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Abstract
Motivated by the recent 10 million dollar AIMO challenge, this paper targets the problem of finding all functions

conforming to a given specification. This is a popular problem at mathematical competitions and it brings about

a number of challenges, primarily, synthesizing the possible solutions and proving that no other solutions exist.

Often, there are infinitely many solutions and then the set of solutions has to be captured symbolically. We

propose an approach to solving this problem and evaluate it on a set of problems that appeared in mathematical

competitions and olympics.
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1. Introduction

The AIMO challenge1
promises to award $10 million to an AI model that will be able to win a gold

medal at the International Mathematical Olympiad (IMO) 2
. In this paper we draw attention to the fact

that symbolic computation tools can give a significant boost to a system aiming at this challenge. We

target a popular problem encountered in mathematical competitions, which is finding all functions

adhering to a certain specification. The task in its generality is nearly impossible but the problems in

the competitions are constructed so that they have nice solutions. As a motivational example, consider

the problem that asks us to find all functions 𝑓 from R to R satisfying the following identity.

∀𝑥𝑦 : R.𝑓(𝑥+ 𝑦) = 𝑥𝑓(𝑦) + 𝑦𝑓(𝑥) (1)

Substituting 𝑦 with 0 gives ∀𝑥 : R.𝑓(𝑥) = 𝑓(0)𝑥, which tells us that 𝑓 must be linear and that

it is fully determined by the value of 𝑓(0). Further, substituting 𝑥 with 0 shows that 𝑓 has to be 0
everywhere, i.e., the solution is 𝑓𝑥 ≜ 0. A solution is expected to give a clear description of how all

possible 𝑓 are calculated, possibly parametrized by constants. To verify the correctness of the solution,

one needs to prove the following biimplication.

(∀𝑥𝑦 : R.𝑓(𝑥+ 𝑦) = 𝑥𝑓(𝑦) + 𝑦𝑓(𝑥)) ⇔ (∀𝑥 : R.𝑓𝑥 = 0) (2)

Note that the problem of finding all solutions is not fully formal in the problem statement, that is, we

expect a “reasonable description” of the set of all the solutions. For example, the following would not be

considered a valid answer: The solution consists of all the functions satisfying 𝑓(𝑥+𝑦) = 𝑥𝑓(𝑦)+𝑦𝑓(𝑥)
for all 𝑥, 𝑦 ∈ R.

A problem of such a form “find all solutions satisfying 𝑋” sparked some debate within the community

about how they should be formally handled. How exactly we handle such question is explained in

Sections 3.
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2. Problems Description

As a source for our problems we have used a collection compiled by Vít Musil [1] comprising problems

from several sources, including international competition and some (easier) problems from the The

Prague Seminar in Mathematics
3
. We have transcribed the problems into SMT2, where each original

problem is divided into 3 type of queries.

• The satisfiability of the specification if there is a solution (problems find).

• The unsatisfiability of the specification together with the negation of all proposed solutions

(problems prove).

• The check that every proposed solution is indeed a solution to the specifications (problems

check).

This way, we are asking SMT solvers to solve particular steps, although these steps are not necessarily

covering the full solution of a functional equation. We are not providing a formal description of what a

valid solution is allowed to consist of (that could be further work using for example SyGuS). Rather, we

use our own method for finding the set of all solutions of a particular form, described in Section 3. The

SMT2 problems are made available as a github repository
4

describing 87 problems. In some cases, the

check query is split into multiple SMT2 files, if there are multiple distinct solutions.

We remark that during this work we uncovered several bugs in our translation to SMT from the

source material. But also, we have found an issue in the original source material. Namely the problem

U9 (Cvičení 9) was unsatisfiable in the original [1] and we created two versions of the problem as two

different ways of correcting it (C9 and C9a).

2.1. Solutions of Selected Problems

We show here three more example problems together with their original (human) solutions:

• Problem U24, which is among the most interesting ones that we were able to fully solve;

• Problem C12, which we were not able to solve but it does not require any advanced technique, so

it could be feasible to solve it;

• Problem U2, which showcases a problem requiring induction to be solved, and we assume is

currently out of reach.

Example Problem U24 (Baltic Way 1998-7): Find all functions 𝑓 : R → R such that for any pair

of real numbers 𝑥, 𝑦, the following identity holds

𝑓(𝑥) + 𝑓(𝑦) = 𝑓(𝑓(𝑥)𝑓(𝑦)).

Solution: First we notice that the image of 𝑓 is closed under addition: if 𝑎, 𝑏 are the values of 𝑓 at

points 𝑥, 𝑦, then also 𝑎+ 𝑏 is a value of 𝑓 , in particular at point 𝑓(𝑥)𝑓(𝑦) = 𝑎𝑏. Fix arbitrary 𝑥1, and

denote 𝑎 = 𝑓(𝑥1). By the previous observation, we can find also 𝑥2 and 𝑥4 such that 𝑓(𝑥2) = 2𝑎, and

𝑓(𝑥4) = 4𝑎.

Now, we plug into the functional equation the assignments (𝑥 = 𝑥2, 𝑦 = 𝑥2), and (𝑥 = 𝑥1, 𝑦 = 𝑥4).

4𝑎 = 𝑓(𝑥2) + 𝑓(𝑥2) = 𝑓(𝑓(𝑥2)𝑓(𝑥2)) = 𝑓(4𝑎2)

5𝑎 = 𝑓(𝑥1) + 𝑓(𝑥4) = 𝑓(𝑓(𝑥1)𝑓(𝑥4)) = 𝑓(4𝑎2)

We conclude 4𝑎 = 5𝑎, and consequently 𝑎 = 0. Since we started with arbitrary 𝑓(𝑥) = 𝑎, the function

must be constant zero, which indeed satisfies the equation.
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Example Problem C12 (IMO 1992-2): Find all functions 𝑓 : R → R such that for any pair of real

numbers 𝑥, 𝑦, the following identity holds

𝑓(𝑥2 + 𝑓(𝑦)) = 𝑦 + 𝑓(𝑥)2.

Solution: Setting 𝑥 = 0 gives 𝑓(𝑓(𝑦)) = 𝑦+ 𝑓(0)2. The right-hand side 𝑦+ 𝑓(0)2 is a bijection, so also

the left hand side 𝑓 ∘ 𝑓 is a bijection R → R, and that can only happen when 𝑓 itself is a bijection.

Since 𝑓 is a bijection, we can consider an argument 𝑏 such that 𝑓(𝑏) = 0. Let us substitute (𝑥 =
𝑏, 𝑦 = 0) and (𝑥 = −𝑏, 𝑦 = 0) to the original equation.

0 = 0 + 𝑓(𝑏)2 = 𝑓(𝑏2 + 𝑓(0)) = 𝑓((−𝑏)2 + 𝑓(0)) = 0 + 𝑓(−𝑏)2 = 𝑓(−𝑏)2.

We obtained 𝑓(−𝑏) = 0. By injectivity, −𝑏 = 𝑏, so 𝑏 = 0, and 𝑓(0) = 0. This also simplifies our first

observation to 𝑓(𝑓(𝑦)) = 𝑦.

Now we prove that the function is increasing. Any pair of numbers 𝑎 < 𝑏 can be expressed as

𝑎 = 𝑓(𝑦), 𝑏 = 𝑥2+ 𝑓(𝑦) for some 𝑥, 𝑦, 𝑥 ̸= 0. Combining the original equation with the same equation

having substituted 𝑥 = 0, we get

𝑓(𝑎) = 𝑓(𝑓(𝑦)) = 𝑦 < 𝑦 + 𝑓(𝑥)2 = 𝑓(𝑥2 + 𝑓(𝑦)) = 𝑓(𝑏),

concluding that 𝑓 is increasing.

Consider any 𝑦 where 𝑦 ≤ 𝑓(𝑦). Since 𝑓 is increasing, also 𝑓(𝑦) ≤ 𝑓(𝑓(𝑦)) = 𝑦. Analogously, if

𝑓(𝑦) ≤ 𝑦, we obtain 𝑦 = 𝑓(𝑓(𝑦)) ≤ 𝑓(𝑦). Thus the statements 𝑦 ≤ 𝑓(𝑦) and 𝑓(𝑦) ≤ 𝑦 are equivalent

for any 𝑦, leaving the only option 𝑓(𝑦) = 𝑦, which is a function satisfying the given equation.

Example Problem U2 (Cauchy equation): Find all increasing functions 𝑓 : R → R such that for

any pair of real numbers 𝑥, 𝑦, the following identity holds

𝑓(𝑥) + 𝑓(𝑦) = 𝑓(𝑥+ 𝑦).

Proof sketch: By fixing 𝑥 = 1, and setting 𝑦 = 0, 1, 2, . . ., we obtain by induction that 𝑓(𝑛𝑥) = 𝑛·𝑓(𝑥)
for every non-negative integer 𝑛, in particular 𝑓(0) = 0, and if we denote 𝑓(1) = 𝑐, we obtain the

following equation for all non-negative integers 𝑥.

𝑓(𝑥) = 𝑐𝑥. (♣)

We gradually extend the domain for which we know this equation. First, substitution (𝑥 = 𝑥, 𝑦 = −𝑥)
into the original equation gives 𝑓(𝑥) = −𝑓(−𝑥) which extends (♣) to all integers 𝑥. Let 𝑥 be an

arbitrary number satisfying (♣), and 𝑛 be a positive integer. Then

𝑐𝑥 = 𝑓(𝑥) = 𝑓
(︁
𝑛 · 𝑥

𝑛

)︁
= 𝑛 · 𝑓

(︁𝑥
𝑛

)︁
leading to

𝑐 · 𝑥
𝑛
= 𝑓

(︁𝑥
𝑛

)︁
.

Therefore, (♣) holds for any rational number 𝑥.

Finally, we show that (♣) must be satisfied by every real number. Suppose on the contrary that for

some 𝑥, we have for example 𝑓(𝑥) < 𝑐𝑥, or 𝑓(𝑥) > 𝑐𝑥. We discuss here the first option, the other one

is analogous. If 𝑓(𝑥) < 𝑐𝑥, there is a rational number 𝑞 such that
𝑓(𝑥)
𝑐 < 𝑞 < 𝑥 (note 𝑐 > 0 since 𝑓 is

increasing). Then 𝑞 < 𝑥 but 𝑓(𝑥) < 𝑞𝑐 = 𝑓(𝑞) contradicting that 𝑓 is increasing.



3. Template-and-QE

One could see the problem as quantifier elimination in the theory of uninterpreted functions, accom-

panied by the theory required for describing the problem itself — in our case, the theory of reals or

rationals. Due to the undecidability of such a problem, quantifier elimination algorithms cannot be used

directly. A possible approach would be to synthesize one function adhering to the specification and

then strengthen the specification so that the individual solution is not admitted anymore. Then, one

would have to repeat this process with the hope that there are finitely many solutions, or, observe the

solutions and generalize them into a more compact description. All these steps are highly nontrivial.

Instead, we propose an approach that tries a fixed template and then performs quantifier elimination:

template-and-QE, which comprises the following subtasks.

1. Identify a template for the solution, e.g. 𝑓𝑥 ≜ 𝑎𝑥+ 𝑏.

2. Prove that all solutions must fall into this template (template verification)

3. Perform quantifier elimination over input variables of the function(s).

Note that in the case of reals, all tasks are computable, except for task 2. The remainder of this section

elaborates on the individual steps.

3.1. Template Verification

We run cvc5 [2], z3 [3], Vampire [4] and Waldmeister [5] to attempt to prove all solutions to a problem

necessarily fit a certain template. Since Waldmeister does not support theories directly, it needs to

special treatment and we elaborate on this below. The other solvers support natively the SMT2 syntax [6]

enabling us to use the combination of quantified non-linear reals with unintepreted functions.
5

We consider the following set of templates for solutions: constant, (monomial)linear, (monomial)
quadratic. All these are subclasses of the quadratic form but we consider these to simplify the task for

the solvers—it is conceivable that it is easier to prove that the function must be constant than to prove

that it must be arbitrary quadratic. Since the set of templates is small, we always try all of them.

In order to ask an SMT2 solver if all solutions must be linear, we add the assertion that the function

is not linear. An obvious way to state that 𝑓 is linear is via the formula ∃𝑎𝑏 : R.∀𝑥 : R.𝑓(𝑥) = 𝑎𝑥+ 𝑏.
We call the problem resulting from including the properties of the original problem along with the

negation of ∃𝑎𝑏 : R.∀𝑥 : R.𝑓(𝑥) = 𝑎𝑥+ 𝑏 the first variant of the linear template verification. We had

more success using a different test for linearity. A function 𝑓 is linear if and only if ∀𝑥 : R.𝑓(𝑥) =
(𝑓(1)− 𝑓(0))𝑥+ 𝑓(0). Note that this formulation avoids the use of existential quantifiers. We call the

problem resulting from including the properties of the original problem along with the negation of

∀𝑥 : R.𝑓(𝑥) = (𝑓(1)− 𝑓(0))𝑥+ 𝑓(0) the second variant of the linear template verification. If any SMT2

solver can determine either variant is unsatisfiable, then we know all solutions must be linear.

We likewise have two variants for each of the other templates. The formulations for the first variants

simply use existential quantification for the coefficients. For the second variants we use the following

properties:

• constant: ∀𝑥 : R.𝑓(𝑥) = 𝑓(0)

• monomial linear : ∀𝑥 : R.𝑓(𝑥) = 𝑓(1)𝑥

• linear : ∀𝑥 : R.𝑓(𝑥) = (𝑓(1)− 𝑓(0))𝑥+ 𝑓(0)

• monomial quadratic: ∀𝑥 : R.𝑓(𝑥) = 𝑓(1)𝑥2

• quadratic: ∀𝑥 : R.2𝑓(𝑥) = ((𝑓(1) + 𝑓(−1))− 2𝑓(0))𝑥2 + (𝑓(1)− 𝑓(−1))𝑥+ 2𝑓(0)

3.1.1. Using Waldmeister

In addition to using SMT2 solvers, we also used Waldmeister [5]. Waldmeister is an automated theorem

prover specializing in first-order unit equality. Unlike SMT solvers, Waldmeister has no information

5
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about integers or reals. Consequently, in order to ask Waldmeister if all functions 𝑓 satisfying some

properties must be contained within the class given by a template, we first declare a sort 𝑅 along with

constants 0, 1 : 𝑅 and operations +, −, · satisfying properties of a commutative ring with identity. Each

of these properties is given by a unit equation. We purposely use rings instead of fields (although R is a

field). This allows us to ignore division since the side condition that the denominator is not zero would

result in a clause that is not a unit equation. We only generate such a problem for Waldmeister when

all the properties stated for 𝑓 in the problem are unit equations, only quantify over reals (as opposed to

integers), and do not use division. Furthermore, we require that all specific real numbers mentioned in

the properties correspond to integers (e.g., 0.0, 1.0, -1.0, etc.). These restrictions allow us to formulate a

unit equation to give Waldmeister corresponding to each property of 𝑓 given in the problem.

In addition to the assumed unit equations, Waldmeister expects a unit equation a as goal to prove. The

goal varies based on the template we are targeting and corresponds to the second variant of the problems

for the SMT2 solver. In each case we fix a constant 𝑑 of type 𝑅 (not mentioned in the assumptions). For

each template, the goal unit equation is as follows:

• constant: 𝑓(𝑑) = 𝑓(0)

• monomial linear : 𝑓(𝑑) = 𝑓(1)𝑑

• linear : 𝑓(𝑑) = (𝑓(1)− 𝑓(0))𝑑+ 𝑓(0)

• monomial quadratic: 𝑓(𝑑) = 𝑓(1)𝑑2

• quadratic: 2𝑓(𝑑) = ((𝑓(1) + 𝑓(−1))− 2𝑓(0))𝑑2 + (𝑓(1)− 𝑓(−1))𝑑+ 2𝑓(0)

Waldmeister uses Knuth-Bendix style completion [7] on the assumed unit equations finding a proof of

the goal when both sides of the goal rewrite to a common term.

Waldmeister can prove 8 of the problems only have solutions within the expected class. Two of these

problems were not covered by SMT solvers: U25 and U87. In both of these problems, the least template

class is linear monomials. We briefly discuss these two problems.

The problem U25 asks for all real functions 𝑓 satisfying 𝑓(𝑥𝑓(𝑥) + 𝑓(𝑦)) = 𝑦 + 𝑓(𝑥)2. Musil [1]

gives a proof that the only two solutions are 𝑓(𝑥) = 𝑥 and 𝑓(𝑥) = −𝑥. Waldmeister’s goal is to prove

𝑓(𝑑) = 𝑓(1)𝑑 from the ring identities and the equation above. It is difficult to directly compare the

aforementioned human proof to the proof found by Waldmeister. However, there are some interesting

common intermediate results. Both proofs prove 𝑓 is involutive (i.e., 𝑓(𝑓(𝑥)) = 𝑥), 𝑓(𝑥)2 = 𝑥2 and

𝑓(0) = 0. On the other hand, there are several identities in each proof that do not appear in the other.

Musil’s proof [1] proves 𝑓 is surjective and uses this fact, while the Waldmeister proof cannot directly

represent the concept of surjectivity.

The other problem Waldmeister can prove only has linear monomial solutions is U87. The problem

U87 asks for all real functions 𝑓 satisfying 𝑓(𝑥+ 𝑦2 + 𝑧) = 𝑓(𝑓(𝑥)) + 𝑦𝑓(𝑦) + 𝑓(𝑧). The (only) two

solutions are 𝑓(𝑥) = 𝑥 and 𝑓(𝑥) = 0. In this case there is no corresponding proof in [1] as a point of

comparison. A number of intermediate identities derived by Waldmeister stand out, e.g., 𝑓(𝑓(0)) = 0
and 𝑓(𝑓(𝑥)) = 𝑓(𝑥).

3.2. Quantifier Elimination

Quantifier elimination (QE) is a method to take a general formula in a theory and produce an equivalent

quantifier-free formula. So for instance, in ∃𝑥 ∈ R.𝑎 < 𝑥 < 𝑏, the quantified variable 𝑥 is eliminated

as 𝑎 < 𝑏. In many cases, quantifier elimination serves as a theoretical tool to show that a theory is

decidable but also has a long tradition of improvements at the algorithmic level [8, 9, 10, 11, 12, 13, 14].

In our work, quantifier elimination is used in a practical way to reveal the particular solutions within a

class given by a template.

We assume the original problem only has one uninterpreted function, 𝑓 , and it is a unary function

from reals to reals. If we want to determine all functions 𝑓 of the form 𝑓(𝑥) = 𝑎𝑥+ 𝑏, we can simply

inline 𝑓 in the properties, replacing each occurrence 𝑓(𝑡) by 𝑎𝑡 + 𝑏. The resulting problem has no

uninterpreted functions and is usually in the theory of the reals. (Exceptional cases are when the



properties mention integers as well as reals.) When the problem and template result in such an inlined

problem in the theory of reals, we can apply quantifier elimination.

We have made use of two implementations of quantifier elimination for the reals: z3 [3] and

Tarski [15]. In z3, QE is invoked by applying the qe tactic, with the qe-nonlinear parameter

turned on. The Tarski system is highly configurable but since QE is not a bottle-neck for us, we use the

qepcad-qe [16] function in its default setting. For each system, quantifier elimination should result in

a quantifier-free formula involving the uninterpreted constants (e.g., the coefficients 𝑎 and 𝑏 of the linear

template 𝑎𝑥+𝑏). One might expect this formula to be in a solved form, e.g., 𝑎 = 1∨𝑎 = 0∧𝑏 = 1, from

which one can read of the precise class of linear functions satisfying the original property. However,

this is generally not the case. A separate postprocessing step attempts to convert the quantifier-free

formula into such a solved form. In practice the postprocessing does not always succeed. In the case

of z3, we also call the tactics simplify and propagate-values to have z3 simplify the formula before

applying the postprocessing to attempt to find a solved form.

Problem U91 asks for all functions satisfying 𝑓((𝑥−𝑦)2) = 𝑓(𝑥)2−2𝑥𝑓(𝑦)+𝑦2. Using the techniques

of Section 3.1, we can prove all solutions 𝑓 must be linear. After replacing 𝑓(𝑥) with 𝑎𝑥+ 𝑏 and calling

z3 to do quantifier elimination, we obtain the quantifier-free formulas 𝑎 = 1 and 𝑏 = 0 ∨ 𝑏 = 1. In

general, z3 returns several formulas whose conjunction should be equivalent to the original formula.

The formula 𝑎 = 1 ∧ (𝑏 = 0 ∨ 𝑏 = 1) is almost in solved form, and we can easily obtain the two

solutions 𝑓(𝑥) = 𝑥 and 𝑓(𝑥) = 𝑥+ 1 via postprocessing. Tarski’s quantifier elimination returns the

more complicated formula

−1 + 𝑎 = 0 ∧ 𝑏 ≥ 0 ∧ −1 + 𝑏 ≤ 0 ∧ (𝑏 = 0 ∨ −1 + 𝑏 = 0).

The postprocessor is also able to obtain the two solutions from this formula.

Sometimes there is a parameterized class of solutions. Problem U3, for example, asks for all functions

satisfying 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑦. The techniques of Section 3.1 determine all solutions are linear.

After inlining 𝑓(𝑥) = 𝑎𝑥+ 𝑏 we call quantifier elimination. Both Z3 and Tarski produce the formula

−1 + 𝑎 = 0. From this the postprocesser can determine 𝑎 = 1 and 𝑏 is unconstrained. This gives the

class of solutions 𝑓(𝑥) = 𝑥 + 𝑏 where 𝑏 is a real number. Indeed, this is the class of all solutions, as

desired.

3.2.1. Lazy Verification

An alternative to the approach outlined above, the template of the solution does not have to be verified

all at once. Instead, we could use QE to find a class of solutions for a fixed template and then prove

there are no other solutions. The advantage of this approach is illustrated by the following example.

Problem C1 asks for all functions 𝑓 such that

𝑓(𝑥+ 𝑦) + 2𝑓(𝑥− 𝑦)− 4𝑓(𝑥) + 𝑥𝑓(𝑦) = 3𝑦2 − 𝑥2 − 2𝑥𝑦 + 𝑥𝑦2.

The only solution is 𝑓(𝑥) = 𝑥2.

In this case, the solvers listed in Section 3.1 are unable to prove all solutions are a monomial quadratic

(or that they must be quadratic). However, we can still apply quantifier elimination to find all monomial

quadratic solutions. For this example, z3 timed out even when given 10 minutes. On the other hand,

Tarski returned the formula −1 + 𝑎 = 0 (yielding the solution 𝑎 = 1, i.e., 𝑥2) in less than a second.

Since we were unable to prove all solutions must belong to the monomial quadratic template class,

it is still possible there are more solutions outside the monomial quadratic template class. However,

now that we have the specific solution 𝑓(𝑥) = 𝑥2 we can ask an SMT2 solver to prove this is the only

solution by assuming the equation and also the negation of ∀𝑥 : R.𝑓(𝑥) = 𝑥2. The solver cvc5 is easily

able to show this is unsatisfiable, so that we know 𝑓(𝑥) = 𝑥2 is the only solution.



Table 1
Result summary. Problems without any result are omitted.

(a) Templates of solutions. Proven template is denoted by

✓; disproven template is denoted by ×; dash means

that no solver provided an answer.

Problem 𝑐 𝑎𝑥 𝑎𝑥+ 𝑏 𝑎𝑥2 𝑎𝑥2 + 𝑏𝑥+ 𝑐

C2 × × ✓ × ✓
C6 × × - × -
C9a - - - ✓ -
C10 × ✓ ✓ × ✓
C12 × - - × -
C13 × × × × ×
U2 × - - × -
U3 × × ✓ × ✓
U5 × ✓ ✓ × ✓
U7 × × - × -
U9 × × ✓ × ✓
U13 × ✓ ✓ × ✓
U16 × × ✓ × -
U20 × × - × -
U23 - × - × -
U24 ✓ ✓ ✓ ✓ ✓
U25 × ✓ ✓ × -
U26 × - - × -
U27 × × × × ×
U41 - × - × -
U42 × × - × -
U44 × - - - -
U45 × - - × -
U48 × - - × -
U49 × - - × -
U50 × - - × -
U51 × × - × -
U54 × × × × ×
U56 × × - × -
U62 × - - × -
U64 × - - × -
U67 × × × × ×
U68 × - - × -
U71 ✓ ✓ ✓ ✓ ✓
U72 - × - × -
U87 × ✓ ✓ × ✓
U90 × × × × -
U91 × × ✓ × ✓
U92 × - - × -

(b) Prove/check

Problem Prove Check

C1 ✓ ✓
C2 ✓ ✓
C3 - ✓
C4 - ✓
C5 ✓ ✓
C6 - ✓
C9 ✓ ✓
C9a ✓ ✓
C10 ✓ ✓
C12 - ✓
C13 - ✓
U2 - ✓
U3 ✓ ✓
U4 ✓ ✓
U5 ✓ ✓
U6 - ✓
U7 - ✓
U8 - ✓
U9 ✓ ✓
U10 - ✓
U11 ✓ ✓
U12 - ✓
U13 ✓ ✓
U14 - ✓
U16 ✓ ✓
U17 ✓ ✓
U19 - ✓
U20 - ✓
U23 - ✓
U24 ✓ ✓
U25 - ✓
U26 - ✓
U27 - ✓
U39 - ✓
U41 - ✓
U42 - ✓
U44 - ✓
U45 - ✓
U46 - ✓
U48 - ✓
U49 - ✓
U50 - ✓
U51 - ✓
U53 - ✓
U54 - ✓
U56 - ✓
U57 ✓ ✓
U61 - ✓
U62 - ✓
U64 - ✓
U66 - ✓
U67 - ✓
U68 - ✓
U71 ✓ ✓
U72 - ✓
U75 - ✓
U76 - ✓
U79 ✓ ✓
U81 ✓ ✓
U82 ✓ ✓
U87 - ✓
U89 - ✓
U90 - ✓
U91 - ✓
U92 - ✓
U93 - ✓

4. Experiments

We report results of the template-and-qe method (Section 3) on the benchmark presented in Section 2.

The lazy extension of our approach (Section 3.2.1) was left for future work.

The template verification (Section 3.1) has proven to be the most difficult task. Table 1a summarizes

the obtained results for template verification. For all these we were able to solve the QE task. Thirteen

instances were solved completely by the automated method. Out of these thirteen, two can be traced

to a competition event. Problem U24 comes from Baltic Way competition—see Section 2 for “human”

solution. Problem U71 comes from The Prague seminar (PraSe-18-6-1). In both cases, the only solution



is a function that is constantly 0.

The verification tasks results often in satisfiable problems, namely if there exists a solution outside of

the proposed template (the × symbol in Table 1a). These satisfiable problems are nontrivial because they

involve creating a counterexample to the template. For this purpose, we also ran the SyGuS approach
6

of cvc5 and its linear model builder [17].

We also report on the verification of the correctness of the handwritten solutions, which comprises

two components: prove — show that all possible solutions are covered by the suggested solutions; check
— check that all suggested solutions are indeed solutions to the problem. Table 1b summarizes the

obtained results. Sixty-five of the provided handwritten solutions were successfully checked, i.e., the

individual solutions satisfy the original specifications. Twenty of the handwritten solutions were shown

to cover all the individual solutions. Unsurprisingly, the proving task is harder than the checking task.

We remark that checking solutions for U79 is trivial because there are no individual solutions. More

detailed results can be found on the authors’ web page.
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5. Conclusions and Future Work

This paper joins the effort of rising up to the challenge of making computers as powerful as are the

golden medalist at the International Math Olympics (IMO). Efforts such as AlphaGeometry [18], show

that machine learning models are useful for the task but at the same time, further research shows

that they benefit from existing symbolic methods [19]. Here we show that symbolic methods are

indeed already powerful in solving a highly nontrivial task of finding all functions fulfilling a certain

specification. Besides the task leading to undecidable questions, its difficulty also lies in the fact it is not
a decision problem but the response is a description of a class of mathematical objects.

The method we employ is anchored in templates, which is a well-known technique in function and

program synthesis [20]. The templates we consider are rather simple and they could be made more

powerful by adding conditionals (if-then-else). However, the templates need to be kept simple if we

wish to be able to apply quantifier elimination.

An alternative to templates would be to attempt extending different synthesis approaches, e.g., such

as those that are realized in saturation-based solvers [21, 22] or inside SMT solvers [23, 24, 25] or

inductive logic programming [26]. The challenge here would be how to come up with all the solutions.
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