice of operators used.

Further understanding of these results can be obtained by examining the relative overlaps,
shown in Fig. 12 and Appendix C. As in the dineutron channel, it can be seen that the dibaryon
operators have large relative overlaps with GEVP eigenvectors whose eigenvalues are close to
the non-interacting two-nucleon energy levels (n ∈ {0, 1, 3, 4, 5}), while the additional energy level
(n = 2) has large relative overlap with hexaquark operators Hd

6 and Hd
7 constructed from the TAAS

color tensor. In contrast to the dineutron channel, the n = 2 level also has significant overlap with
the hexaquark operator Hd

3 , which involves the TAAA color tensor and therefore corresponds to
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FIG. 11. The effective mass spectra showing all of the variational bounds obtained with the interpolating-
operator sets indicated. Non-interacting energy levels are represented as in Fig. 7 except that N∆ states
are excluded from the deuteron channel by isospin.
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FIG. 12. Results for relative overlap factors Zd
nχ for the operator set Sd30D ∪ Sd16H . Uncertainties are not

shown here but are shown for the 11 lowest-energy states by the error bars in the histograms in Figs. 18-19.

hidden-color components of the deuteron. Additional GEVP eigenvectors have significant overlap
with hexaquark operators with TAAA and TSSS color structures, but unlike the dineutron channel,
most of these energy levels overlap with multiple hexaquark operators. The implications of this
difference for the structures of states in the dineutron and deuteron channels require further study.

V. DISCUSSION

Variational bounds from operators sets involving both dibaryon and hexaquark operators (Snn15D∪
Snn16H and Sd30D ∪Sd16H) strongly suggest the presence of an additional energy eigenvalue in both the

dineutron and deuteron channels below a∆EQ
n ≲ 0.1 (Q ∈ {nn, d}). These additional dineutron

and deutron energy level are not present for two non-interacting nucleons and are too close to
the two-nucleon threshold to be explained as N∆ or ∆∆ scattering states. The present section
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explores the implications of these results.

The observation that the operator sets built purely from dibaryon operators such as Snn15D and
Sd30D are statistically insensitive to the additional state in each channel is similar to observations
made in Ref. [122] in the context of the ρ meson resonance in the I = 1 ππ scattering channel.
There, an operator set built from multiple back-to-back momentum-projected two-pion interpolat-
ing operators leads to energy bounds consistent with the number of non-interacting ππ scattering
states expected below a given energy. The inclusion of ρ-like local interpolating operators into
the operator set leads to an additional low-energy variational bound which in turn implies the
existence of an additional energy eigenvalue beyond those related to the non-interacting spectrum.
Calculations in multiple volumes and with boosted momentum-frames indicate that this eigenvalue
corresponds to the ρ resonance. Similar “missing-state” effects have also been seen in meson-baryon
systems [123, 124]. Combining these previous observations with those here and in Ref. [56] in the
two-nucleon system shows that it is not uncommon for variational studies with operator sets with
many elements to provide misleading information on the spectrum if the energy bounds that arise
are interpreted as energy determinations. In the context of the two-nucleon system, this means
that conclusions regarding the absence of bound states at large quark masses (or about the number
of finite-volume eigenstates with energies below any given threshold) must always be subject to
the caveat that they could change dramatically with the inclusion of a single additional operator.

In order to make physical statements and predictions, quantities determined from LQCD calcu-
lation must be extrapolated to the continuum limit. Due to the use of a perturbatively-improved
action in this study, the leading lattice artifacts in energies and energy-differences are expected
to arise at O(g2aΛQCD) and O(a2Λ2

QCD) (here, g is the strong coupling at scale µ ∼ 1/a and
ΛQCD ≈ 0.3 GeV is the typical QCD scale), both of which are ≲ 0.1. However, since the cur-
rent study is performed at a single lattice spacing, the magnitude of the lattice artifacts that are
present has not been quantified. Given this, the possibility that the additional states inferred in
both two-nucleon channels have large lattice artifacts which shift their energies to significantly dif-
ferent values than in the continuum cannot be ruled out. A quantitative study of lattice artifacts
in the obtained variational bounds is left for future work. It should also be noted that significant
changes between variational bounds at different lattice spacings do not necessarily imply significant
differences between energy eigenvalues.

If lattice artifacts in the variational bounds on the additional states are assumed to be small,
some further observations about the dineutron and deuteron spectra can be made. Firstly, the
presence of this state in both channels, as opposed to only one, is natural in the heavy-quark
limit, where heavy-quark spin symmetry implies that the two isospin channels are degenerate
up to corrections which are suppressed by inverse powers of the heavy-quark mass [73]. This
degeneracy can also be argued by noting that in the large-Nc limit, nuclear interactions exhibit an
SU(4) Wigner spin-isospin symmetry [74]. In this limit, the dineutron and deuteron channels are
expected to be degenerate, up to corrections suppressed by inverse powers of Nc.

The presence of additional states in the low-energy dineutron and deuteron spectra have also
previously been observed in a calculation at the same pion mass in a volume with spatial extent
L = 4.5 fm [56]. By combining the results obtained from operator set S0 in Ref. [56] (corresponding
to 14 positive-parity, upper-spin-component dibaryon operators, plus a single TAAS hexaquark
operator) with the results from this analysis, it is possible to study the volume dependence of
variational bounds for the finite-volume spectra. This volume dependence is shown in Fig. 13 using
the operator sets Snn15D ∪ Snn16H and Sd30D ∪ Sd16H . It is interesting to note that the additional state
exhibits weak volume dependence compared with the states that fall near the non-interacting levels
and overlap strongly with the dibaryon operators. This is the behavior expected of a resonance
rather than a scattering state [125].

Experimental evidence supports the existence of an isoscalar JP = 3+ resonance in I = 0
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FIG. 13. The strongest variational bounds achieved here in the dineutron and deuteron channels, compared
to best variational bounds obtained at a larger volume in Ref. [56]. Non-interacting NN and N∆ energy
levels are represented as dashed and dotted lines, respectively.

two-nucleon scattering, termed the d∗(2380) [75–79]. If such a state persists at the heavy values
of the quark masses used in the current work, it would appear in the T+

1 irrep, since below the
∆∆ threshold, the T+

1 irrep can be written as the tensor product ΓJ = Γℓ ⊗ Γspin = A+
1 ⊗ T+

1 ,
which subduces from (ℓ = 4)⊗ (S = 1) and overlaps with states with total angular momentum and
parity JP = 3+. The additional state inferred from the variational bounds in the deuteron channel
could be a heavy-quark-mass analog of the d∗ resonance. The similarities between the variational
bounds in the deuteron and dineutron channels suggests the possibility of a corresponding I = 1
two-nucleon resonance for these quark-mass values. The total angular momentum of such an I = 1
resonance should be J ∈ {0, 4, . . .} in order to appear in the A+

1 irrep. The existence of such an
I = 1 resonance at physical quark masses is an interesting target for future study.

Having extracted variational bounds for the low-energy dineutron and deuteron spectra in two
physical volumes, it is natural to attempt to compute the associated phase-shifts using the finite-
volume quantization-conditions described in Refs. [58, 103, 126]. However, the Euclidean time
extents over which statistically-significant signals for energy shifts have been extracted in the
current study are smaller than the inverse of the energy gap between the lowest two finite-volume
energy levels of non-interacting nucleons and are not sufficient to have confidence that any of the
variational bounds have been saturated. One should therefore not assume that variational bounds
are in one-to-one correspondence with energy eigenvalues. The interlacing theorem rigorously
guarantees that at least n energy eigenvalues sit below the nth variational bound, and these one-
sided intervals can be mapped to one-sided intervals in the (k2, k cot δ)-plane using the quantization
conditions. Due to the singularity structure of the quantization conditions, these intervals do
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FIG. 14. Values of the phase-shift from different irreps for the dineutron channel combining the results from
this work (L/a = 24) and Ref. [56] (L/a = 32). The opaque lines represent the statistical and systematic
uncertainties from the fit to the correlation matrix, while the translucent lines represent the bounds from
the interlacing theorem. The vertical dot-dashed line indicates the radius of convergence of the effective
range expansion due to the t-channel cut.

0.0 0.2 0.4 0.6 0.8

k2/m2
π

−1.0

−0.5

0.0

0.5

1.0

k
co

t
δ3
S

1
/
m
π

T+
1 , L/a = 32

T+
1 , L/a = 24

0.0 0.2 0.4 0.6 0.8

k2/m2
π

−0.2

0.0

0.2

0.4

0.6

0.8

k
5

co
t
δ3
D

2
/m

5 π

T+
2 , L/a = 32

E+, L/a = 32

T+
2 , L/a = 24

E+, L/a = 24

0.0 0.2 0.4 0.6

k2/m2
π

−0.2

0.0

0.2

0.4

k
5

co
t
δ3
D

3
/m

5 π

A+
2 , L/a = 32

A+
2 , L/a = 24

FIG. 15. Values of the phase-shift from different irreps for the deuteron channel combining the results from
this work (L/a = 24) and Ref. [56] (L/a = 32). Details are as in Fig. 14.

not provide meaningful constraints on the phase shifts. Precise constraints can only be obtained
by making the assumption that variational bounds are saturated and correspond to stochastic
estimates of energy eigenvalues. Assuming that only the lowest partial-wave contributes to a
given cubic irrep (e.g., 1S0 in I = 1, Γ = A+

1 ), one can obtain the corresponding phase-shifts, as
shown in Figs. 14 and 15. Further details on the quantization conditions used here are discussed in
Appendix G of Ref. [56]. Assuming saturation of the variational bounds, it is interesting to observe
the rapid variation of the phase-shift around k2/m2

π ∼ 0.25 in the (I = 1, A+
1 ) and (I = 0, T+

1 )
channels, close to the maximum radius of convergence of the effective range expansion. This is
signaled primarily by the phase shifts corresponding to the GEVP eigenvectors with the largest
relative overlap onto the hexaquark operators. This behavior is characteristic of a pole in the
complex-energy plane, however, a more detailed analysis is required to extract information about
the scattering amplitude and is left for future work. It is also interesting to note that most of the
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individual phase-shift determinations are insensitive to the presence of the hexaquark operators;
they do not shift significantly if the set of operators does not include one or more hexaquark
operators. Further information on the variational bounds obtained in this study may be obtained
by studying the system in boosted frames. Such a study is left for a future work.

VI. SUMMARY AND OUTLOOK

In this work, the two-nucleon spectrum is studied using LQCD at quark masses corresponding
to a pion mass of mπ ≈ 806 MeV using the variational method, leading to bounds on the finite-
volume energy eigenstates. The effects on the variational bounds for the two-nucleon spectrum
from various choices of dibaryon operators and local hexaquark operators with both I = 0 and
I = 1 are quantified. In particular, this study analyzes for the first time the impact of including
products of negative-parity nucleon operators as well as dibaryon operators containing the lower-
spin-components of quark fields. These operators lead to minimal changes to the low-energy
variational bounds obtained using only upper-spin-component dibaryon operators. While operator
sets which contain only hexaquark operators produce variational bounds of the low-energy spectrum
that are much less constraining than those from operator sets which contain dibaryon operators,
the combination of dibaryon and hexaquark operators provides strong evidence for the presence of
an additional energy level below a∆E ≲ 0.1 in both the deuteron and dineutron channels. The
presence of this additional state was previously observed in Ref. [56] in a calculation with the same
quark masses but a different physical volume. Including hexaquark operators describing hidden
color two-nucleon states improves the precision of this bound and results in additional variational
bounds appearing at somewhat higher energies. Particular hidden-color hexaquark operators make
the only significant contributions to the overlap factors associated with some of these bounds, which
suggests that there may be two-nucleon excited states with novel structure related to hidden-color
components.

Since the calculations presented here are performed at a single lattice spacing, it is possible
that the variational bounds contain significant lattice artifacts, and bounds could move in either
direction as they approach the continuum limit. Further studies will explore the existence of such
a state in the continuum limit and for physical quark masses.
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Appendix A: Choosing t0 and tref

As discussed in the main text, tref and t0 should be chosen so that the effective masses obtained
using the eigenvector- and eigenvalue-based definitions of the principal correlation functions in
Eqs. (16) and (17), respectively, agree within uncertainties. This is achieved using the following
algorithm, shown in Fig. 16 with the algorithm parameters highlighted in blue.

• Set t0 = δ and tref = t0+δ, where δ is the minimum distance over which a sum-of-exponential
spectral representation is expected to be valid.

• Verify that λn(tref, t0) > 0 are positive. If not, the correlation-function matrix is approxi-
mately degenerate at this statistical precision, and either an operator must be removed to
decrease the size of the correlation-function matrix or statistical precision must be increased.

• Check whether En(t, t0, tref) ≈ Fn(t) for all t where δFn(t) < tolλδEn(t, t0, tref) and ≈ de-
notes equality to within a combined statistical uncertainty of tolσ. Here tolλ and tolσ are
hyperparameters that are set to tolλ = 1.5 and tolσ = 2σ for the calculations in this work.9

If this check is passed for all n with En(t, t0, tref) < tolE ,
10 then a “plateau region” of t0 and

tref where the eigenvector- and eigenvalue-based principal correlation functions are consistent
has been identified.

• Define t′0 = t0 + 1 and t′ref = t′0 + δ.

• Verify that λn(t
′
ref, t

′
0) > 0 are positive. If there is a negative eigenvalue, then if a plateau

region has been found, t0 is the largest acceptable value before noise sets in and tbest0 ≡ t0
(if a plateau has not been found, then there is insufficient statistical precision to analyze the
correlation-function matrix).

• Check whether En(t, t
′
0, t

′
ref) ≈ Fn(t) to with tolσ for all t where δFn(t) < tolλδEn(t, t

′
0, t

′
ref)

and all n with En(t, t
′
0, t

′
ref) < tolE . If so, a plateau region has been found. If they do not

agree, then if a plateau region has been found, t0 is the largest acceptable value before noise
sets in and tbest0 ≡ t0 (if a plateau has not been found, then there is insufficient statistical
precision to analyze the correlation-function matrix).

• Take t0 → t0 + 1.

9 Note that the introduction of tolλ is needed because En(t, tref, t0) and Fn(t) become decorrelated for t ≫ tref and
in this region ≈ would need to be defined with a more sophisticated statistical measure of similarity.

10 The introduction of tolE is required when some eigenvectors describe relatively noisy energy levels much higher in
the spectrum than a region of physical interest.
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• Repeat the previous four steps until tbest0 has been identified.

• Define tref → t′ref = tref + 1.

• Verify that λn(t
′
ref, t

best
0 ) > 0 are positive. If there is a negative eigenvalue, then tbestref ≡ tref.

• Check whether En(t, t
best
0 , t′ref) ≈ Fn(t) to with tolσ for all t where δFn(t) < tolλδEn(t, t

′
ref, t

′
0)

and all n with En(t, t
′
0, t

′
ref) < tolE . If they do not agree, then tbestref ≡ tref.

• Take tref → tref + 1.

• Repeat the previous four steps until tbestref has been identified.

The desired principal correlation functions are then defined as Ĉn(t) ≡ Ĉn(t, t
best
0 , tbestref ), and the

associated effective mass functions are denoted En(t) ≡ En(t, t
best
0 , tbestref ).

Appendix B: Variational bounds

The strongest variational bounds for each of the one- and two-nucleon channels that are stud-
ied in this work are presented in Tables V-VII. Fits are performed using methods adapted from
Refs. [51, 56] and the t0, tref selection criteria described in the main text and Appendix A. The
uncertainties shown for aEQ

n and a∆EQ
n include systematic uncertainties associated with the varia-

tion in fit results obtained with different choices of tmin (the minimum temporal extent used in the
fit) added in quadrature to statistical uncertainties calculated using bootstrap methods. Results
for energies in physical units include uncertainties in the determination of a = 0.1453(16) fm [46]
added in quadrature. Ambiguities in defining the lattice spacing away from the physical values of
the quark masses are not quantified.

n aE
(1, 12 ,G

+
1 )

n E
(1, 12 ,G

+
1 )

n [GeV]
0 1.2027(25) 1.637(23)
1 1.9285(472) 2.624(74)

n aE
(1, 12 ,G

−
1 )

n E
(1, 12 ,G

−
1 )

n [GeV]
0 1.6357(76) 2.226(32)

TABLE V. Single-nucleon positive- and negative-parity variational bounds in lattice and physical units
obtained from weighted averages of multi-exponential fits to GEVP correlation functions as described in the
main text.

Appendix C: Effective masses and overlaps

This appendix presents more details on the effective mass functions and overlaps associated
with variational bounds below ∆cut. Effective masses for the dineutron channel, which are shown
collectively in Fig. 5, are shown individually in more detail in Fig. 17. The corresponding overlap
factors, whose central values are indicated in Fig. 8, are also shown here as histograms with error
bars. Analogous results for the deuteron channel are shown in Figs. 18 and 19.
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Correlator matrix Cχχ′(t)

En(t, t0, tref)

Eigenvector-based Ĉn(t, t0, tref)

no

Eigenvalue-based λn(t, t0)

Fn(t)

t0 = δ tref = t0 + δ

λn(tref , t0) > 0

yes

Correlator matrix degenerate

Remove operators from matrix

En(t, t0, tref)
?
= Fn(t)± tolσ

{t | δFn(t) < tolλδEn(t, t0, tref)}
{n | En(t, t0, tref) < tolE}

no

yes

t′0 = t0 + a t′ref = t′0 + δ

λn(t
′
ref, t

′
0) > 0

yes

no
{n | En(t, t′0, t

′
ref ) < tolE}

{
t | δFn(t) < tolλδEn(t, t′0, t

′
ref)

}En(t, t
′
0, t

′
ref)

?
= Fn(t)± tolσ

t0 ← t0 + a

yes

tbest0 = t0
no

tref = tbest0 + δ t′ref = tref + a tref ← tref + a

tbestref = tref
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Ĉn

(
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)
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(
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)

Data too noisy

En

(
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) ?
= Fn(t)± tolσ{

t | δFn(t) < tolλδEn
(
t, tbest0 , t′ref

)}
{n | En

(
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)
< tolE}

yes

λn

(
t′ref, t
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0

)
> 0

yes

no

FIG. 16. Flow chart representing the steps of the algorithm to find the best t0 and tref .
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n aE
(2,1,A+

1 )
n a∆E

(2,1,A+
1 )

n ∆E
(2,1,A+

1 )
n [MeV]

0 2.4035(38) −0.0034(11) −4.6(1.5)
1 2.4534(39) 0.0469(19) 63.9(2.7)
2 2.4809(97) 0.0768(75) 104.5(10.3)
3 2.5100(42) 0.1035(24) 140.9(3.8)
4 2.5627(46) 0.1571(24) 213.8(4.4)
5 2.6133(55) 0.2087(36) 284.0(6.3)

n aE
(2,1,E+)
n a∆E

(2,1,E+)
n ∆E

(2,1,E+)
n [MeV]

0 2.4584(41) 0.0518(14) 70.5(2.1)
1 2.5097(45) 0.1027(22) 139.8(3.5)
2 2.6134(55) 0.2063(32) 280.7(5.9)

n aE
(2,1,T+

2 )
n a∆E

(2,1,T+
2 )

n ∆E
(2,1,T+

2 )
n [MeV]

0 2.5111(42) 0.1042(18) 141.8(3.1)
1 2.5620(45) 0.1554(20) 211.5(4.0)

TABLE VI. Two-nucleon I = 1 variational bounds in positive-parity total-angular-momentum cubic irreps
ΓJ ∈ {A+

1 , E
+, T+

2 } analogous to the results in Table V. The interpolating-operator set Snn15D ∪Snn16H is used.
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n aE
(2,0,T+

1 )
n a∆E

(2,0,T+
1 )

n ∆E
(2,0,T+

1 )
n [MeV]

0 2.4029(39) −0.0039(13) −5.3(1.8)
1 2.4504(40) 0.0440(18) 59.9(2.6)
2 2.4596(40) 0.0528(13) 71.8(2.1)
3 2.4708(87) 0.0663(74) 90.3(10.1)
4 2.5055(42) 0.0991(18) 134.8(3.1)
5 2.5101(46) 0.1034(23) 140.7(3.7)
6 2.5114(42) 0.1041(18) 141.7(3.1)
7 2.5570(52) 0.1501(27) 204.2(4.7)
8 2.5626(42) 0.1559(19) 212.1(3.9)
9 2.6084(63) 0.2030(44) 276.3(7.0)
10 2.6117(61) 0.2064(40) 280.9(6.7)

n aE
(2,0,T+

2 )
n a∆E

(2,0,T+
2 )

n ∆E
(2,0,T+

2 )
n [MeV]

0 2.4577(42) 0.0513(14) 69.8(2.1)
1 2.5085(47) 0.1022(19) 139.0(3.2)
2 2.5093(46) 0.1026(20) 139.7(3.3)
3 2.5598(49) 0.1537(21) 209.2(4.1)
4 2.6121(54) 0.2059(35) 280.2(6.1)

n aE
(2,0,E+)
n a∆E

(2,0,E+)
n ∆E

(2,0,E+)
n [MeV]

0 2.5079(43) 0.1010(20) 137.5(3.3)
1 2.5595(44) 0.1526(22) 207.7(4.2)

n aE
(2,0,A+

2 )
n a∆E

(2,0,A+
2 )

n ∆E
(2,0,A+

2 )
n [MeV]

0 2.5081(51) 0.1018(28) 138.6(4.3)
1 2.5575(62) 0.1520(30) 206.9(5.0)

TABLE VII. Two-nucleon I = 0 variational bounds in positive-parity total-angular-momentum cubic irreps
ΓJ ∈ {T+

1 , T
+
2 , E

+, A+
2 } analogous to the results in Table V. The interpolating-operator set Sd30D ∪ Sd16H is

used.
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FIG. 17. Results for two-nucleon GEVP effective FV energy shifts for the dineutron channel from the
Snn15D ∪ Snn16H operator set. Histograms show the overlaps with interpolating operators corresponding to
s ∈ {0, . . . , 4} shell dibaryons with upper/lower/negative-parity spin components (15 bars left of dashed
line) and a complete basis of hexaquarks (16 bars right of dashed line) ordered as in Fig. 8.
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FIG. 18. Results for two-nucleon GEVP effective FV energy shifts for the deuteron channel from the
Sd30D ∪ Sd16H operator set. Histograms show the overlaps with interpolating operators corresponding to
s ∈ {0, . . . , 4} shell dibaryons with upper/lower/negative-parity spin components (30 bars left of dashed
line) and a complete basis of hexaquarks (16 bars right of dashed line) ordered as in Fig. 12.
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