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Abstract: A solitonic ground state called a chiral soliton lattice (CSL) is realized in a

supersymmetric theory with background magnetic field and finite chemical potential. To

this end, we construct, in the superfield formalism, a supersymmetric chiral sine-Gordon

model as a neutral pion sector of a supersymmetric two-flavor chiral Lagrangian with a

Wess-Zumino-Witten term. The CSL ground state appears in the presence of either a strong

magnetic field and/or large chemical potential, or a background fermionic condensate in the

form of a fermion bilinear consisting of the gaugino and a superpartner of a baryon gauge

field.
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1 Introduction

Determination of the ground states or vacua and phase structures is quite important to

understand any physical system. For such a purpose, it is becoming important to consider

a possibility of spatially inhomogeneous ground states. Several examples can be found

in condensed matter physics such as superconductors [1–4] and polyacetylene [5–7], and

in quantum field theories such as the Gross–Neveu and Nambu–Jona-Lasino models [8–

10] and quantum chromodynamics (QCD) [11–15]. For such a kind of ground states, the

order parameter is characterized by a spatially varying function and several translational

symmetries are spontaneously broken there. However, without any external field, spatial

modulations are unstable due to the so-called Landau-Peierls instability [16, 17].

On the other hand, solitonic ground states are present in the presence of spin-orbit

coupling in condensed matter systems or background fields in quantum field theories such

as a magnetic field or rotation. The examples of the former contain chiral magnets and

ultracold atomic gases with synthetic gauge fields. The ground states of the chiral magnets

contain two kinds of inhomogeneous ground states made of topological solitons due to the

presence of the so-called Dzyaloshinskii-Moriya (DM) interaction [18, 19]. One is a chiral
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soliton lattice (CSL), also called a spiral phase [20–24], where the energy of a single soliton

or domain wall is negative and thus one dimensionally inhomogeneous states composed of

solitons or domain walls have a lower energy than uniform states. The other is the 2D

Skyrmion lattice (crystal) phase where the energy of a single Skyrmion is negative [25–31].

Ultracold atomic gases with spin-orbit couplings or synthetic gauge fields [32, 33] give the

solitonic ground states of 2D Skyrmions [34] and 3D Skyrmions [35].

As the example of the latter, QCD under extreme conditions like high baryon density,

pronounced magnetic fields, and rapid rotation has been extensively studied. Recently,

the QCD phase diagram including such conditions gathers significant attention due to

the relevance in the interior of neutron stars and heavy-ion collisions [36]. In particular,

QCD in strong magnetic fields has received quite intense attention. At low energy, QCD

can be described in terms of pions degrees of freedom by the chiral Lagrangian or chiral

perturbation theory (ChPT) accompanied with the Wess-Zumiono-Witten (WZW) term

[37]. In the presence of a background magnetic field B at finite chemical potential µB, the

WZW term in QCD with two flavors contains an anomalous coupling of the neutral pion π0
to the magnetic field via the chiral anomaly [38, 39] through the Goldstone-Wilczek current

[40, 41]. Then, when the background gauge field/and or chemical potential are large enough

BµB ≥ 16πmπ

f2πe
, (1.1)

with the pion’s mass mπ and decay constant fπ and the gauge coupling constant e, the

ground state is inhomogeneous in the form of a CSL consisting of a stack of solitons [39,

42, 43], analogous to chiral magnets. To show this, neglecting charged pions degrees of

freedom, the neutral pion sector of the chiral Lagrangian reduces to the so-called chiral

sine-Gordon model, in common with chiral magnets [20–22]. It was also discussed that

thermal fluctuations enhance the stability of CSL [44–47]. Similar CSLs of the η (or η′)

meson also appear under rapid rotation instead of strong magnetic field [48–53]. Further

investigations have been done into the quantum nucleation of CSLs [54, 55], quasicrystals

[56], the domain-wall Skyrmion phase [57, 58], the interplay with Skyrmion crystals at

zero magnetic field [59–61], and an Abrikosov’s vortex lattice and baryon crystals [62, 63].

Among various studies of CSL, one of the most important directions is the stability of CSL

beyond perturbations; CSL states in QCD-like theory such as SU(2) QCD and vector-like

gauge theories were studied in Refs. [64, 65] for nonperturbative studies in lattice gauge

theories without the sign problem. On the other hand, the motivation of this paper is to

investigate a CSL in supersymmetric theories which should be also relevant for studies of

its nonperturbative aspects.

Supersymmetry (SUSY) is a symmetry between bosons and fermions and was quite
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extensively studied for long time because of a lot of reasons [66]: it was expected to solve the

so-called naturalness problem in the phenomenological side [67, 68], while in the theoretical

side it is a useful or necessary tool to control nonperturbative effects in quantum field theory

and string theory [69, 70]. Bogomol’nyi-Prasad-Sommerfiled (BPS) topological solitons

and instantons preserve some fraction of SUSY and are nonperturbatively stable [71–75],

thereby playing a crucial role for study of nonperturbative aspects. However, in reality

SUSY is not present at low energy in nature, and thus SUSY breaking is one of the most

important aspects in phenomenology [76]. Among various SUSY breaking mechanisms, a

unconventional SUSY breaking mechanism due to a spatial or temporal modulation was

proposed [77, 78] by extending modulated vacua in relativistic bosonic field theories [79, 80].

To this end, SUSY higher derivative terms free from ghost and auxiliary field problem [81–

89] were essential. By contrast, in the configuration proposed in this paper, SUSY is broken

by a solitonic ground state (as well as background fields).

In this paper, we discuss, in the superfield formalism, a manifestly supersymmetric

extension of SU(2) chiral Lagrangian with the WZW term in magnetic field at finite density.

Instead of the full Lagrangian, we succeed to construct the neutral pion sector which is a

SUSY chiral sine-Gordon model. We then construct a BPS domain wall (chiral soliton)

and show that in a certain parameter region of strong magnetic field and/or large chemical

potential, the tension of the domain wall becomes negative. In such a case, the ground state

is CSL, an alternate array of BPS and anti-BPS chiral solitons, where SUSY is broken.

While this is the same with conventional QCD, we also find that a CSL also occurs in a

constant fermion condensation background.

Some comments on previous works are in order. First, a SUSY sine-Gordon model was

discussed in the literature [90–94], but SUSY chiral sine-Gordon model was not. Second,

the WZW term has the same form with the previously known supersymmetric WZW term

[95, 96].1 Third, a BPS domain wall in SUSY chiral Lagrangian was studied without the

WZW term [103].

This paper is organized as follows. In Sec. 2, we summarize ChPT in QCD in the

magnetic field at finite density and the CSL ground state in it. In Sec. 3, we construct

manifestly supersymmetric chiral Lagrangian and WZW term in the superfield formalism.

In Sec. 4, we construct BPS solitons (domain walls), and discuss solitonic ground states

(CSL) consisting of an array of BPS and anti-BPS solitons in the presence of an external

gauge field background or a fermion background. Section 5 is devoted to a summary and

discussion. In Appendix A, we show the incompatibility of the Fayet-Iliopoulos term.

1See Refs. [97–99] for further studies of SUSY WZW terms, see also Refs. [100–102].
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2 Chiral soliton lattice in strong magnetic field: a review

In this section, we give a brief review on the two-flavor chiral Lagrangian with the WZW

term at finite density and background gauge field, and the CSL ground state.

2.1 Chiral Lagrangian

We concentrate on the phase in which the chiral symmetry is spontaneously broken. The

low-energy dynamics in this phase is described by the two-flavor ChPT, which is an effective

field theory for pions. The pion fields ϕa (a = 1, 2, 3) are represented by a 2 × 2 unitary

matrix Σ = eiτa ϕa

fπ which undergoes the SU(2)L × SU(2)R chiral symmetry;

Σ → LΣR†. (2.1)

where both L and R are 2× 2 unitary matrices. Here τa (a = 1, 2, 3) are the Pauli matrices

normalized as tr[τaτb] = 2δab.

The U(1)EM electromagnetic gauge transformation is given by

Σ → eif
−1
π λ

τ3
2 Σe−if−1

π λ
τ3
2 and Am → Am − 1

e
∂mλ, (2.2)

where λ, e are the gauge parameter and the coupling constant. The associated covariant

derivative Dm is defined by

DmΣ = ∂mΣ+ ieAm[Q,Σ] , (2.3)

Q =
1

6
12 +

1

2
τ3 , (2.4)

where the matrix Q represents the electric charge carried by quarks. The effective La-

grangian at O(p2) is given by

L = LChPT + LWZW (2.5)

where the first term is given by

LChPT = −f
2
π

4
tr
(
DmΣDmΣ†

)
− f2πm

2
π

4
tr(212 − Σ− Σ†). (2.6)

The second term in (2.5) gives the coupling of the pions to the external U(1)B baryon gauge

field AB
m = (µB, 0, 0, 0) through the WZW term [39]. This is given in Refs. [38, 39] as

LWZW = −
(
AB

m +
e

2
Am

)
jmGW. (2.7)

Here, jmGW is the Goldstone-Wilczek current [40, 41] defined by

jmGW = −ϵ
mnpq

24π2
tr (LnLpLq − 3ie∂n [ApQ(Lq +Rq)]) , (2.8)
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where Lm = Σ∂mΣ†, Rm = ∂mΣ†Σ are the left-invariant and the right-invariant Maurer-

Cartan 1-forms respectively.

It is convenient to rewrite the Goldstone-Wilczek current (2.8) in the form where the

U(1)em gauge symmetry is manifest [39];

jmGW = − 1

24π2
εmnpqtr

[
(ΣDnΣ

†)(ΣDpΣ
†)(ΣDqΣ

†)− 3ei

2
FnpQ(ΣDqΣ

† +DqΣ
†Σ)

]
. (2.9)

In the low energies, only the neutral pion ϕ3 = ϕ contributes to physics. We therefore set

Σ = e
iτ3

ϕ
fπ and the covariant derivative Dm is replaced by ∂m

DmΣ = ∂mΣ+ ieAm

[τ3
2
,Σ

]
= ∂mΣ. (2.10)

Then the ChPT Lagrangian for the neutral pion is given by

LChPT = − f2π
4
tr
(
∂mΣ†∂mΣ

)
+
f2πm

2
π

2

(
trΣ + h.c.

)
− f2πm

2
π

2
tr12

+
1

24π2
εmnpq

(
AB

m +
e

2
Am

)
tr

[
(Σ∂nΣ

†)(Σ∂pΣ
†)(Σ∂qΣ

†)− 3i

2
Fnpτ3Σ∂qΣ

†

]
.

(2.11)

2.2 Chiral soliton lattice

It is noteworthy to see that the model for the neutral pion (2.11) is given by the sine-Gordon

model;

L = −1

2
(∂mϕ)

2 − f2πm
2
π

{
1− cos

(
ϕ

fπ

)}
+
eµB

4π
B⃗ · ∇⃗ϕ, (2.12)

where we have assumed the external U(1)em constant magnetic field B⃗ and that the pion

field is time independent ∂0Σ = 0. This model is known as the chiral sine-Gordon model

studied extensively in the context of chiral magnets [20–24].

The QCD background in the absence of the external background field is given by

ϕ/fπ = 2πn with n ∈ Z. where the energy (density) vanishes. The last term in (2.12) does

not contribute to the equation motion:

∇2ϕ− fπm
2
π sin

ϕ

fπ
= 0. (2.13)

The simplest solution to this equation is known as a single sine-Gordon (anti-)kink inter-

polating two adjacent vacua:

ϕ(z) = 4fπarctan
[
e±mπ(z−c)

]
, (2.14)
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where c is the position of the center or the translational modulus. The tension (energy per

unit area) is given by

E =

∫ ∞

−∞
dz

[
1

2
(∂zϕ)

2 + f2πm
2
π

(
1− cos

(
ϕ

fπ

))
− efπµBBz

4π2
∂zϕ

]

= 8mπf
2
π ∓ eµBBz

2π
. (2.15)

It is obvious that the finite baryon density and the external magnetic field give a negative

(positive) contribution to the energy for a sine-Gordon (anti-)kink. This imbalance between

a kink and an anti-kink is the origin of the term “chiral” of the chiral sine-Gordon model.

At the boundary of Eq. (1.1), the tension of a single sine-Gordon kink in Eq. (2.15) with

the upper sign becomes zero, E = 0, and the ground state is a single kink degenerated with

the QCD vacuum. For larger background satisfying inequality of Eq. (1.1), one finds that

the tension of the sine-Gordon kink is negative, E < 0, and the kink in Eq. (2.14) with

the upper sign is energetically more stable against the ordinary QCD vacuum ϕ/fπ = 2nπ.

However, one cannot create infinite numbers of kinks since two adjacent sine-Gordon kinks

repel each other, increasing the energy. Consequently, the ground state in the presence of

the large background fields is a stack of sine-Gordon kinks, that is a CSL [39, 42, 43].

3 Supersymmetric chiral perturbation theory

In this section, we construct a four-dimensional N = 1 supersymmetric ChPT in the ex-

ternal background gauge fields. The basic elements are the supersymmetric generalization

of the pion field Σ and the U(1)em and the baryon gauge fields (Am, A
B
m). In the following,

we follow the Wess-Bagger conventions [104] of superfields.

First, the target space of SUSY nonlinear sigma models must be Kähler, and thus pion

fields SU(2) must be complexified:

SU(2)C ≃ SL(2,C) ≃ T ∗SU(2). (3.1)

We then introduce the SU(2)C-valued chiral superfield Σ whose lowest component is given

by Σ;

Σ(y, θ) = Σ +
√
2ψΣθ + FΣθ

2 ∈ SU(2)C (3.2)

where ψΣ, FΣ are the Weyl fermion and the auxiliary field and (y, θ) are the chiral coordi-

nates. The real parts of Σ denote Nambu-Goldstone (NG) bosons (pions) associated with

the chiral symmetry breaking while the imaginary parts of Σ are so-called quasi-NG bosons

which are not associated with a symmetry breaking but are required from SUSY [105–112].
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On the other hand, ψΣ are called quasi-NG fermions. The kinetic and the mass terms of Σ

are given by2

Lkin =
2

β2

∫
d4θ tr

[
Σ†Σ

]
+

(
2m

β2

∫
d2θ trΣ+ h.c.

)
. (3.3)

Here the trace is taken over the 2×2, SU(2)C-valued matrices and m,β are real parameters

of dimensions +1 and −1, respectively. Later, we will see that the correspondences of these

parameters with those in the last section are 1/β = fπ and m = mπ.

The WZW part of the coupling to the external field AB
m in the Goldstone-Wilczek

current is constructed with the help of the SUSY WZW term elucidated in Refs. [95, 96];

LWZW =

∫
d4θ V Btr

[
(Σ(σm)αα̇∂mΣ†)(ΣD̄α̇Σ†)(DαΣΣ†)

]
+ h.c. (3.4)

Here V B is the U(1) vector multiplet for the external baryon number gauge field AB
m. This

is given, in the Wess-Zumino gauge, by

V B(x, θ, θ̄) = −(θσmθ̄)AB
m + iθ2θ̄λ̄B − iθ̄2θλB +

1

2
θ2θ̄2DB, (3.5)

where λB, DB are the Weyl fermion and the auxiliary field, respectively. The last part in

the Goldstone-Wilczek current may be given by

LGW =
i

2

∫
d4θ V BWα tr

[
τ3Σ

†DαΣ
]
+ h.c. (3.6)

where Wα = −1
4D̄

2DαV is the field strength for the U(1)em vector multiplet V . Although

Eqs. (3.4) and (3.6) contain derivatives of superfields, which sometimes give rise to a po-

tential auxiliary field problem [97–99], they cause no troubles. We will see this in due

course.

In order to see that the above interactions indeed provide a natural supersymmetric

generalization of ChPT, we now write down the component expression of the Lagrangian

LSChPT = Lkin+LWZW+LGW. After some calculations, the bosonic part of the Lagrangian

is found to be

LSChPT =
2

β2
tr
[
− ∂mΣ†∂mΣ+ FΣF̄Σ

]
+

2m

β2
tr
[
FΣ + F̄Σ

]
− 2tr

[(
− ηmnηpq + ηmpηnq + ηmqηnp + iεmnpq

)
AB

m(Σ∂nΣ
†)(Σ∂pΣ

†)(∂qΣ · Σ†)

+Am(Σ∂mΣ†)ΣF̄ΣFΣΣ
†
]
+ h.c.

+
i

2

(
−AB

mD tr
[
τ3Σ

†∂mΣ
]
−AB

mF
mntr

[
τ3Σ

†∂nΣ
]

− i

2
εmnpqAB

mFpqtr
[
τ3Σ

†∂nΣ
])

+ h.c. (3.7)

2More generally, the Kähler potential can be an arbitrary function f of two variables:∫
d4θ f

(
tr
[
Σ†Σ

]
), tr

[
Σ†Σ

]2). This corresponds to the degrees of freedom to deform noncompact directions

corresponding to quasi-NG bosons, which cannot be fixed by the real symmetry SU(2) [109, 110, 112].

– 7 –



We find that this precisely contains the interaction terms in (2.11) and is a natural SUSY

generalization of the ChPT in the external background gauge fields.

In order to find the interactions for the neutral pion, we now write

Σ = ei
τ3

2
βΦ = 12 cos

(
βΦ

2

)
+ iτ3 sin

(
βΦ

2

)
(3.8)

where Φ(y, θ) = φ+
√
2θψ+θ2F is the chiral superfield for the neutral pion ϕ. The real part

of the complex scalar field φ corresponds to the neutral pion ϕ (up to the normalization)

while the imaginary part is the quasi-NG boson. Then the superfield Lagrangian becomes

LSChPT =
4

β2

∫
d4θ cos

(
β

2
(Φ− Φ†)

)
+

[
4m

β2

∫
d2θ cos

(
β

2
Φ

)
+ h.c.

]

+

[
β3

4

∫
d4θ V B sin

(
3

2
β(Φ− Φ†)

)
(σm)αα̇∂mΦ†D̄α̇Φ†DαΦ+ h.c.

]

+

[
iβ

2

∫
d4θ V BWα cos

(
β

2
(Φ− Φ†)

)
DαΦ+ h.c.

]
. (3.9)

It is straightforward to calculate the bosonic part of the Lagrangian. The result is

LSChPT = − 1

2β
sin

(
β

2
(φ− φ̄)

)
□(φ− φ̄)− 1

4
cos

(
β

2
(φ− φ̄)

)
∂m(φ+ φ̄)∂m(φ+ φ̄)

+ cos

(
β

2
(φ− φ̄)

)
FF̄ − 2m

β

{
F sin

(
β

2
φ

)
+ F̄ sin

(
β

2
φ̄

)}

− β2

4
sin

(
3

2
β(φ− φ̄)

)[
(AB

m∂
mφ)(∂nφ̄∂

nφ̄)− (Am∂
mφ̄)(∂nφ∂

nφ)
]

+
β2

2
iF F̄ sin

(
3

2
β(φ− φ̄)

)
AB

m∂
m(φ− φ̄)

+
β

2
cos

(
β

2
(φ− φ̄)

)[
iAB

mD∂m(φ− φ̄)− iAB
mF

mn∂n(φ− φ̄)

+
1

2
εmnpqAB

p Fmn∂q(φ+ φ̄)

]
. (3.10)

We stress that even though the superfield Lagrangian involves derivative interactions, the

auxiliary fields do not have spacetime derivative terms in the component Lagrangian. This

fact is necessary in the sense that the equations of motion for the auxiliary fields are

algebraic ones and we can write down the explicit interaction terms for φ. Indeed, the

equation of motion for F̄ is solved by

F =
2m

β
sin

(
β

2
φ̄

){
cos

(
β

2
(φ− φ̄)

)
+
β2

2
i sin

(
3

2
β(φ− φ̄)

)
AB

m∂
m(φ− φ̄)

}−1

. (3.11)
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After integrating out the auxiliary fields F, F̄ , we find that the potential term together with

the derivative interactions appear in the Lagrangian:

LSChPT =
1

β
sinh(βχ)□χ− cosh(βχ)∂mϕ∂

mϕ

− 4m2

β2

{
cos2

(
βϕ

2

)
sinh2

(
βχ

2

)
+ sin2

(
βϕ

2

)
cosh2

(
βχ

2

)}
×

×

{
cosh(βχ)− β2 sinh(3βχ)AB

m∂
mχ

}−1

+
β2

2
sinh(3βχ)

[
− 2(AB

m∂
mϕ)(∂nϕ∂

nχ) + (AB
m∂

mχ)(∂nϕ∂
nϕ− ∂nχ∂

nχ)

]

+ β cosh(βχ)

[
−DAB

m∂
mχ+AB

mF
mn∂nχ+

1

2
εmnpqAB

p Fmn∂qϕ

]
. (3.12)

Here, for later convenience, we have decomposed the scalar field into the real and the

imaginary parts φ = ϕ+ iχ.

Lorentz invariant vacua are found for the constant scalar fields ϕ and χ. They are

specified by the zeros of the potential

V =
4m2

β2

{
cos2

(
βϕ

2

)
sinh2

(
βχ

2

)
+ sin2

(
βϕ

2

)
cosh2

(
βχ

2

)}{
cosh(βχ)

}−1
(3.13)

and given by

φ =
2πn

β
(n = 0,±1,±2, . . .), χ = 0. (3.14)

When the external gauge fields vanish AB
m = DB = 0, Am = D = 0, then the vacua preserve

all SUSY. The energy density corresponding to these vacua is exactly zero E = 0.

4 BPS solitons and chiral soliton lattice ground states

In this section, we construct BPS domain walls and show that the ground state is a soliton

lattice consisting of an array of BPS soliton and anti-BPS soliton, either in a strong magnetic

field and/or large chemical potential, or in the presence of a background fermion condensate.

4.1 BPS conditions

We are now in a position to examine the BPS states in the model (3.10). The vanishing

conditions on the SUSY transformations of fermions provide the BPS equations:

δψα =i
√
2(σ3)αα̇ξ̄

α̇
(
∂3φ∓ eiηF

)
= 0,

δλα = (σmn)α
βξβFmn + iξαD = 0,

δλBα = (σmn)α
βξβF

B
mn + iξαD

B = 0. (4.1)
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where we have assumed the half SUSY projection on the parameters ξα = ∓ieiη(σ3)αα̇ξ̄α̇.

Here η is a phase factor which will be set to zero in the following. The first condition in

Eq. (4.1) implies the following BPS equation:

φ′ ∓ 2m

β
sin

(
β

2
φ̄

){
cos

(
β

2
(φ− φ̄)

)
+
β2

2
i sin

(
3β

2
(φ− φ̄)

)
AB

m∂
m(φ− φ̄)

}−1

= 0,

(4.2)

where the prime stands for the differentiation with respect to x3 = z. It is convenient to

decompose the complex scalar field into its real and imaginary parts φ = ϕ + iχ. Then,

Eq. (4.2) can be rewritten as follows:

ϕ′ ∓ 2m

β
sin

(
β

2
ϕ

)
cosh

(
β

2
χ

)[
cosh(βχ)− β2 sinh(3βχ)AB

m∂
mχ

]−1

= 0,

χ′ ∓ 2m

β
sinh

(
β

2
χ

)
cos

(
β

2
ϕ

)[
cosh(βχ)− β2 sinh(3βχ)AB

m∂
mχ

]−1

= 0. (4.3)

The last two conditions in Eq. (4.1) can be trivially solved by Am = D = 0, AB
m = DB = 0.

Then, the solution to Eq. (4.3) is given by χ = 0 and ϕ satisfying the following equation:

ϕ′ ∓ 2m

β
sin

(
β

2
ϕ

)
= 0. (4.4)

This equation with the upper(lower) sign is nothing but the (anti-)BPS equation in the

sine-Gordon model. The solution to this equation is a single sine-Gordon (anti-)kink:

ϕ(z) =
4

β
arctan

[
e±m(z−c)

]
, (4.5)

where c is the integration constant. Since we have ϕ→ 0,±2π
β at z → ±∞, these solutions

connect the two adjacent vacua n = 0 and n = ±1 in Eq. (3.14). The corresponding energy

can be calculated as

E =

∫ ∞

−∞
dz

[
ϕ′2 +

4m2

β2
sin2

(
βϕ

2

)]

=

∫ ∞

−∞
dz

[
ϕ′ ∓ 2m

β
sin

(
β

2
ϕ

)]2

± 8m

β2

∫ ∞

−∞
dz

d

dz

{
cos

(
β

2
ϕ

)}
=

16m

β2
. (4.6)

4.2 Chiral soliton lattice ground state in background gauge fields

We next study ground states in the presence of the external background gauge fields. The

equation of motion for the auxiliary field D is given by

cosh(βχ)AB
m∂

mχ = 0. (4.7)
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A solution to this constraint is found to be AB
m = (µB, 0, 0, 0) and χ = 0 where the constant

µB is the baryon chemical potential. It is evident that this external background breaks

SUSY.

Now we look for ground states where the quasi-NG boson χ remains in the SUSY

vacuum χ = 0. We also assume that the field strength (magnetic field) of the external

U(1)em gauge field is constant. Then, the effective Lagrangian for the neutral pion is

LSChPT

∣∣∣
ϕ
= − ∂iϕ∂iϕ− 4m2

β2
sin2

(
β

2
ϕ

)
+ µBβBi∂iϕ, (4.8)

where the sum over the index i is assumed. This is nothing but the sine-Gordon model in

the external magnetic field, or the chiral sine-Gordon model.

Let us assume Bi = (0, 0, B3) and a one-dimensional dependence of the configurations.

Then, the energy density is

E = (ϕ′)2 +
4m2

β2
sin2

(
β

2
ϕ

)
− µBβB3ϕ

′. (4.9)

The last term which is a total derivative term is induced by the external background. The

equation of motion for ϕ is

ϕ′′ =
m2

β
sin(βϕ). (4.10)

Note that the last term in Eq. (4.8) does not contribute to the equation of motion.

A single sine-Gordon (anti-)kink solution in Eq. (4.5) remains a solution. In this case,

the tension (energy per unit area) is

E =
16m

β2
∓ 2πµBB3, (4.11)

where ∓ corresponds to the sign of the (anti-)BPS kink. Thus, the second term contributes

negatively (positively) to the tension for the (anti-)kink. Therefore for

µB|B3| ≥
8m

πβ2
, (4.12)

equivalent to Eq. (1.1) in this parameterization, the energy of the BPS solutions is negative

(zero) and is thus less than (or equal to) that of the SUSY vacua.

More precisely, at the boundary of Eq. (4.12), a single kink has a zero tension and is

a ground state degenerate with the SUSY vacua. When the inequality in Eq. (4.12) holds,

the ground state is more general solution, given by the CSL

ϕ(z) = ± 2

β
am

(
mk−1(z − c), k

)
(4.13)
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where am(x, k) is the amplitude of the Jacobi elliptic function, c is the integration constant

and 0 ≤ k ≤ 1 is the elliptic modulus parameter, determined below.

The energy per unit volume is given by

E =
m

2kK(k)

[
4m

β2

{2E(k)

k
+

(
k − 1

k

)
K(k)

}
∓ 2πµB|B3|

]
, (4.14)

where K(k) and E(k) are the complete elliptic integral of the first and the second kinds,

respectively. Again, we take the upper sign for the ground state. The extremization of the

energy in the expression (4.14) gives the condition for k:

E(k)

k
=
πµBβ

2

4m
|B3|. (4.15)

Then, this condition actually give the minimum energy, given by

E =
4m

β2

(
k − 1

k

)
K(k) < 0. (4.16)

This is clearly less than (or equal to) the energy of the SUSY vacua. As a larger background

µB|B3|, the elliptic modulus k is smaller and the lattice spacing becomes shorter (k → 0

as µB|B3| → ∞). At the boundary of the inequality (4.12), the elliptic modulus is k = 1

recovering a single soliton with E = 0.

4.3 Chiral soliton lattice ground state in fermion condensates

We next examine the effects of fermion contributions in the background vector multiplets.

When we keep the fermions in the background multiplets V and V B and drop the chiral

fermion ψ in Φ, we find that the interaction Lagrangian gives

− β

2

∫
d4θ cos

[
β

2
(Φ− Φ†)

]
V BWαD

αΦ+ h.c.

∼ β cos(βχ)

{
−AB

mD∂
mχ+AB

mF
mn∂nχ+

1

2
εmnpqAB

p Fmn∂qϕ

+
i

2

(
λBσ̄mλ− λ̄σ̄mλB

)
∂mϕ− 1

2

(
λBσ̄mλ+ λ̄σ̄mλB

)
∂mχ

+
1

2
(λBλ)F +

1

2
(λ̄λ̄B)F †

}
. (4.17)

Assuming that the background fermion bilinear consisting of the gaugino λ and the super-

partner λB of the baryon gauge field

jm =
i

2
(λBσ̄mλ− λ̄σ̄mλB) (4.18)
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gets a constant VEV ⟨ji⟩, then the energy density for the static field ϕ is given by

E|ϕ = (∂iϕ)
2 +

4m2

β2
sin2

(
β

2
ϕ

)
∓ β⟨ji⟩∂iϕ. (4.19)

Since the third term is the total derivative, it never contributes to the equation of motion

for ϕ. However, it does contribute to the energy. For example, for a single sine-Gordon

(anti-)kink solution, we find its tension as

E =
16m

β2
∓ 2π⟨j3⟩ (4.20)

where we have assumed ⟨ji⟩ = δi3⟨j3⟩. The second term with upper (lower) sign apparently

provides the negative contribution for the positive (negative) VEV. Therefore, when the

inequality ∣∣∣∣ i2(λBσ̄mλ− λ̄σ̄mλB)

∣∣∣∣ ≥ 8m

πβ2
(4.21)

holds, the CSL is the ground state in the presence of this fermion condensation. This is the

SUSY counterpart of the baryon density and external magnetic field.

It is useful to consider the scale of the fermion condensation (4.18). A famous example

is the gaugino condensation for which a fermion bilinear acquires a non-zero VEV due to

the instanton effects [113]. In this case, the fermion bilinear should behave as Λ3 by the

dimensional analysis. Here Λ is the dynamical scale of the model. Other examples in which

fermion bilinear develops a VEV can be found in studies of the early universe. For example,

some kinds of dynamics have been studied to generate a VEV of fermionic current density

in the locally AdS spacetime [114, 115]. It has been discussed that the temporal component

of a fermion current dominates the energy density for the gauge field in the early (de Sitter)

universe and it causes the cosmic inflation [116, 117]. In any event, it is therefore natural

that the left-hand side in Eq. (4.21) behaves like Λ3 and we expect that the CSL ground

state happens at Λ ≫ 3

√
m
β2 .

5 Summary and Discussion

In this paper, we have constructed the neutral pion sector of a manifestly supersymmetric

extension of the SU(2) chiral Lagrangian with the WZW term in magnetic field at finite

density, which is the SUSY chiral sine-Gordon model. We then have constructed (anti-

)BPS domain wall (chiral soliton) and shown that the tension of the domain wall becomes

negative and the ground state is CSL where SUSY is broken, when the background magnetic

field and/or chemical potential are large enough or when there is a background fermion

condensates in the form of a fermion bilinear consisting of the superpartner of the baryon

gauge field and the gaugino.
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In this paper, we have been able to construct only the neutral pion sector of the SUSY

chiral Lagrangian with the WZW term in the superfield formalism. Constructing the full

Lagrangian including charged pions remain a future problem. Once the charged pions

can be taken into account, one can also discuss domain-wall Skyrmions as were studied

in QCD [57, 58]. The domain-wall Skyrmions are composite states of a domain wall and

Skyrmions, initially introduced in the field theoretical models in 3+1 dimensions [118–123]

and in 2+1 dimensions [124–126]. If a baby Skyrmion in 2+1 dimensions, supported by

π2(S
2) ≃ Z, is absorbed into a domain wall, it becomes a sine-Gordon soliton supported

by π1(S
1) ≃ Z in the domain-wall world line. Similarly, a Skyrmion in 3+1 dimensions,

supported by π3(S
3) ≃ Z, is absorbed into a chiral soliton to become a topological lump

(or baby Skyrmion) supported by π2(S
2) ≃ Z in the solitons’s worldvolume [57]. SUSY

extensions of these cases are worth to be investigated.3 In particular, whether such a

composite state can be a 1/4 BPS state [71–74, 129–131] is one of interesting direction to

be explored.

In dense QCD, a CSL state is unstable due to the charged pion condensation in a

region of higher density and/or stronger magnetic field, asymptotically expressed at B larger

than 16π4f4π/µ
2
B [43] above which tachyon appears and the charged pions are condensed.

Consequently, the CSL becomes unstable, where an Abrikosov’s vortex lattice was proposed

as a consequence of the charged pion condensation [62, 63]. It is an open question whether

such an instability is present in our SUSY extension. Although SUSY is completely broken

in the total configuration of CSL, each (anti-)soliton is an (anti-)BPS state preserving a half

SUSY and is stable at least when individual solitons are well separated. We thus expect

that the stability is enhanced in our SUSY extension.

We have discussed bosonic and fermionic backgrounds separately. If there are both

kinds of backgrounds simultaneously in different spatial directions, say Bi = (0, 0, B3) and

⟨ji⟩ = (0, j2, 0), sine-Gordon solitons have two preferable directions. It is an open question

whether the ground state is still a CSL in a certain direction linearly determined from the

two directions or a soliton junction.

In this paper, we have discussed only the leading order O(p2) of the ChPT. The higher

order term of SUSY ChPT was discussed in Ref. [87] by using SUSY higher derivative terms

free from ghost and auxiliary field problem [81–89]. SUSY may help us to consider ChPT

in a more controllable manner and may eventually uncover a phase structure of non-SUSY

QCD under extreme conditions such as strong magnetic field and/or rapid rotation.

As mentioned in the introduction, chiral magnets also admit solitonic ground states
3However, it is worth to mention that a supersymmetric extension of the Skyrme model does not contain

quadratic derivative term [127], allowing only non-BPS solitons [128].
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such as CSL and a Skyrmion lattice. This model can be written as a CP 1 model with

a background non-Abelian gauge field [132]. It can be made supersymmetric and can be

embedded into string theory [24]. However, the bosonic part of the model was given only

in terms of component fields and the fermionic part is not given [24], and so it is a future

problem to construct the chiral magnets in the superfield formalism to study e. g. SUSY

breaking. It is desirable to have a unified understanding of inhomogeneous ground states

in SUSY field theories with background gauge fields.
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A Fayet-Iliopoulos term

In this appendix, we show that the introduction of the Fayet-Iliopoulos term in our model

causes inconsistencies. The Lagrangian may be given by

L = LSChPT + ξ

∫
d4θ V, (A.1)

where ξ is the Fayet-Iliopoulos parameter. Then, the D-term condition is found to be

−β cosh(βχ)AB
m∂

mχ+
1

2
ξ = 0. (A.2)

For the given background AB
m = (µB, 0, 0, 0), we have the condition

βµB cosh(βχ)χ̇ = −1

2
ξ. (A.3)

The solution to this equation is

χ(t) =
1

4
arctan

[
− ξt

2µB
t+ c

]
, (A.4)

where c is the integration constant. On the other hand, for ϕ = 0, the equation of motion

for χ is given by

− β sinh(βχ)∂mχ∂
mχ− 2m2

β

sinh(βχ)

cosh2(βχ)
+ β sinh(βχ)AB

mF
mn∂nχ

− ∂m

[
− 2 cosh(βχ)∂mχ+ cosh(βχ)AB

mF
mn∂nχ

]
= 0. (A.5)

Since the solution (A.4) explicitly depends on ξ but the equation of motion does not, it is

obvious that the solution (A.4) never satisfies the equation of motion unless ξ = c = 0 and

χ = 0.
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[33] N. Goldman, G. Juzeliūnas, P. Öhberg and I. B. Spielman, Light-induced gauge fields for
ultracold atoms, Rept. Prog. Phys. 77 (2014) 126401 [1308.6533].

[34] T. Kawakami, T. Mizushima and K. Machida, Textures of f = 2 spinor bose-einstein
condensates with spin-orbit coupling, Phys. Rev. A 84 (2011) 011607.

[35] T. Kawakami, T. Mizushima, M. Nitta and K. Machida, Stable Skyrmions in SU(2) Gauged
Bose-Einstein Condensates, Phys. Rev. Lett. 109 (2012) 015301 [1204.3177].

[36] K. Fukushima and T. Hatsuda, The phase diagram of dense QCD, Rept. Prog. Phys. 74
(2011) 014001 [1005.4814].

[37] H. Leutwyler, On the foundations of chiral perturbation theory, Annals Phys. 235 (1994)
165 [hep-ph/9311274].

[38] D. T. Son and A. R. Zhitnitsky, Quantum anomalies in dense matter, Phys. Rev. D 70
(2004) 074018 [hep-ph/0405216].

[39] D. T. Son and M. A. Stephanov, Axial anomaly and magnetism of nuclear and quark
matter, Phys. Rev. D 77 (2008) 014021 [0710.1084].

[40] J. Goldstone and F. Wilczek, Fractional Quantum Numbers on Solitons, Phys. Rev. Lett. 47
(1981) 986.

[41] E. Witten, Global Aspects of Current Algebra, Nucl. Phys. B 223 (1983) 422.

[42] M. Eto, K. Hashimoto and T. Hatsuda, Ferromagnetic neutron stars: axial anomaly, dense
neutron matter, and pionic wall, Phys. Rev. D 88 (2013) 081701 [1209.4814].

[43] T. Brauner and N. Yamamoto, Chiral Soliton Lattice and Charged Pion Condensation in
Strong Magnetic Fields, JHEP 04 (2017) 132 [1609.05213].

[44] T. Brauner and S. V. Kadam, Anomalous low-temperature thermodynamics of QCD in
strong magnetic fields, JHEP 11 (2017) 103 [1706.04514].

[45] T. Brauner and S. Kadam, Anomalous electrodynamics of neutral pion matter in strong
magnetic fields, JHEP 03 (2017) 015 [1701.06793].

[46] T. Brauner, H. Kolešová and N. Yamamoto, Chiral soliton lattice phase in warm QCD,
Phys. Lett. B 823 (2021) 136767 [2108.10044].

[47] T. Brauner and H. Kolešová, Chiral soliton lattice at next-to-leading order, JHEP 07 (2023)
163 [2302.06902].

[48] X.-G. Huang, K. Nishimura and N. Yamamoto, Anomalous effects of dense matter under
rotation, JHEP 02 (2018) 069 [1711.02190].

[49] K. Nishimura and N. Yamamoto, Topological term, QCD anomaly, and the η
′
chiral soliton

lattice in rotating baryonic matter, JHEP 07 (2020) 196 [2003.13945].

[50] H.-L. Chen, X.-G. Huang and J. Liao, QCD phase structure under rotation, Lect. Notes
Phys. 987 (2021) 349 [2108.00586].

– 18 –

https://doi.org/10.1088/0034-4885/77/12/126401
https://arxiv.org/abs/1308.6533
https://doi.org/10.1103/PhysRevA.84.011607
https://doi.org/10.1103/PhysRevLett.109.015301
https://arxiv.org/abs/1204.3177
https://doi.org/10.1088/0034-4885/74/1/014001
https://doi.org/10.1088/0034-4885/74/1/014001
https://arxiv.org/abs/1005.4814
https://doi.org/10.1006/aphy.1994.1094
https://doi.org/10.1006/aphy.1994.1094
https://arxiv.org/abs/hep-ph/9311274
https://doi.org/10.1103/PhysRevD.70.074018
https://doi.org/10.1103/PhysRevD.70.074018
https://arxiv.org/abs/hep-ph/0405216
https://doi.org/10.1103/PhysRevD.77.014021
https://arxiv.org/abs/0710.1084
https://doi.org/10.1103/PhysRevLett.47.986
https://doi.org/10.1103/PhysRevLett.47.986
https://doi.org/10.1016/0550-3213(83)90063-9
https://doi.org/10.1103/PhysRevD.88.081701
https://arxiv.org/abs/1209.4814
https://doi.org/10.1007/JHEP04(2017)132
https://arxiv.org/abs/1609.05213
https://doi.org/10.1007/JHEP11(2017)103
https://arxiv.org/abs/1706.04514
https://doi.org/10.1007/JHEP03(2017)015
https://arxiv.org/abs/1701.06793
https://doi.org/10.1016/j.physletb.2021.136767
https://arxiv.org/abs/2108.10044
https://doi.org/10.1007/JHEP07(2023)163
https://doi.org/10.1007/JHEP07(2023)163
https://arxiv.org/abs/2302.06902
https://doi.org/10.1007/JHEP02(2018)069
https://arxiv.org/abs/1711.02190
https://doi.org/10.1007/JHEP07(2020)196
https://arxiv.org/abs/2003.13945
https://doi.org/10.1007/978-3-030-71427-7_11
https://doi.org/10.1007/978-3-030-71427-7_11
https://arxiv.org/abs/2108.00586


[51] M. Eto, K. Nishimura and M. Nitta, Phases of rotating baryonic matter: non-Abelian chiral
soliton lattices, antiferro-isospin chains, and ferri/ferromagnetic magnetization, JHEP 08
(2022) 305 [2112.01381].

[52] M. Eto, K. Nishimura and M. Nitta, Domain-wall Skyrmion phase in a rapidly rotating
QCD matter, JHEP 03 (2024) 019 [2310.17511].

[53] M. Eto, K. Nishimura and M. Nitta, Non-Abelian chiral soliton lattice in rotating QCD
matter: Nambu-Goldstone and excited modes, JHEP 03 (2024) 035 [2312.10927].

[54] M. Eto and M. Nitta, Quantum nucleation of topological solitons, JHEP 09 (2022) 077
[2207.00211].

[55] T. Higaki, K. Kamada and K. Nishimura, Formation of a chiral soliton lattice, Phys. Rev.
D 106 (2022) 096022 [2207.00212].

[56] Z. Qiu and M. Nitta, Quasicrystals in QCD, JHEP 05 (2023) 170 [2304.05089].

[57] M. Eto, K. Nishimura and M. Nitta, How baryons appear in low-energy QCD: Domain-wall
Skyrmion phase in strong magnetic fields, 2304.02940.

[58] M. Eto, K. Nishimura and M. Nitta, Phase diagram of QCD matter with magnetic field:
domain-wall Skyrmion chain in chiral soliton lattice, JHEP 12 (2023) 032 [2311.01112].

[59] M. Kawaguchi, Y.-L. Ma and S. Matsuzaki, Chiral soliton lattice effect on baryonic matter
from a skyrmion crystal model, Phys. Rev. C 100 (2019) 025207 [1810.12880].

[60] S. Chen, K. Fukushima and Z. Qiu, Skyrmions in a magnetic field and π0 domain wall
formation in dense nuclear matter, Phys. Rev. D 105 (2022) L011502 [2104.11482].

[61] S. Chen, K. Fukushima and Z. Qiu, Magnetic enhancement of baryon confinement modeled
via a deformed Skyrmion, Phys. Lett. B 843 (2023) 137992 [2303.04692].

[62] G. W. Evans and A. Schmitt, Chiral anomaly induces superconducting baryon crystal,
JHEP 09 (2022) 192 [2206.01227].

[63] G. W. Evans and A. Schmitt, Chiral Soliton Lattice turns into 3D crystal, 2311.03880.

[64] T. Brauner, G. Filios and H. Kolešová, Anomaly-Induced Inhomogeneous Phase in Quark
Matter without the Sign Problem, Phys. Rev. Lett. 123 (2019) 012001 [1902.07522].

[65] T. Brauner, G. Filios and H. Kolešová, Chiral soliton lattice in QCD-like theories, JHEP 12
(2019) 029 [1905.11409].

[66] H. P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rept. 110 (1984) 1.

[67] H. E. Haber and G. L. Kane, The Search for Supersymmetry: Probing Physics Beyond the
Standard Model, Phys. Rept. 117 (1985) 75.

[68] G. L. Kane, C. F. Kolda, L. Roszkowski and J. D. Wells, Study of constrained minimal
supersymmetry, Phys. Rev. D 49 (1994) 6173 [hep-ph/9312272].

– 19 –

https://doi.org/10.1007/JHEP08(2022)305
https://doi.org/10.1007/JHEP08(2022)305
https://arxiv.org/abs/2112.01381
https://doi.org/10.1007/JHEP03(2024)019
https://arxiv.org/abs/2310.17511
https://doi.org/10.1007/JHEP03(2024)035
https://arxiv.org/abs/2312.10927
https://doi.org/10.1007/JHEP09(2022)077
https://arxiv.org/abs/2207.00211
https://doi.org/10.1103/PhysRevD.106.096022
https://doi.org/10.1103/PhysRevD.106.096022
https://arxiv.org/abs/2207.00212
https://doi.org/10.1007/JHEP05(2023)170
https://arxiv.org/abs/2304.05089
https://arxiv.org/abs/2304.02940
https://doi.org/10.1007/JHEP12(2023)032
https://arxiv.org/abs/2311.01112
https://doi.org/10.1103/PhysRevC.100.025207
https://arxiv.org/abs/1810.12880
https://doi.org/10.1103/PhysRevD.105.L011502
https://arxiv.org/abs/2104.11482
https://doi.org/10.1016/j.physletb.2023.137992
https://arxiv.org/abs/2303.04692
https://doi.org/10.1007/JHEP09(2022)192
https://arxiv.org/abs/2206.01227
https://arxiv.org/abs/2311.03880
https://doi.org/10.1103/PhysRevLett.123.012001
https://arxiv.org/abs/1902.07522
https://doi.org/10.1007/JHEP12(2019)029
https://doi.org/10.1007/JHEP12(2019)029
https://arxiv.org/abs/1905.11409
https://doi.org/10.1016/0370-1573(84)90008-5
https://doi.org/10.1016/0370-1573(85)90051-1
https://doi.org/10.1103/PhysRevD.49.6173
https://arxiv.org/abs/hep-ph/9312272


[69] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N=2
supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099].

[70] N. Seiberg and E. Witten, Electric - magnetic duality, monopole condensation, and
confinement in N=2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19
[hep-th/9407087], [Erratum: Nucl.Phys.B 430, 485–486 (1994)].

[71] D. Tong, TASI lectures on solitons: Instantons, monopoles, vortices and kinks, in
Theoretical Advanced Study Institute in Elementary Particle Physics: Many Dimensions of
String Theory, 6, 2005, hep-th/0509216.

[72] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Solitons in the Higgs phase: The
Moduli matrix approach, J. Phys. A 39 (2006) R315 [hep-th/0602170].

[73] M. Shifman and A. Yung, Supersymmetric Solitons and How They Help Us Understand
Non-Abelian Gauge Theories, Rev. Mod. Phys. 79 (2007) 1139 [hep-th/0703267].

[74] M. Shifman and A. Yung, Supersymmetric Solitons, Cambridge Monographs on
Mathematical Physics. Cambridge University Press, 7, 2023, 10.1017/9781009402200.

[75] D. Tong, Quantum Vortex Strings: A Review, Annals Phys. 324 (2009) 30 [0809.5060].

[76] K. A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua,
JHEP 04 (2006) 021 [hep-th/0602239].

[77] M. Nitta, S. Sasaki and R. Yokokura, Supersymmetry Breaking in Spatially Modulated
Vacua, Phys. Rev. D 96 (2017) 105022 [1706.05232].

[78] S. Bjarke Gudnason, M. Nitta, S. Sasaki and R. Yokokura, Supersymmetry breaking and
ghost Goldstino in modulated vacua, Phys. Rev. D 99 (2019) 045012 [1812.09078].

[79] M. Nitta, S. Sasaki and R. Yokokura, Spatially Modulated Vacua in a Lorentz-invariant
Scalar Field Theory, Eur. Phys. J. C 78 (2018) 754 [1706.02938].

[80] S. B. Gudnason, M. Nitta, S. Sasaki and R. Yokokura, Temporally, spatially, or lightlike
modulated vacua in Lorentz invariant theories, Phys. Rev. D 99 (2019) 045011
[1810.11361].

[81] J. Khoury, J.-L. Lehners and B. Ovrut, Supersymmetric P(X,ϕ) and the Ghost Condensate,
Phys. Rev. D 83 (2011) 125031 [1012.3748].

[82] J. Khoury, J.-L. Lehners and B. A. Ovrut, Supersymmetric Galileons, Phys. Rev. D 84
(2011) 043521 [1103.0003].

[83] M. Koehn, J.-L. Lehners and B. A. Ovrut, Higher-Derivative Chiral Superfield Actions
Coupled to N=1 Supergravity, Phys. Rev. D 86 (2012) 085019 [1207.3798].

[84] C. Adam, J. M. Queiruga, J. Sanchez-Guillen and A. Wereszczynski, N=1 supersymmetric
extension of the baby Skyrme model, Phys. Rev. D 84 (2011) 025008 [1105.1168].

[85] F. Farakos and A. Kehagias, Emerging Potentials in Higher-Derivative Gauged Chiral
Models Coupled to N=1 Supergravity, JHEP 11 (2012) 077 [1207.4767].

– 20 –

https://doi.org/10.1016/0550-3213(94)90214-3
https://arxiv.org/abs/hep-th/9408099
https://doi.org/10.1016/0550-3213(94)90124-4
https://arxiv.org/abs/hep-th/9407087
https://arxiv.org/abs/hep-th/0509216
https://doi.org/10.1088/0305-4470/39/26/R01
https://arxiv.org/abs/hep-th/0602170
https://doi.org/10.1103/RevModPhys.79.1139
https://arxiv.org/abs/hep-th/0703267
https://doi.org/10.1017/9781009402200
https://doi.org/10.1016/j.aop.2008.10.005
https://arxiv.org/abs/0809.5060
https://doi.org/10.1088/1126-6708/2006/04/021
https://arxiv.org/abs/hep-th/0602239
https://doi.org/10.1103/PhysRevD.96.105022
https://arxiv.org/abs/1706.05232
https://doi.org/10.1103/PhysRevD.99.045012
https://arxiv.org/abs/1812.09078
https://doi.org/10.1140/epjc/s10052-018-6235-9
https://arxiv.org/abs/1706.02938
https://doi.org/10.1103/PhysRevD.99.045011
https://arxiv.org/abs/1810.11361
https://doi.org/10.1103/PhysRevD.83.125031
https://arxiv.org/abs/1012.3748
https://doi.org/10.1103/PhysRevD.84.043521
https://doi.org/10.1103/PhysRevD.84.043521
https://arxiv.org/abs/1103.0003
https://doi.org/10.1103/PhysRevD.86.085019
https://arxiv.org/abs/1207.3798
https://doi.org/10.1103/PhysRevD.84.025008
https://arxiv.org/abs/1105.1168
https://doi.org/10.1007/JHEP11(2012)077
https://arxiv.org/abs/1207.4767


[86] M. Nitta and S. Sasaki, BPS States in Supersymmetric Chiral Models with Higher
Derivative Terms, Phys. Rev. D 90 (2014) 105001 [1406.7647].

[87] M. Nitta and S. Sasaki, Higher Derivative Corrections to Manifestly Supersymmetric
Nonlinear Realizations, Phys. Rev. D 90 (2014) 105002 [1408.4210].

[88] M. Nitta and S. Sasaki, Classifying BPS States in Supersymmetric Gauge Theories Coupled
to Higher Derivative Chiral Models, Phys. Rev. D 91 (2015) 125025 [1504.08123].

[89] M. Nitta and S. Sasaki, Higher Derivative Supersymmetric Nonlinear Sigma Models on
Hermitian Symmetric Spaces, and BPS States Therein, Phys. Rev. D 103 (2021) 025001
[2011.07973].

[90] P. Di Vecchia and S. Ferrara, Classical Solutions in Two-Dimensional Supersymmetric Field
Theories, Nucl. Phys. B 130 (1977) 93.

[91] J. Hruby, On the Supersymmetric Sine-Gordon Model and a Two-Dimensional Bag, Nucl.
Phys. B 131 (1977) 275.

[92] T. Marinucci and S. Sciuto, Quantization of the Conservation Laws in the Supersymmetric
Sine-Gordon Model, Nucl. Phys. B 156 (1979) 144.

[93] M. Cassandro, F. Nicolo and B. Scoppola, The (N=1) Supersymmetric Sine-Gordon Model
in Two-Dimensions. 1, Commun. Math. Phys. 122 (1989) 681.

[94] M. Cassandro, F. Nicolo and B. Scoppola, The (N=1) Supersymmetric Sine-Gordon Model
in Two-Dimensions. 2, Commun. Math. Phys. 123 (1989) 123.

[95] D. Nemeschansky and R. Rohm, Anomaly Constraints on Supersymmetric Effective
Lagrangian, Nucl. Phys. B 249 (1985) 157.

[96] M. Nitta, A Note on supersymmetric WZW term in four dimensions, Mod. Phys. Lett. A
15 (2000) 2327 [hep-th/0101166].

[97] S. J. Gates, Jr., Why auxiliary fields matter: The Strange case of the 4-D, N=1
supersymmetric QCD effective action, Phys. Lett. B 365 (1996) 132 [hep-th/9508153].

[98] S. J. Gates, Jr., Why auxiliary fields matter: The strange case of the 4-D, N=1
supersymmetric QCD effective action. 2., Nucl. Phys. B 485 (1997) 145 [hep-th/9606109].

[99] S. J. Gates, Jr., M. T. Grisaru, M. E. Knutt and S. Penati, The Superspace WZNW action
for 4-D, N=1 supersymmetric QCD, Phys. Lett. B 503 (2001) 349 [hep-ph/0012301].

[100] I. L. Buchbinder, S. M. Kuzenko and A. Y. Petrov, Superfield chiral effective potential,
Phys. Lett. B 321 (1994) 372.

[101] I. L. Buchbinder, S. Kuzenko and Z. Yarevskaya, Supersymmetric effective potential:
Superfield approach, Nucl. Phys. B 411 (1994) 665.

[102] A. T. Banin, I. L. Buchbinder and N. G. Pletnev, On quantum properties of the
four-dimensional generic chiral superfield model, Phys. Rev. D 74 (2006) 045010
[hep-th/0606242].

– 21 –

https://doi.org/10.1103/PhysRevD.90.105001
https://arxiv.org/abs/1406.7647
https://doi.org/10.1103/PhysRevD.90.105002
https://arxiv.org/abs/1408.4210
https://doi.org/10.1103/PhysRevD.91.125025
https://arxiv.org/abs/1504.08123
https://doi.org/10.1103/PhysRevD.103.025001
https://arxiv.org/abs/2011.07973
https://doi.org/10.1016/0550-3213(77)90394-7
https://doi.org/10.1016/0550-3213(77)90373-X
https://doi.org/10.1016/0550-3213(77)90373-X
https://doi.org/10.1016/0550-3213(79)90499-1
https://doi.org/10.1007/BF01256500
https://doi.org/10.1007/BF01244020
https://doi.org/10.1016/0550-3213(85)90044-6
https://doi.org/10.1142/S0217732300002917
https://doi.org/10.1142/S0217732300002917
https://arxiv.org/abs/hep-th/0101166
https://doi.org/10.1016/0370-2693(95)01309-1
https://arxiv.org/abs/hep-th/9508153
https://doi.org/10.1016/S0550-3213(96)00621-9
https://arxiv.org/abs/hep-th/9606109
https://doi.org/10.1016/S0370-2693(01)00210-6
https://arxiv.org/abs/hep-ph/0012301
https://doi.org/10.1016/0370-2693(94)90260-7
https://doi.org/10.1016/0550-3213(94)90466-9
https://doi.org/10.1103/PhysRevD.74.045010
https://arxiv.org/abs/hep-th/0606242


[103] S. B. Gudnason, M. Nitta and S. Sasaki, BPS pion domain walls in the supersymmetric
chiral Lagrangian, Phys. Rev. D 94 (2016) 025003 [1602.02520].

[104] J. Wess and J. Bagger, Supersymmetry and supergravity. Princeton University Press,
Princeton, NJ, USA, 1992.

[105] M. Bando, T. Kuramoto, T. Maskawa and S. Uehara, Structure of Nonlinear Realization in
Supersymmetric Theories, Phys. Lett. B 138 (1984) 94.

[106] M. Bando, T. Kuramoto, T. Maskawa and S. Uehara, Nonlinear Realization in
Supersymmetric Theories, Prog. Theor. Phys. 72 (1984) 313.

[107] M. Bando, T. Kuramoto, T. Maskawa and S. Uehara, Nonlinear Realization in
Supersymmetric Theories. 2., Prog. Theor. Phys. 72 (1984) 1207.

[108] M. Bando, T. Kugo and K. Yamawaki, Nonlinear Realization and Hidden Local
Symmetries, Phys. Rept. 164 (1988) 217.

[109] G. M. Shore, Geometry of Supersymmetric σ Models, Nucl. Phys. B 320 (1989) 202.

[110] A. C. W. Kotcheff and G. M. Shore, Kahler σ Models From Supersymmetric Gauge
Theories, Int. J. Mod. Phys. A 4 (1989) 4391.

[111] K. Higashijima, M. Nitta, K. Ohta and N. Ohta, Low-energy theorems in N=1
supersymmetric theory, Prog. Theor. Phys. 98 (1997) 1165 [hep-th/9706219].

[112] M. Nitta, Moduli space of global symmetry in N=1 supersymmetric theories and the
quasiNambu-Goldstone bosons, Int. J. Mod. Phys. A 14 (1999) 2397 [hep-th/9805038].

[113] N. M. Davies, T. J. Hollowood, V. V. Khoze and M. P. Mattis, Gluino condensate and
magnetic monopoles in supersymmetric gluodynamics, Nucl. Phys. B 559 (1999) 123
[hep-th/9905015].

[114] S. Bellucci, A. A. Saharian, D. H. Simonyan and V. V. Vardanyan, Fermionic currents in
topologically nontrivial braneworlds, Phys. Rev. D 98 (2018) 085020 [1808.01577].

[115] S. Bellucci, A. A. Saharian, H. G. Sargsyan and V. V. Vardanyan, Fermionic vacuum
currents in topologically nontrivial braneworlds: Two-brane geometry, Phys. Rev. D 101
(2020) 045020 [1907.13379].

[116] S. Alexander, A. Marciano and D. Spergel, Chern-Simons Inflation and Baryogenesis,
JCAP 04 (2013) 046 [1107.0318].

[117] S. Alexander, D. Jyoti, A. Kosowsky and A. Marciano, Dynamics of Gauge Field Inflation,
JCAP 05 (2015) 005 [1408.4118].

[118] M. Nitta, Correspondence between Skyrmions in 2+1 and 3+1 Dimensions, Phys. Rev. D
87 (2013) 025013 [1210.2233].

[119] M. Nitta, Matryoshka Skyrmions, Nucl. Phys. B 872 (2013) 62 [1211.4916].

[120] S. B. Gudnason and M. Nitta, Domain wall Skyrmions, Phys. Rev. D 89 (2014) 085022
[1403.1245].

– 22 –

https://doi.org/10.1103/PhysRevD.94.025003
https://arxiv.org/abs/1602.02520
https://doi.org/10.1016/0370-2693(84)91880-X
https://doi.org/10.1143/PTP.72.313
https://doi.org/10.1143/PTP.72.1207
https://doi.org/10.1016/0370-1573(88)90019-1
https://doi.org/10.1016/0550-3213(89)90217-4
https://doi.org/10.1142/S0217751X89001849
https://doi.org/10.1143/PTP.98.1165
https://arxiv.org/abs/hep-th/9706219
https://doi.org/10.1142/S0217751X99001202
https://arxiv.org/abs/hep-th/9805038
https://doi.org/10.1016/S0550-3213(99)00434-4
https://arxiv.org/abs/hep-th/9905015
https://doi.org/10.1103/PhysRevD.98.085020
https://arxiv.org/abs/1808.01577
https://doi.org/10.1103/PhysRevD.101.045020
https://doi.org/10.1103/PhysRevD.101.045020
https://arxiv.org/abs/1907.13379
https://doi.org/10.1088/1475-7516/2013/04/046
https://arxiv.org/abs/1107.0318
https://doi.org/10.1088/1475-7516/2015/05/005
https://arxiv.org/abs/1408.4118
https://doi.org/10.1103/PhysRevD.87.025013
https://doi.org/10.1103/PhysRevD.87.025013
https://arxiv.org/abs/1210.2233
https://doi.org/10.1016/j.nuclphysb.2013.03.003
https://arxiv.org/abs/1211.4916
https://doi.org/10.1103/PhysRevD.89.085022
https://arxiv.org/abs/1403.1245


[121] S. B. Gudnason and M. Nitta, Incarnations of Skyrmions, Phys. Rev. D 90 (2014) 085007
[1407.7210].

[122] M. Eto and M. Nitta, Non-Abelian Sine-Gordon Solitons: Correspondence between SU(N)

Skyrmions and CPN−1 Lumps, Phys. Rev. D 91 (2015) 085044 [1501.07038].

[123] M. Nitta, Relations among topological solitons, Phys. Rev. D 105 (2022) 105006
[2202.03929].

[124] M. Nitta, Josephson vortices and the Atiyah-Manton construction, Phys. Rev. D 86 (2012)
125004 [1207.6958].

[125] M. Kobayashi and M. Nitta, Sine-Gordon kinks on a domain wall ring, Phys. Rev. D 87
(2013) 085003 [1302.0989].

[126] P. Jennings and P. Sutcliffe, The dynamics of domain wall Skyrmions, J. Phys. A 46 (2013)
465401 [1305.2869].

[127] S. B. Gudnason, M. Nitta and S. Sasaki, A supersymmetric Skyrme model, JHEP 02 (2016)
074 [1512.07557].

[128] S. B. Gudnason, M. Nitta and S. Sasaki, Topological solitons in the supersymmetric Skyrme
model, JHEP 01 (2017) 014 [1608.03526].

[129] Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, All exact solutions of a 1/4
Bogomol’nyi-Prasad-Sommerfield equation, Phys. Rev. D 71 (2005) 065018
[hep-th/0405129].

[130] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Instantons in the Higgs phase, Phys.
Rev. D 72 (2005) 025011 [hep-th/0412048].

[131] M. Eto, Y. Isozumi, M. Nitta and K. Ohashi, 1/2, 1/4 and 1/8 BPS equations in SUSY
Yang-Mills-Higgs systems: Field theoretical brane configurations, Nucl. Phys. B 752 (2006)
140 [hep-th/0506257].

[132] B. J. Schroers, Gauged Sigma Models and Magnetic Skyrmions, SciPost Phys. 7 (2019) 030
[1905.06285].

– 23 –

https://doi.org/10.1103/PhysRevD.90.085007
https://arxiv.org/abs/1407.7210
https://doi.org/10.1103/PhysRevD.91.085044
https://arxiv.org/abs/1501.07038
https://doi.org/10.1103/PhysRevD.105.105006
https://arxiv.org/abs/2202.03929
https://doi.org/10.1103/PhysRevD.86.125004
https://doi.org/10.1103/PhysRevD.86.125004
https://arxiv.org/abs/1207.6958
https://doi.org/10.1103/PhysRevD.87.085003
https://doi.org/10.1103/PhysRevD.87.085003
https://arxiv.org/abs/1302.0989
https://doi.org/10.1088/1751-8113/46/46/465401
https://doi.org/10.1088/1751-8113/46/46/465401
https://arxiv.org/abs/1305.2869
https://doi.org/10.1007/JHEP02(2016)074
https://doi.org/10.1007/JHEP02(2016)074
https://arxiv.org/abs/1512.07557
https://doi.org/10.1007/JHEP01(2017)014
https://arxiv.org/abs/1608.03526
https://doi.org/10.1103/PhysRevD.71.065018
https://arxiv.org/abs/hep-th/0405129
https://doi.org/10.1103/PhysRevD.72.025011
https://doi.org/10.1103/PhysRevD.72.025011
https://arxiv.org/abs/hep-th/0412048
https://doi.org/10.1016/j.nuclphysb.2006.06.026
https://doi.org/10.1016/j.nuclphysb.2006.06.026
https://arxiv.org/abs/hep-th/0506257
https://doi.org/10.21468/SciPostPhys.7.3.030
https://arxiv.org/abs/1905.06285

	Introduction
	Chiral soliton lattice in strong magnetic field: a review
	Chiral Lagrangian
	Chiral soliton lattice

	Supersymmetric chiral perturbation theory
	BPS solitons and chiral soliton lattice ground states
	BPS conditions
	Chiral soliton lattice ground state in background gauge fields
	Chiral soliton lattice ground state in fermion condensates

	Summary and Discussion
	Fayet-Iliopoulos term

