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Abstract. In this paper, we introduce a MusIc conditioned 3D Dance
GEneraTion model, named MIDGET based on Dance motion Vec-
tor Quantised Variational AutoEncoder (VQ-VAE) model and Motion
Generative Pre-Training (GPT) model to generate vibrant and high-
quality dances that match the music rhythm. To tackle challenges in
the field, we introduce three new components: 1) a pre-trained memory
codebook based on the Motion VQ-VAE model to store different human
pose codes, 2) employing Motion GPT model to generate pose codes
with music and motion Encoders, 3) a simple framework for music fea-
ture extraction. We compare with existing state-of-the-art models and
perform ablation experiments on AIST++, the largest publicly avail-
able music-dance dataset. Experiments demonstrate that our proposed
framework achieves state-of-the-art performance on motion quality and
its alignment with the music.

Keywords: 3D Dance Generation · Music Condition · Deep Learning ·
Auto-Regressive.

1 Introduction

Fig. 1. Dance examples generated by our proposed method. Qualitative human
motion generation samples based on our MIDGET model can be found at YouTube.
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https://youtube.com/playlist?list=PLFUM19_jtCvR7ThXF6dyQCaGX3hmj416Z
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Dance is an art form that expresses emotions and culture through-composed
motion patterns. [25]. Moreover, music as the carrier of dance is an indispensable
element in dance performance. All dances always have some strong correlations
with the music rhythm [4, 25]. Music-based human motion generation drives
many applications like choreograph and virtual character animation [24].

One of the main challenges of this task is to ensure the consistency between
the music rhythm and the generated motion e.g., the alignment of music beats
and motion. Previous methods e.g., EDGE [26] learn it implicitly from the data
which cannot ensure the motion-music beat alignment leading to artifacts like
freezing motion. Although other methods such as Bailando [24] try to explicitly
encourage the music-motion beat alignment, their actor-critic learning strategy
is very unstable during train. By contrast, in this paper, we propose a gradi-
ent copying strategy which enable us to directly train the motion model with
beat alignment loss in a gradient descent manner. Furthermore, other than Bai-
lando [24] which directly downsample the music feature to match the human
motion, we propose to learn a music feature extractor which is proved to be
more effective. In particular, building upon the Bailando [24], we introduce Mu-
sIc conditioned 3D Dance GEneraTion (MIDGET), an end-to-end generative
model for generating motion that match the beats of the music.

The main contributions of our work can be summarized as follows:

– We introduce a gradient copying strategy which enables us to train the mo-
tion generator with music alignment score directly.

– We propose a simple yet effective music feature extractor improves recogni-
tion and analysis performed on music information with few additional pa-
rameters.

2 Related Work

The field of music to dance generation research generates dance motions for
the traditional music of a specific style or genre through machine learning ideas
[14, 19, 23]. This area has been studied for many years, and various techniques
have been used to implement dance motions generation.
Traditional Music-to-Dance Models Lee et al. [14] used a clustering model
to group musically similar segments into a cluster and then used the dance
motion sequences corresponding to the same clusters as the generated results.
This method determines dance motions by classifying music only and needs more
diversity and accuracy of dance motions. Ofli et al. [19] proposed using four
statistical machine learning models to obtain the mapping relationship from
music to capture the diversity in dance performances and the dependence on
musical segments, and dance figure models are used to model the motion of each
dance character to capture the changes in the performance style of a particular
dance character.

In addition, Shiratori et al. [23] uses a graph-based approach to cut motion
clips from existing data into individual nodes and stitch them together to synthe-
size new motions based on appropriate musical features. However, this clip-based
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scheme unitizes the motions. So that only a fixed rhythm, tempo, and variety of
motions can exist.
Music-Conditioned 2D Human Dance Generation Most currently avail-
able works have studied the 2D choreographic generation of music, Lee et al. [13]
realized that dance is multi-modal and that various subsequent pose motions are
equally possible at any moment. The Generative model of music generative dance
is proposed for the first time to decompose dance into a series of basic dance
units. In the synthesis phase, the model learns to choreograph a dance by seam-
lessly organizing multiple basic dance motions based on the input music. Li et
al. [18] connects the predicted output of the network itself with its future input
stream by using the training mechanism of an automatic conditional recurrent
neural network [10]. Qi et al. [20] proposed a sequence-to-sequence learning
architecture that leverages LSTM [7] and Self-Attention mechanism for dance
generation based on music.

Huang et al. [9] introduces Transformer to realize 2D dance generation un-
der music conditions and uses the local self-attention to efficiently handle long
sequences of music features. In addition, Huang et al. [9] proposes a dynamic
automatic conditional training method to mitigate the error accumulation of
auto-regressive models in long motion sequence generation.
Music-Conditioned 3D Human Dance Generation The application sce-
nario of 2D dance motion is minimal. It only contains flat information and thus
needs 3D spatial three-dimensional details. Research in the Music-Conditioned
3D Human Dance Generation field has emerged. Li et al. [17] and Li et al. [15]
allows the models to extract and learn audio features by stacking different forms
of Transformers. Siyao et al. [24] used the idea of VQ-VAE [22, 27] to encode
and quantize the spatial standard dance motions into a limited codebook, which
can store different dance motions in a codebook so that a more professional,
reasonable, and coherent dance motion can be used when generating a sequence.
Each sequence inside the codebook represents a unique dance pose, and these
dances have contextual semantic information.

Recently, diffusion-based approaches [6, 16, 26] have excelled in generating
musically conditioned motion to create realistic and physically plausible dance
motions based on input music. Tseng et al. [26] proposed Editable Dance Gen-
eration (EDGE), a transformer-based diffusion model paired with the powerful
music feature extractor Jukebox [3, 26]. It was demonstrated that this unique
diffusion-based approach gives powerful editing capabilities well suited to dance,
including joint modulation and intermediate processing.

3 Method

An overview of the proposed music-to-dance generation framework, ”Music Con-
ditioned 3D Dance Generation (MIDGE)”, is shown in Fig. 2. We first quantize
the dance motions using the VQ-VAE [27] resulting a finite-length codebook
Z = {zi}Ki=1 where each code zi ∈ RC is a vector of size C. Each motion se-
quence is then represented as a sequence of codes from the codebook. Instead of
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Fig. 2. Overview of the MIDGET Model. Given a piece of music and its corre-
sponding dance instructions, MIDGET can generate corresponding high-quality and
smooth dance sequences.

directly downsampling the music feature as in [24], we adopt a 1-D convolutional
network to learn such downsampling process which is proved to be more effective.
Conditioning on the music feature and a seed motion, we leverage the motion
GPT [24] to obtain the code sequences for both upper body and lower body.
Such code sequences can be easily decoded as human motion via the pretrained
VQ-VAE. We provide the details for each module below.

3.1 3D Dance Motion VQ-VAE

In order to effectively capture and extract the unique style of dance motion codes
and enable them to be reconstructed into corresponding dance motion sequences
with actual physical meaning. Therefore, we use 1-D temporal convolutional
network to encode dance motion sequences P ∈ RT×(J×3) into pose codes Q ∈
RT ′×C , where T denotes the time duration of the original dance motion sequence
and J means the number of joint, and C is the feature dimension, and T ′ = T/d
is the motion code length of the pose codes, and d is the temporal sampling rate.

Codebook of Dance Poses. The VQ-VAE codebook [27] is a vector col-
lection that maps continuous high-dimensional data into discrete ones. Each of
these vectors is called a code. By transforming continuous data into discrete
representations, the codebook is able to store and process data in lower dimen-
sions, enabling efficient data compression. In this paper, we mapped the output
of the motion encoder module to the nearest neighbour vector in the codebook
to discretize the continuous high-dimensional data into a low-dimensional code.
In this scheme, we analyze the output ei ∈ RC of the encoder and map it to the
nearest discrete pose code in the codebook:

qi = arg min
zj∈Z

||ei − zj ||2 , (1)

where qi ∈ RC is the i-th row of Q and i ∈ {1, 2, · · · , T ′}. Finally, The motion
decoder is defined as a 1-D temporal deconvolutional network to reconstruct the
corresponding dance pose sequences P̂ ∈ RT×J×3 from the latent codes.
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Fig. 3. 3D Dance Motion VQ-VAE. The main purpose of the VQ-VAE model is
to obtain codebooks containing diverse quantified dance motion sequences. Learnable
encoder and decoder to quantify features and reconstruct target poses.

The training process of Motion VQ-VAE. With this gradient conduc-
tion, we can achieve the training of the Motion Encoder E, Decoder D and
codebook Z simultaneously with the following loss function:

L = LREC + LV Q + β · LCOM (2)

The loss function consists of three terms, where LREC is the reconstruction loss
used to assess the quality of dance motions. It measures the difference between
the generated and target pose sequences. In particular, we propose to define the
reconstruction loss function by focusing on the original 3D coordinate points of
the body joints and the velocity and acceleration of the motion sequences. The
detailed definition is presented below:

LREC =
∥∥∥P − P̂

∥∥∥
2
+ α1

∥∥∥V − V̂
∥∥∥
2
+ α2

∥∥∥A− Â
∥∥∥
2

(3)

where P, P̂ are the ground truth and generated joints of the original 3D points,
respectively. V and A represent the motion velocity and acceleration partial
derivatives of the 3D joint sequence on time to learn the time-dependent and
spatial relationships in the dance motion sequences, thus learning the transition
patterns between different motions and the structure of the motion sequences.

The second and third part of L is the quantification loss with LV Q and LCOM

to constrain the difference between the discretized code and the continuous code.
LV Q using exponential moving averages function to learn latent embedding vec-
tors in the codebook. We use Exponential Moving Averages (EMA) [12, 27] to
update the vectors in the codebook of the VQ-VAE model.

LV Q = (ei, qi)EMA (4)

LCOM defined in Eq. (5) constrains the distance between the encoder output
ei and the decoder input qi which is reduced to minimise the Euclidean distance
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between the encoder output and its nearest neighbour quantization centre. The
stop gradient [1,2] the nearest neighbour vector qi as a constraint on the vector
quantization operation.

LCOM = ∥ei − sg[qi]∥2 (5)

where the sg[·] denotes ”stop gradient”.

3.2 Music Feature Extraction

The Music Feature Extractor is presented in Fig. 4. The learned music features
enable the model to ensure less feature information loss with little additional
parameters. The purpose of such feature extractor is to downsample the musical
features so as to match the quantized motion codes.

Fig. 4. The structure of Music Feature Extractor. Music features are further
extracted through one-dimensional convolutional layers and residual connections.

As shown in Fig. 4, our detailed implementation uses a 1-D convolution and
residual structure to downsample the music feature.

3.3 Motion GPT

After working with the above 3D Dance Motion VQ-VAE, we can generate
unique dance pose clips with physical meaning according to the trained code-
book Z. Now that we can explore Beats-Aligned Motion GPT, which is a Trans-
former [8, 28] based network. The GPT [8, 21] model must focus on generating
future dance motion codes with corresponding music styles under the given mu-
sic conditions and current starting quantized pose position codes. The Beats-
Aligned Motion GPT achieved as Feature Embedding, Positional Embedding
and 12 Transformer Decoders, as shown in Fig. 5.

In order to align the spatial dimensions of the input musical features with
the quantized pose position codes. The quantized upper and lower body and
music features are subjected to feature embedding operations as u, l ∈ RT ′×Cpose
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Fig. 5. Motion GPT Structure. The GPT model is designed to apply the encoded
upper and lower body pose codes au, al and music features am to generate the target
future motion probability pu, pl.

and m ∈ RT ′×Cmusic , respectively. Adding a learned position embedding assigns
a unique vector representation for each position, which contains the encoding
of positional information. Then, the feature vector is propagated through 12
successive Transformers [28], and mapped to motion probability p ∈ R((3×T ′)×C).
When generating future motion sequences, the upper and lower body pose codes
pu = pT ′:2T ′−1, p

l = p2T ′:3T ′−1 extracted from motion probability features.
Cross-conditional causal attention. We adopt ”Cross-conditional causal

attention” [24] which encodes the features across different time series and only
allows the information passing from the past. It is defined as follows:

Attention(Q,K, V ) = Softmax

(
QKT +M√

d

)
V

where d is the number of channels in the attention layer. Q, K, V denote
the query, key, and value from the input feature, and M is the mask matrix used
to determine the type of attention sub-layers.

3D Dance Motion Generation. In order to make the model overall dif-
ferentiable, we use Straight-Through estimator [1] to combine VQ-VAE Decoder
and codebooks to generate gradient-derivable sequences of actual future motions
P̂1:T . As shown in Fig. 5, we simulate the generated result of motion GPT as
Quantified pose code êe, similar to the output feature of Motion Encoder. The
method is to perform matrix multiplication of the action encoding probability
p1:T ′ generated by the motion GPT and the codebook Z.Because matrix multi-
plication can be considered as a function, when computing matrix multiplication,
the gradient can be computed using the automatic differentiation method, which
calculates the partial derivative of the output matrix with respect to the input
matrix (see Equations below).

êe = p1:T ′ · Z, êd = argmin
Z

||p1:T ′ ||, êd = êe + sg[êd − êe]

On the contrary, the forward propagation process in the motion GPT gener-
ation stage, we perform top-1 selection (select the index with the highest prob-
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ability) on the coding probability p1:T ′ of Motion GPT output and match its
index to the corresponding position in Codebook and obtain Quantized features
êk. Finally, the pre-trained VQ-VAE Decoder decodes êk to obtain the future
dance motion sequence.

The training of Motion GPT. First, since the output of Motion GPT
itself is a set of N action code probabilities, which cannot reflect the natural
dance motions anyway, we use the upper and lower body motion features from
the output of VQ-VAE Encoder as the input of Motion GPT and also as the
target a for computing the Mean Squared Error(MSE) Loss on motion code
probability p:

LCE =
1

T ′

T ′∑
t=1

∑
b=u,l

∥∥pbt − abt
∥∥
2

(6)

where pbt is the motion code probability, and abt is the target sequence of VQ-VAE
Encoder outputs. Due to the generation mode of the upper and lower half body
pose separation, the results of two different loss functions must be combined.

We design Beat Align Loss as Eq. (7) to allow the model to produce more
accurate dance motions with music rhythm.

LBAl2
= ∥Bd −Bm∥2 (7)

where Bd is the dance motion beats and Bm is the music beats. We identify
dance beats by the difference between the physical position of the action in the
front and back frames and use a Gaussian filter to calculate the probability of
dance beats. The smaller the distance between the front and back frames, the
higher the probability that the frame is a dance beat, as follows:

Bd = exp

(
−
∥x̂(0:T−1) − x̂(1:T )∥2

σ2

)
(8)

where x̂ ∈ R(T×24×3) is the prediction of the motion sequence. The probabil-
ity of motion beats is evaluated by calculating the difference between the motion
speed of the two nearly frames.

4 Experimental Result

Our proposed method is evaluated on the AIST++ dataset published by [17],
containing 1,408 3D human dance motion sequences represented as joint rota-
tions and root trajectories. All dance motions are paired with their corresponding
60 music clips.
Implementation Details. We train the MIDGET model as a two-stage task
with the Adam [11] optimiser. The model framework is trained on an NVIDIA
RTX 4090 GPU for 24 hours with a batch size of 64.

In our experiments, we separate dance and music into a 240-frame format.
The size of the trainable upper and lower body dance memory codebooks in
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the VQ-VAE model is N=512 dimensions. The downsampling rate in the VQ-
VAE Encoder and Music Encoder sections are 8, so the dimensionality of the
quantized codebooks also results from downsampling Zup, Zlow ∈ R30×512.

Evaluation Metrics and BaslinesWe adopt the Fréchet Inception Distances
(FID) [5, 17, 24] to evaluate our method by following existing works. We simi-
larly measure diversity by calculating the average Euclidean distance between
different dance motions in the geometric and kinematic feature space. Finally,
using the Beat Align score [17,24,26] and Beat Consistency score [15] to measure
the relevance between music and dance motions. Precisely, the explanation and
equations are as follows:

BA =
1

|Bm|
∑

tm∈Bm

exp

{
min∀td∈Bd ||td − tm||2

2σ2

}

BC =
1

|Bd|
∑

td∈Bd

exp

{
min∀tm∈Bm ||td − tm||2

2σ2

} (9)

where tmi is the music beat in Bm, tdi is the dance motion beat in Bd, and σ
is the normalized parameter set to 3 simultaneously.

4.1 Results.

We compare the performance of our proposed model with the state-of-the-art
methods including FACT [17], Bailando [24] and EDGE [26]. Table 1 shows that
our proposed model consistently outperforms Bailando [24] in all evaluations
under the same underlying model framework and avoids action freezing problem.
Specifically, our approach improves by 6.8% and 22.3% in FIDk and FIDg,
respectively, for evaluating the physical features of dance.

Moreover, MIDGET can generate more diverse dances, as reflected in the
improvement of Divk and Divg metrics by 10.3% and 1.6%. Finally, the Beats
Align Score achieves 10.5% higher, suggesting that generated dance motions are
better aligned with music beats. In addition, compared with Li et al. [18] and
FACT [17], our proposed model has a significant advantage in all evaluations.
Although MIDGET does not outperform EDGE [26], it has lighter structure.

Table 1. Evaluation of Existing models on AIST++ dataset. Compared to the
Ground Truth and three recent state-of-the-art methods,

Method FIDk ↓ FIDg ↓ DIVk ↑ DIVg ↑ BA Score ↑ BC Score ↑
Ground Truth 17.10 10.60 8.19 7.45 0.2374 0.2083

Li et al. [18] 86.43 43.46 6.85 7.45 0.201 0.203
FACT [17] 35.35 15.55 5.94 6.18 0.221 0.203

Bailando [24] 30.43 11.42 7.83 6.34 0.233 0.208
EDGE [26] - - 10.03 6.67 0.263 0.210

MIDGET(Ours) 28.51 8.87 8.64 6.44 0.254 0.212
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However, although our model does not outperform the EDGEmodel [26], [26],
requires to pre-train a model, namely Jukebox [3] to extract features for all music
sequences for up to three days, which is extremely time consuming. We achieved
similar performance using fewer resources than the EDGE model with a light-
weight feature extractor.

4.2 Ablation Studies

We perform the ablation study on 3DMotion VQ-VAE module, the music feature
extractor and the Motion GPT estimator. The results are shown in Table 2.

Table 2. Ablation Study on AIST++ testset. The experiments cover Motion
VQ-VAE, Music Feature Extractor, Best Match, and generation strategies.

Method FIDk ↓ FIDg ↓ BA Score ↑ BC Score ↑
w/o. VQ-VAE 120.45 41.24 0.259 0.200

w/o. upper/lower 64.07 14.82 0.246 0.203
w/o Extractor 30.43 11.42 0.243 0.203

w/o LBA 29.10 7.25 0.239 0.205
Single Generated 29.34 9.84 0.288 0.209

MIDGET 28.51 8.87 0.254 0.212

Motion VQ-VAE. When we remove the quantized codebook in VQ-VAE
[24, 27] to store the dance motion features, the GPT model cannot generate
realistic and physically meaningful body poses while the FIDk and FIDg becomes
very high. Moreover, we also analyzed whether it is necessary to separate the
upper and lower body for independent codebook training. Thus, we just adopt
the entire body action sequence as input to train VQ-VAE and Motion GPT. The
obtained FIDk and FIDg are 124.7% and 66.9% which is worse than estimating
the code for the upper and lower body, respectively.

Music Feature Extractor. We adopt Beat Align Score to evaluate the
effectiveness of our proposed Music Feature Extractor. Results in Table 2 show
that the BA Score obtained with Music Feature Extractor is higher than the
downsampling of music features alone (4.53% improvement). This indicates that
our proposed Music Feature Extractor can extract more effective music features.

Beats Match. With our introduced Beat Align Loss, the Motion GPT sig-
nificantly improves the alignment between actions and music beats, which has
increased by 20% and 10% on BA Score and consistency scores (BC Score),
respectively. The detailed beat alignment effect is shown in Figure 6.

Generation Strategy. We evaluate the generation strategy by just predict-
ing 1-dimensional pose code (8 frames) only using Motion GPT during training.
The long sequence is generated in an auto-regressive manner. While the gener-
ated sequence has a higher BA Score (see Table 2), the results suffer from severe
motion freeze issue.
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Fig. 6. Beats alignment between Music and Generated Dance. Visualize the
alignment of dance beats (purple dashed lines) and music beats (green dashed lines).

5 Conclusion

We proposed MIDGET, which can generate realistic, and smooth long-sequence
dance motions. We have introduced a Beat Align Loss and the Straight-Through
Estimator to achieve the end-to-end training, and a simple music feature extrac-
tor to improve music-feature learning. The method can largely solve the mo-
tion freeze issue for long-sequence generation evidenced by the experiments on
AIST++ dataset and achieves superior performance.
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