
CONSTRUCTING METRIC SPACES FROM SYSTEMS OF WALLS
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With an appendix with Davide Spriano

Abstract. We give a general procedure for constructing metric spaces from systems of
partitions. This generalises and provides analogues of Sageev’s construction of dual CAT(0)
cube complexes for the settings of hyperbolic and injective metric spaces.

As applications, we produce a “universal” hyperbolic action for groups with strongly
contracting elements, and show that many groups with “coarsely cubical” features admit
geometric actions on injective metric spaces. In an appendix with Davide Spriano, we show
that a large class of groups have an infinite-dimensional space of quasimorphisms.
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1. Introduction

A guiding principle of geometric group theory is the idea that one can learn about a group
from its actions on nice metric spaces. There are two aspects to implementing this: producing
the actions, and studying the properties of groups that possess them. In this article we are
interested in the former.

Approaches to producing spaces for groups to act on take many forms, such as local-to-
global results [AB90, Lea13, Hae22, Bow21] and combination theorems [BF92, Dah03, MR08,
HW15b]. However, amongst such techniques, the stand-out examples are those with inter-
categorical features, such as: hyperbolisation procedures [Gro87, DJ91, CD95, Ont20], which
convert simplicial complexes into aspherical manifolds of nonpositive curvature; Sageev’s con-
struction [Sag95], which outputs a CAT(0) cube complex from a system of partitions; and
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the projection complex machinery [BBF15, BBFS20], which can (amongst many other things)
produce actions on quasitrees from simple geometric conditions.

We shall work in the same vein as these latter two, and provide a general framework that
one can use for producing group actions on different types of metric space. The framework
takes the same form of input as Sageev’s construction, but we allow additional flexibility that
allows for a much wider variety of metrics to be produced, and under weaker conditions. That
is, we start with a set S together with a collection P of bipartitions. This pair has a naturally-
defined dual median algebra associated with it, and by considering varying subsets of 2P we
obtain a range of metrics on this dual. Sageev’s construction is recovered as a degenerate
case. The principal idea of this article can therefore be phrased as follows. See Section 3
(and also Definition 1.2 later in the introduction) for more precise formulations of some initial
statements.

Construction 1.1. Let S be a set with a collection P of bipartitions. By choosing an
appropriate subset C Ă 2P , one obtains a metric space X and a natural map S Ñ X.

To obtain an action on X from an action on pS, P q, one merely has to insist that C is
preserved. The three main types of metric spaces that we systematically produce in this way
are Helly graphs, coarsely injective spaces, and hyperbolic spaces. However, the set-up is
quite general and can likely be used to provide actions on other interesting metric spaces.

Let us mention that Sageev’s construction has also been generalised by Chatterji–Druţu–
Haglund, with improvements by Fioravanti [CDH10, Fio20]. The two generalisations are
of rather different flavours: the one in [CDH10, Fio20] can be thought of as a “continuous
version” of Sageev’s construction, and it firmly belongs in the median category; whereas our
generalisation is still fundamentally discrete, but is not restricted to ℓ1 geometry.

1.1. Hyperbolic duals

Group actions on hyperbolic spaces are a major theme of research in the field, especially in
the wake of the result of Masur–Minsky that the curve graph of a surface is hyperbolic [MM99].
Indeed, this spawned the theory of acylindrical hyperbolicity [Sel97, Bow08, DGO17, Osi16].
In this context, the aforementioned projection complex machinery is a potent tool, because
it allows one to produce actions on quasitrees such that a given strongly contracting (i.e.
“negatively-curved”) group element has a so-called WPD action [BF02], which is sufficient
to establish acylindrical hyperbolicity [DGO17]. Strongly contracting elements have been
studied by many authors, including [ACT15, GY22, Alg11, Pap22, Cou23].

One unsatisfactory aspect of the actions on quasitrees coming from projection complexes
is that they are rather unnatural, in that they have little to do with the original space. The
procedure also has the limitation of only being able to handle a finite number of strongly
contracting elements at once. By building an appropriate collection of partitions, we are able
to apply Construction 1.1 to produce, for any geodesic metric space S, a hyperbolic space
that is “universal”, in the sense that all strongly contracting geodesics are witnessed there.
(See Theorem 6.8 for the precise statement.)

Theorem A. Let S be a geodesic metric space. There is a hyperbolic space X and an IsomS–
equivariant coarsely Lipschitz map π : S Ñ X such that a geodesic γ Ă S is strongly contract-
ing if and only if πγ is a quasigeodesic. Moreover, the correspondence is quantitative.

This can be compared to (and, via [SZ22], be viewed as greatly extending) the situation
for pseudo-Anosov mapping classes acting on the curve graph [MM99]; outer space and the
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free factor complex [BF14, DT19]; and rank-one isometries acting on the curtain model of a
CAT(0) space [PSZ22].

The partitions that are used to construct the above hyperbolic space are obtained by
closest-point projecting to strongly contracting geodesics of S, similarly to the construction
of the curtain model in [PSZ22], but the choice of C Ă 2P is a little different to the notion of
L–separation used there; see Definition 6.4.

The statement of Theorem A is purely about the metric space S and its isometries. Applying
it to groups acting properly on S, we can obtain a simultaneous WPD action of all strongly
contracting elements; see Corollary 6.11 and Proposition 6.13.

Theorem B. Let S be a geodesic metric space, and let X be the hyperbolic space of Theorem A.
For any group G acting properly on S, elements of G are strongly contracting exactly when
they act loxodromically on X, and every such element is WPD.

Furthermore, under the additional assumption that G acts properly coboundedly on a
metric space where all Morse geodesics are strongly contracting, we show that the hyperbolic
space from Theorem A is a universal recognising space for stable subgroups of G, in the sense
of [BCK`23]. That is, every stable subgroup of G has quasiisometrically embedded orbits in
X. The following is Theorem 6.15 in the text.

Theorem C. Suppose that a group G acts properly coboundedly on a metric space where all
Morse geodesics are (quantitatively) strongly contracting. There is a hyperbolic space X, on
which G acts, such that a finitely generated subgroup of G is stable if and only if its orbits in
X are quasiisometric embeddings.

(Here “quantitatively” means that the contracting constant depends only on the Morse
gauge, not the particular Morse geodesic.) The list of spaces covered by Theorem C in-
cludes CAT(0) spaces [CS15], injective spaces [SZ22], Garside groups [CW21b], certain small-
cancellation groups [Zbi23], and weakly modular graphs with convex balls [SZ]. It therefore
generalises known results for mapping class groups [KL08, DT15], hierarchically hyperbolic
groups more generally [ABD21, HHP23, SZ22], and CAT(0) groups [PSZ22].

Another application of this universal hyperbolic space X, and of the particulars of its
construction, is investigated in the appendix, together with Davide Spriano. A quasimorphism
of a group G is a map f : G Ñ R that fails to be a homomorphism by a bounded amount, in
the sense that there is some r such that |fpghq´fpgq´fphq| ď r for all g, h P G. There are two
“trivial” classes of quasimorphisms, namely the bounded functions and the homomorphisms.

The quotient of the space of quasimorphisms by these trivial classes is denoted ĄQMpGq; it is
intimately related with the second (real) cohomology of G.

For the most part, calculations of ĄQMpGq (when it is nontrivial) rely on G acting with some
form of properness on some nice metric space (a notable exception where properness is not
needed is [CF10]). The main result of the appendix is the following, which has no properness
assumption. See Theorem A.2.

Theorem D. Let S be a non-hyperbolic geodesic space where all Morse geodesics are (quan-

titatively) strongly contracting. If S contains a biinfinite Morse geodesic, then ĄQMpGq is
infinite-dimensional for every group G acting coboundedly on S.

Note that the conclusion of Theorem D can fail for automorphism groups of trees [IPS21].

On Zbinden’s work. Results similar to Theorems A and B have also been proved in up-
coming work of Stefanie Zbinden [Zbi]. More precisely, Zbinden has a construction, rather
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different to the one employed in this article and more tailored to the setting of strongly con-
tracting geodesics, that can produce, for any geodesic space S, a hyperbolic space Z with the
following features.

‚ A geodesic in S is strongly contracting if and only if it projects to a quasigeodesic
of Z.

‚ Any groupG acting properly on S acts non-uniformly acylindrically on Z, and strongly
contracting elements are loxodromic.

‚ If S has the property that all Morse geodesics are strongly contracting, and if G acts
properly coboundedly on S, then all generalised loxodromics of G are loxodromic and
WPD on Z.

1.2. Injective duals

Construction 1.1 can also systematically produce Helly graphs and coarsely injective metric
spaces. These are recent additions to the arsenal of geometric group theory that have proved
to be rather powerful [HO21, Hae21, HHP23, Hae23, Zal23]. A geodesic metric space is
(coarsely) injective if its metric balls satisfy a Helly property: any balls that pairwise intersect
have nonempty total (coarse) intersection.

The theory appears to have much in common with that of CAT(0) cube complexes and
CAT(0) spaces, but aside from the fact that every CAT(0) cube complex is injective when
equipped with the ℓ8 metric [MT91, Mie14], this is largely heuristic at this stage. In the
cubical setting, it is Sageev’s construction that is really the foundation on which many (often
highly nontrivial) cubulation results are built, such as in [BW12, HW15b, HW15a].

This motivates the following, a precise version of which is stated as Theorem 4.9; also see
Theorem K below for more information.

Theorem E. Under simple conditions on C, the metric space X produced by Construction 1.1
is coarsely injective.

It should be emphasised that the assumptions in Theorem E are weaker than those of
Sageev’s construction.

As a first implementation, we consider a class of groups that naturally generalises hyperbolic
spaces and CAT(0) cube complexes. In δ–hyperbolic spaces, Gromov’s tree approximation
lemma states that the quasiconvex hull of every finite set A is quasiisometric to a tree, where
the quasiisometry constant depends only on δ and the cardinality of A [Gro87]. In view
of results for mapping class groups and Teichmüller space [BM11, EMR17, Dur16], the fact
that CAT(0) cube complexes can be considered as higher-dimensional versions of trees led
Bowditch to introduce the class of coarse median spaces [Bow13a], which are defined by a
cubical approximation property.

Such an approximation property could be formulated in multiple ways, and although
Bowditch uses perhaps the most general possibility, which contains precious little metric in-
formation, he is able to obtain some remarkably strong results; see especially [Bow19]. To our
knowledge, though, all coarse median spaces of prior interest satisfy a seemingly much stronger
property that more faithfully generalises Gromov’s lemma [BHS21, Bow18a]. Moreover, this
stronger property is sometimes very useful [HHP23, DMS23, DZ22].

We therefore make a small tweak to the definition of coarse median spaces, and introduce
the class of strong coarse median spaces (these have also been called locally quasicubical spaces
in [DZ22]). Essentially, a strong coarse median space is a geodesic space where every finite set
A has an appropriate “coarsely convex” hull that is median-preservingly quasiisometric to a
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CAT(0) cube complex, with the constants depending only on the cardinality of A. A strong-
coarse-median group is then a finitely generated group possessing an equivariant strong coarse
median structure. Aside from hyperbolic and cubical groups, the class includes toral relatively
hyperbolic groups, mapping class groups, extra-large–type Artin groups, and hierarchically
hyperbolic groups more generally [BHS19, BHS21, HMS21]. Note that some cubical groups
do not naturally admit hierarchically hyperbolic structures [She22].

Our main result about strong-coarse median groups is the construction of good sets P and
C, leading to the following, which generalises and gives a hierarchy-free proof of the main
result of [HHP23]; it appears as Corollary 7.14.

Theorem F. For any strong coarse median space S, Theorem E produces a coarsely injective
space XCpSq such that the natural map S Ñ XCpSq is a quasiisometry. In particular, if S is
a strong-coarse-median group, then S acts properly coboundedly on an injective space.

Since C is constructed from metric and median data, every median-preserving isometry of
S induces an isometry of XCpSq. As a special case of this, known results about groups acting
properly coboundedly on injective spaces lead to the following, which notably does not need
the quasiisometry to be equivariant [Lan13, KMV22, AB95] (see also [Hae23]).

Corollary G. Suppose that G is quasiisometric to a CAT(0) cube complex Q. If the induced
quasiaction of G on Q is coarsely median-preserving, then:

‚ G has finitely many conjugacy classes of finite subgroups;
‚ Q is not a subgroup of G;
‚ polycyclic subgroups of G are virtually abelian and undistorted;
‚ G is semihyperbolic.

Already this corollary applies to mapping class groups, and many hierarchically hyperbolic
groups more generally [Pet21], overlapping with [HHP23]. In particular, the statement about
polycyclic subgroups provides a large generalisation of [FLM01, Thm 1.2]. In view of the fact
that not all cubical groups are naturally hierarchically hyperbolic, it seems likely that there
are non-cubical groups that are covered by Corollary G but not [HHP23].

In the same setting as Theorem E, we build a natural family of paths in the coarsely
injective space X, which we call normal wall paths. These paths simultaneously behave
well with respect to the metric on X and with respect to its structure as a median algebra
(Propositions 4.6, 4.7). Degenerating to the setting of CAT(0) cube complexes exactly gives
the Niblo–Reeves normal cube paths [NR98].

One simple use for normal wall paths is that they provide a nice melding of results from
[DMS23] and [HHP23]. The main result of each of those articles is semihyperbolicity of
mapping class groups, but this is achieved in different ways. Semihyperbolicity asks for an
equivariant set of paths with good fellow-travelling properties. In [HHP23], these come from
Lang’s bicombing of injective spaces [Lan13], whereas [DMS23] contains a direct construction
that yields paths compatible with the Masur–Minsky hierarchy structure [MM00]. It is not
clear that these systems of paths are related to each other: the former may not be hierarchical,
and the latter may be unnatural to the injective space. The following shows that normal wall
paths satisfy both. (See Propositions 4.6 and 4.7, as well as Lemma 7.10.)

Theorem H. Let S be either the mapping class group MCGΣ of a finite-type surface Σ, or
the corresponding Teichmüller space with the Teichmüller metric. Normal wall paths in the
dual space XCpSq are median paths, rough geodesics, and yield hierarchy paths of S: their
images under subsurface projections are unparametrised quasigeodesics. Furthermore, they
form a MCGΣ–invariant bicombing.
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The statement of Theorem H applies to all strong-coarse-median groups, whereas [DMS23]
and [HHP23] cover (colourable) hierarchically hyperbolic groups. In that generality, normal
wall paths witness semihyperbolicity. For the Teichmüller metric, a system of quasigeodesics
with similar properties to those of Theorem H has been announced by Kapovich–Rafi.

The interplay between the median and the metric on XCpSq has consequences for the
geometry of its balls. For instance, following Cannon [Can87], we say that a metric space
M is almost convex if for every k there exists Npkq such that for all r, every pair of points
in an r–sphere Srpmq Ă M can be joined by a path in the ball Brpmq of length at most
Npkq. The following shows that this holds for XCpSq in a strong way. (See Lemma 4.2 and
Proposition 4.6.)

Theorem I. If S is a strong coarse median space, then normal wall paths make XCpSq almost
convex, with Npkq “ k ` 6.

In [Far06, Qns 3.4, 3.5], Farb asks whether there exist almost convex Cayley graphs of
mapping class groups, and whether the Teichmüller metric is almost convex. Although the
above theorem does not directly answer Farb’s questions, it shows that almost convexity
holds in the space XCpSq, which is equivariantly quasiisometric to the desired spaces, and is
witnessed by hierarchy paths.

Let us mention one more application of Construction 1.1, which both makes use of normal
wall paths and brings us back to the setting of hyperbolic duals. By using the same set of
walls as is used to establish Theorem F but a set C more along the lines of Theorem A, one
can, for any strong coarse median space, produce a hyperbolic space Y pSq associated with
it. In the hierarchically hyperbolic setting, a proof involving normal wall paths shows that
Y pSq coarsely recovers the largest hyperbolic space of [ABD21]. The following summarises
Section 7.3.

Theorem J. For every strong coarse median space S, all median-preserving isometries of
S are isometries of the hyperbolic space Y pSq. If S is the mapping class group of a finite-
type surface Σ, or its Teichmüller space with the Teichmüller metric, then Y pSq is MCGΣ–
equivariantly quasiisometric to the curve graph of Σ.

This provides a systematic construction of the curve graph from only median and metric
information. It also lets the curve graph be viewed as a kind of quotient of the coarsely
injective space XCpSq of Theorem H, because the underlying walls are the same.

1.3. Further discussion of the construction

In this subsection, we discuss Construction 1.1 in more detail and provide several ap-
plications. Given a set S and a collection P of bipartitions, an ultrafilter is a “consistent
orientation” of the elements of P ; see Definition 3.1. Each s P S determines a principal ul-
trafilter ϕs by orienting each h P P towards s. Let X̂ be the set of all ultrafilters on P . We
say that x, y P X̂ are separated by c Ă P if they orient every element of c differently. Given
C Ă 2P , let dC be the function on X̂ given by dCpx, yq “ supt|c| : c P C separates x from yu,
which takes values in N Y t8u.

Definition 1.2 (Dualisable system). Let pS, P q be a set with walls, and let C Ă 2P be closed
under subsets, with P Ă C. We say that C is a dualisable system on P if dCpϕs, ϕtq ă 8 for

all s, t P S. The C–dual of S is XC “ pX, dCq, where X “ tx P X̂ : dCpx, ϕsq ă 8u.

The following theorem summarises the correspondences between combinatorics of C and
metric properties of XC obtained in this paper; see Theorem 4.9 and Corollary 5.7.
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Theorem K. For any dualisable system C on pS, P q, the space XC is a metric space, and
‚ if C “ 2P , then XC is Sageev’s dual CAT(0) cube complex;
‚ if C consists of all chains in P , then XC is the vertex set of a Helly graph.

Moreover, assuming that C is m–gluable:
‚ if each c P C is a chain, then XC is coarsely injective;
‚ if C is L–separated, then XC is hyperbolic.

The set C is said to be m–gluable if it is closed under taking certain unions (see Defini-
tion 4.5). It is L–separated if each c P C is a chain and for any th1, h2u P C, every c P C whose
elements all cross both h1 and h2 has |c| ď L.

The final bullet of Theorem K bears similarity to the construction of [Bow98]. Bowditch
starts with a group G acting properly discontinuously and cocompactly on the space of triples
of a perfect metric compactum. He then constructs “annulus systems”, which are certain
collections of bipartitions that play the role of C, and shows that they are L–separated, using
the geometry of the action.

Whilst Construction 1.1 is based on Sageev’s construction, one fundamental difference is
that it does not require local finiteness of the collection of walls. Of course, there is a trade-off
between how general the input can be and how strong the conclusions are. Consider hyperbolic
groups, for instance. Adding the assumption of a cocompact cubulation to hyperbolicity has
some very strong consequences [Ago13, Wis21], but there are many hyperbolic groups with

property (T) [Ż03, KK13b], and these have no unbounded actions on CAT(0) cube complexes
[NR97]. Sageev’s construction itself (and even the continuous version of [CDH10, Fio20])
cannot, therefore, convey any of the geometry of such groups. Nevertheless, Theorem A
outputs a metric space X that is quasiisometric to G and still has several fine properties in
common with CAT(0) cube complexes, as we now discuss.

For one, in the full generality of Construction 1.1, every finite group acting on S fixes a
point in a “first subdivision” of X (Proposition 3.16); and so a standard argument shows
that if G acts properly coboundedly on X then it has finitely many conjugacy classes of finite
subgroups. Even in δ–hyperbolic spaces, one can only guarantee an orbit of diameter roughly
δ. In this regard, X can be thought of as playing a similar role to the injective hull [Lan13].
That said, neither the median structure on X nor constructions such as normal wall paths
have analogues in the injective hull, as they rely on the walls. Also, X better reflects the coarse
geometry of S. For instance, if S is the standard cubulation of R3, then X is quasiisometric
to S, whereas the injective hull is R4.

Furthermore, the dual space XCpSq of a strong coarse median space S has a median algebra
structure that is uniformly close to the coarse median structure on S (Lemma 7.10). Each
coarsely convex set Y Ă S (such as quasiconvex subsets of hyperbolic spaces) is at a uniform
Hausdorff-distance from a wall-theoretically convex set Z in XCpSq: an intersection of half
spaces (Definition 3.8). The median algebra structure on XCpSq then allows us to produce
a gate map g : XCpSq Ñ Z. This gate map is a closest-point projection in XCpSq and is
1-Lipschitz. To summarise, one can replace a strong coarse median space S by a space XCpSq

equivariantly quasiisometric to S and with upgraded fine properties.
This highlights a philosophical difference between this article and [HHP23] compared to

[DMS23, Dur23]. In the former articles, a given space is extended to a larger one with good
properties, whereas in the latter ones, subspaces of a given group are accurately approximated
by cube complexes.
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As a final instance of the improved fine properties of XCpSq, we mention the following rank-
rigidity result for hierarchically hyperbolic groups, which improves upon the coarse product
structure of [DHS17, PS23].

Corollary L. Let G be a hierarchically hyperbolic group. There is a natural choice of C such
that XCpGq is G–equivariantly quasiisometric to G and either:

‚ G contains a Morse element; or
‚ XCpGq “ XC1pS1q ˆXC2pS2q, where S1 and S2 are unbounded hierarchically hyperbolic
spaces and C “ C1 \ C2.

The article is divided into two parts. The first part focuses on general properties of Con-
struction 1.1, and natural conditions one can consider on C. The intention is to be self-
contained, with a view to being applicable more widely. The outcome is a number of recipes
that, given collections of walls satisfying certain combinatorial conditions, will produce asso-
ciated spaces with good properties.

In the second part, we apply these generalities in two main settings, in order to deduce the
results discussed above. In a short final section we point to some potential further directions
that could be pursued. The appendix with Davide Spriano concerns quasimorphisms.

Acknowledgements. We are happy to thank Stefanie Zbinden for friendly discussions about
her work and ours. We thank Kasra Rafi for conversations about Teichmüller space, and
Matt Durham, Anthony Genevois, and Mark Hagen for comments on an earlier version of this
article. We are grateful to the organisers of the thematic program Geometric Group Theory
in Montreal in 2023, where this work was started.

2. Background on medians and CAT(0) cube complexes

An authoritative general reference for the material discussed here is [Bow22]. A median
algebra is a set X together with a ternary operation µ such that for all a, b, c, d, e P X we have

µpa, b, cq “ µpb, a, cq “ µpc, a, bq, µpa, a, bq “ a, µpa, b, µpc, d, eqq “ µpµpa, b, cq, µpa, b, dq, eq.

The latter equality is called the five-point condition. (See also [Rol98, BH83].) One family of
median algebras is provided by median graphs. A graph X is median if for each three vertices
v1, v2, v3 there is a unique point lying on some geodesic from vi to vj for all i, j. By a result of
Chepoi [Che00, Thm 6.1], a graph is median if and only if it is the 1–skeleton of some CAT(0)
cube complex (see also [Gen23]).

CAT(0) cube complexes can equivalently be characterised in terms of their hyperplanes.
(See [Wis21] for thorough information on cubical hyperplanes.) Indeed, Sageev’s construction
[Sag95], as clarified in [Nic04, CN05], shows how to reconstruct the one-skeleton from the
combinatorics of the hyperplanes. Each hyperplane h has two corresponding halfspaces, h´

and h`, which are the components of its complement.
The median µ on a CAT(0) cube complex Q can be described in terms of hyperplanes as

follows: given vertices x1, x2, x3 P Q, the point µpx1, x2, x3q is the unique vertex that, for
every hyperplane h, lies on the same side of h as the majority of the xi.

A subcomplex C of a CAT(0) cube complex Q is convex if any of the following equivalent
conditions hold:

‚ µpc1, c2, xq P C for all c1, c2 P C, x P Q (this is called median-convexity);
‚ C is the largest subcomplex contained in the intersection of some collection of halfs-
paces;

‚ C is (geodesically) convex with respect to either the CAT(0) or the ℓ1 metric on Q.
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The convex hull, HullQA, of A Ă Q is the smallest convex subcomplex of Q containing A.
Given a convex subcomplex C of a CAT(0) cube complex Q, there is a natural projection

map gC : Q Ñ C, called the gate map. Here are three equivalent descriptions of the gate of a
vertex x P Q:

‚ gCpxq is the unique closest point in C to x when Q is equipped with the combinatorial
metric;

‚ gCpxq is the unique vertex of Q such that a hyperplane h separates x from gCpxq if
and only if h separates x from C;

‚ gCpxq is the unique point of C with the property that µpc, gCpxq, xq “ gCpxq for all
c P C.

Combining the first and third characterisations explains the terminology: every point c P C
has a geodesic to x that passes through gCpxq.

The following technical lemma will not be needed until Section 7.

Lemma 2.1. Let Q be a CAT(0) cube complex, and let a1, . . . , an P Q, for n ě 2. The gate
map Q Ñ HullQpa1, . . . , anq can be expressed as x ÞÑ µpan, x, µpan´1, x, µp. . . , µpa2, x, a1q . . . q.

Proof. Write g1pxq for the map in the statement of the lemma. Starting at the “inner level”
of the expression for g1pxq, observe that µpa2, x, a1q P HullQpa1, a2q Ă HullQpa1, . . . , anq.
Proceeding outwards one level at a time, we see inductively that g1pxq P HullQpa1, . . . , anq.

Suppose that a hyperplane h of Q has x P h´, g1pxq P h`. Consider the “outer level” of the
expression for g1pxq. The majority of the arguments of that median must lie on the same side
of h as g1pxq, so we must have an P h`, and also the nested expression must determine a point
of h`. The same argument then applies at the next level of the expression to give an´1 P h`,
and successively we find that ai P h` for all i.

We have shown that the only hyperplanes separating x from the point g1pxq P HullQpa1, . . . , anq

are those that separate x from HullQpa1, . . . , anq itself. By the second characterisation above,
g1pxq is the gate of x to HullQpa1, . . . , anq. □

Part 1. Generalising Sageev’s construction

3. Ultrafilters and dualisable systems

In this section we introduce the core framework within which we operate.
A set with walls is a pair pS, P q, where S is a set and P is a set of bipartitions h “ th`, h´u

of S. That is, h´, h` Ă S have S “ h´ Y h` and h´ X h` “ ∅. We refer to h as a wall, and
to h˘ as the halfspaces of h.

Definition 3.1 (Ultrafilter). A filter ϕ on P consists of a subset Q Ă P and a choice of
halfspace ϕphq P th`, h´u for each h P Q such that:

if h1, h2 P Q have h`
1 Ă h`

2 Ă S, then ϕph1q “ h`
1 implies that ϕph2q “ h`

2 .

We say that ϕ is supported on Q. An ultrafilter is a filter whose support is P .

The terminology comes from the fact that one can see these filters as being filters on the
Boolean subalgebra of 2S generated by the halfspaces of S. In a Boolean algebra every filter
extends to an ultrafilter, giving the following.

Lemma 3.2 (Ultrafilter lemma). Every filter on P extends to an ultrafilter.

Space of ultrafilters. Write X̂ for the set of ultrafilters on S defined by P . Every point
s P S defines an ultrafilter by setting ϕsphq to be the halfspace of h that contains s, for every
h P P . If each pair of points in S is separated by some element of P , then s ÞÑ ϕs is injective.
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Even when this is not the case we tend to abuse notation and fail to distinguish between S
and its image in X̂.

Another way of casting Lemma 3.2 is that it says that any collection of halfspaces that
intersect pairwise in S has nonempty total intersection in X̂: it is a kind of Helly property.

We say that h1, h2 P P cross if all four orientations of h1 and h2 are filters. Equivalently,
all four quarterspaces h˘

1 X h˘
2 are nonempty, in either S or X̂. Equivalently, there is no pair

of orientations, say h`
1 and h`

2 , such that h`
1 Ă h`

2 as subsets of S.

3.1. Dualisable systems

Let h P P . If s and t are points of S that lie in different halfspaces of h, then we say that
h separates s from t. More generally, given x, y P X̂, we say that h separates x from y if
xphq ‰ yphq.

So far, the set X̂ is both extremely large (in general) and lacking any metric structure. The
following definition lets us deal with both of these issues simultaneously.

Definition 3.3. A dualisable system for pS, P q is a subset C Ă 2P such that the following
hold.

‚ C contains all singletons and is closed under taking subsets.
‚ For each pair s, t P S, there is a number Mst such that |c| ď Mst for all c P C with the
property that every h P c separates s from t.

The dual space. Given a dualisable system C for pS, P q, consider the function on X̂ ˆ X̂
given by

dCpx, yq “ supt|c| : c P C and every h P c separates x from yu.

The C–dual of S is the space XC “ tx P X̂ : dCpx, sq ă 8 for all s P Su, equipped with the
function dC .

Lemma 3.4. dC is an extended metric. Its restrictions to XC and S (strictly speaking its

image in X̂) are metrics.

Proof. Because C contains all singletons, the function dC separates points of X̂. It is evidently
symmetric. The fact that the restrictions take only finite values follows from the second bullet
of Definition 3.3. It remains to show that dC satisfies the triangle inequality.

Let x, y, z P X̂. Every c P C separating x from y can be partitioned as c “ cx \ cy,
where every element of cx separates x from z and every element of cy separates y from z. By
definition, dCpx, zq ě |cx| and dCpz, yq ě |cy|. Since this holds for every c separating x from
y, we have dCpx, yq ď dCpx, zq ` dCpz, yq. □

By a chain in P , we mean a sequence c “ phiqiPI , where I is some (finite or infinite) interval
in Z and hi P P , such that h´

i´1 Ă h´
i Ă h´

i`1 for all i.

Example 3.5. The conditions under which Sageev’s construction applies are exactly equiv-
alent to the statement that 2P is a dualisable system. If we then take C “ 2P , then XC
is exactly the dual CAT(0) cube complex of Sageev. If XC contains no infinite cubes, then
taking C1 to be the set of all chains in P we get that XC1 is exactly the Helly graph obtained
from XC by thickening each cube (i.e. replacing it by a complete graph) [BV91]. Otherwise
XC1 will be bigger. Indeed, if S “ p

À
Nt0, 1u, ℓ1q is an infinite cube and P is the set of cubical

walls, then XC “ S, whereas XC1 is metrically an uncountable clique.
The set of all chains can be a dualisable system even if 2P fails to be. For instance, in the

above example, C1 is dualisable for pXC1 , P q, whereas C is not. The following simple example
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illustrates how configurations of this type can arise naturally in continuous settings. Let
S “ C and let P be the set of walls induced by taking all lines through 0. The points 1 and
´1 are separated by uncountably many walls, but no two walls form a chain.

Recall that a subset Y of a median algebra X̂ is said to be median-convex if for any x, y P Y
and z P X̂, we have µpx, y, zq P Y .

Lemma 3.6 (Median algebra). The set P gives X̂ the structure of a median algebra. If C is
a dualisable system, then XC is median-convex. In particular, XC is itself a median algebra.

Proof. Given three ultrafilters x1, x2, x3 P X̂, define an orientation ϕ of each h P P by setting
ϕphq to be the halfspace that contains the majority of the xi. This is clearly an ultrafilter on
P , and it is straightforward to check that this assignment µ : px1, x2, x3q ÞÑ ϕ satisfies the
five-point condition.

If x1, x2 P XC and z P X̂, then x2 is at finite dC–distance from x1. If c P C separates x1 from
µpx1, x2, x3q then it separates x1 from tx2, x3u. In particular dCpx1, µpx1, x2, x3qq ď dCpx1, x2q

is finite. □

The median defined in the proof of Lemma 3.6, which is also known as the “majority vote”
median, will be denoted µ : X̂3 Ñ X̂ throughout.

Although it is both a median algebra and a metric space, in general XC will not be a median
metric space, as can be seen from Example 3.5. Note the following simple observation.

Lemma 3.7. If a group G acts on S and preserves the dualisable system C, then G acts by
isometries on XC.

3.2. Convexity and gates

Given a dualisable system C on pS, P q, aside from the notion of median-convexity on XC
that is available thanks to Lemma 3.6, there is another version that is perhaps more natural.

Definition 3.8 (P -convex). Let C be a dualisable system for pS, P q. A subset Ĉ Ă X̂ is

P -convex if there is a subset Q Ă P and a choice Ĉphq P th`, h´u for all h P Q such that

Ĉ “ tv P X̂ : vphq “ Ĉphq for all h P Qu. In other words, Ĉ is an intersection of P -halfspaces

in X̂.

Note that Ĉ is nonempty if and only if the choices Ĉphq define a filter with support Q.

Remark 3.9 (P–convexity vs median-convexity). Whilst it is true that every P -convex set

in X̂ is also median-convex with respect to µ, the converse can fail in general. For instance,
the set

À
Nt0, 1u Ă

ś
Nt0, 1u is median-convex but is not an intersection of halfspaces. In

this example,
À

Nt0, 1u is exactly the set of points in
ś

Nt0, 1u that are at finite ℓ1 distance
from the zero sequence. Another, perhaps simpler, example appears in Remark 3.12.

We now define a projection map to P -convex sets inside X̂.

Proposition 3.10 (Gates). Given a nonempty P -convex set Ĉ Ă X̂ and an ultrafilter z P X̂,
let w be the orientation of all elements of P obtained from z by switching the orientation of
every element of P that separates z from Ĉ. The orientation w is an ultrafilter, and w P Ĉ.

Proof. Let Q Ă P be the subset witnessing the P -convexity of Ĉ. Note that z P Ĉ if and
only if no h P Q separates z from Ĉ, in which case w “ z. Otherwise, it is clear from the
construction that if w is an ultrafilter then it lies in Ĉ. It therefore suffices to show that w
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is a filter, because its support is P . That is, supposing that h1, h2 P P satisfy h`
1 Ă h`

2 , we
must show that if wph1q “ h`

1 , then wph2q “ h`
2 .

First suppose that h1 does not separate z from Ĉ. By Lemma 3.2 there must be some c P Ĉ
such that cph1q “ zph1q. From the construction of w, we have cph1q “ zph1q “ wph1q “ h`

1 .

Since c and z are ultrafilters, cph2q “ h`
2 “ zph2q, so h2 also does not separate z from Ĉ. We

therefore have wph2q “ zph2q “ h`
2 , as desired.

Alternatively, h1 separates z from Ĉ. Because Ĉ is nonempty, there exists c P Ĉ. We
have cph1q ‰ zph1q and zph1q ‰ wph1q “ h`

1 . Because c is an ultrafilter, we therefore have

cph2q “ h`
2 . If h2 separates z from Ĉ, then cph2q disagrees with zph2q, which disagrees with

cph2q, so wph2q “ h`
2 . Otherwise, h2 does not separate z from Ĉ, and so cph2q agrees with

zph2q, which agrees with wph2q. Thus we have wph2q “ h`
2 in either case. □

A subset A of a median algebra pM,mq is called gated if for every x P M there exists a
unique g P A such that mpa, g, xq “ g for all a P A. In view of the following lemma, we shall

call the ultrafilter w constructed in Proposition 3.10 the gate of z to Ĉ, and write w “ gĈpzq.

Lemma 3.11. A subset A Ă X̂ is gated if and only if it is P -convex.

Proof. It is easy to check that if A is P -convex, then the map gA makes A gated. Conversely,
suppose that A Ă X̂ is gated. For each z P X̂∖A, let gz be its gate to A, and set Pz “ th P P :
h separates z from gzu. If h P Pz for some z, then orient it so that z P h`, gz P h´. The set
A must be contained in h´, for otherwise we could find a P A X h`, and then µpa, z, gzq P h`

cannot be gz. Hence A is contained in an intersection of P -halfspaces in X̂. But we showed
that any wall separating a point from its gate must separate that point from A, so in fact A
is equal to that intersection of P -halfspaces. □

Remark 3.12 (Median algebras, convexity, and gatedness). Let pM,mq be a median algebra.
Recall that a subset B Ă M is median-convex if mpb, b1, xq P B for all b, b1 P B, x P M .
Considering the family of maps mpb, b1, ¨q : M Ñ M as b, b1 vary over B, we can interpret
median-convexity of B as saying that its two-point hulls are gated. Via Lemma 2.1, the four-
point condition then implies that B is “finitely gated”: the hull of every finite subset is gated.
In the discrete, finite-rank case, median-convexity and gatedness agree, but in general, this
perspective shows that gatedness is perhaps more natural, because finitely-gated need not
imply gated.

These notions give two families of walls that one can consider on a given median algebra
M . The more common choice is the set of all median-convex walls: bipartitions th`, h´u

where both h` and h´ are nonempty median-convex subsets [Rol98, Fio20]. Alternatively,
one can consider gated walls, where h` and h´ are required to be nonempty and gated. In the
case where M is a Stone median algebra (i.e. a compact and totally disconnected topological
median algebra, see [Bow22, §12.5]), one can see that a wall is gated exactly when it is a
clopen wall: a partition into two nonempty open halfspaces. The clopen walls are the ones
that are used in duality statements.

A good example to keep in mind is the following. Let S “ Z, with P its usual cubical
walls. The space X̂ is the Roller compactification [Rol98]. It is a topological median algebra
whose points can be thought of as living in Z Y t´8,8u. There are median-convex walls

in X̂ not coming from P . For instance, consider h` “ t8u, h´ “ X̂ ∖ h`. This defines

a median-convex wall of X̂, but note that it is not clopen: the halfspace h` is not open.
Correspondingly, the halfspace h´ is not gated. The clopen walls of X̂ are exactly the gated
walls, which are exactly those coming from P . This is part of what makes the P -convexity
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in Definition 3.8 the appropriate notion here, even though S itself can sometimes fail to be
P -convex in X̂.

To clarify, if pS, P q is a set with walls, then the term “wall” will always mean an element

of P , even though the median algebra X̂ may have additional median-convex walls.

Lemma 3.13. If C “ XC X Ĉ is nonempty, where Ĉ is some P -convex subset of X̂, then
gĈpzq P C for all z P XC.

Proof. Let x P C. Any z P XC lies at finite distance from x. As gĈpzq is obtained from z by
switching the orientations of a subset of the walls separating z from x, every wall separating
gĈpzq from x must separate z from x. Hence gĈpzq is at finite distance from x, and so lies in

both XC and Ĉ. □

In view of Proposition 3.10 and Lemmas 3.11 and 3.13, a subset C Ă XC is gated in the
median algebra XC exactly when there exists some P -convex set Ĉ Ă X̂ such that C “ XCXĈ.
We write gCpzq “ gĈpzq in this case when z P XC .

Both of the next two lemmas could equally well be stated for P -convex subsets of X̂, but
that is not to our purposes. The following is immediate from the construction of the gate and
the definition of dC .

Lemma 3.14 (Closest-point). Let C Ă XC be gated, and let x P XC. If h P P separates x
from gCpxq, then h separates x from C. In particular, dCpx, cq ě dCpx, gCpxqq for all c P C.

Lemma 3.15 (Lipschitz). Let C Ă XC be gated and let A,B Ă XC. If h P P separates gCpAq

from gCpBq, then h separates A from B. In particular, gC is 1–Lipschitz.

Proof. If h separates gCpAq from gCpBq, then there are points of C on both sides of h, so h
cannot separate any point of XC from C. In particular, for all z P XC the orientation of h
determined by z is the same as that determined by gCpzq, so A and B are on different sides
of h. □

We finish this section with a simple observation about finite group actions. Given a du-
alisable system C for pS, P q, one could define a first subdivision of XC by “doubling” each
h P P into two identical partitions h1, h2 and leaving all other crossing relations the same.
We refrain from making this formal, because we generally wish to work with P being a set of
bipartitions, rather than a multiset, but it is completely analogous to the first cubical subdi-
vision of a CAT(0) cube complex. After simply noting the following, subdivisions will not be
mentioned again.

Proposition 3.16. Let C be a dualisable system on pS, P q. If G is a finite group acting on
S that preserves P , then G fixes a point in the first subdivision of XC.

Proof. Let A be a G–orbit in S. For each h P P , let h` be the halfspace containing more
than half of the elements of A, if it exists. Let Q be the set of such h. It is easy to see that
ϕphq “ h` is a filter supported on Q, and any ultrafilter extending it lies in XC , because it
is separated from each element of A only by elements of P separating points of A. Also note
that ϕ is fixed by G. If P “ Q then we are done.

Otherwise, Q ‰ P . Let Q1 be the set of all h P P ∖ Q such that there is some g P G for
which gh ‰ h and gh does not cross h. Note that since h divides A into equal halves, both h
and gh define the same partition of A. By definition, there are halfspaces h´ and pghq´ that
are disjoint. We must have pghq´ “ gph´q, for otherwise we would have gph`q Ĺ h`, which
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would imply that g had infinite order. One similarly argues that this labelling did not depend
on the choice of g. In other words, the allocation ϕphq “ h` on Q1 is G–invariant.

Let us show that this allocation ϕ is a filter on Q1. If not, then there are h1, h2 P Q1 such
that h`

1 and h`
2 are disjoint. Let g P G be such that gh1 ‰ h1 and gh1 does not cross h1. We

have h`
2 Ă h´

1 Ă gh`
1 , and so we must have g´1h`

2 Ă h`
1 . But this shows that h`

2 is disjoint
from its translate by g´1, contradicting G–invariance of ϕ. Hence if P “ QYQ1, then ϕ is an
ultrafilter that is fixed by G.

The final case is that there is some h P P ∖ Q such that for each g P G, either h crosses
gh or is equal to it. If k P P ∖ pQ Y Q1q does not cross h, then set ϕpkq to be the halfspace
containing a halfspace of h, and extend to G ¨ tku equivariantly. Let Qh be the set of elements
of P ∖ pQ Y Q1q whose G–translates all cross h. We obtain an ultrafilter extending ϕ in the
first subdivision of XC by pointing the “doubled” copies of the elements of Qh towards each
other, and ϕ is fixed by G. □

The corresponding statement does not always hold for bounded group actions, as can be
seen from a transitive action of Z on an infinite clique.

4. Systems of chains

In the applications we have in mind for the constructions of Section 3, the dualisable system
C will be a set of chains in P . Recall that by a chain in P , we mean a sequence c “ phiqiPI ,
where I is some (finite or infinite) interval in Z and hi P P , such that h´

i´1 Ă h´
i Ă h´

i`1 for
all i.

Definition 4.1 (System of chains). A dualisable system C is a system of chains if every
element of C is a chain in P .

An immediate advantage of assuming that elements of C are chains is that every element of
C then comes with a total order, so that one can speak of the minimal and maximal element
of a finite chain c P C. In this section, we investigate some of the metric properties that one
deduce about the dual space XC when C is a system of chains.

Lemma 4.2. If C is a system of chains on pS, P q, then every ball in XC is gated.

Proof. Let x P XC and r ě 0. Since dC is integer-valued, we may assume that r P Z. Let Q
be the set of all h P P such that there exists some c P C with |c| ě r that separates x from h.

For each h P Q, let Ĉphq “ xphq be the halfspace containing x. This defines a P -convex set

Ĉ Ă X̂. If z P Ĉ, then because C is a system of chains, we have dCpx, zq ď r. In particular,

Ĉ Ă X. Conversely, if dCpx, zq ď r, then no element of Q can separate z from x, so z P Ĉ.

Thus the P -convex set Ĉ is the r–ball about x in X. But Ĉ Ă XC , so it is also the r–ball
about x in XC . □

For systems of chains, we now describe a family of paths that are analogues of the normal
cube paths introduced by Niblo–Reeves in [NR98]. In fact, in the case where 2P is dualisable
(see Example 3.5) and C is the set of all chains, XC is a CAT(0) cube complex with the ℓ8

metric and the paths we shall define will exactly be normal cube paths.

Definition 4.3 (Normal wall path). Let C be a system of chains. Given x, y P XC , the normal
wall path σpx, yq “ σxy from x to y is the sequence

px “ gBpx,0qpyq, gBpx,1qpyq, . . . , gBpx,nqpyq “ yq,

where Bpx, rq denotes the r–ball in XC centred on x, which is gated by Lemma 4.2. See
Figure 1.



CONSTRUCTING METRIC SPACES FROM SYSTEMS OF WALLS 15

Figure 1. σpx, yq is constructed by gating y to integer balls centred on x.

As with normal cube paths in CAT(0) cube complexes, σpx, yq need not agree with σpy, xq.
By the definition of the gate map, σxyprq is obtained from y by switching the orientations

of exactly the walls separating y from Bpx, rq. Hence if r1 ă r2 ă r3, then σxypr2q is equal to
its median with σxypr1q and σxypr3q. In other words, σxy is a median path and cannot cross
any wall twice. The following lemma can be viewed as a strengthening of this observation.

Lemma 4.4. Let x, y P XC. If z P rσxyprq, ys, then σxzptq “ σxyptq for all t ď r. In particular,
σpx, σxyprqq Ă σpx, yq.

Proof. The point σxyprq is obtained from y by switching the orientations of exactly those walls
that separate y from the ball Bpx, rq. Thus the fact that z P rσxyprq, ys means both that the
walls separating z from Bpx, rq are a subset of those separating y from Bpx, rq, and that every
wall separating x from σxyprq separates x from z. Hence no wall separates σxzprq from σxyprq,
so the two are equal. The rest follows. □

An extremely useful property that a system of chains can have is the ability to combine
certain elements of C to obtain a larger element of C. This allows one to make certain
constructions piecewise, which is often necessary when several points are involved. If c is
a chain in P with maximal element h, then we write c` to mean the subset h` of S. If k is
the minimal element of c, then we similarly write c´ for the subset k´ of S.

Definition 4.5 (Gluable). Let C be a system of chains. We say that C is m–gluable if
the following holds. Suppose that c1, c2 P C are such that c1 Y c2 is a chain, c2 Ă c`

1 ,
and c1 Ă c´

2 . Write c1 “ t, . . . , h´2, h´1u and c2 “ th1, h2, . . . u. There is a subset b Ă

th´m, . . . , h´1, h1, . . . , hmu of consecutive halfspaces, of size at most m, such that pc1 Y c2q∖ b
is an element of C.

We shall primarily be interested in m–gluable systems with m ď 3. Note that the only
0–gluable system of chains in P containing all singletons is the set of all chains in P .

A discrete geodesic in a metric space pY, dq is the image of an isometric embedding of an
interval in Z. A k–rough geodesic is the image of a p1, kq–quasiisometric embedding of an
interval in Z. A k–weak rough geodesic from x to y is a sequence pzrqnr“0 with z0 “ x and
zn “ y such that | dpx, zrq ´ r| ď k and | dpzr, yq ´ pn ´ rq| ď k, where n “ dpx, yq.

Proposition 4.6. If C is an m–gluable system of chains, then normal wall paths are m–weak
rough geodesics and 3m–rough geodesics.
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More precisely, if x, y P XC have dCpx, yq “ n, then for any r P r0, ns we have r ´ m ď

dCpx, σxyprqq ď r and n ´ r ď dCpσxyprq, yq ď n ´ r ` m.

Proof. Let us write zr “ σxyprq. As in the proof of Lemma 4.2, let Q be the set of all h P P
such that there exists some c P C with |c| ě r that separates x from h.

First we control dCpx, zrq. By definition, zr lies in the r–ball about x, so we just need to
establish the lower-bound. Recall that zr is obtained from y by switching the orientations of
exactly the elements of Q that separate x from y. Let th1, . . . , hnu P C realise dCpx, yq. If
hr´m does not separate zr from x, then it separates zr from y, so we must have hr´m P Q.
Let tk1, . . . , kru P C separate x from hr´m. Because C is m–gluable, there is then a subset of
tk1, . . . , kr, hr´m, . . . , hnu of size at least n`1 that is an element of C. But this contradicts the
fact that dCpx, yq “ n. Hence hr´m separates zr from x, and in particular dCpx, zrq ě r ´ m.

Now we control dCpzr, yq. Because dCpx, zrq ď r, the triangle inequality gives dCpzr, yq ě

n ´ r. Now let th1
1, . . . , h

1
pu P C realise dCpzr, yq. Every element of P separating zr from y is

in Q, so in particular there is some tk1
1, . . . , k

1
ru P C separating x from h1

1. By m–gluability of
C, we get n “ dCpx, yq ě r ` p´m, and hence dCpzr, yq “ p ď pn´ rq `m. This in particular
shows that pzrq is an m–weak rough geodesic.

To complete the proof, let r1 ă r2. By Lemma 4.4, σpx, zr2q Ă σpx, yq, so using the above
inequalities, we compute

dCpx, yq “ r2 ` pn ´ r2 ` mq ´ m

ě dCpx, zr2q ` dpzr2 , yq ´ m

ě dCpx, zr1q ` dCpzr1 , zr2q ` dCpzr2 , yq ´ 2m

ě r1 ` dCpzr1 , zr2q ` n ´ r2 ´ 3m,

which shows that dCpz1, z2q ď r2 ´ r1 ` 3m. A similar computation shows that dCpzr1 , zr2q ě

r2 ´ r1 ´ 3m, and hence σpx, yq is a 3m–rough geodesic. □

A particular case of Proposition 4.6 is that if C is the set of all chains, then XC is discretely
geodesic. In other words, it is the vertex set of a graph.

A bicombing σ of a metric space Y is the choice of a path σpx, yq from x to y for each x, y P Y .
This notion is very general, so one often speaks of a bicombing by, say, geodesics, where the
σpx, yq are required to be geodesics; or one imposes certain fellow-travelling conditions on the
various paths in σ.

Proposition 4.7. If C is an m–gluable system of chains, then normal wall paths form a
bicombing of XC by rough geodesics. Moreover, for every r we have

dCpσx1y1prq, σx2y2prqq ď maxtdCpx1, x2q, dCpy1, y2qu ` 3m.

Proof. Let us write dCpx1, x2q “ Rx and dCpy1, y2q “ Ry. After relabelling, we may assume
that dCpx1, y1q ď dCpx2, y2q, which in turn is at most dCpx1, y1q ` Rx ` Ry by the triangle
inequality. Let us write zir “ σxiyiprq.

Given r ď dCpx2, y2q, let c P C realise dCpz1r , z
2
r q. Let cx Ă c be the subchain consisting of

all elements that separate x1 from x2, of which there are at most Rx. Define cy similarly, and
let c1 “ c ∖ pcx Y cyq, which has |c ∖ c1| ď Rx ` Ry. Because zir P rxi, yis, every h P P that
separates zir from either xi or yi also separates xi from yi. Thus every element of c1 either
separates tz1r , x1, x2u from tz2r , y2, y1u or separates tz1r , y1, y2u from tz2r , x2, x1u. Because c is
a chain, only one of these options can occur. The two cases are similar, so let us assume the
former. See Figure 2.
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Figure 2. The configuration considered in the proof of Proposition 4.7.

Suppose that c1 ‰ ∅. Because c is a chain, the sets cx and cy are disjoint. Let h be the
minimal element of c1: it separates c1 ∖ thu from x2. We know that h separates z1r from y1.
The set H “ tv P XC : vphq ‰ z1r phqu is gated, so we can consider the point w “ gHpz1r q P H.
Every wall separating z1r from w separates z1r from H, by Lemma 3.14. Also, since every
element of cx separates z1r from w, we have dCpz1r , wq ě |cx| ` 1.

As w P rz1r , ys, Lemma 4.4 tells us that σx1wptq “ z1t for t ď r. By Proposition 4.6,

dCpx1, wq ě dCpx1, z
1
r q ` dCpz1r , wq ´ m ě r ` |cx| ` 1 ´ 2m.

From the fact that w P rz1r , ys ∖ tz1ru, we also have that dCpx1, wq ě r ` 1.
Let b P C realise dCpx1, wq. Because |b| ě r ` 1, at least one element of b separates z1r from

w. It follows that b separates x1 from H, so bYpc1∖thuqYcy is a chain separating x1 from z2r .
By m–gluability of C, there is some element of C that can be obtained from bY pc1 ∖ thuq Y cy
by removing at most m elements. Letting bx be the subchain of b consisting of all elements
separating x1 from x2, which has cardinality at most Rx, we therefore have

r ě dCpx2, z
2
r q ě |b Y pc1 ∖ thuq Y cy| ´ m ´ |bx|

“ dCpx1, wq ` p|c| ´ |cx| ´ 1q ´ m ´ |bx|

ě pr ` |cx| ` 1 ´ 2mq ` |c| ´ |cx| ´ 1 ´ m ´ Rx “ r ` |c| ´ 3m ´ Rx.

This implies that |c| ď Rx ` 3m. We have shown that if c1 ‰ ∅, then dCpz1r , z
2
r q ď Rx ` 3m.

Now suppose that c1 “ ∅ but |c| ą m ` maxtRx, Ryu. As c “ cx Y cy, each element of c
either separates x1 from x2 or separates y1 from y2 (possibly both). Since |c| ą Ry, at least
one element of c lies in cx ∖ cy. Any such element h must either separate x1 from tx2, y1, y2u

or x2 from tx1, y1, y2u. Since the argument is similar in either case, let us assume that the
former holds. Given this, let h P c be the minimal element of c: it separates z1r from c∖ thu,
and necessarily lies in cx ∖ cy. Similarly to the c1 ‰ ∅ case, let H “ tv P X : vphq ‰ z1r phqu

and let w “ gHpz1r q P H.
Because h separates x1 from y1, we have w P rz1r , y1s, and so dCpx1, wq ą r. Let b P C realise

dCpx1, wq. Every element of b separates x1 from H, and thus at least one separates zr from
H. In particular, b Y c∖ thu is a chain separating x1 from z2r . By m–gluability of C, there is
some element of C that can be obtained from b Y c ∖ thu by removing at most m elements.
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We therefore compute

dCpx2, z
2
r q ě dCpx1, z

2
r q ´ dCpx1, x2q

ě p|b| ` |c| ´ 1 ´ mq ´ Rx

ě pr ` 1q ` pm ` 1 ` maxtRx, Ryuq ´ 1 ´ m ´ Rx ě r ` 1,

which is a contradiction. Hence |c| ď m ` maxtRx, Ryu if c1 “ ∅. □

One cannot expect stronger properties of the bicombing: for normal cube paths in CAT(0)
cube complexes the inequality of Proposition 4.7 is optimal, as m “ 0 in that case [NR98].

Definition 4.8. A metric space Y is k–coarsely injective if for each collection of balls Bpxi, riq
with dpxi, xjq ě ri ` rj for all i, j, there is some point z P

Ş
Bpxi, ri ` kq. A graph is Helly if

this same property holds with k “ 0 when one considers only balls of integer radius.

Theorem 4.9 (Coarsely injective). Let C be an m–gluable system of chains. If m ą 0, then
XC is 2m–coarsely injective. If m “ 0, then XC is a (not necessarily locally finite) Helly graph.

Proof. Let tBXpxi, riqu be a collection of balls with the property that ri ` rj ě dCpxi, xjq for
all i, j. If m “ 0, assume that each ri is an integer. (As noted above, if m “ 0 then C is the
set of all chains and XC is the vertex set of a graph.) For each i, let

Qi “ tw P P : there is some c P C separating xi from w with |c| ě ri ` 2mu.

Define an orientation ϕ of
Ť

Qi by pointing each w P Qi towards xi.
We must first show that ϕ is well defined. For this, suppose that w P Qi XQj . Let ci, cj P C

be given by the definitions of Qi and Qj , so that |ci| ě ri ` 2m and |cj | ě rj ` 2m. If w
separates ci from cj , then ci Y twu Y cj is a chain. But then by twice applying m–gluability
of C, we find some b Ă ci Y twu Y cj such that b P C and |b| ě |ci| ` 1` |cj | ´ 2m ě ri ` rj ` 1.
As b separates xi from xj , this contradicts our assumption that ri ` rj ě dCpxi, xjq. Thus
w cannot separate ci from cj , and so cannot separate xi from xj . This shows that ϕ is well
defined.

Next we show that ϕ is a filter. Suppose that we have walls wi P Qi and wj P Qj such
that w`

i Ă w`
j and ϕpwiq “ w`

i . Let ci and cj be given by the definitions of Qi and Qj . If

ϕpwjq “ w´
j , then wj separates cj from wi and ci. With three applications of m–gluability of

C, we find some b Ă ci Y twi, wju Ycj such that b P C and |b| ě |ci| `2` |cj | ´3m ě ri `rj `2.
This contradicts the assumption that ri ` rj ě dCpxi, xjq. Thus ϕpwjq “ w`

j , which shows
that ϕ is a filter.

Let z be an ultrafilter extending ϕ. By construction, for each i there is no element of C of
length greater than ri ` 2m that separates z from xi. In other words, z P

Ş
BXpxi, ri ` 2mq,

as desired. □

Theorem 4.9 also implies the existence of a good bicombing on XC , thanks to work of Lang
[Lan13]. While less related to the wall structure, it has the advantage of being symmetric and
roughly conical, and so will not in general be the same as the bicombing by normal wall paths.

5. Producing hyperbolic spaces

One use for the construction in Section 3 is to produce hyperbolic spaces that can help
study a given space. For that we need a source of negative curvature, which is provided by
L–separation. There may be many different natural hyperbolic spaces that one could produce
in this way, and Section 5.2 gives a way to combine them into a single hyperbolic space
subsuming them.
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5.1. Separated systems

Recall that walls h1 and h2 are said to cross if all four quarterspaces h˘
1 Xh˘

2 are nonempty
in S.

Definition 5.1. We say that a system of chains C is L–separated if for every th1, h2u P C, if
c P C is such that every h P c crosses both h1 and h2, then |c| ď L.

Remark 5.2. In many situations, something stronger than L–separation holds. Indeed, there
may be some larger set D Ă 2P such that for every th1, h2u P C, if d P D has h X hi ‰ ∅ for
i “ 1, 2 and every h P d, then |d| ď L. It may even be that one can take D to be the set of all
chains, as is the case in [Gen20] and [PSZ22]. Whilst these stronger properties may be useful,
they are not needed for the arguments in this section.

We make a simple observation regarding elements of a gluable, separated system.

Lemma 5.3 (Gluing). Suppose that C is an L–separated, m–gluable system of chains. If
c “ t. . . , h´1u and c1 “ tk1, . . . u are elements of C such that

h`
´1 X k˘

j ‰ ∅ and h˘
i X k´

1 ‰ ∅,

for all i, j, then there is a subset b Ă th´m´1, . . . , h´1, k1, . . . , kL`m`1u of cardinality at most
L ` m ` 1 such that c Y c1 ∖ b P C.

Proof. The wall h´2 cannot cross kL`1, for then so would h´1, contradicting L–separation of c.
Hence c∖th´1u and c1 ∖tk1, . . . , kL`1u satisfy the hypotheses of the m–gluability assumption
on C. □

With this in hand, we turn to showing that XC is hyperbolic.

Definition 5.4 (Cross chain). Let C be a system of chains. A ˆ–chain (cross chain) for

x1, x2, x3, x4 P XC is a subset χ Ă P with a decomposition χ “
Ů4

i“1 χi such that every
element of χi separates xi from txi`1, xi`2, xi`3u; and such that χi Y χj P C for all i, j.

Note that the notion of ˆ–chain makes sense even when C is not separated. However, it is
at its most useful in this setting, because maximal ˆ–chains can be effectively compared with
chains realising the distances between the defining points.

Lemma 5.5. Let C be an L–separated, m–gluable system of chains. If c P C realises dCpx1, x2q

and χ is a maximal ˆ–chain for x1, x2, x3, x4, then

|χ1|`|χ2|´2pL`m`1q ď |th P c : h does not separate x3 from x4u| ď |χ1|`|χ2|`4pL`m`1q.

Proof. Let r “ |th P c : h does not separate x3 from x4u|. Let c1 be the subset of c consisting
of those elements that do not separate x2 from x3 or x4, and define c2 similarly, so that
r “ |c1| ` |c2|. By Lemma 5.3, after removing at most L`m`1 elements of each of c1, c2, χ3,
and χ4, we obtain a ˆ–chain. Maximality of χ then implies that r ď |χ1|`|χ2|`4pL`m`1q.

On the other hand, let c1 “ c∖ pc1 Y c2q be the subset of c consisting of those elements that
separate x3 from x4. After relabelling, every element of c1 separates tx1, x3u from tx2, x4u.
From Lemma 5.3 and the fact that χ1 Yχ2 P C, there is some b Ă χ1 Y c1 Yχ2 such that b P C
separates x1 from x2 and |b| ě |χ1| ` |c1| ` |χ2| ´ 2pL`m` 1q. Since c realises dCpx1, x2q, we
have |b| ď |c|, so r ě |χ1| ` |χ2| ´ 2pL ` m ` 1q. □

A metric space pY, dq is said to be four-point hyperbolic with constant δ if for every
x1, x2, x3, x4 P Y we have dpx1, x2q ` dpx3, x4q ď δ ` maxtdpx1, x3q ` dpx2, x4q, dpx1, x4q `

dpx2, x3qu.
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Figure 3. Lemma 5.5. χ is a union of “corners”.

Proposition 5.6. If C is an L–separated, m–gluable set of chains, then the metric dC is
four-point hyperbolic with constant 22pL ` m ` 1q.

Proof. Given x1, x2, x3, x4 P X, let χ be a maximal ˆ–chain for them. If dCpxi, xjq and
|χ1|` |χ2| differ by at most 4L`4m`5 for all i, j then we are done. Otherwise we can relabel
so that dCpx1, x2q ě |χ1| ` |χ2| ` 4L ` 4m ` 6. Let c12 P C realise dCpx1, x2q, and let c1

12 be
the subchain consisting of those elements that separate x3 and x4. By Lemma 5.5 we have
|c1
12| ě 2. Perhaps after relabelling x3 and x4, the chain c1

12 separates tx1, x3u from tx2, x4u.
Now let c13 P C realise dLpx1, x3q. If |c13| ´ |χ1| ´ |χ3| ą 3L ` 2m ` 3, then Lemma 5.5

implies the existence of a subchain c1
13 of length L ` 1 whose elements all separate tx1, x4u

from tx2, x3u, and hence cross every element of c1
12, which contradicts the assumption that

C is L–separated. A similar argument shows that if c24 P C realises dCpx2, x4q, then |c24| ´

|χ2| ´ |χ4| ď 3L ` 2m ` 3. In the other direction, we can apply Lemma 5.3 to χ1 and χ3,
and similarly to χ2 and χ4. This shows that dCpx1, x3q ` dCpx2, x4q and |χ| differ by at most
2p3L ` 2m ` 3q ` 2pL ` m ` 1q.

Now let c34 P C realise dCpx3, x4q, and let c1
34 be the subchain consisting of those elements

that separate x1 from x2. By applying Lemma 5.3 twice to each of the pairs pc1
12, c34 ∖ c1

34q

and pc1
34, c12∖c1

12q, one finds that |c1
12| and |c1

34| can differ by at most 2pL`m`1q. Combining
with Lemma 5.5, one can then compute that dCpx1, x2q ` dCpx3, x4q differs from |χ| ` 2|c1

12|

by at most 10pL ` m ` 1q.
Finally consider the analogously defined c14, c

1
14, c23, and c1

23. Both of these are treated
the same, so let us just consider the former. Because c1

12 separates x1 from x4, we can use
Lemma 5.3 to see that |c1

14| ě |c1
12|´2pL`m`1q. If |c1

14| ď L, then certainly |c1
14| ď |c1

12|`L,
so suppose otherwise. If c1

14 separates x1 from x3 then its elements all cross c1
12, which

contradicts the fact that c1
12 P C. Hence c1

14 separates x1 from x2. By Lemma 5.3 we thus
have |c1

12| ě |c1
14| ´ 2pL ` m ` 1q. We have shown that |c1

14| differs from |c1
12| by at most

2pL ` m1q.
By a similar argument to above, Lemma 5.5 now lets us show that dCpx1, x4q ` dCpx2, x3q

differs from |χ| `2|c1
12| by at most 12pL`m`1q. The result follows by combining the various

estimates. □

Together with Proposition 4.6, this shows that XC is hyperbolic in the appropriate sense
for non-geodesic spaces (cf. [PSZ22, Prop. A.2]).

Corollary 5.7. If C is a separated, gluable system of chains, then XC is a roughly geodesic
hyperbolic space.
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Since four-point hyperbolicity passes to subsets, S Ă X is four-point hyperbolic. However,
four-point hyperbolicity is rather weak on its own, so it is interesting to know when pS, dCq is
roughly geodesic. One can also ask the a priori stronger question of when S is coarsely dense
in X. The following proposition shows that these two properties are in fact equivalent.

Proposition 5.8 (Coarsely dense). Let C be an L–separated, m–gluable system of chains. If
pS, dCq is k–weakly roughly geodesic, then S is p3k ` 4pL ` m ` 1qq–coarsely dense in XC.

Proof. Let x P XC . Pick an arbitrary point s P S, and let c P C realise dCps, xq. If |c| ď

3k ` 4pL`m` 1q, then we are done, so assume otherwise. Because c is a finite chain, there is
some t P S that is separated from s by every element of c. Let b P C realise dCpt, xq. Again, we
can assume that |b| ą 3k`4pL`m`1q. Because S is k–weakly roughly geodesic, there exists
s1 P S such that dCps, s1q ď |c| ` k and dCps1, tq ď dCps, tq ´ |c| ` k ď |b| ` k. See Figure 4.

No element of c separates x from t, whereas every element of b separates x from t. Therefore,
by Lemma 5.3 there is some a Ă bY c with a P C and |a| ě |b| ` |c| ´L´m´ 1. In particular,
the fact that dCps1, tq ď |b| ` k implies that all but at most k ` L ` m ` 1 elements of c must
separate s1 from s. Let cs Ă c consist of those elements that do separate s from s1.

Let c1 P C realise dCps1, xq. Consider the subset c1
s Ă c1 consisting of those elements that do

not separate s from s1. We can apply Lemma 5.3 to the pair pcs, c
1
sq to obtain an element of C

that separates s from x and has cardinality at least |cs| ` |c1
s| ´ L ´ m ´ 1. Because c realises

dCps, xq, this implies that |c1
s| ď k ` 2pL ` m ` 1q.

Figure 4. Proposition 5.8. The chain c realises dCps, xq, yielding t, and then b
realises dCpt, xq. Weak rough geodesicity gives s1, and c1 realises dCps1, xq.

Finally, consider c1 ∖ c1
s P C. Every element of this chain separates ts, xu from s1, so we

can apply Lemma 5.3 to the pair pcs, c
1 ∖ c1

sq to find an element of C that separates s from s1

and has cardinality at least |cs| ` |c1 ∖ c1
s| ´ L ´ m ´ 1. From the fact that dCps, s1q ď |c| ` k,

we deduce that |c1 ∖ c1
s| ď 2pk ` L ` m ` 1q. We therefore have |c1| ď 3k ` 4pL ` m ` 1q,

completing the proof. □
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In practice it can often be verified from additional information about the pair pS, P q that
pS, dCq is weakly roughly geodesic. Proposition 5.8 then shows that working with pS, dCq is
largely the same as working with pX, dCq, though the latter has the advantage that it has
better fine properties, as illustrated by Section 4.

The following example shows how S can fail to be weakly roughly geodesic or coarsely dense
in pX, dCq.

Example 5.9. Let S be a copy of the real line, and identify S with a horocycle in the
hyperbolic plane H2. Let P be the set of partitions obtained from the set of all H2 geodesics
intersecting S by viewing each such geodesic as dividing H2 into two halves. Let C be the
set of chains such that each pair of defining geodesics is at H2–distance at least 1. With this
system, the metric dC on S is quasiisometric to the subspace metric from H2.

5.2. Graded systems

In [PSZ22], a key step in producing the curtain model of a CAT(0) space is the resolution
of an infinite sequence of increasingly informative hyperbolic models into a single hyperbolic
space. The goal of this section is to give that procedure a more general framing, which will
be useful in Section 6.

Definition 5.10 (Graded system). A sequence pCRq of dualisable systems on pS, P q is said
to be a graded system on pS, P q if there are numbers LR ě 1, mR ě 0 and a sequence
pκRq Ă p0,8q such that the following hold.

‚ CR Ă CR`1 for all R.
‚ CR is an LR–separated, mR–gluable system of chains for each R.
‚ For each s, t P S there exists Mst such that for every sequence pcRq with cR P CR
separating s from t, we have

ř8
R“1 κR|cR| ď Mst.

Note that if we assume LR to be minimal such that CR is LR–separated, then the condition
that CR Ă CR`1 implies that LR`1 ě LR, but we could potentially have mR`1 ă mR.

Recall that X̂ denotes the set of all ultrafilters defined by P . If pCRq is a graded system,
then the constructions of Section 3 produce a sequence of metric spaces XR “ pXCR , dCRq,
which will be hyperbolic by the results of Section 5.1. However, the sets XR in general will
be getting smaller (setwise, whilst the metric grows) as R increases, because as CR gets larger
the condition that dCps, xq ă 8 becomes more stringent. We unify these spaces as follows.

The graded dual. Given a graded system pCRq on pS, P q, let pλRq be a sequence of positive
numbers such that λR ď κR and

ř8
R“1 λRpLR ` mR ` 1q “ Λ ă 8. Consider the extended

metric on X̂ ˆ X̂ given by

Dpx, yq “

8ÿ

R“1

λR dRpx, yq.

The graded dual of S with respect to pCRq is the space X “ tx P X̂ : Dps, xq ă 8 for all s P

Su, equipped with the metric D.

The final assumption in the definition of a graded system is what ensures that Dps, tq ă 8

for all s, t P S.

Remark 5.11. If x P X then certainly x P XR for every R, but it can happen thatX is a strict
subset of

Ş8
R“1XR. For instance, if S is the region of the euclidean plane bounded between the

x-axis and a sufficiently slowly growing sublinear function, P is the set of partitions induced
by CAT(0) curtains, and CR is as in [PSZ22], then any ultrafilter extending the filter defined
by the unique CAT(0) boundary point of S lies in every XR but not in X.
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Definition 5.12 (Perichain). Given a graded system pCRq on pS, P q, a perichain c̄ is a choice
of element cR P CR for each R. A ˆ–perichain is a choice of ˆ–chain χR from CR for each R.

For a perichain c̄, write }c̄} “
ř

λR|cR|. Note that if cR realises dRpx, yq for all R, then
}c̄} “ Dpx, yq.

Lemma 5.13. Let pCRq be a graded system. If c̄ is a perichain realising Dpx1, x2q and χ̄ is a
maximal ˆ–perichain for x1, x2, x3, x4, then

}χ̄1} ` }χ̄2} ´ 2Λ ď }c̄1} ď }χ̄1} ` }χ̄2} ` 4Λ,

where c1R Ă cR consists of all elements of cR not separating x3 from x4.

Proof. Apply Lemma 5.5 for each R. □

The proof of the following proposition is similar to that of Proposition 5.6, but one has to
ensure some compatibility along the terms of the graded system.

Proposition 5.14. If pCRq is a graded system, then pX,Dq is four-point hyperbolic, with
constant 16Λ.

Proof. Fix x1, x2, x3, x4 P X, and let χ̄ be a maximal ˆ-perichain for them. For each distinct
i, j, k, let SRp1i|jkq be the cardinality of a maximal element of CR separating tx1, xiu from
txj , xku. Observe that since CR is LR–separated, at most one of the SRp1i|jkq can be greater
than 2LR for any given R.

Suppose that i is such that there is no value of R for which SRp1i|jkq ą 2LR. Let c̄jk be a
perichain realising Dpxj , xkq, and let b̄jk be the subperichain consisting of all elements of c̄jk
that either separate xj from all three other xl or separate xk from all three other xl. We have
}b̄jk} ě }c̄jk} ´ 2Λ. According to Lemma 5.13, this gives

}χ̄j} ` }χ̄k} ´ 2Λ ď Dpxj , xkq ď }χ̄j} ` }χ̄k} ` 6Λ.(1)

We similarly have the corresponding inequality for Dpx1, xiq.
If there is no i for which there is some value of R for which SRp1i|jkq ą 2LR, then the

inequality (1) holds for all pairs pxj , xkq. This implies the four-point inequality with constant
8Λ.

Otherwise, let R0 be minimal such that some SR0p1i|jkq ą 2LR0 . After relabelling, we
may assume that i “ 2. In other words, there is an element of CR0 of length greater than
2LR0 that separates x1 and x2 from x3 and x4. Because CR0 Ă CR for all R ě R0, we
can apply LR–separation to a pair of walls in a chain realising SR0p12|34q to see that if
R ě R0 then maxtSRp13|24q, SRp14|23qu ď LR. In particular, minimality of R0 means that
maxtSRp13|24q, SRp14|23qu ď 2LR for all R. Thus inequality (1) holds for the pairs px1, x2q

and px3, x4q.
We now bound the distance between each of the other four pairs of points. The argument

is the same for each, so for ease of notation we shall work with the pair px1, x3q. By applying
Lemma 5.3 twice, we see that dLpx1, x3q ě |χR

1 | ` |χR
3 | ` SRp12|34q ´ 2pLR ` mR ` 1q, and

hence

}χ̄1} ` }χ̄3} `

8ÿ

R“1

λRS
Rp12|34q ´ 2Λ ď Dpx1, x3q.

On the other hand, let cR13 P CR realise dRpx1, x3q, and let bR13 be the subset consisting of
those walls that do not separate x2 from x4. By Lemma 5.3, after removing at most LR`mR`1
elements from each of χR

2 and χR
4 and at most 2pLR `mR `1q elements of bR13, we are left with



CONSTRUCTING METRIC SPACES FROM SYSTEMS OF WALLS 24

a ˆ-chain. By maximality of χ̄, it follows that |χR| ě |χR
2 | ` |χR

4 | ` |bR13| ´ 4pLR ` mr ` 1q,
or in other words that

|bR13| ď |χR
1 | ` |χR

3 | ` 4pLR ` mR ` 1q.

Every element of cR13 ∖ bR13 either separates tx1, x2u from tx3, x4u, or separates tx1, x4u from
tx2, x3u. But SRp14|23q ď 2LR, and so |cR13 ∖ bR13| ď SRp12|34q ` 2LR. Hence for every R we
have

dRpx1, x3q ď |bR13| ` SRp12|34q ` 2LR ď |χR
1 | ` |χR

3 | ` SRp12|34q ` 6pLR ` mR ` 1q.

In tandem with the above lower bound on Dpx1, x3q, summing this yields

}χ̄1} ` }χ̄3} `

8ÿ

R“1

λRS
Rp12|34q ´ 2Λ ď Dpx1, x3q ď }χ̄1} ` }χ̄3} `

8ÿ

R“1

λRS
Rp12|34q ` 6Λ.

As noted, the same argument holds for each of the pairs px1, x4q, px2, x3q, and px2, x4q. The
four-point inequality for x1, x2, x3, x4 follows, with constant 16Λ. □

Proposition 5.15. If pCRq is a graded system such that the sequence pmRq is bounded above
by some number M , then pX,Dq is 4MΛ–weakly roughly geodesic.

Proof. Given x, y P X, let R0 be sufficiently large so that
ř

RąR0
λR dRpx, yq ď Λ. Let σxy

be the normal wall path in pXR0 , dR0q from x to y, as constructed in Section 4, and write
zi “ σxypiq. We do not know exactly how D compares with dR0 on X, so this path could
a priori fail to be a rough geodesic of X, but we shall nonetheless use it to show that X is
weakly roughly geodesic. This will be a consequence of the following observations, which are
built into the definition of the zr.

‚ Every element of P separating x from zr separates x from tzr, yu.
‚ Every element of P separating zr from zr`1 separates tx, zru from tzr`1, yu.
‚ Every element of P separating zr from y separates tx, zru from y.

First observe that these imply that zr is indeed an element of X, because we must have
Dpx, zrq ď Dpx, yq ă 8, and x lies at finite distance from S. In order to establish the
proposition, it suffices to bound Dpzr, zr`1q and Dpx, zrq ` Dpzr, yq ´ Dpx, yq.

For the latter, note that for each R we can apply Lemma 5.3 to find that dRpx, yq ě

dRpx, zrq ` dRpzr, yq ´ LR ´ mR ´ 1. Summing over R, we find that Dpx, yq ě Dpx, zrq `

Dpzr, yq ´ Λ, as desired.
It remains to bound Dpzr, zr`1q. We know from Proposition 4.6 that dR0pzr, zr`1q ď 1 `

2mR0 ď 1 ` 2M . Because CR Ă CR`1 for all R, this implies that dRpzr, zr`1q ď 1 ` 2M for
all R ď R0. On the other hand, if R ą R0, then by the above observations we have that
dRpx, yq ě dRpzr, zr`1q. We can therefore compute

Dpzr, zr`1q “

R0ÿ

R“1

λR dRpzr, zr`1q `
ÿ

RąR0

λR dRpzr, zr`1q

ď

R0ÿ

R“1

λRp1 ` 2Mq `
ÿ

RąR0

λR dRpx, yq ď 4MΛ. □

Remark 5.16. It follows that in the situation of Proposition 5.15, pX,Dq is a coarsely injec-
tive, hence roughly geodesic, hyperbolic space [PSZ22, Prop. A.2]. Moreover, in the proof of
Proposition 5.15, we showed that given x, y P X, there is some R such that the normal wall
path in XR from x to y is a uniform weak rough geodesic in X. We therefore have a posteriori
that these paths are uniform rough geodesics in X.
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As in Section 5.1, it is also desirable to know that the original set S is a roughly geodesic
hyperbolic space with respect to the metric D. Interestingly, in contrast to Proposition 5.8, it
is uncertain whether pS,Dq being roughly geodesic is equivalent to its being dense in pX,Dq.

Part 2. Applications

6. A universal hyperbolic space for contracting geodesics

The goal of this section is to construct, for a given geodesic space S, a hyperbolic space
X with the property that every strongly contracting quasigeodesic in S is witnessed as a
(parametrised) quasigeodesic in X. Any quasigeodesic in S can be perturbed to one whose
image is a closed subset of S, so we shall always assume that quasigeodesics are closed. In
particular, this means that every point in S has a nonempty set of closest points in each
quasigeodesic.

Definition 6.1 (Strongly contracting). Let α be a quasigeodesic in a geodesic space S. Given
x P S, let παpxq be the (nonempty) set of closest points in α to x. We say that α is D–strongly
contracting if for any ball B Ă S disjoint from α we have diampπαpBqq ă D.

If α is strongly contracting, then although πα may send points to sets of cardinality greater
than one, the image of a point has bounded diameter. For a set I Ă α, we write π´1pIq to
mean the set of all points x P S such that παpxq Ă I.

For the remainder of this section, fix a geodesic space S. In order to apply the methods
of the previous sections, we need two things: a good set of bipartitions of S, and a choice of
which collections of bipartitions should be counted. As an intermediate step towards these
goals, we consider a natural collection of subspaces of S, which we call curtains, in analogy
with [PSZ22].

Definition 6.2 (Curtains). Suppose that α is a D–strongly contracting geodesic of length
20D, with D ě 1. A curtain dual to α is a set π´1

α pIq, where I Ă α is a subgeodesic of length
10D not containing any endpoint of α.

Let us write CurS for the set of all curtains in S. That is, CurS contains every curtain
dual to every D–strongly contracting geodesic in S, for every D ě 1. Note that CurS may
very well be empty: this happens if S has no strongly contracting geodesics.

The fact that we only consider strongly contracting geodesics in the construction of curtains
is justified by the following well-known lemma.

Lemma 6.3. A q-quasigeodesic α is strongly contracting if and only if there is a constant D1

such that the following hold.
‚ For every x P S we have diamπαpxq ď D1.
‚ For every x, y P S with dpπαpxq, παpyqq ą 20D1, and for every geodesic β from x to y,
every subpath of α from παpxq to παpyq lies in the 5D1–neighbourhood of β.

Proof. The forward direction is given by [CS15, Lem. 4.5]. For the reverse direction suppose
that the two conditions hold for the q–quasigeodesic α, and let B “ Bpx, rq be a ball in S
that is disjoint from α. If diamπαB ą 50D1, then by the first assumption there is some y P B
such that dpπαpxq, παpyqq ą 20D1. Let β be a geodesic from x to y, and let z P παpxq. By the
second assumption, β comes 5D1–close to both z and παpyq. But then the length of β must
be at least pdpx, zq ´ 5D1q ` 20D1 ´ 5D1 ą dpx, zq, which implies that z P B, in conflict with
the choice of B. Thus α is 50D1–strongly contracting. □
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Every curtain h has two nonempty halfspaces, h` and h´: if h is dual to the strongly
contracting geodesic α at an interval I, then they are the sets of points x such that παpxq

intersects one of the two components of the complement of I in α. Note that the choice of
length of I means that x P X cannot simultaneously be in h` and h´, and in particular,
th´, h, h`u is a tripartition of S. More strongly, we have dph´, h`q ě 3D ą 1. Note that this
“thickness” increases with the contracting constant.

We say that h separates two points or subsets of S if they lie in opposite halfspaces of h.
A chain of curtains is then a sequence phiq such that hi separates hi´1 from hi`1 for all i.

Definition 6.4 (Ball-separation). For a natural number R, we say that disjoint curtains h1
and h2 are R–ball-separated if there exists a ball B Ă h`

1 Xh´
2 with radius at most R and such

that every geodesic from h´
1 to h`

2 meets B.
An R–chain is a chain phiq of curtains such that hi and hj are R–ball-separated for all i, j.

We say that an R–chain phiq crosses a curtain k if all four quarterspaces h˘
i X k˘ are

nonempty for all i.

Lemma 6.5. If curtains k1 and k2 are R–ball-separated, then every R–chain crossing both k1
and k2 has length at most 3R ` 5.

Proof. Let B be a ball of radius at most R such that every geodesic from k´
1 to k`

2 passes
through B. Let c “ ph1, . . . , h2n`R`1q be an R–chain that crosses both k1 and k2. Because
dph´

i , h
`
i q ě 1 for each i, at most R ` 1 elements of c can intersect B. After switching the

order of the hi, we therefore have that h1, . . . , hn are all disjoint from B, and B Ă h`
n .

 

Figure 5. Lemma 6.5. Geodesics from x to y have to pass through two balls of
radius R.

Since h1 and h2 are R–ball-separated, there is a ball B1 of radius at most R such that every
geodesic from h´

1 to h`
2 must pass through B1. Because h1 crosses both k1 and k2, there are

points x P h´
1 X k´

1 and y P h´
1 X k`

2 . If α is a geodesic from x to y, then α must meet B. Let
z P B X α, and let α1 “ αrx, zs, α2 “ αrz, ys. Both α1 and α2 must pass through B1. But
diamB1 ď 2R, so the subsegment of α lying in h`

2 must have length at most 2R. Because
z P h`

n and dph´
i , h

`
i q ě 1, it follows that n ď R ` 2. □

The universal space. Each curtain h P CurS induces two natural bipartitions of S, namely
ph´ Y h, h`q and ph´, hY h`q. We let P be the set of all bipartitions of S induced by curtains
in this way (different curtains can induce a common bipartition). Let CR be the set of all
chains thiu Ă P such that there exists an R–chain phiq Ă CurS with hi inducing hi.
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According to Lemma 6.6 below, the sequence pCRq is a graded system. For each R, let XR

be the CR–dual of S. Let X be the graded dual of S with respect to pCRq.

Lemma 6.6. The sequence pCRq defined above is a graded system on pS, P q, and each CR is
3–gluable.

Proof. Every element of CR is induced by a chain of curtains, and is therefore itself a chain from
P . If a pair of curtains is R–ball-separated then it is pR ` 1q–ball-separated, so CR Ă CR`1.
Lemma 6.5 provides separation of the CR. It remains to check that CR is 3–gluable and to
find an appropriate sequence pκRq as in Definition 5.10.

For the latter, note that since dph´, h`q ě 1 for every h P CurS, if c P CR separates s P S
from t P S, then |c| ď dps, tq ` 2. This means we can take κR “ 1

R2 , for instance.
To show that CR is 3–gluable, suppose that c1, c2 P CR are such that c1 Y c2 is a chain

with c2 Ă c`
1 and c1 Ă c´

2 . Let h´1, h´2 be the two maximal elements of c1, and let k1, k2, k3
be the three minimal elements of c2. Let phiq be an R–chain inducing c1, and let pkiq be an
R–chain inducing c2. Let B be a ball of radius at most R such that every geodesic from k´

2

to k`
3 meets B.

Since pkiq is a chain of curtains, k2 Ă k`
1 . Also, the fact that th´1, k1u is a chain in P implies

that h´
´1 Ă k1 Y k´

1 . Hence k2 is disjoint from h´
´1. In particular, k2 is disjoint from h´2.

Moreover, any geodesic from h´
´2 to k`

3 is a geodesic from k´
2 to k`

3 , so any such geodesic meets
B. That is, h´2 and k3 are R–ball-separated curtains. We conclude that phiqiď´2 Y pkjqjě3 is
an R–chain, and hence c1 Y c2 ∖ th´1, k1, k2u P CR. □

In view of Propositions 5.14 and 5.15, we therefore have that X is a roughly geodesic
hyperbolic space (see also Remark 5.16). According to the following proposition, one could
also work in the roughly geodesic hyperbolic space pS,Dq if preferred.

Proposition 6.7. With the subspace metric D, the set S Ă X is weakly roughly geodesic.
Moreover, geodesics of pS, dq are uniform unparametrised rough geodesics of pX,Dq.

Proof. If s1, s2 P S have dps1, s2q ď 2, then Dps1, s2q ď Λ, where Λ is as in Section 5.2. Hence
it suffices, given r, t P S and s lying on an pS, dq–geodesic α from r to t, to upper bound
Dpr, sq ` Dps, tq ´ Dpr, tq. This will also imply the “moreover” statement. Let c̄ “ pcRq be a
perichain realising Dpr, sq. Let cRs be the subset of cR that does not separate r from t. We
first show that |cRs | ď R ` 3.

For this, fix R, let phiq be an R–chain of curtains inducing cR, and let h1, . . . , hn be the
curtains inducing cRs , with increasing index signifying increasing distance from s. Whilst we
may have s P h1, we certainly have s P h´

2 . Similarly, r, t P h`
n´1. Let B be a ball of radius

at most R such that every geodesic from h`
n´1 to h´

n´2 must meet B. In particular, αrr, ss

and αrs, ts both meet B. Because h2, . . . , hn´2 all separate B from s, and dph´
i , h

`
i q ě 1, we

therefore have n ď R ` 3, as desired.
Because of this, we can find perichains b̄1 and b̄2 such that b̄1 separates r from ts, tu and b̄2

separates t from ts, ru, such that Dpr, sq ď }b̄1}`Λ and Dps, tq ď }b̄2}`Λ. Applying Lemma 5.3
in each CR, we have Dpr, tq ě }b̄1} ` }b̄2} ´Λ, and hence Dpr, tq ě Dpr, sq `Dpr, tq ´ 3Λ, which
completes the proof. □

The following theorem characterises strongly contracting quasigeodesics of S as those that
quasiisometrically embed in X. In particular, it shows that the existence of a strongly con-
tracting ray in pS, dq is sufficient for pS,Dq Ă X to be unbounded.

Theorem 6.8. Given a geodesic space S, let X be the hyperbolic space constructed above.
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For each q,D there exists ν such that if α is a D–strongly contracting q–quasigeodesic in
S, then α Ñ X is a ν–quasiisometric embedding.

Conversely, for each q, ν there exists D such that if α is a q–quasigeodesic in S with the
property that α Ñ X is a ν–quasiisometric embedding, then α is D–strongly contracting.

Proof. Let α : r0, T q Ñ S be a D–strongly contracting q–quasigeodesic, with T P r0,8s.
By considering a geodesic from αp0q to αpnq for each possible n, Lemma 6.3 tells us that
there is R “ RpD, qq such that there are R–chains of curtains separating points of α, the
cardinality of which is uniformly linearly lower bounded in terms of R and n. Thus α Ñ XR

is a quasiisometric embedding. It follows from the construction of D that α Ñ X is also a
quasiisometric embedding. This establishes the forward direction of the theorem.

Now let us consider the converse. Let Λ be as in Section 5.2. We may assume that q, ν,
and Λ are positive integers. Write K “ 2qνΛ. Let α be a q–quasigeodesic in S such that
α Ñ X is a ν–quasiisometric embedding. After perturbing α, we can coarsely cover it by a
sequence pxnq Ă α such that dpxn, xn`1q “ 30K2.

As α Ñ X is a ν–quasiisometric embedding, we have Dpxn, xn`1q ě 50KΛ. By definition
of Λ and the fact that the separation constant LR of CR, coming from Lemma 6.5, is at least
R, there must be some R such that dCRpxn, xn`1q ě 50KR. Hence there is an R–chain of
curtains phn1 , . . . , h

n
50KR´2q separating xn from xn`1. The fact that dph´, h`q ě 1 for every

h P CurS now implies that 50KR ´ 2 ď dpxn, xn`1q “ 30K2, and hence R ď K.
By repeatedly applying Lemma 5.3, and recalling that CK is 3–gluable, we obtain an element

c P CK by taking the union of all phni q and removing at most 2pLK ` 4q from each. By
Lemma 6.5, this leaves at least two elements of phni q in c for each n. Fix a choice of two, and
label them hn, kn, with hn separating xn from kn.

Because hn and kn are K–ball-separated, there is some ball Bn of radius at most K such
that every geodesic from h´

n to k`
n must meet Bn. The subsegment of α from xn to xn`1 has

diameter at most 50K2q3, because α is a q–quasigeodesic. Let γn be a geodesic from xn to
xn`1. It meets Bn. Let γ “

Ť
nPZ γn, which lies at Hausdorff-distance at most 100K2q3 from

α. We aim to apply Lemma 6.3 to find that γ, and hence α, is strongly contracting.

Figure 6. Theorem 6.8. xn and xn`1 are distant points along α, separated by
thn, knu P CK . The path γ is a piecewise geodesic, and any geodesic δ from s to a

projection t P πγpsq X hń passes through Bn.

First we show that points of S have uniformly bounded projection to γ. Given s P S, let
n be maximal such that s P k`

n . If there is a point t P πγpsq lying in h´
n , then any geodesic
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δ from s to t must meet Bn, so δ comes 2K–close to γ at some point in Bn, and hence t is
2K–close to Bn. Similarly, if m is minimal such that s P h´

m, then any point of πγpsq lying in
k`
m is 2K–close to Bm. The choices of m and n ensure that m P tn ` 1, n ` 2u. In particular,
the piecewise geodesic γn Y γn`1 Y γn`2 meets both Bn and Bm, so

diamπγpsq ď 2K ` diamBn ` |γn| ` |γn`1| ` |γn`2| ` diamBm ` 2K ď 100K2.

Moreover, as dph´, h`q ě 1 for every h P CurS, we observe that no point of πγpsq can be
separated from s by more than 2K ` 2 of the hi, because points of πγpsq that lie in h´

n are
2K–close to Bn, which meets h`

n and has diameter at most 2K, and similarly points of πγpsq

that lie in h`
m`1 Ă k`

m are 2K–close to Bm.
It remains to establish the second condition of Lemma 6.3. Suppose that s1, s2 P S have

dpπγps1q, πγps2qq ą p10Kq3 ě 10pK ` 1q|γi|, and let β be a geodesic in S from s1 to s2. Let
a be minimal such that s1 P h´

a , and let b be maximal such that s2 P k`
b . Perhaps after

swapping s1 and s2, the lower bound on dpπγps1q, πγps2qq implies that b ´ a ą 5pK ` 1q,
because γi is a geodesic from xi P h´

i to xi`1 P k`
i . Thus the above observation yields that

ha`2K`2, ka`2K`2, . . . , hb´2K´2, kb´2K´2 all separate ts1u Y πγps1q from ts2u Y πγps2q.
We deduce from this that for any subpath δ of γ from πγps1q to πγps2q, both β and δ meet

all of Ba`2K`2, . . . , Bb´2K´2. In particular, the intersection of δ with the “middle” region
h`
a`2K`2 X k´

b´2K´2 of S lies in a neighbourhood of β of radius at most |γi| `diamBi ď 50K2.

The two “end” regions S ∖ h`
a`2K`2 and S ∖ k´

b´2K´2 are treated similarly, so let us just
consider the former. By minimality of a, the above observation implies that every point of
πγps1q lies in h`

a´2K´4. Since we know that β meets Ba`2K`2, this implies that the intersection
of δ Ă γ with this region lies in a neighbourhood of β of radius at most diamBa`2K`2 `řa`2K`2

i“a´2K´4 |γi| ď p10Kq3.
We have shown that the conditions of Lemma 6.3 are met by γ, so it is strongly contracting.

Since γ and α lie at a bounded Hausdorff-distance, α is also strongly contracting.
□

Remark 6.9. The assumption that α is a quasigeodesic in S is essential for the converse
direction of Theorem 6.8. For instance, if, as in Remark 5.11, S is the region of the euclidean
plane bounded between the x–axis and a sufficiently slowly growing sublinear function, then
X will be a quasiray even though no ray in S is strongly contracting. But in this example no
geodesic ray in S is quasiisometrically embedded in X.

Next we show that, for isometries, being strongly contracting can be detected by just looking
at pairs of curtains.

Definition 6.10. An isometry g P IsomS is strongly contracting if there exist D, q and s P S
such that xgy ¨ s is a D–strongly contracting q–quasigeodesic in S.

We say that an isometry g skewers a pair of disjoint curtains h1, h2 if there exists n such
that gnh`

1 Ĺ h`
2 Ĺ h`

1 .

Corollary 6.11. If g P IsomS has quasiisometrically embedded orbits in S, then the following
are equivalent.

(1) g is strongly contracting.
(2) g skewers a pair of ball-separated curtains.
(3) g acts loxodromically on X.

Proof. Theorem 6.8 shows that (1) and (3) are equivalent.
Assume that g acts loxodromically on X. Let s P S and let n be sufficiently large that

Dps, gnsq ą 10Λ. In particular, by definition Λ ě
ř

λRpLR ` 1q, there must be some R for
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which dRps, gnsq ě LR ` 9. That is, there is some c “ th1, . . . , hku P CR separating s from
gns, with k ě LR ` 9.

Consider gnc P CR, and recall from Lemma 6.6 that CR is 3–gluable. According to
Lemma 5.3, there is some b Ă cYgnc, obtained by removing a subset of thk´3, hk´2, hk´1, hk, g

nh1, . . . , g
nhLR`4u

of cardinality at most LR `4, such that b separates s from gns. Repeating this inductively, we
find that tgmnhLR`5, . . . , g

mnhk´4u P CR separates grns from gtns for all r ď m and all t ą m.
In particular, if phiq is a chain of curtains inducing thiu, then g2n skewers the ball-separated
curtains hk´4, g

nhk´4. Thus (3) implies (2).
Finally, suppose that g skewers a pair of R–ball-separated curtains h and k. Because h and

k are R–ball-separated, pgnmhqmPZ is an R–chain of curtains. In particular, for any s P S we
have dCRps, gnmsq ě m´2. This shows that g act loxodromically on X, so (2) implies (3). □

More strongly, for any group G acting properly on S, we show that the action of G on X
is weakly proper along the axis of each strongly contracting element.

Definition 6.12 (WPD). Let G be a group acting on a hyperbolic space Y . An element
g P G is WPD if there is a point x P Y such that for each ε ą 0 there exists m ą 0 for which
only finitely many h P G satisfy both dpx, hxq ă ε and dpgmx, hgmxq ă ε.

Proposition 6.13. Suppose that a group G acts properly on S. If g P G is strongly contract-
ing, then g is a WPD loxodromic for the action of G on X.

Proof. Fix s P S and let ε ą 0. By definition, g being strongly contracting implies that it
has quasiisometrically embedded orbits in S, so by Corollary 6.11, g acts loxodromically on
X. In particular, there exists m such that Dps, gmsq ě 2ε ` 2Λ. Let c̄ “ pcRq be a perichain
realising Dps, gmsq.

If h P G has the property that at most 2R ` 3 elements of cR separate hs from hgms for
every R, then for every R all but at most 2R ` 3 elements of cR either separate s from hs or
separate gms from hgms (or both). For such an element h, we therefore have

Dps, hsq ` Dpgms, hgmsq ě

8ÿ

R“1

λRp|cR| ´ 2R ´ 3q ě }c̄} ´ 2Λ ě 2ε.

This shows that if h P G satisfies Dps, hsq ď ε and Dpgms, hgmsq ď ε, then there is some R
for which at least 2R ` 4 elements of cR separate hs from hgms. Letting phiq be an R–chain
of curtains inducing the subset of cR separating hs from hgms, we see that there is a ball
B Ă S of radius at most R such that every geodesic from h´

R`2 to h`
R`3 must meet B, where

s, hs P h´
R`2 and gms, hgms P h`

R`3.
Let γ Ă S be a geodesic from s to gms. We have shown that hγ comes 2R–close to γ.

Moreover, because every h P CurS has dph´, h`q ě 1, we must have dps, gmsq ě 2R ` 4.
Hence

dps, hsq ď |γ| ` 2R ` |gγ| ď 3 dps, gmsq.

But the action of G on S is proper, so there are only finitely many such elements h. □

Next we extend Proposition 6.13 by showing that, in the terminology of [BCK`23], for
many S the hyperbolic space X is a universal recognising space for stable subgroups of groups
acting geometrically on S.

Definition 6.14 (Morse, stable). Given a function M : R2 Ñ R, we say that a geodesic α
in a metric space is M–Morse if every pλ, µq–quasigeodesic with endpoints on α lies in the
Mpλ, µq–neighbourhood of α.
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A finitely generated subgroup H of a finitely generated group G is stable if its inclusion
map is a quasiisometric embedding and there exists M : R2 Ñ R such that every geodesic in
G between points of H is M–Morse.

For example, strongly contracting geodesics are always Morse, but the reverse can fail
[RV21]. In many spaces, though, the two are equivalent [CS15, CW21b, SZ22]. Stability was
introduced by Durham–Taylor [DT15], who showed that it reformulates convex cocompactness
for mapping class groups [FM02]. The curve graph is a universal recognising space for stable
subgroups of mapping class groups [KL08].

Theorem 6.15. Let S be a geodesic space with the property that for each M there exists
D such that every M–Morse geodesic in S is D–strongly contracting. Let X be the hyper-
bolic space constructed above. For any group G acting properly coboundedly on S, a finitely
generated subgroup H ă G is stable if and only if its orbit maps on X are quasiisometric
embeddings.

Proof. Suppose that H is stable in G. Given s P S and g, h P H, each geodesic from gs to hs is
uniformly Morse. By assumption, such a geodesic is therefore uniformly strongly contracting,
so by the construction of CurS and Lemma 6.3 we obtain a sequence of uniformly ball-
separated curtains separating gs from hs at a uniform rate. This shows that there is some R
such that orbit maps of H on XR are uniform quasiisometric embeddings, and it follows that
orbit maps of H on X are uniform quasiisometric embeddings.

Conversely, suppose that orbit maps of H on X are quasiisometric embeddings. Because
H is finitely generated, its orbit maps on S are coarsely Lipschitz. Moreover, the fact that
dph´, h`q ě 1 for every h P CurS implies that the identity map pS, dq Ñ pX,Dq is coarsely
Lipschitz, so orbit maps of H on S are in fact quasiisometric embeddings. In particular,
the inclusion of H in G is a quasiisometric embedding. Furthermore, if s P S then for any
g, h P H, each geodesic α from gs to hs uniformly quasiisometrically embeds in X, so is
uniformly strongly contracting by Theorem 6.8. This shows that H is stable in G. □

7. Strong coarse median spaces

Coarse median spaces were introduced by Bowditch in [Bow13a], providing a general frame-
work for studying groups that display features of median geometry up to controlled error, such
as toral relatively hyperbolic groups [Bow13b] and mapping class groups [BM11], among many
others. As discussed in the introduction, the idea is to take the tree-approximation lemma
for hyperbolic spaces [Gro87], and use a higher-rank version of it as an axiomatisation. We
do this slightly differently to [Bow13a].

Given a metric space S with a ternary operator µ, a subset Y Ă S is said to be k–coarsely
convex if µpy1, y2, sq lies in the k–neighbourhood of Y for all y1, y2 P Y , s P S. A map
f : pS, µq Ñ pT, νq of spaces with ternary operators is called k–quasimedian if fµps1, s2, s3q

lies at distance at most k from νpfs1, fs2, fs3q for all s1, s2, s3 P S.

Definition 7.1 (Strong coarse median). Let S be a geodesic space with a ternary operator
µ. We say that pS, µq is a strong coarse median space if there exist an n and a nondecreasing
function κ such that the following hold.

‚ µ is κp1q–coarsely Lipschitz in each parameter.
‚ For each finite subset A Ă S there is a CAT(0) cube complex Q of dimension at most
n, and maps f : A Ñ Q, g : Q Ñ S such that:

– g is a κp|A|q–quasimedian κp|A|q–quasiisometric embedding.
– Q is the (combinatorial) convex hull of fpAq, and gpQq is κp|A|q–coarsely convex.
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– dpa, gfpaqq ď κp|A|q for all a P A.
We say that S has rank at most n.

The difference between this and the definition of a coarse median space of finite rank is
twofold. Firstly, in coarse median spaces, the map g is only required to be quasimedian, and
need not include any metric information; in the terminology of [Bow19], we are replacing
“quasimorphisms” by “strong quasimorphisms”. Secondly, the complex Q here is approxi-
mating the entire coarse median hull of A, whereas in coarse median spaces it only has to
approximate the coarse subalgebra generated by A. For example, let S be R2 with the ℓ1

median structure. If |A| “ 2, then in a coarse median structure we can always take Q to be a
single (unit) 1–cell, but in a strong coarse median structure, Q will be the (metric) rectangle
spanned by A.

In the rank-one case the two notions define the same objects, namely hyperbolic spaces, by
[Bow13a, Thm 2.1]. Both hierarchically hyperbolic spaces [BHS21] and the spaces considered
in [Bow18a] are strong coarse median spaces.

The following construction appears in [Bow18a, §6], where it is considered for coarse median
spaces more generally.

Definition 7.2 (Median hull). Let S be a strong coarse median space of rank n, and let
A Ă S. The median hull of A, denoted HullA, is the subset JnpAq Ă S, where J0pAq “ A
and Jk`1pAq “ tµpa, b, sq : a, b P JkpAq, s P Su. There is a constant k0 “ k0pκ, nq such that
HullA is k0–coarsely convex for every A Ă S.

It follows from the definition of a strong coarse median space that if A Ă S is finite,
then gpQq lies at a uniform Hausdorff distance from HullA, in terms of k0 and |A|. Hence,
after increasing κ by a controlled amount, we can extend f to a κp|A|q–quasimedian κp|A|q–

quasiisometry f̂ : HullA Ñ Q such that f̂ and g are κp|A|q–quasiinverse.
We shall sometimes write µabc “ µpa, b, cq in order to simplify some expressions. For

instance, the equality µpa, b, µcdeq “ µpµabc, µabd, eq holds in all median algebras, and therefore
the same holds up to a uniform error in terms of κp5q in strong coarse median spaces; see
[Bow18b, §6], [NWZ19, Lem 2.18]. After increasing κ by a controlled amount, we shall
therefore assume that the two above expressions differ by at most κp5q inside S.

7.1. Curtains

Just as in Section 6, we shall go via a set of geometrically defined curtains in order to define
sets P and C of partitions and chains on a strong coarse median space. Throughout this section,
pS, d, µq will be a strong coarse median space of rank n with associated function κ. For each
finite subset A Ă S, fix a choice of g,Q satisfying the assumption of Definition 7.1, and, as
discussed after Definition 7.2, fix a choice of f̂ : HullA Ñ Q. Let k1 “ maxtk0, κp2n`1q, κp5qu.

Definition 7.3 (Curtains). Let a, b P S, and let A “ ta, bu. Let c be a chain of hyperplanes
in Q of length 20nk51 such that d8

Qpc´, c`q “ |c|. Let

h´ “ ts P S : f̂µpa, b, sq P c´u and h` “ ts P S : f̂µpa, b, sq P c`u.

The curtain defined by a, b, c is the set h “ S ∖ ph´ Y h`q, and h´, h` are the halfspaces of h.

A chain of curtains is a sequence phiq of curtains such that hi separates hi´1 from hi`1 for
all i, in the sense that (up to orientation) hi´1 Ă h´

i and hi`1 Ă h`
i .

Remark 7.4. The set of curtains we have constructed depends on the choices of cube complex
approximations of pairs of points in S. In particular, it need not be preserved by IsomS. We
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chose this set of curtains because it is in a sense the most concrete option, and the underlying
arguments of this section do not hinge on the specifics. Here are three natural alternative
choices that would yield IsomS–equivariance with essentially no modification to any of our
proofs.

(1) Declare the set of curtains to be the set of all translates of those defined above.
(2) Fix a constant δ, and consider all cubical approximations (of pairs of points) that have

constant at most δ. Define curtains as above but using all such approximations.
(3) Fix a constant δ, and let K be sufficiently large in terms of δ and the parameters of

X. Define a curtain to be any δ–coarsely convex subset h Ă S with the property that
S∖h can be written as a disjoint union of two nonempty subsets h´ and h` such that
dpHull h´,Hull h`q ą K.

To keep matters simple, we shall proceed with the curtains of Definition 7.3, but in applications
to groups one should use one of these above options.

The next lemma shows that, although the two halfspaces of a curtain could fail to be
coarsely convex, their hulls are well controlled by the cube complex used to define them.

Lemma 7.5. Let h be the curtain defined by points a, b and a chain c of hyperplanes. If
x P Jmph´q, then at most 3mκp5q2 elements of c can separate f̂µpa, b, xq from c´. A similar
statement holds for Jmph`q. In particular, Hull h´ Ă S ∖ h`.

Proof. We proceed by induction. If x P J0ph´q, then by definition no element of c separates

f̂µpa, b, xq from c´. Suppose that we have established the lemma for some value of m, and let
x P Jm`1ph´q. We can write x “ µpy, z, sq for some y, z P Jmph´q and some s P S. We then

have dpµpa, b, xq, µpµaby, µabz, sqq ď κp5q. Since f̂ is a κp2q–quasiisometry, we get

d
`
f̂µpa, b, xq, f̂µpµaby, µabz, sq

˘
ď κp2qκp5q ` κp2q,

and as f̂ is κp2q–quasimedian, the latter point lies at distance at most κp2q from µQpf̂µaby, f̂µabz, f̂sq.
By the inductive hypothesis, at most 3mκp5q2 elements of c separate this point from c´, and

so at most 3pm ` 1qκp5q2 elements of c separate f̂µpa, b, xq from c´. □

The following technical lemma can be viewed as a kind of weak Helly property.

Lemma 7.6. Let h1, . . . , hm be curtains. If the halfspaces h´
i intersect pairwise, then there is

a point z P
Şm

i“1 J
m´1ph´

i q.

Proof. For each j ‰ i, let xij P h´
i X h´

j . We have µpxij , xik, xjkq P J1ph´
i q XJ1ph´

j q XJ1ph´
k q.

By repeating this type of argument (see [HHP23, Lem. 2.18], for instance), one can find a
point z P

Şm
i“1 J

m´1ph´
i q as desired. □

Definition 7.7 (Strong crossing). We say that two curtains h1 and h2 strongly cross if all
four quarterspaces h˘

1 X h˘
2 are nonempty.

Proposition 7.8. Let S be a strong coarse median space of rank n. If h1, . . . , hk are pairwise
strongly crossing curtains, then k ď n.

Proof. Suppose that k “ n ` 1. Let p Ă t1, . . . , n ` 1u, and write ppiq P t`,´u according to

whether or not i P p. By Lemma 7.6, for each such p there is a point zp P
Şn`1

i“1 Jnph
ppiq
i q. Let

A “ tzpu, which has cardinality 2n`1. Let Q be the CAT(0) cube complex approximating A,

with corresponding map f̂ : HullA Ñ Q.
The sets Jnph˘

i q “ Hull h˘
i are k0–coarsely convex, as is HullA. Hence for each i and each

choice of sign, say `, the set B`
i “ HullA X Hull h`

i is k0–coarsely convex. From this, one
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can compute that f̂pB`
i q Ă Q is pk0κp2n`1q ` 3κp2n`1qq–coarsely convex. Because S has

coarse median rank n, we have dimQ ď n, so HullQ f̂pB`
i q lies in the 4nk21–neighbourhood

of f̂pB`
i q. Similarly, HullQ f̂pB´

i q lies in the 4nk21–neighbourhood of f̂pB´
i q. The map f̂ is a

κp2n`1q–quasiisometry, so

dQpf̂pB´
i q, f̂pB`

i qq ě
1

k1
dpHull h´

i ,Hull h
`
i q ´ k1.

Let ai, bi be the points, and ci Ă Qi the chain used to define hi, with corresponding map
f̂i. According to Lemma 7.5, all but at most 6nκp5q2 elements of ci can fail to separate

f̂iµpai, bi,Hull h
´
i q from f̂iµpai, bi,Hull h`

i q. Combining this with the fact that µ is κp1q–

coarsely Lipschitz in each parameter and f̂i is κp2q–coarsely Lipschitz, it follows that

κp1qpκp2q dpHull h´
i ,Hull h`

i q ` κp2qq ` κp1q ě |ci| ´ 6nκp5q2,

and hence dpHull h´
i ,Hull h

`
i q ě 1

k21
|ci| ´ 6n ´ 2 ě 12nk31. Together with the above lower

bounds, we find that

dQpHullQ f̂pB´
i q,HullQ f̂pB`

i qq ě
1

k1
p12nk31q ´ k1 ´ 2p4nk21q

is positive. As the sets HullQ f̂pB˘
i q are convex in the CAT(0) cube complex Q, there is a

hyperplane wi of Q separating the two. In particular, wi separates f̂pzpq from f̂pzqq whenever
ppiq ‰ qpiq. But then the hyperplanes w1, . . . , wn`1 must pairwise cross, which is impossible
because dimQ ď n. □

7.2. The injective dual

We go from curtains to a set of partitions of S as in Section 6. More precisely, each curtain
h induces two natural bipartitions of S, namely ph´ Y h, h`q and ph´, h Y h`q. Let P be the
set of all bipartitions induced in this way.

There are multiple dualisable systems that one can define using P . Here we shall consider
what is perhaps the largest reasonable choice; we shall see more in Section 7.3. That is, we let
C be the set of all chains thiu Ă P such that there is a chain of curtains phiq with hi inducing
hi. Throughout this section, pX, dCq will denote the C–dual of S. Because we are allowing all
chains of curtains, it is easy to see that C is gluable.

Lemma 7.9. C is a 2–gluable system of chains.

Proof. Let c1 “ t. . . , h´2, h´1u and c2 “ tk1, k2, . . . u be elements of C such that t. . . , h´1, k1, . . . u

is a chain, c2 Ă h`
´1, and c1 Ă k´

1 . Let phiq induce c1 and let pkiq induce c2. We have

k2 Ă k`
1 Ă k`

1 Ă h`
´1 Ă h`

´2, and similarly h´2 Ă k´
2 . Hence c1 Y c2 ∖ th´1, k1u P C. □

The results of Section 4 therefore show that X is a coarsely injective space with a good
bicombing by normal wall paths. Normal wall paths are median paths, so it is desirable to
relate the median on X given by Lemma 3.6 to the coarse median on S.

Lemma 7.10. The map S Ñ X is a quasiisometric embedding that is 3–quasimedian.

Proof. Let s, t P S. From the CAT(0) cube complex Q approximating Hullts, tu, we obtain
a chain of curtains separating s from t whose length is linearly lower bounded by dps, tq.
Conversely, because dph´, h`q ě 1 for every curtain h, any element of C separating s from t
can have length at most dps, tq ` 2. Thus S Ñ X is a quasiisometric embedding.
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To show that S Ñ X is quasimedian, let s1, s2, s3 P S, and suppose that h is a curtain with
s1, s2 P h´. Because µSps1, s2, s3q P J1ph´q, Lemma 7.5 tells us that µSps1, s2, s3q R h`. This
shows that any chain of curtains separating µSps1, s2, s3q from the majority of ts1, s2, s3u has
length at most one. Hence S Ñ X is 3–quasimedian. □

Proposition 7.11. Let S be a strong coarse median space of rank n, and let X be the dual
space described above. The image of S in X is coarsely dense.

The proof of this proposition is similar in spirit to that of Proposition 5.8, but is more
complicated for two reasons. Firstly, we only have a coarse median, rather than points that
roughly realise distances. Secondly, the separation property provided by Proposition 7.8 is
weaker than L–separation.

Here is an outline of the argument. Given x P X, we find a sequence of points si P S with
the property that for any c P C separating si from x, only a uniform number of elements
of c can fail to separate x from all sj with j ď i. From this it will follow that if ci P C
realises dCpsi, xq, then the tail of ci either is empty or crosses the tails of all cj with j ă i.
Proposition 7.8 then shows that the tail of cn`1 must be empty, which bounds dCpsn`1, xq.

The most difficult part is the construction of the si. The reason for requiring the above
property involving all j ď i is that we wish to avoid a situation where the chains ci “face”
each other, as in that case there would be no way to make the process terminate. Informally,
we need to ensure that si`1 is not “on the opposite side” of x to si. To do this, we use an
auxiliary point ti P S and “project” x to the hull of tsi, tiu to obtain si`1. This is reminiscent
of the fact that in a CAT(0) cube complex, every wall separating a point z from its gate to
a convex set C actually separates z from all of C. Again, we have to be slightly careful with
this step, because x is not an element of S, so its gate in the sense of Section 3.2 might not
be.

Proof of Proposition 7.11. Fix a sufficiently large constant C, which could be explicitly deter-
mined from the below arguments in terms of n and the parameters of strong coarse median
space S.

Let x P X, and choose an arbitrary point s1 P S. Let c1 P C realise dCps1, xq. If |c1| ď C
then we are done. Otherwise there exists some point t1 P S such that t1 P c`

1 , along with x.
Write A1 “ ts1, t1u and consider the corresponding finite CAT(0) cube complex Q1 “ QpA1q.

Given a curtain h separating s1 from t1 (not necessarily arising from Q1), there are two

convex subcomplexes H´ “ HullQ1pf̂1µps1, h
´, t1qq and H` “ HullQ1pf̂1µps1, h

`, t1qq, which
may overlap. Let h1, h2 P P be walls coming from curtains h1 and h2 that separate s1 from t1,
and suppose that the halfspace xphiq corresponds to either h`

i or h´
i for both i (as opposed

to, say, h`
i Y hi). After relabelling the orientations of the hi, let us assume for concreteness

that xphiq “ h´
i . Since x is a filter, there must be some p P S such that p P h´

1 X h´
2 . We then

have f̂1µpp, s1, t1q P H´
1 XH´

2 . That is, the convex subsets of Q1 corresponding to h´
1 and h´

2
intersect.

Now consider the set P1 Ă P consisting of all walls h coming from curtains h that separate
s1 from t1 and such that xphq corresponds to either h´ or h`. By the previous paragraph,
the pair px, P1q determines a set of pairwise intersecting convex subcomplexes of the finite
CAT(0) cube complex Q1. By Helly’s theorem, there is a point σ2 in the total intersection of
those subcomplexes. Let s2 “ g1pσ2q P HullpA1q.

Consider a chain c P C separating s2 from x. We claim than only a uniformly bounded
number of elements of c can separate s2 from either s1 or t1. Firstly, boundedly many can



CONSTRUCTING METRIC SPACES FROM SYSTEMS OF WALLS 36

separate s2 from both s1 and t1. Indeed, σ2 “ µQ1pf̂1ps1q, f̂1pt1q, σ2q and g1 is quasimedian,
so s2 is uniformly close to µps1, s2, t1q, and Lemma 7.10 shows that S Ñ X is 3–quasimedian.
Secondly, a long sequence in c separating s2 from, say, s1 would lead to a long sequence of
curtains separating t1 from x, from which we could find a long such sequence in P1, which is
impossible.

Thus, if we let c2 P C realise dCps2, xq, then all but uniformly many elements of c2 separate
ts1, t1, s2u from x. Moreover, those elements have to occur at the end of c2 that is closest to
s2. By Lemma 7.9, the final eight elements of c2 cannot be contained in the positive halfspace
of the fifth-last element of c1, for then we would be able to elongate c1. Thus, either |c2| ď C,
in which case we are done, or the final five elements of c2 cross the final five elements of c1.

From here we proceed inductively. Let k ď n and suppose that we have constructed
s1, . . . , sk, t1, . . . , tk´1, such that

‚ the final five elements of ci cross the final five elements of cj , where cl P C realises
dCpsl, xq;

‚ all but a uniformly bounded number of elements of ci separate ts1, . . . , si´1, t1, . . . , ti´1u

from x.
Let ck P C realise dCpsk, xq. There exists tk P S such that tk P c`

k . WriteAk “ ts1, . . . , sk, t1, . . . , tku

and let Qk “ QpAkq be the corresponding finite CAT(0) cube complex, with gk : Qk Ñ

HullAk. Referring to Lemma 2.1, write gk for the map

z ÞÑ µpsk, z, µptk, z, µpsk´1, z, µptk´1, z, µpsk´2, . . . , µps1, z, t1qqq . . . q.

If z P S, then up to a uniform error we have gkpzq P HullpAkq for all z P X. Moreover, in
view of Lemma 2.1, if z P S, then by considering Q1 “ QpAk Y tzuq we see that gkpzq is
uniformly close to the image in HullpAk Y tzuq of the gate of z to HullQ1pf 1pAkqq in Q1, where
the constant depends on k ď n.

Given a curtain h that separates some pair of elements of Ak, there are two convex subcom-
plexes H´ “ HullQk

pf̂kgkph´qq and H` “ HullQk
pf̂kgkph`qq. Let Pk Ă P be the set of walls h

coming from curtains h that separate a pair of elements of Ak and such that xphq corresponds

to either h` or h´. For each h P Pk, let signxphq P t´,`u be such that xphq “ hsignxphq.

Given h1, h2 P Pk, there is a point p P S lying in h
signxph1q

1 X h
signxph2q

2 , and hence the convex

subcomplexes H
signxph1q

1 and Hsignxph2q of the finite CAT(0) cube complex Qk intersect. From

this pairwise intersection, Helly’s theorem provides a point σk`1 P Qk that lies in Hsignxphq

for all h P Pk. Let sk`1 “ gkpσk`1q.

Consider an arbitrary chain c P C separating sk`1 from x. As σk`1 P Qk, Lemma 2.1 tells us
that sk`1 lies at a uniform distance from gkpsk`1q, and hence only uniformly many elements
of c can separate sk`1 from Ak. Furthermore, any subchain of c separating sk`1 from a subset
B Ă Ak yields a slightly shorter chain of elements of Pk separating sk`1 from B. But gk
is quasimedian, and Lemma 7.10 states that S Ñ X is 3–quasimedian, so chains in Pk that
separate sk`1 from x have uniformly bounded length. This shows that, for any chain in C
separating sk`1 from x, all but a uniformly finite number (depending on k ď n) of elements
must separate x from sk`1 Y Ak.

Let ck`1 P C realise dCpsk`1, xq. If |ck`1| ď C then we are done, so suppose otherwise. If the
final eight elements of ck`1 were contained in the positive halfspace of the fifth-last element
of ci for some i ď k, then Lemma 7.9 would tell us that we could have made a longer choice
of ci, which is impossible. Thus the final five elements of ck`1 cross the final five elements of
ci for all i ď k.
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Suppose that the above process has not terminated before the final step k “ n, because
dCpsi, xq ą C for all i ď k. If it is also the case that dCpsn`1, xq ą C, then for each i ď k`1 let

hi1, . . . , h
i
5 be the final five elements of ci. If i ‰ j, then every hil crosses every hjl . This implies

that the curtains h13, . . . , h
k`1
3 pairwise strongly cross, which contradicts Proposition 7.8. So

we must have dCpsi, xq ď C for some i ď n ` 1. □

Remark 7.12. One can tweak the definition of gk in the above proof to provide a notion
of gate map to hulls of finite subsets of general coarse median spaces of finite rank, with
constants independent of the cardinality of the finite subset.

The following is the main result of this section. It includes the notion of pn, δq–hyperbolicity,
which was introduced in [JL22] as a higher-rank form of negative curvature. We shall not
discuss this notion in detail here, but it replaces the four-point condition for hyperbolicity by
a p2n ` 2q–point condition.

Theorem 7.13. Let S be a strong coarse median space of rank n, and let X be as con-
structed above. The map S Ñ X is a quasimedian quasiisometry to a coarsely injective space.
Moreover, X is pn, δq–hyperbolic.

Proof. X is coarsely injective by Theorem 4.9, and Lemma 7.10 together with Proposition 7.11
shows that S Ñ X is a quasimedian quasiisometry. The fact that X is pn, δq–hyperbolic is a
combination of [Bow13a, Thms 2.2, 2.3], which control the asymptotic rank of X, and then
[JL22, Thm 1.4]. □

By a strong-coarse-median group, we mean a finitely generated groupG with aG–equivariant
ternary operator making it a strong coarse median space. We refer to [JL22] for the notion of
having slim simplices, which generalises that of having slim triangles as in a hyperbolic space.

Corollary 7.14. If G is a strong-coarse-median group of rank n, then G acts properly
coboundedly on an injective metric space with slim n–simplices.

Proof. Referring to Remark 7.4, the construction of X can be done in a G–equivariant way.
In view of Theorem 7.13, it then follows from [HHP23, Prop. 1.1] and [Lan13, Prop. 3.7] that
G acts properly coboundedly on the injective hull of X, which has the slim simplex property
by [JL22, Thm 1.3]. □

Theorem 7.13 should be compared with [HHP23, Cor. 3.6]. The construction of the met-
ric in that paper works for any strong coarse median space, but the argument that it is
coarsely injective requires the space to be hierarchically hyperbolic, and relies on the hier-
archy structure. Additionally, there is no equivalent of normal wall paths in that setting.
In any case, since hierarchically hyperbolic groups are strong-coarse-median groups [BHS21],
Corollary 7.14 recovers the main result of [HHP23], that hierarchically hyperbolic groups act
properly coboundedly on injective spaces. Corollary 7.14 generalises [JL22, Cor. 1.6].

7.3. Hyperbolic models

One can also construct hyperbolic spaces from the set P of partitions constructed at the
beginning of Section 7.2, in a similar manner to Section 6. Let us say that two disjoint curtains
h1 and h2 are R–separated if there is no chain c of curtains of cardinality greater than R whose
elements all strongly cross both h1 and h2. By an R–chain of curtains, we mean a chain of
curtains such that each pair is R–separated.

Let C be as in Section 7.2. For each natural number R, we define a dualisable system CR
on S by letting CR Ă C consist of all elements that are induced by R–chains of curtains. It is
routine to check the following (cf. Lemma 6.6).
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Lemma 7.15. The sequence pCRq is a graded system on pS, P q, and each CR is 3–gluable.

Let Y be the graded dual of S with respect to pCRq. By Propositions 5.14 and 5.15, Y is a
roughly geodesic hyperbolic space. We already described a way to construct a hyperbolic space
associated to S in Section 6, but Y has the advantage that it can more easily be compared
with existing hyperbolic spaces in known examples, as we now briefly discuss.

In [ABD21], Abbott–Behrstock–Durham constructed, for each hierarchically hyperbolic
group G, a hyperbolic space Z witnessing a largest acylindrical action of G. A detailed
discussion is beyond our scope, so we refer the reader to [BHS19] for background on hierarchical
hyperbolicity, and to [ABD21, §3] for details about the construction of Z.

Proposition 7.16. Let G be a hierarchically hyperbolic group. Let Y be the hyperbolic space
constructed above, and let Z be the hyperbolic space constructed in [ABD21]. The two are
G–equivariantly quasiisometric.

Outline of proof. Z is a cone-off of G, and Y is the metric quotient of an equivariant pseu-
dometric on G. We show that the natural maps G Ñ Z and G Ñ Y yield a quasiisometry
between Y and Z, and this map is automatically G–equivariant. Let s, t P G and let c be a
chain of curtains obtained from the cube complex approximating Hullts, tu. If two elements
of c are such that their images under the projection map πZ : G Ñ Z are far apart, then
those curtains are R–separated for sufficiently large R. This shows that Y Ñ Z is coarsely
Lipschitz.

For the other direction, consider a subpath σ1 of the normal wall path σ from s to t such
that πZσ

1 has small diameter. There are two cases. The first is that there is no relevant
domain U for ts, tu with ρUZ near πZσ

1 (see [BHS19]). In this case, σ1 itself has small diameter
in G. Otherwise there is such a U , and then [ABD21, Thm 3.7] shows that U is one factor
of a nontrivial product. This product structure prevents U from contributing any separated
curtains. Thus separated curtains can only arise when σ makes progress in Z, so Z Ñ Y is
coarsely Lipschitz. □

In particular, Proposition 7.16 shows that if S is the mapping class group of a surface, then
Y is quasiisometric to the curve graph of that surface.

8. Other directions

We believe that there should be many situations where the construction of Section 3 can
be applied. Here we suggest a few possible avenues.

CAT(0) spaces and cube complexes. Much of this article stems from constructions in
CAT(0) spaces [PSZ22], though the combinatorial perspective in terms of ultrafilters used
here is rather different. That said, if one uses the curtains constructed in [PSZ22] to induce
a set of partitions as in Sections 6 and 7, then the graded dual with respect to the systems of
L–separated curtains should be essentially equivalent to the curtain model.

If one starts with S a CAT(0) cube complex and P the set of hyperplanes, then, as discussed
in Example 3.5, taking C to be the set of all chains simply makes X the Helly thickening of S.
Letting CL be the set of chains of pairwise L–separated hyperplanes, one obtains a space very
similar to that of [Gen20, §6.6] (the difference being in the precise definition of separation).
The sequence pCLq is a graded system on S, so one could investigate the graded dual, which
is a more natural hyperbolic space than the curtain model in this setting.

The Bestvina–Bromberg–Fujiwara construction. In influential work, Bestvina–Bromberg–
Fujiwara gave a general method for assembling a collection of metric spaces in a quasitree-like
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fashion [BBF15], by gluing them at bounded sets. This is often used when the spaces in
question are hyperbolic, quasitrees, or even quasilines [Sis18, BBF21, BHS17].

Since geodesic hyperbolic spaces are quasiisometric to the dual space of some dualisable
system, in many cases one can interpret the assumptions in the BBF construction in terms of
extensions of the partitions of the component spaces. Whilst this alternative axiomatisation
may not be directly useful, it seems plausible that it could open the door to generalisations
that allow for gluings along larger subspaces: a coarse point could perhaps be replaced by a
subset that is approximately gated in the sense of Section 3.2.

Curve graph of a surface. Let MCGpΣq be the mapping class group of a finite-type surface
Σ. One corollary of Proposition 7.16 is that the hyperbolic space constructed for MCGpΣq

in Section 7.3 is equivariantly quasiisometric to the curve graph of Σ. The mapping class
group also admits a proper cobounded actions on an injective space S, either via [HHP23]
or Theorem 7.13. According to [SZ22, Thm A], Morse subsets of injective metric spaces are
strongly contracting, so orbits of pseudo-Anosovs on S are strongly contracting. The results of
Section 6 therefore produce a hyperbolic space X dual to S on which MCGpΣq acts. Is X also
quasiisometric to the curve graph of Σ? This seems especially likely in view of Theorem 6.15
and [DT15].

Hyperbolic models for other groups. There are various “nonpositively curved” groups
for which hyperbolic models have been constructed, such as OutFn [HV98, KL09, HM13] and
various Artin–Tits groups [KK13a, CW21a, Mor21, MP22]. It would be interesting to know
whether some of these models can be (coarsely) reconstructed from a suitable set of walls.
For instance, can one find a natural set of curtains in Culler–Vogtmann outer space, and does
this reproduce, say, the free factor complex? How about for the Deligne complex?

Moreover, in view of Theorems C and D, it would also be desirable to have more examples
of metric spaces where all Morse geodesics are strongly contracting.

Higher-rank hyperbolicity. In Section 5.1, we saw that if a dualisable system is separated
and gluable then fairly straightforward combinatorial arguments show four-point hyperbolicity
of the dual. In [JL22], Jørgensen–Lang introduced a family of higher-rank generalisations of
the four-point inequality, and a space satisfying their p2n ` 2q–point inequality is said to be
pn, δq–hyperbolic.

For a higher-rank version of the L–separation condition, let us say that a dualisable system
of chains is pn,Lq–separated if, whenever c1, . . . , cn`1 are elements of C such that every ele-
ment of ci crosses every element of cj for all i, j, we necessarily have |ck| ď L for some k. Is it
true that if C is gluable and pn,Lq–separated then X is pn, δq–hyperbolic? Does an analogue
of Proposition 5.8 hold? Note that this pn,Lq–separation assumption holds in the setting of
strong coarse median spaces, by Proposition 7.8. In that setting, though, pn, δq–hyperbolicity
follows a posteriori from coarse injectivity of X (Theorem 4.9) and coarse density of S (Propo-
sition 7.11).

Metric quotients. One very useful consequence of the duality between CAT(0) cube com-
plexes and discrete wallspaces [CN05, Nic04] is a simple trick for producing quotients of a
given CAT(0) cube complex Q. Namely, one takes a subset P 1 of the walls of Q, and lets
Q1 be the cube complex dual to P 1. This procedure, known as a restriction quotient, was in-
troduced to CAT(0) cube complexes in [CS11], though it appeared earlier for median graphs
[Mul78].

It is easy to see that restriction quotients can be taken in the generality of Section 3. More
precisely, let C be a dualisable system for a set with walls pS, P q, and let X be the C–dual.
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Given a subset P 1 Ă P , the set C1 consisting of all elements of C supported on P 1 (i.e., elements
th1 ¨ ¨ ¨ , hnu P C with each hi P P 1) is a dualisable system for pS, P 1q, and there is a natural
quotient map from X to the C1–dual of S.

Many desirable properties of a dualisable system, such as gluability and the property of
being a system of chains, are preserved by this restriction, so often the quotient X 1 will have
similar properties to X. For instance, if C is the set of all chains, so that X is a Helly graph,
then X 1 will also be a Helly graph.

Random walks. A common application for producing actions of a finitely generated group
G on hyperbolic spaces is that it can yield information about random walks on G [Kai00,
MT18, QRT20]. In the very general setting where G acts properly with a strongly contracting
element on some geodesic space, a combination of Theorem 6.8 and Proposition 6.13 with
[CFFT22, Thm 1.2] shows that if µ is a generating probability measure on G with finite
entropy, then the Poisson boundary of G is modelled by pBX, νq, where X is the hyperbolic
space constructed in Section 6 and ν is the hitting measure on the Gromov boundary BX of
the random walk driven by µ.

For more precise information about the limiting behaviour of a random walk, one can ask
whether a central limit theorem holds [Bjö10, Hor18, FLM21]. A new approach to this type of
problem was introduced by Benoist–Quint [BQ16a, BQ16b], and this was used together with
[PSZ22] by Le Bars to establish a central limit theorem for random walks on groups acting
on CAT(0) spaces [Le 22, Le 23]. Since the construction of Section 6 bears many geometric
similarities to that of [PSZ22], it is natural to ask whether one can work along similar lines
to prove a central limit theorem for random walks on groups with a contracting element.

A continuous variant. Spaces with walls can be generalised to spaces with measured walls
[CMV04], and these still exhibit a duality with median metric spaces [CDH10, Fio20]. One
could consider a continuous generalisation of the constructions of this article. For this, mea-
sures cease to be appropriate, because, for instance, the union of two chains need not be a
chain, and so the set C will generally not be a σ–algebra. However, the property of being
a measure is not really an essential feature for the construction, and one can just request a
function ν : C Ñ r0,8s satisfying certain compatibility criteria.

We believe that many of the statements in the present article would then admit continuous
formulations. One concrete question would be: is there an alternative construction of the
injective hull of a metric space S that can be achieved by letting P be the set of all balls in
S and taking an appropriate function ν?

Appendix. Quasimorphisms (with Davide Spriano)

The purpose of this appendix is to study the vector space ĄQMpΓq of (nontrivial, homoge-
neous) quasimorphisms of groups Γ acting coboundedly on spaces with strongly contracting
geodesics. We use the construction of Section 6 together with the Bestvina–Fujiwara criterion
[BF02]. The first step is the following, which may be of independent interest.

Proposition A.1. Let S be a non-hyperbolic geodesic space with the property that for each
Morse gauge M there exists D such that every M–Morse geodesic in S is D–strongly contract-
ing. Suppose that S contains some biinfinite strongly contracting geodesic. For every group
Γ ă IsomS acting coboundedly on S there exists q such that for each D, there is a strongly
contracting element g P Γ that is not D–strongly contracting, and g has a q–quasiaxis.

Proof. Let X be the hyperbolic space constructed in Section 6. The change-of-metric map
pS, dq Ñ pX,Dq is coarsely Lipschitz and IsomS–equivariant, and Theorem 6.8 shows that



CONSTRUCTING METRIC SPACES FROM SYSTEMS OF WALLS 41

every contracting geodesic in S is quantitatively quasiisometrically embedded in X. Let D0

be such that there is a D0–strongly contracting biinfinite geodesic A Ă S. Let s0 P A, and fix
any number D ą D0.

According to [GHP`23, Cor. 3.6], for each Morse gauge M there is a Morse gauge M 1, a
constant r, and an M 1–Morse ray β Ă S emanating from s0, such that for any M–Morse ray
α emanating from s0, we have

diampπαβq ď r and diampπβαq ď r,

where πα : S Ñ α is a map such that Dps, παpsqq “ Dps, αq, and πβ satisfies a similar property.
Note that although the statement in [GHP`23] assumes that S is a group, that property is
not used in the proof: all that is required is that S Ñ X is coarsely Lipschitz.

Let M be a sufficiently large Morse gauge, defined in terms of D and the correspondence
between strong contraction and Morseness. Let M 1, r, and β be obtained from M as above,
and let R be sufficiently large in terms of M 1, r, and the coboundedness of Γ.

Let s1 be a point in β with dps1, s0q ą R, and let β1 be the subsegment of β from s0 to s1.
By coboundedness of Γ, there is a translate A1 of A passing uniformly close to s1. Because
A is a geodesic, only one direction of A1 can fellow-travel β1 for more than a uniformly
bounded distance. Let s2 be a point of A1 in the other direction that has dps2, s1q ą R. By
coboundedness of Γ, there exists h P Γ translating s0 into a uniform neighbourhood of s2.
We claim that if M and R were chosen large enough, then h is strongly contracting, but not
D–strongly contracting.

Consider the points xhy ¨ s0. We can connect them by the xhy–translates of the union of β1

with a perturbation α of a subsegment of A1 with endpoints near s1 and hs0. Let γ be the
xhy–invariant path obtained in this way. We emphasise that, by construction, β1 and α do no
fellow-travel, nor do α and hβ1 by [GHP`23, Cor. 3.6].

By [SZ22, Prop. 4.7], the space S is Morse local-to-global in the sense of [RST22]. The
construction of hnβ1 ensures that it fellow-travels with each of hn´1α and hnα for a uniformly
bounded amount of time. Hence γ is a uniform quasiaxis for h. Hence γ is obtained as the
concatenations of sufficiently long Morse segments such that consecutive ones do not fellow-
travel. Thus γ is locally a Morse quasigeodesic, and so a (global) Morse quasigeodesic by the
Morse local-to-global property, for some sufficiently large Morse gauge. However, γ fellow-
travels with a long initial subsegment of β, and so is not M–Morse. The result follows from
the quantitative relation between Morseness and strong contraction that we are assuming. □

Theorem A.2. Let S be a non-hyperbolic geodesic space with the property that for each M
there exists D such that every M–Morse geodesic in S is D–strongly contracting. Suppose
that S contains a biinfinite strongly contracting geodesic. For every group Γ ă IsomS acting

coboundedly on S, the space ĄQMpΓq is infinite-dimensional.

Proof. Let X be the δ–hyperbolic space constructed in Section 6, with natural map S Ñ X.
According to Proposition 6.7, there is a constant q such that every geodesic in S defines an
unparametrised q–quasigeodesic in X. Let B “ Bpq, δq be the constant of [BF02, p.72], and
let n be a sufficiently large constant, defined in terms of B.

By Proposition A.1, there is some strongly contracting g P Γ. Let D be such that g is
D–strongly contracting. By the same lemma, there is some strongly contracting h P Γ that is
not nD–strongly contracting. Moreover, g and h have uniform-quality quasiaxes.

By Theorem 6.8, both g and h act loxodromically on X. Let Ag and Ah be projections to
X of uniform quasiaxes in S, which have uniform constants in terms of q. Given a constant
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R, suppose that there is some k P Γ such that some subsegment I Ă Ag of length at least R
lies in the B–neighbourhood of kAh in X.

Let s, t P S be the endpoints of I, and let s1, t1 P kAh have Dps, s1q,Dpt, t1q ď B. Let α be
a geodesic in S from s to t, which is uniformly strongly contracting in terms of D. Moreover,
since S Ñ X is coarsely Lipschitz, the length of α is lower-bounded in terms of R. It follows
that there is a chain of curtains dual to α of length lower-bounded in terms of R

D that separate
s1 from t1. If R is chosen to be sufficiently large in terms of the S–translation length of h,
then we can apply Lemma 6.6 to the khk´1–translates of that chain to obtain a lower bound
on the X–translation length of h that is a uniform multiple of D. According to Theorem 6.8,
that gives an upper-bound on the strong-contracting constant of h that is a uniform multiple
of D. The choice of n ensures that this is a contradiction of the fact that h is not nD–strongly
contracting.

Thus there is an upper bound on the length of subsegments of Ag that can lie in the B–
neighbourhoods of Γ–translates of Ah. This shows that g and h are not equivalent in the sense
of [BF02, p.72]. The result is given by [BF02, Thm 1]. □
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